Short‐chain fatty acids mediate gut microbiota–brain communication and protect the blood–brain barrier integrity

The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two‐way communication with the central nervous system, collectively known as the gut microbiota−brain axis. Alterations in gut microbiota have been associated with various...

Full description

Saved in:
Bibliographic Details
Published inAnnals of the New York Academy of Sciences Vol. 1545; no. 1; pp. 116 - 131
Main Authors Chenghan, Mei, Wanxin, Li, Bangcheng, Zhao, Yao, He, Qinxi, Li, Ting, Zhang, Xiaojie, Li, Kun, Zhang, Yingqian, Zhang, Zhihui, Zhong
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two‐way communication with the central nervous system, collectively known as the gut microbiota−brain axis. Alterations in gut microbiota have been associated with various neurological disorders, and disruptions to the blood–brain barrier (BBB) may be crucial, though the exact mechanisms remain unknown. In the current study, we investigated the impacts of short‐chain fatty acids (SCFAs) on the integrity of the BBB, which was compromised by orally administered antibiotics in rhesus monkeys and C57BL/6n mice. Our results showed that SCFA supplementation notably enhanced BBB integrity in rhesus monkeys with gut dysbiosis. Similar outcomes were observed in mice with gut dysbiosis, accompanied by decreased cortical claudin‐5 mRNA levels. In particular, propionate, but not acetate or butyrate, could reverse the antibiotic‐induced BBB permeability increase in mice. Additionally, in vitro studies demonstrated that propionate boosted the expression of tight junction proteins in brain endothelial cells. These results suggest that the propionate can maintain BBB integrity through a free fatty acid receptor 2–dependent mechanism. This study offers new insights into the gut−brain axis and underscores potential therapeutic targets for interventions based on gut microbiota. Alterations in gut microbiota are associated with neurological disorders and blood‐brain barrier (BBB) disruption. Short‐chain fatty acid supplementation improved BBB integrity in rhesus monkeys and mice with oral antibiotic–induced gut dysbiosis. Propionate, but not acetate nor butyrate, reversed the increase in oral antibiotic‐induced BBB permeability. Additionally, propionate administration boosted the expression of tight junction proteins in brain endothelial cells. Propionate can maintain BBB integrity in an FFAR2‐dependent way.
AbstractList The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two‐way communication with the central nervous system, collectively known as the gut microbiota−brain axis. Alterations in gut microbiota have been associated with various neurological disorders, and disruptions to the blood–brain barrier (BBB) may be crucial, though the exact mechanisms remain unknown. In the current study, we investigated the impacts of short‐chain fatty acids (SCFAs) on the integrity of the BBB, which was compromised by orally administered antibiotics in rhesus monkeys and C57BL/6n mice. Our results showed that SCFA supplementation notably enhanced BBB integrity in rhesus monkeys with gut dysbiosis. Similar outcomes were observed in mice with gut dysbiosis, accompanied by decreased cortical claudin‐5 mRNA levels. In particular, propionate, but not acetate or butyrate, could reverse the antibiotic‐induced BBB permeability increase in mice. Additionally, in vitro studies demonstrated that propionate boosted the expression of tight junction proteins in brain endothelial cells. These results suggest that the propionate can maintain BBB integrity through a free fatty acid receptor 2–dependent mechanism. This study offers new insights into the gut−brain axis and underscores potential therapeutic targets for interventions based on gut microbiota.
The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two-way communication with the central nervous system, collectively known as the gut microbiota-brain axis. Alterations in gut microbiota have been associated with various neurological disorders, and disruptions to the blood-brain barrier (BBB) may be crucial, though the exact mechanisms remain unknown. In the current study, we investigated the impacts of short-chain fatty acids (SCFAs) on the integrity of the BBB, which was compromised by orally administered antibiotics in rhesus monkeys and C57BL/6n mice. Our results showed that SCFA supplementation notably enhanced BBB integrity in rhesus monkeys with gut dysbiosis. Similar outcomes were observed in mice with gut dysbiosis, accompanied by decreased cortical claudin-5 mRNA levels. In particular, propionate, but not acetate or butyrate, could reverse the antibiotic-induced BBB permeability increase in mice. Additionally, in vitro studies demonstrated that propionate boosted the expression of tight junction proteins in brain endothelial cells. These results suggest that the propionate can maintain BBB integrity through a free fatty acid receptor 2-dependent mechanism. This study offers new insights into the gut-brain axis and underscores potential therapeutic targets for interventions based on gut microbiota.
The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two-way communication with the central nervous system, collectively known as the gut microbiota-brain axis. Alterations in gut microbiota have been associated with various neurological disorders, and disruptions to the blood-brain barrier (BBB) may be crucial, though the exact mechanisms remain unknown. In the current study, we investigated the impacts of short-chain fatty acids (SCFAs) on the integrity of the BBB, which was compromised by orally administered antibiotics in rhesus monkeys and C57BL/6n mice. Our results showed that SCFA supplementation notably enhanced BBB integrity in rhesus monkeys with gut dysbiosis. Similar outcomes were observed in mice with gut dysbiosis, accompanied by decreased cortical claudin-5 mRNA levels. In particular, propionate, but not acetate or butyrate, could reverse the antibiotic-induced BBB permeability increase in mice. Additionally, in vitro studies demonstrated that propionate boosted the expression of tight junction proteins in brain endothelial cells. These results suggest that the propionate can maintain BBB integrity through a free fatty acid receptor 2-dependent mechanism. This study offers new insights into the gut-brain axis and underscores potential therapeutic targets for interventions based on gut microbiota.The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two-way communication with the central nervous system, collectively known as the gut microbiota-brain axis. Alterations in gut microbiota have been associated with various neurological disorders, and disruptions to the blood-brain barrier (BBB) may be crucial, though the exact mechanisms remain unknown. In the current study, we investigated the impacts of short-chain fatty acids (SCFAs) on the integrity of the BBB, which was compromised by orally administered antibiotics in rhesus monkeys and C57BL/6n mice. Our results showed that SCFA supplementation notably enhanced BBB integrity in rhesus monkeys with gut dysbiosis. Similar outcomes were observed in mice with gut dysbiosis, accompanied by decreased cortical claudin-5 mRNA levels. In particular, propionate, but not acetate or butyrate, could reverse the antibiotic-induced BBB permeability increase in mice. Additionally, in vitro studies demonstrated that propionate boosted the expression of tight junction proteins in brain endothelial cells. These results suggest that the propionate can maintain BBB integrity through a free fatty acid receptor 2-dependent mechanism. This study offers new insights into the gut-brain axis and underscores potential therapeutic targets for interventions based on gut microbiota.
The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two‐way communication with the central nervous system, collectively known as the gut microbiota−brain axis. Alterations in gut microbiota have been associated with various neurological disorders, and disruptions to the blood–brain barrier (BBB) may be crucial, though the exact mechanisms remain unknown. In the current study, we investigated the impacts of short‐chain fatty acids (SCFAs) on the integrity of the BBB, which was compromised by orally administered antibiotics in rhesus monkeys and C57BL/6n mice. Our results showed that SCFA supplementation notably enhanced BBB integrity in rhesus monkeys with gut dysbiosis. Similar outcomes were observed in mice with gut dysbiosis, accompanied by decreased cortical claudin‐5 mRNA levels. In particular, propionate, but not acetate or butyrate, could reverse the antibiotic‐induced BBB permeability increase in mice. Additionally, in vitro studies demonstrated that propionate boosted the expression of tight junction proteins in brain endothelial cells. These results suggest that the propionate can maintain BBB integrity through a free fatty acid receptor 2–dependent mechanism. This study offers new insights into the gut−brain axis and underscores potential therapeutic targets for interventions based on gut microbiota. Alterations in gut microbiota are associated with neurological disorders and blood‐brain barrier (BBB) disruption. Short‐chain fatty acid supplementation improved BBB integrity in rhesus monkeys and mice with oral antibiotic–induced gut dysbiosis. Propionate, but not acetate nor butyrate, reversed the increase in oral antibiotic‐induced BBB permeability. Additionally, propionate administration boosted the expression of tight junction proteins in brain endothelial cells. Propionate can maintain BBB integrity in an FFAR2‐dependent way.
Author Yingqian, Zhang
Zhihui, Zhong
Ting, Zhang
Yao, He
Qinxi, Li
Wanxin, Li
Xiaojie, Li
Kun, Zhang
Bangcheng, Zhao
Chenghan, Mei
Author_xml – sequence: 1
  givenname: Mei
  surname: Chenghan
  fullname: Chenghan, Mei
  organization: Guizhou Academy of Sciences
– sequence: 2
  givenname: Li
  surname: Wanxin
  fullname: Wanxin, Li
  organization: Shaanxi Provincial Cancer Hospital
– sequence: 3
  givenname: Zhao
  surname: Bangcheng
  fullname: Bangcheng, Zhao
  organization: Sichuan Junhui Biotechnology Co., Ltd
– sequence: 4
  givenname: He
  surname: Yao
  fullname: Yao, He
  organization: Sichuan University
– sequence: 5
  givenname: Li
  surname: Qinxi
  fullname: Qinxi, Li
  organization: Sichuan Junhui Biotechnology Co., Ltd
– sequence: 6
  givenname: Zhang
  surname: Ting
  fullname: Ting, Zhang
  organization: Sichuan University
– sequence: 7
  givenname: Li
  surname: Xiaojie
  fullname: Xiaojie, Li
  organization: Sichuan University
– sequence: 8
  givenname: Zhang
  surname: Kun
  fullname: Kun, Zhang
  organization: Chengdu Medical College
– sequence: 9
  givenname: Zhang
  surname: Yingqian
  fullname: Yingqian, Zhang
  organization: University of Electronic Science and Technology of China
– sequence: 10
  givenname: Zhong
  orcidid: 0000-0001-7892-9029
  surname: Zhihui
  fullname: Zhihui, Zhong
  email: zhongzhihui@scu.edu.cn, 18190727710@163.com
  organization: Sichuan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39998158$$D View this record in MEDLINE/PubMed
BookMark eNp90btOHDEUBmALEYWFpOEBIktpUKQBX2Z9KRGCBAmRgqRINfJ4zrBGMzaxPaDpeIRIeUOeJF4WKFLgxi6-Yx39_y7a9sEDQvuUHNJyjvxs0iFdMq230ILKWldCcLaNFoRIWSnN-A7aTemGEMpULd-jHa61VnSpFujuahVifnz4Y1fGedybnGdsrOsSHqFzJgO-njIenY2hdSGbx4e_bVxTG8Zx8s6a7ILHxnf4NoYMNuO8AtwOIXSvtjUxOojY-QzX0eX5A3rXmyHBx-d7D_08O_1x8q26-P71_OT4orKcCl3xmnIua6apZEYxBlCewjLWdlSppbBCkq7nwFoQWtS17jmRqiYcOk2p7vgeOtj8W3b7PUHKzeiShWEwHsKUGk4l0byEQgv9_B-9CVP0Zbu1UkwJLeuiPj2rqS0BNbfRjSbOzUuiBXzZgBJYShH6V0JJs66rWdfVPNVVMN3gezfA_IZsLn8dX21m_gHIVpn-
Cites_doi 10.1126/scitranslmed.3009759
10.1074/jbc.M301403200
10.1038/nrneurol.2017.188
10.1038/s41579‐020‐00460‐0
10.3389/fnut.2022.842634
10.1016/j.nbd.2016.07.007
10.1074/jbc.M211609200
10.1038/ncomms7734
10.1128/mSystems.00261‐19
10.1038/nature12820
10.1038/nn.4476
10.1016/j.isci.2022.105648
10.3389/fnins.2019.00864
10.18632/aging.102537
10.1111/j.1365‐2710.1982.tb01029.x
10.1016/j.ebiom.2018.03.030
10.1177/0271678×16680221
10.1074/jbc.M110.210872
10.1186/s40168‐021‐01181‐z
10.3389/fmed.2018.00021
10.1038/nn.4030
10.1038/s41598‐017‐13601‐y
10.3389/fcimb.2019.00099
10.1016/j.bbi.2023.08.021
10.1186/s12974‐016‐0765‐6
10.1016/j.brainres.2016.03.031
10.1186/s40168‐018‐0439‐y
10.1111/j.1574‐6968.2009.01514.x
10.1038/s43587‐023‐00550‐7
10.1126/science.1241165
10.1093/ajcn/80.1.89
10.1177/0271678×221078065
10.1016/j.brainresbull.2020.08.017
10.1007/s00394‐018‐1703‐4
10.3389/fimmu.2020.00575
10.1038/s41398‐021‐01254‐5
10.18632/oncotarget.25809
10.1111/1462‐2920.13589
10.1016/j.mce.2022.111572
10.1016/j.bbi.2020.11.032
10.1080/21688370.2022.2073175
10.1007/s12020‐018‐1605‐5
10.3390/ijms24043074
10.3390/nu14091882
10.1016/j.dld.2014.01.159
10.1038/s41596‐019‐0212‐0
10.1038/s41467‐019‐14177‐z
10.1038/s41398‐023‐02706‐w
10.3389/fimmu.2021.626894
10.1007/s12263‐012‐0283‐9
10.1038/jcbfm.2010.195
10.3389/fnins.2015.00080
10.1126/science.1062374
10.1016/j.ejphar.2018.05.003
10.1186/s12906‐016‐1099‐8
10.1111/bph.13965
10.1136/gut.28.10.1221
10.3748/wjg.v16.i33.4135
10.3389/fcimb.2021.785833
10.1016/j.pharmthera.2016.04.007
10.1016/j.jns.2017.08.3235
10.1016/j.chom.2018.05.012
10.1152/physrev.00050.2017
10.1111/cns.14089
10.1038/s41575‐019‐0157‐3
10.1038/s41598‐020‐77085‐z
10.1007/s11064‐018‐2607‐7
10.1126/science.add1236
10.1021/acschemneuro.2c00418
10.1111/nyas.14312
10.3390/cells12040657
10.3390/nu12041202
10.1080/19490976.2021.1897212
ContentType Journal Article
Copyright 2025 The New York Academy of Sciences.
Copyright_xml – notice: 2025 The New York Academy of Sciences.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7ST
7T5
7T7
7TK
7TM
7TO
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
SOI
7X8
DOI 10.1111/nyas.15299
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Virology and AIDS Abstracts
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1749-6632
EndPage 131
ExternalDocumentID 39998158
10_1111_nyas_15299
NYAS15299
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Natural Scientific Foundation of China
  funderid: 82071349
– fundername: National Key Research and Development Program of China
  funderid: 2021YFF0702001
– fundername: National Key Research and Development Program of China
  grantid: 2021YFF0702001
– fundername: National Natural Scientific Foundation of China
  grantid: 82071349
GroupedDBID ---
--Z
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1OB
1OC
23M
31~
33P
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
692
6J9
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFSWV
AFWVQ
AFZJQ
AHBTC
AHDLI
AHEFC
AHMBA
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IH2
IX1
J0M
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RAG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SJN
SUPJJ
SV3
TEORI
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WOHZO
WQJ
WVDHM
WXSBR
X7M
XG1
YBU
YOC
YSK
ZGI
ZKB
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
UMC
7QG
7QL
7QP
7QR
7ST
7T5
7T7
7TK
7TM
7TO
7U7
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
RC3
SOI
7X8
ID FETCH-LOGICAL-c3169-341337429172a822ee2916c22bd18856c670df3e2be696449f3078403ed9119d3
IEDL.DBID DR2
ISSN 0077-8923
1749-6632
IngestDate Mon Jul 21 10:03:16 EDT 2025
Fri Jul 25 09:16:26 EDT 2025
Sun May 11 01:41:43 EDT 2025
Tue Jul 01 05:20:53 EDT 2025
Wed Mar 19 09:30:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords blood–brain barrier
gut microbiome
short‐chain fatty acids
antibiotics
propionate
Language English
License 2025 The New York Academy of Sciences.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3169-341337429172a822ee2916c22bd18856c670df3e2be696449f3078403ed9119d3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7892-9029
PMID 39998158
PQID 3178286974
PQPubID 946344
PageCount 16
ParticipantIDs proquest_miscellaneous_3170938471
proquest_journals_3178286974
pubmed_primary_39998158
crossref_primary_10_1111_nyas_15299
wiley_primary_10_1111_nyas_15299_NYAS15299
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
2025-Mar
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Annals of the New York Academy of Sciences
PublicationTitleAlternate Ann N Y Acad Sci
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2010; 16
2019; 99
2020; 164
2019; 11
2019; 13
2019; 14
2019; 16
2022; 25
2016; 1642
2020; 12
2020; 11
2020; 10
2003; 278
2018; 43
2018; 6
2018; 9
2023; 24
2001; 293
2018; 5
2020; 1470
2017; 37
2023; 29
2023; 379
1982; 7
2018; 30
2024; 4
2004; 80
2014; 6
2011; 286
2021; 9
2017; 20
2019; 9
2019; 4
2015; 6
2023; 11
2023; 12
2015; 18
2011; 31
2014; 46
2022; 42
2017; 174
2009; 294
2013; 341
2018; 61
2002
2018; 23
2024; 14
2015; 9
2016; 16
2016; 164
2016; 13
2021; 92
2021; 13
2014; 505
2021; 12
2021; 11
2018; 831
2022; 9
2021; 19
2022; 13
2022; 14
2023; 114
2017; 381
2017; 19
2012; 7
2022; 546
1987; 28
2018; 14
2017; 107
2018; 57
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
Xu S. (e_1_2_10_45_1) 2002
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 14
  start-page: 133
  issue: 3
  year: 2018
  end-page: 150
  article-title: Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders
  publication-title: Nature Reviews Neurology
– volume: 114
  start-page: 221
  year: 2023
  end-page: 239
  article-title: Early‐life noise exposure causes cognitive impairment in a sex‐dependent manner by disrupting homeostasis of the microbiota−gut−brain axis
  publication-title: Brain, Behavior, and Immunity
– volume: 99
  start-page: 21
  issue: 1
  year: 2019
  end-page: 78
  article-title: Blood‐brain barrier: From physiology to disease and back
  publication-title: Physiological Reviews
– volume: 16
  start-page: 4135
  issue: 33
  year: 2010
  end-page: 4144
  article-title: Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome
  publication-title: World Journal of Gastroenterology
– volume: 1642
  start-page: 70
  year: 2016
  end-page: 78
  article-title: Sodium butyrate exerts neuroprotective effects by restoring the blood‐brain barrier in traumatic brain injury mice
  publication-title: Brain Research
– volume: 341
  start-page: 569
  issue: 6145
  year: 2013
  end-page: 573
  article-title: The microbial metabolites, short‐chain fatty acids, regulate colonic Treg cell homeostasis
  publication-title: Science
– volume: 37
  start-page: 2963
  issue: 8
  year: 2017
  end-page: 2974
  article-title: Temporal analysis of blood‐brain barrier disruption and cerebrospinal fluid matrix metalloproteinases in rhesus monkeys subjected to transient ischemic stroke
  publication-title: Journal of Cerebral Blood Flow & Metabolism
– volume: 43
  start-page: 1897
  issue: 10
  year: 2018
  end-page: 1904
  article-title: TLR2 ligand Pam3CSK4 regulates MMP‐2/9 expression by MAPK/NF‐κB signaling pathways in primary brain microvascular endothelial cells
  publication-title: Neurochemical Research
– volume: 6
  issue: 263
  year: 2014
  article-title: The gut microbiota influences blood‐brain barrier permeability in mice
  publication-title: Science Translational Medicine
– volume: 14
  start-page: 1882
  issue: 9
  year: 2022
  article-title: Short‐chain fatty acids ameliorate depressive‐like behaviors of high fructose‐fed mice by rescuing hippocampal neurogenesis decline and blood‐brain barrier damage
  publication-title: Nutrients
– volume: 164
  start-page: 144
  year: 2016
  end-page: 151
  article-title: Benefits of short‐chain fatty acids and their receptors in inflammation and carcinogenesis
  publication-title: Pharmacology & Therapeutics
– volume: 293
  start-page: 1653
  issue: 5535
  year: 2001
  end-page: 1657
  article-title: Duration of nuclear NF‐kappaB action regulated by reversible acetylation
  publication-title: Science
– volume: 23
  start-page: 705
  issue: 6
  year: 2018
  end-page: 715
  article-title: The impact of dietary fiber on gut microbiota in host health and disease
  publication-title: Cell Host Microbe
– volume: 14
  start-page: 3059
  issue: 11
  year: 2019
  end-page: 3081
  article-title: The isolation and molecular characterization of cerebral microvessels
  publication-title: Nature Protocols
– volume: 10
  issue: 1
  year: 2020
  article-title: Intravenous administration of sodium propionate induces antidepressant or prodepressant effect in a dose dependent manner
  publication-title: Scientific Reports
– volume: 1470
  start-page: 14
  issue: 1
  year: 2020
  end-page: 24
  article-title: Potential effects of antibiotic‐induced gut microbiome alteration on blood‐brain barrier permeability compromise in rhesus monkeys
  publication-title: Annals of the New York Academy of Sciences
– volume: 14
  start-page: 3
  issue: 1
  year: 2024
  article-title: Elevated CSF angiopoietin‐2 correlates with blood‐brain barrier leakiness and markers of neuronal injury in early Alzheimer's disease
  publication-title: Translational Psychiatry
– volume: 107
  start-page: 41
  year: 2017
  end-page: 56
  article-title: The blood‐brain barrier in Alzheimer's disease
  publication-title: Neurobiology of Disease
– volume: 831
  start-page: 52
  year: 2018
  end-page: 59
  article-title: Pro‐ and anti‐inflammatory effects of short chain fatty acids on immune and endothelial cells
  publication-title: European Journal of Pharmacology
– volume: 13
  start-page: 864
  year: 2019
  article-title: Involvement of epigenetic mechanisms and non‐coding RNAs in blood‐brain barrier and neurovascular unit injury and recovery after stroke
  publication-title: Frontiers in Neuroscience
– volume: 7
  start-page: 357
  issue: 3
  year: 2012
  end-page: 367
  article-title: Histone deacetylase modulators provided by Mother Nature
  publication-title: Genes and Nutrition
– volume: 9
  year: 2022
  article-title: Protective roles of sodium butyrate in lipopolysaccharide‐induced bovine ruminal epithelial cells by activating G protein‐coupled receptors 41
  publication-title: Frontiers in Nutrition
– volume: 12
  start-page: 1202
  issue: 4
  year: 2020
  article-title: Monobutyrin and monovalerin affect brain short‐chain fatty acid profiles and tight‐junction protein expression in ApoE‐knockout rats fed high‐fat diets
  publication-title: Nutrients
– volume: 546
  year: 2022
  article-title: Short chain fatty acids: Microbial metabolites for gut−brain axis signalling
  publication-title: Molecular and Cellular Endocrinology
– volume: 294
  start-page: 1
  issue: 1
  year: 2009
  end-page: 8
  article-title: Diversity, metabolism and microbial ecology of butyrate‐producing bacteria from the human large intestine
  publication-title: FEMS Microbiology Letters
– volume: 278
  start-page: 25481
  issue: 28
  year: 2003
  end-page: 25489
  article-title: Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation
  publication-title: Journal of Biological Chemistry
– volume: 30
  start-page: 317
  year: 2018
  end-page: 325
  article-title: Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS‐induced inflammatory bowel disease mice model
  publication-title: EBioMedicine
– volume: 11
  start-page: 131
  issue: 1
  year: 2021
  article-title: Antidepressants fluoxetine and amitriptyline induce alterations in intestinal microbiota and gut microbiome function in rats exposed to chronic unpredictable mild stress
  publication-title: Translational Psychiatry
– volume: 174
  start-page: 3623
  issue: 20
  year: 2017
  end-page: 3639
  article-title: Antibiotic‐induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice
  publication-title: British Journal of Pharmacology
– volume: 57
  start-page: 1
  issue: S1
  year: 2018
  end-page: 14
  article-title: The role of the microbiome for human health: From basic science to clinical applications
  publication-title: European Journal of Nutrition
– volume: 11
  year: 2021
  article-title: Short‐chain fatty acid and FFAR2 activation—A new option for treating infections?
  publication-title: Frontiers in Cellular and Infection Microbiology
– volume: 9
  start-page: 99
  year: 2019
  article-title: Antibiotic‐induced disruption of gut microbiota alters local metabolomes and immune responses
  publication-title: Frontiers in Cellular and Infection Microbiology
– volume: 11
  issue: 23
  year: 2019
  article-title: Melatonin protects blood‐brain barrier integrity and permeability by inhibiting matrix metalloproteinase‐9 via the NOTCH3/NF‐κB pathway
  publication-title: Aging (Albany NY)
– volume: 25
  issue: 12
  year: 2022
  article-title: Microbial‐derived metabolites induce actin cytoskeletal rearrangement and protect blood‐brain barrier function
  publication-title: Iscience
– volume: 9
  start-page: 31342
  issue: 59
  year: 2018
  end-page: 31354
  article-title: A short‐chain fatty acid, propionate, enhances the cytotoxic effect of cisplatin by modulating GPR41 signaling pathways in HepG2 cells
  publication-title: Oncotarget
– volume: 9
  start-page: 80
  year: 2015
  article-title: Hydrophilic bile acids protect human blood‐brain barrier endothelial cells from disruption by unconjugated bilirubin: An in vitro study
  publication-title: Frontiers in Neuroscience
– volume: 381
  start-page: 176
  year: 2017
  end-page: 181
  article-title: Sodium butyrate exerts protective effect against Parkinson's disease in mice via stimulation of glucagon like peptide‐1
  publication-title: Journal of the Neurological Sciences
– volume: 278
  start-page: 11312
  issue: 13
  year: 2003
  end-page: 11319
  article-title: The Orphan G protein‐coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids
  publication-title: Journal of Biological Chemistry
– volume: 19
  start-page: 29
  issue: 1
  year: 2017
  end-page: 41
  article-title: Formation of propionate and butyrate by the human colonic microbiota
  publication-title: Environmental Microbiology
– volume: 286
  start-page: 10628
  issue: 12
  year: 2011
  end-page: 10640
  article-title: Selective orthosteric free fatty acid receptor 2 (FFA2) agonists: Identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3
  publication-title: Journal of Biological Chemistry
– volume: 16
  start-page: 120
  year: 2016
  article-title: Therapeutic potency of bee pollen against biochemical autistic features induced through acute and sub‐acute neurotoxicity of orally administered propionic acid
  publication-title: BMC Complementary Medicine and Therapies
– volume: 12
  start-page: 657
  issue: 4
  year: 2023
  article-title: Mechanisms of blood‐brain barrier protection by microbiota‐derived short‐chain fatty acids
  publication-title: Cells
– volume: 164
  start-page: 249
  year: 2020
  end-page: 256
  article-title: Gut microbiome improves postoperative cognitive function by decreasing permeability of the blood‐brain barrier in aged mice
  publication-title: Brain Research Bulletin
– volume: 20
  start-page: 145
  issue: 2
  year: 2017
  end-page: 155
  article-title: Interactions between the microbiota, immune and nervous systems in health and disease
  publication-title: Nature Neuroscience
– volume: 9
  start-page: 235
  issue: 1
  year: 2021
  article-title: Regulation of blood‐brain barrier integrity by microbiome‐associated methylamines and cognition by trimethylamine N‐oxide
  publication-title: Microbiome
– volume: 11
  start-page: 575
  year: 2020
  article-title: Intestinal flora and disease mutually shape the regional immune system in the intestinal tract
  publication-title: Frontiers in Immunology
– volume: 505
  start-page: 559
  issue: 7484
  year: 2014
  end-page: 563
  article-title: Diet rapidly and reproducibly alters the human gut microbiome
  publication-title: Nature
– volume: 13
  start-page: 1
  issue: 1
  year: 2021
  end-page: 24
  article-title: The role of short‐chain fatty acids in the interplay between gut microbiota and diet in cardio‐metabolic health
  publication-title: Gut Microbes
– volume: 6
  start-page: 6734
  issue: 1
  year: 2015
  article-title: Metabolite‐sensing receptors GPR43 and GPR109A facilitate dietary fibre‐induced gut homeostasis through regulation of the inflammasome
  publication-title: Nature Communications
– volume: 46
  start-page: 527
  issue: 6
  year: 2014
  end-page: 534
  article-title: Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1‐dependent mechanisms
  publication-title: Digestive and Liver Disease
– volume: 11
  issue: 1
  year: 2023
  article-title: A host‐gut microbial amino acid co‐metabolite, p‐cresol glucuronide, promotes blood‐brain barrier integrity in vivo
  publication-title: Tissue Barriers
– volume: 12
  year: 2021
  article-title: The neuroprotective effect of short chain fatty acids against sepsis‐associated encephalopathy in mice
  publication-title: Frontiers in Immunology
– volume: 5
  start-page: 21
  year: 2018
  article-title: Short‐term oral antibiotics treatment promotes inflammatory activation of colonic invariant natural killer T and conventional CD4(+) T cells
  publication-title: Frontiers in Medicine (Lausanne)
– volume: 80
  start-page: 89
  issue: 1
  year: 2004
  end-page: 94
  article-title: L‐Rhamnose increases serum propionate in humans
  publication-title: American Journal of Clinical Nutrition
– volume: 4
  start-page: 33
  issue: 1
  year: 2024
  end-page: 47
  article-title: Cerebrospinal fluid proteomics in patients with Alzheimer's disease reveals five molecular subtypes with distinct genetic risk profiles
  publication-title: Nature Aging
– volume: 42
  start-page: 1335
  issue: 7
  year: 2022
  end-page: 1346
  article-title: Chronic cerebral hypoperfusion and blood‐brain barrier disruption in uninjured brain areas of rhesus monkeys subjected to transient ischemic stroke
  publication-title: Journal of Cerebral Blood Flow & Metabolism
– volume: 61
  start-page: 357
  issue: 3
  year: 2018
  end-page: 371
  article-title: Microbiota and metabolic diseases
  publication-title: Endocrine
– volume: 92
  start-page: 102
  year: 2021
  end-page: 114
  article-title: Antibiotic‐induced microbiome depletion in adult mice disrupts blood‐brain barrier and facilitates brain infiltration of monocytes after bone‐marrow transplantation
  publication-title: Brain, Behavior, and Immunity
– volume: 13
  start-page: 300
  issue: 1
  year: 2016
  article-title: The histone deacetylase inhibitor, sodium butyrate, exhibits neuroprotective effects for ischemic stroke in middle‐aged female rats
  publication-title: Journal of Neuroinflammation
– volume: 11
  start-page: 362
  issue: 1
  year: 2020
  article-title: Impact of commonly used drugs on the composition and metabolic function of the gut microbiota
  publication-title: Nature Communications
– volume: 4
  issue: 4
  year: 2019
  article-title: Age‐ and sex‐dependent patterns of gut microbial diversity in human adults
  publication-title: mSystems
– year: 2002
– volume: 379
  issue: 6628
  year: 2023
  article-title: ApoE isoform– and microbiota‐dependent progression of neurodegeneration in a mouse model of tauopathy
  publication-title: Science
– volume: 29
  start-page: 98
  year: 2023
  end-page: 114
  article-title: Fecal microbiota transplantation and short‐chain fatty acids protected against cognitive dysfunction in a rat model of chronic cerebral hypoperfusion
  publication-title: CNS Neuroscience & Therapeutics
– volume: 18
  start-page: 965
  issue: 7
  year: 2015
  end-page: 977
  article-title: Host microbiota constantly control maturation and function of microglia in the CNS
  publication-title: Nature Neuroscience
– volume: 6
  start-page: 55
  issue: 1
  year: 2018
  article-title: Microbiome−host systems interactions: Protective effects of propionate upon the blood‐brain barrier
  publication-title: Microbiome
– volume: 31
  start-page: 52
  issue: 1
  year: 2011
  end-page: 57
  article-title: Valproic acid attenuates blood‐brain barrier disruption in a rat model of transient focal cerebral ischemia: The roles of HDAC and MMP‐9 inhibition
  publication-title: Journal of Cerebral Blood Flow & Metabolism
– volume: 13
  start-page: 2897
  issue: 19
  year: 2022
  end-page: 2912
  article-title: Indole‐3‐propionic acid attenuates HI‐related blood–brain barrier injury in neonatal rats by modulating the PXR signaling pathway
  publication-title: ACS Chemical Neuroscience
– volume: 7
  start-page: 245
  issue: 4
  year: 1982
  end-page: 250
  article-title: The stability of amoxycillin sodium in intravenous infusion fluids
  publication-title: Journal of Clinical Pharmacology
– volume: 19
  start-page: 241
  issue: 4
  year: 2021
  end-page: 255
  article-title: The gut microbiota−brain axis in behaviour and brain disorders
  publication-title: Nature Reviews Microbiology
– volume: 16
  start-page: 461
  issue: 8
  year: 2019
  end-page: 478
  article-title: The role of short‐chain fatty acids in microbiota−gut−brain communication
  publication-title: Nature Reviews Gastroenterology & Hepatology
– volume: 7
  issue: 1
  year: 2017
  article-title: Gut microbiome alterations in Alzheimer's disease
  publication-title: Scientific Reports
– volume: 24
  start-page: 3074
  issue: 4
  year: 2023
  article-title: Antibiotic‐therapy‐induced gut dysbiosis affecting gut microbiota—brain axis and cognition: Restoration by intake of probiotics and synbiotics
  publication-title: International Journal of Molecular Science
– volume: 28
  start-page: 1221
  issue: 10
  year: 1987
  end-page: 1227
  article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood
  publication-title: Gut
– ident: e_1_2_10_13_1
  doi: 10.1126/scitranslmed.3009759
– ident: e_1_2_10_73_1
  doi: 10.1074/jbc.M301403200
– ident: e_1_2_10_16_1
  doi: 10.1038/nrneurol.2017.188
– ident: e_1_2_10_3_1
  doi: 10.1038/s41579‐020‐00460‐0
– ident: e_1_2_10_67_1
  doi: 10.3389/fnut.2022.842634
– ident: e_1_2_10_17_1
  doi: 10.1016/j.nbd.2016.07.007
– ident: e_1_2_10_65_1
  doi: 10.1074/jbc.M211609200
– ident: e_1_2_10_75_1
  doi: 10.1038/ncomms7734
– ident: e_1_2_10_4_1
  doi: 10.1128/mSystems.00261‐19
– ident: e_1_2_10_5_1
  doi: 10.1038/nature12820
– ident: e_1_2_10_24_1
  doi: 10.1038/nn.4476
– ident: e_1_2_10_31_1
  doi: 10.1016/j.isci.2022.105648
– ident: e_1_2_10_61_1
  doi: 10.3389/fnins.2019.00864
– ident: e_1_2_10_68_1
  doi: 10.18632/aging.102537
– ident: e_1_2_10_44_1
  doi: 10.1111/j.1365‐2710.1982.tb01029.x
– ident: e_1_2_10_70_1
  doi: 10.1016/j.ebiom.2018.03.030
– ident: e_1_2_10_43_1
  doi: 10.1177/0271678×16680221
– ident: e_1_2_10_64_1
  doi: 10.1074/jbc.M110.210872
– ident: e_1_2_10_21_1
  doi: 10.1186/s40168‐021‐01181‐z
– ident: e_1_2_10_56_1
  doi: 10.3389/fmed.2018.00021
– ident: e_1_2_10_66_1
  doi: 10.1038/nn.4030
– ident: e_1_2_10_2_1
  doi: 10.1038/s41598‐017‐13601‐y
– ident: e_1_2_10_15_1
  doi: 10.3389/fcimb.2019.00099
– ident: e_1_2_10_51_1
  doi: 10.1016/j.bbi.2023.08.021
– ident: e_1_2_10_35_1
  doi: 10.1186/s12974‐016‐0765‐6
– ident: e_1_2_10_36_1
  doi: 10.1016/j.brainres.2016.03.031
– ident: e_1_2_10_32_1
  doi: 10.1186/s40168‐018‐0439‐y
– ident: e_1_2_10_52_1
  doi: 10.1111/j.1574‐6968.2009.01514.x
– ident: e_1_2_10_47_1
  doi: 10.1038/s43587‐023‐00550‐7
– ident: e_1_2_10_28_1
  doi: 10.1126/science.1241165
– ident: e_1_2_10_57_1
  doi: 10.1093/ajcn/80.1.89
– ident: e_1_2_10_18_1
  doi: 10.1177/0271678×221078065
– ident: e_1_2_10_37_1
  doi: 10.1016/j.brainresbull.2020.08.017
– ident: e_1_2_10_40_1
  doi: 10.1007/s00394‐018‐1703‐4
– ident: e_1_2_10_7_1
  doi: 10.3389/fimmu.2020.00575
– ident: e_1_2_10_9_1
  doi: 10.1038/s41398‐021‐01254‐5
– ident: e_1_2_10_63_1
  doi: 10.18632/oncotarget.25809
– ident: e_1_2_10_53_1
  doi: 10.1111/1462‐2920.13589
– ident: e_1_2_10_27_1
  doi: 10.1016/j.mce.2022.111572
– ident: e_1_2_10_10_1
  doi: 10.1016/j.bbi.2020.11.032
– ident: e_1_2_10_22_1
  doi: 10.1080/21688370.2022.2073175
– ident: e_1_2_10_29_1
  doi: 10.1007/s12020‐018‐1605‐5
– ident: e_1_2_10_14_1
  doi: 10.3390/ijms24043074
– ident: e_1_2_10_38_1
  doi: 10.3390/nu14091882
– ident: e_1_2_10_19_1
  doi: 10.1016/j.dld.2014.01.159
– ident: e_1_2_10_49_1
  doi: 10.1038/s41596‐019‐0212‐0
– ident: e_1_2_10_6_1
  doi: 10.1038/s41467‐019‐14177‐z
– ident: e_1_2_10_48_1
  doi: 10.1038/s41398‐023‐02706‐w
– ident: e_1_2_10_33_1
  doi: 10.3389/fimmu.2021.626894
– ident: e_1_2_10_71_1
  doi: 10.1007/s12263‐012‐0283‐9
– ident: e_1_2_10_34_1
  doi: 10.1038/jcbfm.2010.195
– ident: e_1_2_10_20_1
  doi: 10.3389/fnins.2015.00080
– ident: e_1_2_10_72_1
  doi: 10.1126/science.1062374
– ident: e_1_2_10_25_1
  doi: 10.1016/j.ejphar.2018.05.003
– ident: e_1_2_10_59_1
  doi: 10.1186/s12906‐016‐1099‐8
– ident: e_1_2_10_42_1
  doi: 10.1111/bph.13965
– ident: e_1_2_10_58_1
  doi: 10.1136/gut.28.10.1221
– volume-title: Methodology of pharmacological experiment
  year: 2002
  ident: e_1_2_10_45_1
– ident: e_1_2_10_46_1
  doi: 10.3748/wjg.v16.i33.4135
– ident: e_1_2_10_74_1
  doi: 10.3389/fcimb.2021.785833
– ident: e_1_2_10_8_1
  doi: 10.1016/j.pharmthera.2016.04.007
– ident: e_1_2_10_55_1
  doi: 10.1016/j.jns.2017.08.3235
– ident: e_1_2_10_26_1
  doi: 10.1016/j.chom.2018.05.012
– ident: e_1_2_10_11_1
  doi: 10.1152/physrev.00050.2017
– ident: e_1_2_10_50_1
  doi: 10.1111/cns.14089
– ident: e_1_2_10_30_1
  doi: 10.1038/s41575‐019‐0157‐3
– ident: e_1_2_10_60_1
  doi: 10.1038/s41598‐020‐77085‐z
– ident: e_1_2_10_69_1
  doi: 10.1007/s11064‐018‐2607‐7
– ident: e_1_2_10_41_1
  doi: 10.1126/science.add1236
– ident: e_1_2_10_23_1
  doi: 10.1021/acschemneuro.2c00418
– ident: e_1_2_10_12_1
  doi: 10.1111/nyas.14312
– ident: e_1_2_10_62_1
  doi: 10.3390/cells12040657
– ident: e_1_2_10_39_1
  doi: 10.3390/nu12041202
– ident: e_1_2_10_54_1
  doi: 10.1080/19490976.2021.1897212
SSID ssj0012847
Score 2.5038087
Snippet The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two‐way communication with the...
The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two-way communication with the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 116
SubjectTerms Acetic acid
Animals
Anti-Bacterial Agents - pharmacology
Antibiotics
Blood-brain barrier
Blood-Brain Barrier - drug effects
Blood-Brain Barrier - metabolism
Brain - metabolism
Central nervous system
Claudin-5 - genetics
Claudin-5 - metabolism
Dysbacteriosis
Dysbiosis - metabolism
Endothelial cells
Fatty acids
Fatty Acids, Volatile - metabolism
Fatty Acids, Volatile - pharmacology
Gastrointestinal Microbiome - drug effects
Gastrointestinal Microbiome - physiology
gut microbiome
Gut microbiota
Gut-brain axis
Humans
Integrity
Intestinal microflora
Macaca mulatta
Male
Membrane permeability
Mice
Mice, Inbred C57BL
Microbiota
Microorganisms
Monkeys
mRNA
Neurological diseases
Oral administration
propionate
Propionic acid
short‐chain fatty acids
Therapeutic targets
Title Short‐chain fatty acids mediate gut microbiota–brain communication and protect the blood–brain barrier integrity
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnyas.15299
https://www.ncbi.nlm.nih.gov/pubmed/39998158
https://www.proquest.com/docview/3178286974
https://www.proquest.com/docview/3170938471
Volume 1545
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8UwEB5EELy4L3UjogcVKn1d8l7Ai4gigh5cQA9SkjTVh1jF9gnPkz9B8B_6S5xJFzcQ9FZoStokM_m-dOYbgFXuKWEC0sPzJB3dKN-V7VC53NMi0C3f1x4lOB8e8f2z8OA8Oh-ArToXptSHaA7cyDKsvyYDlyr_ZORZX-ZUvUdQ9h4FaxEiOm60o6zftW64jW4YYUylTUphPB-Pft2NfkDMr4jVbjl7o3BZv2wZaXKz2SvUpn76puP4368Zg5EKi7LtcvGMw4DJJmCorE7Zn4Dxyu5ztlaJU69PwuPJNQL2t-cXfS27GUtlUfSZ1N0kZzYJpTDsqlew224p8FTIt-dXRWUomP6cisJklrBKI4IhBmU2gL5pq-QDVdJjpZgFEoUpONvbPd3Zd6vaDa4OWly4tDkGSLuRDfoSQYgxeMm176uk1elEXPO2l6SB8ZXhAjGZSNHZINkMTILuVyTBNAxmd5mZBcZVxFMVtiVStTDVqZAyEspTIXJB5YnAgZV6DuP7UqIjrqkNDWtsh9WBhXp648pM8xjBE6XRI6dyYLm5jQZGf01kZu56tg12Qpu4AzPlsmi6QXQnOq2o48CGndxf-o-PLrZP7NXcXxrPw7BPFYdt1NsCDBYPPbOIMKhQS3a5vwMMxwXm
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61W6FygQIthFddwQGQssrm4V0fUQVaWtgDDwlOke04ZYUIaJNFWk78BCT-Ib-kM0425SEhlZulOLJie8bf58x8A7DOPSVMQHp4nqSrG-W7sh0ql3taBLrl-9qjBOeDHu-ehL9Oo9MqNodyYUp9iPrCjSzD-msycLqQfmLl2UjmVL5HiI_wiUp6W0Z1WKtHWc9rHXEbHTECmUqdlAJ5_r37_Dx6BTKfY1Z76OxOl5VVc6tVSLEmF81hoZr69oWS47u_5wtMVXCUbZf7ZwY-mGwWJsoClaNZmKlMP2cblT715hzcHJ0jZn-8u9fnsp-xVBbFiEndT3Jm81AKw_4MC3bZLzWeCvl496CoEgXTT7NRmMwSVslEMIShzMbQ132VHFAxPVbqWSBX-AonuzvHP7tuVb7B1UGLC5fOxwCZNxJCXyIOMQabXPu-SlqdTsQ1b3tJGhhfGS4QlokU_Q3yzcAk6IFFEnyDRnaVmQVgXEU8VWFbIlsLU50KKSOhPBUiHVSeCBxYGy9ifF2qdMRjdkPTGttpdWB5vL5xZal5jPiJMumRVjnwo36MNkY_TmRmroa2Dw5C57gD8-W-qIdBgCc6rajjwJZd3TfGj3tn20e2tfg_nb_D5-7xwX68v9f7vQSTPhUgtkFwy9AoBkOzgqioUKt27_8FUpwKAQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFD64isu-qKOrWx3XiPvgCpVOL5kGfBHHwesgq4I-SEnSdB0WqzgdYXzyJwj-w_klnqSX9QIL61uhKWmTc_lOes53AH5QRzDlaT48h-ujG-HavOkLmzqSebLhutLRBc6HHbpz6u-dBWcjsFHWwuT8ENWBm9YMY6-1gt_EyQslTwe8p7v3MPYJxnzqhFqmW78q8ihjeI0dbqIdRhxTkJPqPJ6_z752R-8w5mvIanxOexIuyrfNU03-rPczsS7v3xA5fvRzpmCiAKNkM5eeGoyodBrG8_aUg2moFYrfI6sFO_XPGbg7vkTEPnx4lJe8m5KEZ9mAcNmNe8RUoWSK_O5n5KqbMzxlfPjwJHQfCiJf1qIQnsakIIkgCEKJyaCvxgp-q1vpkZzNAiOFr3Da3j7Z2rGL5g229BqU2do7ehh3YzjockQhSuElla4r4kYYBlTSphMnnnKFogxBGUvQ2mC06akY7S-LvVkYTa9T9Q0IFQFNhN_kGKv5iUwY5wETjvAxGBQO8yxYKfcwusk5OqIyttHLGplltaBebm9U6GkvQvSk6-gxqLJgubqNGqZ_m_BUXffNGJxEe3EL5nKxqKZBeMfCRhBasGY29x_zR53zzWNzNf8_g5fg81GrHR3sdvYX4Iuruw-bDLg6jGa3fbWIkCgT343kPwNVYwi5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short%E2%80%90chain+fatty+acids+mediate+gut+microbiota%E2%80%93brain+communication+and+protect+the+blood%E2%80%93brain+barrier+integrity&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Chenghan%2C+Mei&rft.au=Wanxin%2C+Li&rft.au=Bangcheng%2C+Zhao&rft.au=Yao%2C+He&rft.date=2025-03-01&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=1545&rft.issue=1&rft.spage=116&rft.epage=131&rft_id=info:doi/10.1111%2Fnyas.15299&rft.externalDBID=10.1111%252Fnyas.15299&rft.externalDocID=NYAS15299
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon