Short‐chain fatty acids mediate gut microbiota–brain communication and protect the blood–brain barrier integrity
The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two‐way communication with the central nervous system, collectively known as the gut microbiota−brain axis. Alterations in gut microbiota have been associated with various...
Saved in:
Published in | Annals of the New York Academy of Sciences Vol. 1545; no. 1; pp. 116 - 131 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two‐way communication with the central nervous system, collectively known as the gut microbiota−brain axis. Alterations in gut microbiota have been associated with various neurological disorders, and disruptions to the blood–brain barrier (BBB) may be crucial, though the exact mechanisms remain unknown. In the current study, we investigated the impacts of short‐chain fatty acids (SCFAs) on the integrity of the BBB, which was compromised by orally administered antibiotics in rhesus monkeys and C57BL/6n mice. Our results showed that SCFA supplementation notably enhanced BBB integrity in rhesus monkeys with gut dysbiosis. Similar outcomes were observed in mice with gut dysbiosis, accompanied by decreased cortical claudin‐5 mRNA levels. In particular, propionate, but not acetate or butyrate, could reverse the antibiotic‐induced BBB permeability increase in mice. Additionally, in vitro studies demonstrated that propionate boosted the expression of tight junction proteins in brain endothelial cells. These results suggest that the propionate can maintain BBB integrity through a free fatty acid receptor 2–dependent mechanism. This study offers new insights into the gut−brain axis and underscores potential therapeutic targets for interventions based on gut microbiota.
Alterations in gut microbiota are associated with neurological disorders and blood‐brain barrier (BBB) disruption. Short‐chain fatty acid supplementation improved BBB integrity in rhesus monkeys and mice with oral antibiotic–induced gut dysbiosis. Propionate, but not acetate nor butyrate, reversed the increase in oral antibiotic‐induced BBB permeability. Additionally, propionate administration boosted the expression of tight junction proteins in brain endothelial cells. Propionate can maintain BBB integrity in an FFAR2‐dependent way. |
---|---|
AbstractList | The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two‐way communication with the central nervous system, collectively known as the gut microbiota−brain axis. Alterations in gut microbiota have been associated with various neurological disorders, and disruptions to the blood–brain barrier (BBB) may be crucial, though the exact mechanisms remain unknown. In the current study, we investigated the impacts of short‐chain fatty acids (SCFAs) on the integrity of the BBB, which was compromised by orally administered antibiotics in rhesus monkeys and C57BL/6n mice. Our results showed that SCFA supplementation notably enhanced BBB integrity in rhesus monkeys with gut dysbiosis. Similar outcomes were observed in mice with gut dysbiosis, accompanied by decreased cortical claudin‐5 mRNA levels. In particular, propionate, but not acetate or butyrate, could reverse the antibiotic‐induced BBB permeability increase in mice. Additionally, in vitro studies demonstrated that propionate boosted the expression of tight junction proteins in brain endothelial cells. These results suggest that the propionate can maintain BBB integrity through a free fatty acid receptor 2–dependent mechanism. This study offers new insights into the gut−brain axis and underscores potential therapeutic targets for interventions based on gut microbiota. The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two-way communication with the central nervous system, collectively known as the gut microbiota-brain axis. Alterations in gut microbiota have been associated with various neurological disorders, and disruptions to the blood-brain barrier (BBB) may be crucial, though the exact mechanisms remain unknown. In the current study, we investigated the impacts of short-chain fatty acids (SCFAs) on the integrity of the BBB, which was compromised by orally administered antibiotics in rhesus monkeys and C57BL/6n mice. Our results showed that SCFA supplementation notably enhanced BBB integrity in rhesus monkeys with gut dysbiosis. Similar outcomes were observed in mice with gut dysbiosis, accompanied by decreased cortical claudin-5 mRNA levels. In particular, propionate, but not acetate or butyrate, could reverse the antibiotic-induced BBB permeability increase in mice. Additionally, in vitro studies demonstrated that propionate boosted the expression of tight junction proteins in brain endothelial cells. These results suggest that the propionate can maintain BBB integrity through a free fatty acid receptor 2-dependent mechanism. This study offers new insights into the gut-brain axis and underscores potential therapeutic targets for interventions based on gut microbiota. The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two-way communication with the central nervous system, collectively known as the gut microbiota-brain axis. Alterations in gut microbiota have been associated with various neurological disorders, and disruptions to the blood-brain barrier (BBB) may be crucial, though the exact mechanisms remain unknown. In the current study, we investigated the impacts of short-chain fatty acids (SCFAs) on the integrity of the BBB, which was compromised by orally administered antibiotics in rhesus monkeys and C57BL/6n mice. Our results showed that SCFA supplementation notably enhanced BBB integrity in rhesus monkeys with gut dysbiosis. Similar outcomes were observed in mice with gut dysbiosis, accompanied by decreased cortical claudin-5 mRNA levels. In particular, propionate, but not acetate or butyrate, could reverse the antibiotic-induced BBB permeability increase in mice. Additionally, in vitro studies demonstrated that propionate boosted the expression of tight junction proteins in brain endothelial cells. These results suggest that the propionate can maintain BBB integrity through a free fatty acid receptor 2-dependent mechanism. This study offers new insights into the gut-brain axis and underscores potential therapeutic targets for interventions based on gut microbiota.The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two-way communication with the central nervous system, collectively known as the gut microbiota-brain axis. Alterations in gut microbiota have been associated with various neurological disorders, and disruptions to the blood-brain barrier (BBB) may be crucial, though the exact mechanisms remain unknown. In the current study, we investigated the impacts of short-chain fatty acids (SCFAs) on the integrity of the BBB, which was compromised by orally administered antibiotics in rhesus monkeys and C57BL/6n mice. Our results showed that SCFA supplementation notably enhanced BBB integrity in rhesus monkeys with gut dysbiosis. Similar outcomes were observed in mice with gut dysbiosis, accompanied by decreased cortical claudin-5 mRNA levels. In particular, propionate, but not acetate or butyrate, could reverse the antibiotic-induced BBB permeability increase in mice. Additionally, in vitro studies demonstrated that propionate boosted the expression of tight junction proteins in brain endothelial cells. These results suggest that the propionate can maintain BBB integrity through a free fatty acid receptor 2-dependent mechanism. This study offers new insights into the gut-brain axis and underscores potential therapeutic targets for interventions based on gut microbiota. The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two‐way communication with the central nervous system, collectively known as the gut microbiota−brain axis. Alterations in gut microbiota have been associated with various neurological disorders, and disruptions to the blood–brain barrier (BBB) may be crucial, though the exact mechanisms remain unknown. In the current study, we investigated the impacts of short‐chain fatty acids (SCFAs) on the integrity of the BBB, which was compromised by orally administered antibiotics in rhesus monkeys and C57BL/6n mice. Our results showed that SCFA supplementation notably enhanced BBB integrity in rhesus monkeys with gut dysbiosis. Similar outcomes were observed in mice with gut dysbiosis, accompanied by decreased cortical claudin‐5 mRNA levels. In particular, propionate, but not acetate or butyrate, could reverse the antibiotic‐induced BBB permeability increase in mice. Additionally, in vitro studies demonstrated that propionate boosted the expression of tight junction proteins in brain endothelial cells. These results suggest that the propionate can maintain BBB integrity through a free fatty acid receptor 2–dependent mechanism. This study offers new insights into the gut−brain axis and underscores potential therapeutic targets for interventions based on gut microbiota. Alterations in gut microbiota are associated with neurological disorders and blood‐brain barrier (BBB) disruption. Short‐chain fatty acid supplementation improved BBB integrity in rhesus monkeys and mice with oral antibiotic–induced gut dysbiosis. Propionate, but not acetate nor butyrate, reversed the increase in oral antibiotic‐induced BBB permeability. Additionally, propionate administration boosted the expression of tight junction proteins in brain endothelial cells. Propionate can maintain BBB integrity in an FFAR2‐dependent way. |
Author | Yingqian, Zhang Zhihui, Zhong Ting, Zhang Yao, He Qinxi, Li Wanxin, Li Xiaojie, Li Kun, Zhang Bangcheng, Zhao Chenghan, Mei |
Author_xml | – sequence: 1 givenname: Mei surname: Chenghan fullname: Chenghan, Mei organization: Guizhou Academy of Sciences – sequence: 2 givenname: Li surname: Wanxin fullname: Wanxin, Li organization: Shaanxi Provincial Cancer Hospital – sequence: 3 givenname: Zhao surname: Bangcheng fullname: Bangcheng, Zhao organization: Sichuan Junhui Biotechnology Co., Ltd – sequence: 4 givenname: He surname: Yao fullname: Yao, He organization: Sichuan University – sequence: 5 givenname: Li surname: Qinxi fullname: Qinxi, Li organization: Sichuan Junhui Biotechnology Co., Ltd – sequence: 6 givenname: Zhang surname: Ting fullname: Ting, Zhang organization: Sichuan University – sequence: 7 givenname: Li surname: Xiaojie fullname: Xiaojie, Li organization: Sichuan University – sequence: 8 givenname: Zhang surname: Kun fullname: Kun, Zhang organization: Chengdu Medical College – sequence: 9 givenname: Zhang surname: Yingqian fullname: Yingqian, Zhang organization: University of Electronic Science and Technology of China – sequence: 10 givenname: Zhong orcidid: 0000-0001-7892-9029 surname: Zhihui fullname: Zhihui, Zhong email: zhongzhihui@scu.edu.cn, 18190727710@163.com organization: Sichuan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39998158$$D View this record in MEDLINE/PubMed |
BookMark | eNp90btOHDEUBmALEYWFpOEBIktpUKQBX2Z9KRGCBAmRgqRINfJ4zrBGMzaxPaDpeIRIeUOeJF4WKFLgxi6-Yx39_y7a9sEDQvuUHNJyjvxs0iFdMq230ILKWldCcLaNFoRIWSnN-A7aTemGEMpULd-jHa61VnSpFujuahVifnz4Y1fGedybnGdsrOsSHqFzJgO-njIenY2hdSGbx4e_bVxTG8Zx8s6a7ILHxnf4NoYMNuO8AtwOIXSvtjUxOojY-QzX0eX5A3rXmyHBx-d7D_08O_1x8q26-P71_OT4orKcCl3xmnIua6apZEYxBlCewjLWdlSppbBCkq7nwFoQWtS17jmRqiYcOk2p7vgeOtj8W3b7PUHKzeiShWEwHsKUGk4l0byEQgv9_B-9CVP0Zbu1UkwJLeuiPj2rqS0BNbfRjSbOzUuiBXzZgBJYShH6V0JJs66rWdfVPNVVMN3gezfA_IZsLn8dX21m_gHIVpn- |
Cites_doi | 10.1126/scitranslmed.3009759 10.1074/jbc.M301403200 10.1038/nrneurol.2017.188 10.1038/s41579‐020‐00460‐0 10.3389/fnut.2022.842634 10.1016/j.nbd.2016.07.007 10.1074/jbc.M211609200 10.1038/ncomms7734 10.1128/mSystems.00261‐19 10.1038/nature12820 10.1038/nn.4476 10.1016/j.isci.2022.105648 10.3389/fnins.2019.00864 10.18632/aging.102537 10.1111/j.1365‐2710.1982.tb01029.x 10.1016/j.ebiom.2018.03.030 10.1177/0271678×16680221 10.1074/jbc.M110.210872 10.1186/s40168‐021‐01181‐z 10.3389/fmed.2018.00021 10.1038/nn.4030 10.1038/s41598‐017‐13601‐y 10.3389/fcimb.2019.00099 10.1016/j.bbi.2023.08.021 10.1186/s12974‐016‐0765‐6 10.1016/j.brainres.2016.03.031 10.1186/s40168‐018‐0439‐y 10.1111/j.1574‐6968.2009.01514.x 10.1038/s43587‐023‐00550‐7 10.1126/science.1241165 10.1093/ajcn/80.1.89 10.1177/0271678×221078065 10.1016/j.brainresbull.2020.08.017 10.1007/s00394‐018‐1703‐4 10.3389/fimmu.2020.00575 10.1038/s41398‐021‐01254‐5 10.18632/oncotarget.25809 10.1111/1462‐2920.13589 10.1016/j.mce.2022.111572 10.1016/j.bbi.2020.11.032 10.1080/21688370.2022.2073175 10.1007/s12020‐018‐1605‐5 10.3390/ijms24043074 10.3390/nu14091882 10.1016/j.dld.2014.01.159 10.1038/s41596‐019‐0212‐0 10.1038/s41467‐019‐14177‐z 10.1038/s41398‐023‐02706‐w 10.3389/fimmu.2021.626894 10.1007/s12263‐012‐0283‐9 10.1038/jcbfm.2010.195 10.3389/fnins.2015.00080 10.1126/science.1062374 10.1016/j.ejphar.2018.05.003 10.1186/s12906‐016‐1099‐8 10.1111/bph.13965 10.1136/gut.28.10.1221 10.3748/wjg.v16.i33.4135 10.3389/fcimb.2021.785833 10.1016/j.pharmthera.2016.04.007 10.1016/j.jns.2017.08.3235 10.1016/j.chom.2018.05.012 10.1152/physrev.00050.2017 10.1111/cns.14089 10.1038/s41575‐019‐0157‐3 10.1038/s41598‐020‐77085‐z 10.1007/s11064‐018‐2607‐7 10.1126/science.add1236 10.1021/acschemneuro.2c00418 10.1111/nyas.14312 10.3390/cells12040657 10.3390/nu12041202 10.1080/19490976.2021.1897212 |
ContentType | Journal Article |
Copyright | 2025 The New York Academy of Sciences. |
Copyright_xml | – notice: 2025 The New York Academy of Sciences. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7ST 7T5 7T7 7TK 7TM 7TO 7U7 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 SOI 7X8 |
DOI | 10.1111/nyas.15299 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1749-6632 |
EndPage | 131 |
ExternalDocumentID | 39998158 10_1111_nyas_15299 NYAS15299 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: National Natural Scientific Foundation of China funderid: 82071349 – fundername: National Key Research and Development Program of China funderid: 2021YFF0702001 – fundername: National Key Research and Development Program of China grantid: 2021YFF0702001 – fundername: National Natural Scientific Foundation of China grantid: 82071349 |
GroupedDBID | --- --Z -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1OB 1OC 23M 31~ 33P 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 692 6J9 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELAQ AENEX AEQDE AEUYR AFBPY AFFNX AFFPM AFGKR AFRAH AFSWV AFWVQ AFZJQ AHBTC AHDLI AHEFC AHMBA AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IH2 IX1 J0M K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RAG RIWAO RJQFR ROL RX1 S10 SAMSI SJN SUPJJ SV3 TEORI TUS UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WHWMO WIH WIK WOHZO WQJ WVDHM WXSBR X7M XG1 YBU YOC YSK ZGI ZKB ZXP ZZTAW ~02 ~IA ~KM ~WT AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM UMC 7QG 7QL 7QP 7QR 7ST 7T5 7T7 7TK 7TM 7TO 7U7 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. M7N P64 RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c3169-341337429172a822ee2916c22bd18856c670df3e2be696449f3078403ed9119d3 |
IEDL.DBID | DR2 |
ISSN | 0077-8923 1749-6632 |
IngestDate | Mon Jul 21 10:03:16 EDT 2025 Fri Jul 25 09:16:26 EDT 2025 Sun May 11 01:41:43 EDT 2025 Tue Jul 01 05:20:53 EDT 2025 Wed Mar 19 09:30:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | blood–brain barrier gut microbiome short‐chain fatty acids antibiotics propionate |
Language | English |
License | 2025 The New York Academy of Sciences. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3169-341337429172a822ee2916c22bd18856c670df3e2be696449f3078403ed9119d3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7892-9029 |
PMID | 39998158 |
PQID | 3178286974 |
PQPubID | 946344 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_3170938471 proquest_journals_3178286974 pubmed_primary_39998158 crossref_primary_10_1111_nyas_15299 wiley_primary_10_1111_nyas_15299_NYAS15299 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2025 2025-03-00 2025-Mar 20250301 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Annals of the New York Academy of Sciences |
PublicationTitleAlternate | Ann N Y Acad Sci |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2010; 16 2019; 99 2020; 164 2019; 11 2019; 13 2019; 14 2019; 16 2022; 25 2016; 1642 2020; 12 2020; 11 2020; 10 2003; 278 2018; 43 2018; 6 2018; 9 2023; 24 2001; 293 2018; 5 2020; 1470 2017; 37 2023; 29 2023; 379 1982; 7 2018; 30 2024; 4 2004; 80 2014; 6 2011; 286 2021; 9 2017; 20 2019; 9 2019; 4 2015; 6 2023; 11 2023; 12 2015; 18 2011; 31 2014; 46 2022; 42 2017; 174 2009; 294 2013; 341 2018; 61 2002 2018; 23 2024; 14 2015; 9 2016; 16 2016; 164 2016; 13 2021; 92 2021; 13 2014; 505 2021; 12 2021; 11 2018; 831 2022; 9 2021; 19 2022; 13 2022; 14 2023; 114 2017; 381 2017; 19 2012; 7 2022; 546 1987; 28 2018; 14 2017; 107 2018; 57 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 Xu S. (e_1_2_10_45_1) 2002 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 14 start-page: 133 issue: 3 year: 2018 end-page: 150 article-title: Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders publication-title: Nature Reviews Neurology – volume: 114 start-page: 221 year: 2023 end-page: 239 article-title: Early‐life noise exposure causes cognitive impairment in a sex‐dependent manner by disrupting homeostasis of the microbiota−gut−brain axis publication-title: Brain, Behavior, and Immunity – volume: 99 start-page: 21 issue: 1 year: 2019 end-page: 78 article-title: Blood‐brain barrier: From physiology to disease and back publication-title: Physiological Reviews – volume: 16 start-page: 4135 issue: 33 year: 2010 end-page: 4144 article-title: Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome publication-title: World Journal of Gastroenterology – volume: 1642 start-page: 70 year: 2016 end-page: 78 article-title: Sodium butyrate exerts neuroprotective effects by restoring the blood‐brain barrier in traumatic brain injury mice publication-title: Brain Research – volume: 341 start-page: 569 issue: 6145 year: 2013 end-page: 573 article-title: The microbial metabolites, short‐chain fatty acids, regulate colonic Treg cell homeostasis publication-title: Science – volume: 37 start-page: 2963 issue: 8 year: 2017 end-page: 2974 article-title: Temporal analysis of blood‐brain barrier disruption and cerebrospinal fluid matrix metalloproteinases in rhesus monkeys subjected to transient ischemic stroke publication-title: Journal of Cerebral Blood Flow & Metabolism – volume: 43 start-page: 1897 issue: 10 year: 2018 end-page: 1904 article-title: TLR2 ligand Pam3CSK4 regulates MMP‐2/9 expression by MAPK/NF‐κB signaling pathways in primary brain microvascular endothelial cells publication-title: Neurochemical Research – volume: 6 issue: 263 year: 2014 article-title: The gut microbiota influences blood‐brain barrier permeability in mice publication-title: Science Translational Medicine – volume: 14 start-page: 1882 issue: 9 year: 2022 article-title: Short‐chain fatty acids ameliorate depressive‐like behaviors of high fructose‐fed mice by rescuing hippocampal neurogenesis decline and blood‐brain barrier damage publication-title: Nutrients – volume: 164 start-page: 144 year: 2016 end-page: 151 article-title: Benefits of short‐chain fatty acids and their receptors in inflammation and carcinogenesis publication-title: Pharmacology & Therapeutics – volume: 293 start-page: 1653 issue: 5535 year: 2001 end-page: 1657 article-title: Duration of nuclear NF‐kappaB action regulated by reversible acetylation publication-title: Science – volume: 23 start-page: 705 issue: 6 year: 2018 end-page: 715 article-title: The impact of dietary fiber on gut microbiota in host health and disease publication-title: Cell Host Microbe – volume: 14 start-page: 3059 issue: 11 year: 2019 end-page: 3081 article-title: The isolation and molecular characterization of cerebral microvessels publication-title: Nature Protocols – volume: 10 issue: 1 year: 2020 article-title: Intravenous administration of sodium propionate induces antidepressant or prodepressant effect in a dose dependent manner publication-title: Scientific Reports – volume: 1470 start-page: 14 issue: 1 year: 2020 end-page: 24 article-title: Potential effects of antibiotic‐induced gut microbiome alteration on blood‐brain barrier permeability compromise in rhesus monkeys publication-title: Annals of the New York Academy of Sciences – volume: 14 start-page: 3 issue: 1 year: 2024 article-title: Elevated CSF angiopoietin‐2 correlates with blood‐brain barrier leakiness and markers of neuronal injury in early Alzheimer's disease publication-title: Translational Psychiatry – volume: 107 start-page: 41 year: 2017 end-page: 56 article-title: The blood‐brain barrier in Alzheimer's disease publication-title: Neurobiology of Disease – volume: 831 start-page: 52 year: 2018 end-page: 59 article-title: Pro‐ and anti‐inflammatory effects of short chain fatty acids on immune and endothelial cells publication-title: European Journal of Pharmacology – volume: 13 start-page: 864 year: 2019 article-title: Involvement of epigenetic mechanisms and non‐coding RNAs in blood‐brain barrier and neurovascular unit injury and recovery after stroke publication-title: Frontiers in Neuroscience – volume: 7 start-page: 357 issue: 3 year: 2012 end-page: 367 article-title: Histone deacetylase modulators provided by Mother Nature publication-title: Genes and Nutrition – volume: 9 year: 2022 article-title: Protective roles of sodium butyrate in lipopolysaccharide‐induced bovine ruminal epithelial cells by activating G protein‐coupled receptors 41 publication-title: Frontiers in Nutrition – volume: 12 start-page: 1202 issue: 4 year: 2020 article-title: Monobutyrin and monovalerin affect brain short‐chain fatty acid profiles and tight‐junction protein expression in ApoE‐knockout rats fed high‐fat diets publication-title: Nutrients – volume: 546 year: 2022 article-title: Short chain fatty acids: Microbial metabolites for gut−brain axis signalling publication-title: Molecular and Cellular Endocrinology – volume: 294 start-page: 1 issue: 1 year: 2009 end-page: 8 article-title: Diversity, metabolism and microbial ecology of butyrate‐producing bacteria from the human large intestine publication-title: FEMS Microbiology Letters – volume: 278 start-page: 25481 issue: 28 year: 2003 end-page: 25489 article-title: Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation publication-title: Journal of Biological Chemistry – volume: 30 start-page: 317 year: 2018 end-page: 325 article-title: Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS‐induced inflammatory bowel disease mice model publication-title: EBioMedicine – volume: 11 start-page: 131 issue: 1 year: 2021 article-title: Antidepressants fluoxetine and amitriptyline induce alterations in intestinal microbiota and gut microbiome function in rats exposed to chronic unpredictable mild stress publication-title: Translational Psychiatry – volume: 174 start-page: 3623 issue: 20 year: 2017 end-page: 3639 article-title: Antibiotic‐induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice publication-title: British Journal of Pharmacology – volume: 57 start-page: 1 issue: S1 year: 2018 end-page: 14 article-title: The role of the microbiome for human health: From basic science to clinical applications publication-title: European Journal of Nutrition – volume: 11 year: 2021 article-title: Short‐chain fatty acid and FFAR2 activation—A new option for treating infections? publication-title: Frontiers in Cellular and Infection Microbiology – volume: 9 start-page: 99 year: 2019 article-title: Antibiotic‐induced disruption of gut microbiota alters local metabolomes and immune responses publication-title: Frontiers in Cellular and Infection Microbiology – volume: 11 issue: 23 year: 2019 article-title: Melatonin protects blood‐brain barrier integrity and permeability by inhibiting matrix metalloproteinase‐9 via the NOTCH3/NF‐κB pathway publication-title: Aging (Albany NY) – volume: 25 issue: 12 year: 2022 article-title: Microbial‐derived metabolites induce actin cytoskeletal rearrangement and protect blood‐brain barrier function publication-title: Iscience – volume: 9 start-page: 31342 issue: 59 year: 2018 end-page: 31354 article-title: A short‐chain fatty acid, propionate, enhances the cytotoxic effect of cisplatin by modulating GPR41 signaling pathways in HepG2 cells publication-title: Oncotarget – volume: 9 start-page: 80 year: 2015 article-title: Hydrophilic bile acids protect human blood‐brain barrier endothelial cells from disruption by unconjugated bilirubin: An in vitro study publication-title: Frontiers in Neuroscience – volume: 381 start-page: 176 year: 2017 end-page: 181 article-title: Sodium butyrate exerts protective effect against Parkinson's disease in mice via stimulation of glucagon like peptide‐1 publication-title: Journal of the Neurological Sciences – volume: 278 start-page: 11312 issue: 13 year: 2003 end-page: 11319 article-title: The Orphan G protein‐coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids publication-title: Journal of Biological Chemistry – volume: 19 start-page: 29 issue: 1 year: 2017 end-page: 41 article-title: Formation of propionate and butyrate by the human colonic microbiota publication-title: Environmental Microbiology – volume: 286 start-page: 10628 issue: 12 year: 2011 end-page: 10640 article-title: Selective orthosteric free fatty acid receptor 2 (FFA2) agonists: Identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3 publication-title: Journal of Biological Chemistry – volume: 16 start-page: 120 year: 2016 article-title: Therapeutic potency of bee pollen against biochemical autistic features induced through acute and sub‐acute neurotoxicity of orally administered propionic acid publication-title: BMC Complementary Medicine and Therapies – volume: 12 start-page: 657 issue: 4 year: 2023 article-title: Mechanisms of blood‐brain barrier protection by microbiota‐derived short‐chain fatty acids publication-title: Cells – volume: 164 start-page: 249 year: 2020 end-page: 256 article-title: Gut microbiome improves postoperative cognitive function by decreasing permeability of the blood‐brain barrier in aged mice publication-title: Brain Research Bulletin – volume: 20 start-page: 145 issue: 2 year: 2017 end-page: 155 article-title: Interactions between the microbiota, immune and nervous systems in health and disease publication-title: Nature Neuroscience – volume: 9 start-page: 235 issue: 1 year: 2021 article-title: Regulation of blood‐brain barrier integrity by microbiome‐associated methylamines and cognition by trimethylamine N‐oxide publication-title: Microbiome – volume: 11 start-page: 575 year: 2020 article-title: Intestinal flora and disease mutually shape the regional immune system in the intestinal tract publication-title: Frontiers in Immunology – volume: 505 start-page: 559 issue: 7484 year: 2014 end-page: 563 article-title: Diet rapidly and reproducibly alters the human gut microbiome publication-title: Nature – volume: 13 start-page: 1 issue: 1 year: 2021 end-page: 24 article-title: The role of short‐chain fatty acids in the interplay between gut microbiota and diet in cardio‐metabolic health publication-title: Gut Microbes – volume: 6 start-page: 6734 issue: 1 year: 2015 article-title: Metabolite‐sensing receptors GPR43 and GPR109A facilitate dietary fibre‐induced gut homeostasis through regulation of the inflammasome publication-title: Nature Communications – volume: 46 start-page: 527 issue: 6 year: 2014 end-page: 534 article-title: Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1‐dependent mechanisms publication-title: Digestive and Liver Disease – volume: 11 issue: 1 year: 2023 article-title: A host‐gut microbial amino acid co‐metabolite, p‐cresol glucuronide, promotes blood‐brain barrier integrity in vivo publication-title: Tissue Barriers – volume: 12 year: 2021 article-title: The neuroprotective effect of short chain fatty acids against sepsis‐associated encephalopathy in mice publication-title: Frontiers in Immunology – volume: 5 start-page: 21 year: 2018 article-title: Short‐term oral antibiotics treatment promotes inflammatory activation of colonic invariant natural killer T and conventional CD4(+) T cells publication-title: Frontiers in Medicine (Lausanne) – volume: 80 start-page: 89 issue: 1 year: 2004 end-page: 94 article-title: L‐Rhamnose increases serum propionate in humans publication-title: American Journal of Clinical Nutrition – volume: 4 start-page: 33 issue: 1 year: 2024 end-page: 47 article-title: Cerebrospinal fluid proteomics in patients with Alzheimer's disease reveals five molecular subtypes with distinct genetic risk profiles publication-title: Nature Aging – volume: 42 start-page: 1335 issue: 7 year: 2022 end-page: 1346 article-title: Chronic cerebral hypoperfusion and blood‐brain barrier disruption in uninjured brain areas of rhesus monkeys subjected to transient ischemic stroke publication-title: Journal of Cerebral Blood Flow & Metabolism – volume: 61 start-page: 357 issue: 3 year: 2018 end-page: 371 article-title: Microbiota and metabolic diseases publication-title: Endocrine – volume: 92 start-page: 102 year: 2021 end-page: 114 article-title: Antibiotic‐induced microbiome depletion in adult mice disrupts blood‐brain barrier and facilitates brain infiltration of monocytes after bone‐marrow transplantation publication-title: Brain, Behavior, and Immunity – volume: 13 start-page: 300 issue: 1 year: 2016 article-title: The histone deacetylase inhibitor, sodium butyrate, exhibits neuroprotective effects for ischemic stroke in middle‐aged female rats publication-title: Journal of Neuroinflammation – volume: 11 start-page: 362 issue: 1 year: 2020 article-title: Impact of commonly used drugs on the composition and metabolic function of the gut microbiota publication-title: Nature Communications – volume: 4 issue: 4 year: 2019 article-title: Age‐ and sex‐dependent patterns of gut microbial diversity in human adults publication-title: mSystems – year: 2002 – volume: 379 issue: 6628 year: 2023 article-title: ApoE isoform– and microbiota‐dependent progression of neurodegeneration in a mouse model of tauopathy publication-title: Science – volume: 29 start-page: 98 year: 2023 end-page: 114 article-title: Fecal microbiota transplantation and short‐chain fatty acids protected against cognitive dysfunction in a rat model of chronic cerebral hypoperfusion publication-title: CNS Neuroscience & Therapeutics – volume: 18 start-page: 965 issue: 7 year: 2015 end-page: 977 article-title: Host microbiota constantly control maturation and function of microglia in the CNS publication-title: Nature Neuroscience – volume: 6 start-page: 55 issue: 1 year: 2018 article-title: Microbiome−host systems interactions: Protective effects of propionate upon the blood‐brain barrier publication-title: Microbiome – volume: 31 start-page: 52 issue: 1 year: 2011 end-page: 57 article-title: Valproic acid attenuates blood‐brain barrier disruption in a rat model of transient focal cerebral ischemia: The roles of HDAC and MMP‐9 inhibition publication-title: Journal of Cerebral Blood Flow & Metabolism – volume: 13 start-page: 2897 issue: 19 year: 2022 end-page: 2912 article-title: Indole‐3‐propionic acid attenuates HI‐related blood–brain barrier injury in neonatal rats by modulating the PXR signaling pathway publication-title: ACS Chemical Neuroscience – volume: 7 start-page: 245 issue: 4 year: 1982 end-page: 250 article-title: The stability of amoxycillin sodium in intravenous infusion fluids publication-title: Journal of Clinical Pharmacology – volume: 19 start-page: 241 issue: 4 year: 2021 end-page: 255 article-title: The gut microbiota−brain axis in behaviour and brain disorders publication-title: Nature Reviews Microbiology – volume: 16 start-page: 461 issue: 8 year: 2019 end-page: 478 article-title: The role of short‐chain fatty acids in microbiota−gut−brain communication publication-title: Nature Reviews Gastroenterology & Hepatology – volume: 7 issue: 1 year: 2017 article-title: Gut microbiome alterations in Alzheimer's disease publication-title: Scientific Reports – volume: 24 start-page: 3074 issue: 4 year: 2023 article-title: Antibiotic‐therapy‐induced gut dysbiosis affecting gut microbiota—brain axis and cognition: Restoration by intake of probiotics and synbiotics publication-title: International Journal of Molecular Science – volume: 28 start-page: 1221 issue: 10 year: 1987 end-page: 1227 article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood publication-title: Gut – ident: e_1_2_10_13_1 doi: 10.1126/scitranslmed.3009759 – ident: e_1_2_10_73_1 doi: 10.1074/jbc.M301403200 – ident: e_1_2_10_16_1 doi: 10.1038/nrneurol.2017.188 – ident: e_1_2_10_3_1 doi: 10.1038/s41579‐020‐00460‐0 – ident: e_1_2_10_67_1 doi: 10.3389/fnut.2022.842634 – ident: e_1_2_10_17_1 doi: 10.1016/j.nbd.2016.07.007 – ident: e_1_2_10_65_1 doi: 10.1074/jbc.M211609200 – ident: e_1_2_10_75_1 doi: 10.1038/ncomms7734 – ident: e_1_2_10_4_1 doi: 10.1128/mSystems.00261‐19 – ident: e_1_2_10_5_1 doi: 10.1038/nature12820 – ident: e_1_2_10_24_1 doi: 10.1038/nn.4476 – ident: e_1_2_10_31_1 doi: 10.1016/j.isci.2022.105648 – ident: e_1_2_10_61_1 doi: 10.3389/fnins.2019.00864 – ident: e_1_2_10_68_1 doi: 10.18632/aging.102537 – ident: e_1_2_10_44_1 doi: 10.1111/j.1365‐2710.1982.tb01029.x – ident: e_1_2_10_70_1 doi: 10.1016/j.ebiom.2018.03.030 – ident: e_1_2_10_43_1 doi: 10.1177/0271678×16680221 – ident: e_1_2_10_64_1 doi: 10.1074/jbc.M110.210872 – ident: e_1_2_10_21_1 doi: 10.1186/s40168‐021‐01181‐z – ident: e_1_2_10_56_1 doi: 10.3389/fmed.2018.00021 – ident: e_1_2_10_66_1 doi: 10.1038/nn.4030 – ident: e_1_2_10_2_1 doi: 10.1038/s41598‐017‐13601‐y – ident: e_1_2_10_15_1 doi: 10.3389/fcimb.2019.00099 – ident: e_1_2_10_51_1 doi: 10.1016/j.bbi.2023.08.021 – ident: e_1_2_10_35_1 doi: 10.1186/s12974‐016‐0765‐6 – ident: e_1_2_10_36_1 doi: 10.1016/j.brainres.2016.03.031 – ident: e_1_2_10_32_1 doi: 10.1186/s40168‐018‐0439‐y – ident: e_1_2_10_52_1 doi: 10.1111/j.1574‐6968.2009.01514.x – ident: e_1_2_10_47_1 doi: 10.1038/s43587‐023‐00550‐7 – ident: e_1_2_10_28_1 doi: 10.1126/science.1241165 – ident: e_1_2_10_57_1 doi: 10.1093/ajcn/80.1.89 – ident: e_1_2_10_18_1 doi: 10.1177/0271678×221078065 – ident: e_1_2_10_37_1 doi: 10.1016/j.brainresbull.2020.08.017 – ident: e_1_2_10_40_1 doi: 10.1007/s00394‐018‐1703‐4 – ident: e_1_2_10_7_1 doi: 10.3389/fimmu.2020.00575 – ident: e_1_2_10_9_1 doi: 10.1038/s41398‐021‐01254‐5 – ident: e_1_2_10_63_1 doi: 10.18632/oncotarget.25809 – ident: e_1_2_10_53_1 doi: 10.1111/1462‐2920.13589 – ident: e_1_2_10_27_1 doi: 10.1016/j.mce.2022.111572 – ident: e_1_2_10_10_1 doi: 10.1016/j.bbi.2020.11.032 – ident: e_1_2_10_22_1 doi: 10.1080/21688370.2022.2073175 – ident: e_1_2_10_29_1 doi: 10.1007/s12020‐018‐1605‐5 – ident: e_1_2_10_14_1 doi: 10.3390/ijms24043074 – ident: e_1_2_10_38_1 doi: 10.3390/nu14091882 – ident: e_1_2_10_19_1 doi: 10.1016/j.dld.2014.01.159 – ident: e_1_2_10_49_1 doi: 10.1038/s41596‐019‐0212‐0 – ident: e_1_2_10_6_1 doi: 10.1038/s41467‐019‐14177‐z – ident: e_1_2_10_48_1 doi: 10.1038/s41398‐023‐02706‐w – ident: e_1_2_10_33_1 doi: 10.3389/fimmu.2021.626894 – ident: e_1_2_10_71_1 doi: 10.1007/s12263‐012‐0283‐9 – ident: e_1_2_10_34_1 doi: 10.1038/jcbfm.2010.195 – ident: e_1_2_10_20_1 doi: 10.3389/fnins.2015.00080 – ident: e_1_2_10_72_1 doi: 10.1126/science.1062374 – ident: e_1_2_10_25_1 doi: 10.1016/j.ejphar.2018.05.003 – ident: e_1_2_10_59_1 doi: 10.1186/s12906‐016‐1099‐8 – ident: e_1_2_10_42_1 doi: 10.1111/bph.13965 – ident: e_1_2_10_58_1 doi: 10.1136/gut.28.10.1221 – volume-title: Methodology of pharmacological experiment year: 2002 ident: e_1_2_10_45_1 – ident: e_1_2_10_46_1 doi: 10.3748/wjg.v16.i33.4135 – ident: e_1_2_10_74_1 doi: 10.3389/fcimb.2021.785833 – ident: e_1_2_10_8_1 doi: 10.1016/j.pharmthera.2016.04.007 – ident: e_1_2_10_55_1 doi: 10.1016/j.jns.2017.08.3235 – ident: e_1_2_10_26_1 doi: 10.1016/j.chom.2018.05.012 – ident: e_1_2_10_11_1 doi: 10.1152/physrev.00050.2017 – ident: e_1_2_10_50_1 doi: 10.1111/cns.14089 – ident: e_1_2_10_30_1 doi: 10.1038/s41575‐019‐0157‐3 – ident: e_1_2_10_60_1 doi: 10.1038/s41598‐020‐77085‐z – ident: e_1_2_10_69_1 doi: 10.1007/s11064‐018‐2607‐7 – ident: e_1_2_10_41_1 doi: 10.1126/science.add1236 – ident: e_1_2_10_23_1 doi: 10.1021/acschemneuro.2c00418 – ident: e_1_2_10_12_1 doi: 10.1111/nyas.14312 – ident: e_1_2_10_62_1 doi: 10.3390/cells12040657 – ident: e_1_2_10_39_1 doi: 10.3390/nu12041202 – ident: e_1_2_10_54_1 doi: 10.1080/19490976.2021.1897212 |
SSID | ssj0012847 |
Score | 2.5038087 |
Snippet | The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two‐way communication with the... The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two-way communication with the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 116 |
SubjectTerms | Acetic acid Animals Anti-Bacterial Agents - pharmacology Antibiotics Blood-brain barrier Blood-Brain Barrier - drug effects Blood-Brain Barrier - metabolism Brain - metabolism Central nervous system Claudin-5 - genetics Claudin-5 - metabolism Dysbacteriosis Dysbiosis - metabolism Endothelial cells Fatty acids Fatty Acids, Volatile - metabolism Fatty Acids, Volatile - pharmacology Gastrointestinal Microbiome - drug effects Gastrointestinal Microbiome - physiology gut microbiome Gut microbiota Gut-brain axis Humans Integrity Intestinal microflora Macaca mulatta Male Membrane permeability Mice Mice, Inbred C57BL Microbiota Microorganisms Monkeys mRNA Neurological diseases Oral administration propionate Propionic acid short‐chain fatty acids Therapeutic targets |
Title | Short‐chain fatty acids mediate gut microbiota–brain communication and protect the blood–brain barrier integrity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnyas.15299 https://www.ncbi.nlm.nih.gov/pubmed/39998158 https://www.proquest.com/docview/3178286974 https://www.proquest.com/docview/3170938471 |
Volume | 1545 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8UwEB5EELy4L3UjogcVKn1d8l7Ai4gigh5cQA9SkjTVh1jF9gnPkz9B8B_6S5xJFzcQ9FZoStokM_m-dOYbgFXuKWEC0sPzJB3dKN-V7VC53NMi0C3f1x4lOB8e8f2z8OA8Oh-ArToXptSHaA7cyDKsvyYDlyr_ZORZX-ZUvUdQ9h4FaxEiOm60o6zftW64jW4YYUylTUphPB-Pft2NfkDMr4jVbjl7o3BZv2wZaXKz2SvUpn76puP4368Zg5EKi7LtcvGMw4DJJmCorE7Zn4Dxyu5ztlaJU69PwuPJNQL2t-cXfS27GUtlUfSZ1N0kZzYJpTDsqlew224p8FTIt-dXRWUomP6cisJklrBKI4IhBmU2gL5pq-QDVdJjpZgFEoUpONvbPd3Zd6vaDa4OWly4tDkGSLuRDfoSQYgxeMm176uk1elEXPO2l6SB8ZXhAjGZSNHZINkMTILuVyTBNAxmd5mZBcZVxFMVtiVStTDVqZAyEspTIXJB5YnAgZV6DuP7UqIjrqkNDWtsh9WBhXp648pM8xjBE6XRI6dyYLm5jQZGf01kZu56tg12Qpu4AzPlsmi6QXQnOq2o48CGndxf-o-PLrZP7NXcXxrPw7BPFYdt1NsCDBYPPbOIMKhQS3a5vwMMxwXm |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61W6FygQIthFddwQGQssrm4V0fUQVaWtgDDwlOke04ZYUIaJNFWk78BCT-Ib-kM0425SEhlZulOLJie8bf58x8A7DOPSVMQHp4nqSrG-W7sh0ql3taBLrl-9qjBOeDHu-ehL9Oo9MqNodyYUp9iPrCjSzD-msycLqQfmLl2UjmVL5HiI_wiUp6W0Z1WKtHWc9rHXEbHTECmUqdlAJ5_r37_Dx6BTKfY1Z76OxOl5VVc6tVSLEmF81hoZr69oWS47u_5wtMVXCUbZf7ZwY-mGwWJsoClaNZmKlMP2cblT715hzcHJ0jZn-8u9fnsp-xVBbFiEndT3Jm81AKw_4MC3bZLzWeCvl496CoEgXTT7NRmMwSVslEMIShzMbQ132VHFAxPVbqWSBX-AonuzvHP7tuVb7B1UGLC5fOxwCZNxJCXyIOMQabXPu-SlqdTsQ1b3tJGhhfGS4QlokU_Q3yzcAk6IFFEnyDRnaVmQVgXEU8VWFbIlsLU50KKSOhPBUiHVSeCBxYGy9ifF2qdMRjdkPTGttpdWB5vL5xZal5jPiJMumRVjnwo36MNkY_TmRmroa2Dw5C57gD8-W-qIdBgCc6rajjwJZd3TfGj3tn20e2tfg_nb_D5-7xwX68v9f7vQSTPhUgtkFwy9AoBkOzgqioUKt27_8FUpwKAQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFD64isu-qKOrWx3XiPvgCpVOL5kGfBHHwesgq4I-SEnSdB0WqzgdYXzyJwj-w_klnqSX9QIL61uhKWmTc_lOes53AH5QRzDlaT48h-ujG-HavOkLmzqSebLhutLRBc6HHbpz6u-dBWcjsFHWwuT8ENWBm9YMY6-1gt_EyQslTwe8p7v3MPYJxnzqhFqmW78q8ihjeI0dbqIdRhxTkJPqPJ6_z752R-8w5mvIanxOexIuyrfNU03-rPczsS7v3xA5fvRzpmCiAKNkM5eeGoyodBrG8_aUg2moFYrfI6sFO_XPGbg7vkTEPnx4lJe8m5KEZ9mAcNmNe8RUoWSK_O5n5KqbMzxlfPjwJHQfCiJf1qIQnsakIIkgCEKJyaCvxgp-q1vpkZzNAiOFr3Da3j7Z2rGL5g229BqU2do7ehh3YzjockQhSuElla4r4kYYBlTSphMnnnKFogxBGUvQ2mC06akY7S-LvVkYTa9T9Q0IFQFNhN_kGKv5iUwY5wETjvAxGBQO8yxYKfcwusk5OqIyttHLGplltaBebm9U6GkvQvSk6-gxqLJgubqNGqZ_m_BUXffNGJxEe3EL5nKxqKZBeMfCRhBasGY29x_zR53zzWNzNf8_g5fg81GrHR3sdvYX4Iuruw-bDLg6jGa3fbWIkCgT343kPwNVYwi5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short%E2%80%90chain+fatty+acids+mediate+gut+microbiota%E2%80%93brain+communication+and+protect+the+blood%E2%80%93brain+barrier+integrity&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Chenghan%2C+Mei&rft.au=Wanxin%2C+Li&rft.au=Bangcheng%2C+Zhao&rft.au=Yao%2C+He&rft.date=2025-03-01&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=1545&rft.issue=1&rft.spage=116&rft.epage=131&rft_id=info:doi/10.1111%2Fnyas.15299&rft.externalDBID=10.1111%252Fnyas.15299&rft.externalDocID=NYAS15299 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon |