Early growth response 1 exacerbates thoracic aortic aneurysm and dissection of mice by inducing the phenotypic switching of vascular smooth muscle cell through the activation of Krüppel‐like factor 5

Aim Vascular smooth muscle cell (VSMC) phenotypic switching has been reported to regulate vascular function and thoracic aortic aneurysm and dissection (TAAD) progression. Early growth response 1 (Egr1) is associated with the differentiation of VSMCs. However, the mechanisms through which Egr1 parti...

Full description

Saved in:
Bibliographic Details
Published inActa Physiologica Vol. 240; no. 11; pp. e14237 - n/a
Main Authors Han, Xueyu, Xu, Shengnan, Hu, Ke, Yu, Yi, Wang, Xiukun, Qu, Chuan, Yang, Bo, Liu, Xin
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aim Vascular smooth muscle cell (VSMC) phenotypic switching has been reported to regulate vascular function and thoracic aortic aneurysm and dissection (TAAD) progression. Early growth response 1 (Egr1) is associated with the differentiation of VSMCs. However, the mechanisms through which Egr1 participates in the regulation of VSMCs and progression of TAAD remain unknown. This study aimed to investigate the role of Egr1 in the phenotypic switching of VSMCs and the development of TAAD. Methods Wild‐type C57BL/6 and SMC‐specific Egr1‐knockout mice were used as experimental subjects and fed β‐aminopropionitrile for 4 weeks to construct the TAAD model. Ultrasound and aortic staining were performed to examine the pathological features in thoracic aortic tissues. Transwell, wound healing, CCK8, and immunofluorescence assays detected the migration and proliferation of synthetic VSMCs. Egr1 was directly bound to the promoter of Krüppel‐like factor 5 (KLF5) and promoted the expression of KLF5, which was validated by JASPAR database and dual‐luciferase reporter assay. Results Egr1 expression increased and was partially co‐located with VSMCs in aortic tissues of mice with TAAD. SMC‐specific Egr1 deficiency alleviated TAAD and inhibited the phenotypic switching of VSMC. Egr1 knockdown prevented the phenotypic switching of VSMCs and subsequently suppressed the migration and proliferation of synthetic VSMCs. The inhibitory effects of Egr1 deficiency on VSMCs were blunted once KLF5 was overexpressed. Conclusion Egr1 aggravated the development of TAAD by promoting the phenotypic switching of VSMCs via enhancing the transcriptional activation of KLF5. These results suggest that inhibition of SMC‐specific Egr1 expression is a promising therapy for TAAD.
AbstractList Vascular smooth muscle cell (VSMC) phenotypic switching has been reported to regulate vascular function and thoracic aortic aneurysm and dissection (TAAD) progression. Early growth response 1 (Egr1) is associated with the differentiation of VSMCs. However, the mechanisms through which Egr1 participates in the regulation of VSMCs and progression of TAAD remain unknown. This study aimed to investigate the role of Egr1 in the phenotypic switching of VSMCs and the development of TAAD.AIMVascular smooth muscle cell (VSMC) phenotypic switching has been reported to regulate vascular function and thoracic aortic aneurysm and dissection (TAAD) progression. Early growth response 1 (Egr1) is associated with the differentiation of VSMCs. However, the mechanisms through which Egr1 participates in the regulation of VSMCs and progression of TAAD remain unknown. This study aimed to investigate the role of Egr1 in the phenotypic switching of VSMCs and the development of TAAD.Wild-type C57BL/6 and SMC-specific Egr1-knockout mice were used as experimental subjects and fed β-aminopropionitrile for 4 weeks to construct the TAAD model. Ultrasound and aortic staining were performed to examine the pathological features in thoracic aortic tissues. Transwell, wound healing, CCK8, and immunofluorescence assays detected the migration and proliferation of synthetic VSMCs. Egr1 was directly bound to the promoter of Krüppel-like factor 5 (KLF5) and promoted the expression of KLF5, which was validated by JASPAR database and dual-luciferase reporter assay.METHODSWild-type C57BL/6 and SMC-specific Egr1-knockout mice were used as experimental subjects and fed β-aminopropionitrile for 4 weeks to construct the TAAD model. Ultrasound and aortic staining were performed to examine the pathological features in thoracic aortic tissues. Transwell, wound healing, CCK8, and immunofluorescence assays detected the migration and proliferation of synthetic VSMCs. Egr1 was directly bound to the promoter of Krüppel-like factor 5 (KLF5) and promoted the expression of KLF5, which was validated by JASPAR database and dual-luciferase reporter assay.Egr1 expression increased and was partially co-located with VSMCs in aortic tissues of mice with TAAD. SMC-specific Egr1 deficiency alleviated TAAD and inhibited the phenotypic switching of VSMC. Egr1 knockdown prevented the phenotypic switching of VSMCs and subsequently suppressed the migration and proliferation of synthetic VSMCs. The inhibitory effects of Egr1 deficiency on VSMCs were blunted once KLF5 was overexpressed.RESULTSEgr1 expression increased and was partially co-located with VSMCs in aortic tissues of mice with TAAD. SMC-specific Egr1 deficiency alleviated TAAD and inhibited the phenotypic switching of VSMC. Egr1 knockdown prevented the phenotypic switching of VSMCs and subsequently suppressed the migration and proliferation of synthetic VSMCs. The inhibitory effects of Egr1 deficiency on VSMCs were blunted once KLF5 was overexpressed.Egr1 aggravated the development of TAAD by promoting the phenotypic switching of VSMCs via enhancing the transcriptional activation of KLF5. These results suggest that inhibition of SMC-specific Egr1 expression is a promising therapy for TAAD.CONCLUSIONEgr1 aggravated the development of TAAD by promoting the phenotypic switching of VSMCs via enhancing the transcriptional activation of KLF5. These results suggest that inhibition of SMC-specific Egr1 expression is a promising therapy for TAAD.
Vascular smooth muscle cell (VSMC) phenotypic switching has been reported to regulate vascular function and thoracic aortic aneurysm and dissection (TAAD) progression. Early growth response 1 (Egr1) is associated with the differentiation of VSMCs. However, the mechanisms through which Egr1 participates in the regulation of VSMCs and progression of TAAD remain unknown. This study aimed to investigate the role of Egr1 in the phenotypic switching of VSMCs and the development of TAAD. Wild-type C57BL/6 and SMC-specific Egr1-knockout mice were used as experimental subjects and fed β-aminopropionitrile for 4 weeks to construct the TAAD model. Ultrasound and aortic staining were performed to examine the pathological features in thoracic aortic tissues. Transwell, wound healing, CCK8, and immunofluorescence assays detected the migration and proliferation of synthetic VSMCs. Egr1 was directly bound to the promoter of Krüppel-like factor 5 (KLF5) and promoted the expression of KLF5, which was validated by JASPAR database and dual-luciferase reporter assay. Egr1 expression increased and was partially co-located with VSMCs in aortic tissues of mice with TAAD. SMC-specific Egr1 deficiency alleviated TAAD and inhibited the phenotypic switching of VSMC. Egr1 knockdown prevented the phenotypic switching of VSMCs and subsequently suppressed the migration and proliferation of synthetic VSMCs. The inhibitory effects of Egr1 deficiency on VSMCs were blunted once KLF5 was overexpressed. Egr1 aggravated the development of TAAD by promoting the phenotypic switching of VSMCs via enhancing the transcriptional activation of KLF5. These results suggest that inhibition of SMC-specific Egr1 expression is a promising therapy for TAAD.
AimVascular smooth muscle cell (VSMC) phenotypic switching has been reported to regulate vascular function and thoracic aortic aneurysm and dissection (TAAD) progression. Early growth response 1 (Egr1) is associated with the differentiation of VSMCs. However, the mechanisms through which Egr1 participates in the regulation of VSMCs and progression of TAAD remain unknown. This study aimed to investigate the role of Egr1 in the phenotypic switching of VSMCs and the development of TAAD.MethodsWild‐type C57BL/6 and SMC‐specific Egr1‐knockout mice were used as experimental subjects and fed β‐aminopropionitrile for 4 weeks to construct the TAAD model. Ultrasound and aortic staining were performed to examine the pathological features in thoracic aortic tissues. Transwell, wound healing, CCK8, and immunofluorescence assays detected the migration and proliferation of synthetic VSMCs. Egr1 was directly bound to the promoter of Krüppel‐like factor 5 (KLF5) and promoted the expression of KLF5, which was validated by JASPAR database and dual‐luciferase reporter assay.ResultsEgr1 expression increased and was partially co‐located with VSMCs in aortic tissues of mice with TAAD. SMC‐specific Egr1 deficiency alleviated TAAD and inhibited the phenotypic switching of VSMC. Egr1 knockdown prevented the phenotypic switching of VSMCs and subsequently suppressed the migration and proliferation of synthetic VSMCs. The inhibitory effects of Egr1 deficiency on VSMCs were blunted once KLF5 was overexpressed.ConclusionEgr1 aggravated the development of TAAD by promoting the phenotypic switching of VSMCs via enhancing the transcriptional activation of KLF5. These results suggest that inhibition of SMC‐specific Egr1 expression is a promising therapy for TAAD.
Aim Vascular smooth muscle cell (VSMC) phenotypic switching has been reported to regulate vascular function and thoracic aortic aneurysm and dissection (TAAD) progression. Early growth response 1 (Egr1) is associated with the differentiation of VSMCs. However, the mechanisms through which Egr1 participates in the regulation of VSMCs and progression of TAAD remain unknown. This study aimed to investigate the role of Egr1 in the phenotypic switching of VSMCs and the development of TAAD. Methods Wild‐type C57BL/6 and SMC‐specific Egr1‐knockout mice were used as experimental subjects and fed β‐aminopropionitrile for 4 weeks to construct the TAAD model. Ultrasound and aortic staining were performed to examine the pathological features in thoracic aortic tissues. Transwell, wound healing, CCK8, and immunofluorescence assays detected the migration and proliferation of synthetic VSMCs. Egr1 was directly bound to the promoter of Krüppel‐like factor 5 (KLF5) and promoted the expression of KLF5, which was validated by JASPAR database and dual‐luciferase reporter assay. Results Egr1 expression increased and was partially co‐located with VSMCs in aortic tissues of mice with TAAD. SMC‐specific Egr1 deficiency alleviated TAAD and inhibited the phenotypic switching of VSMC. Egr1 knockdown prevented the phenotypic switching of VSMCs and subsequently suppressed the migration and proliferation of synthetic VSMCs. The inhibitory effects of Egr1 deficiency on VSMCs were blunted once KLF5 was overexpressed. Conclusion Egr1 aggravated the development of TAAD by promoting the phenotypic switching of VSMCs via enhancing the transcriptional activation of KLF5. These results suggest that inhibition of SMC‐specific Egr1 expression is a promising therapy for TAAD.
Author Yu, Yi
Wang, Xiukun
Xu, Shengnan
Han, Xueyu
Yang, Bo
Hu, Ke
Qu, Chuan
Liu, Xin
Author_xml – sequence: 1
  givenname: Xueyu
  surname: Han
  fullname: Han, Xueyu
  organization: Hubei Key Laboratory of Cardiology
– sequence: 2
  givenname: Shengnan
  surname: Xu
  fullname: Xu, Shengnan
  organization: Hubei Key Laboratory of Cardiology
– sequence: 3
  givenname: Ke
  surname: Hu
  fullname: Hu, Ke
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Yi
  surname: Yu
  fullname: Yu, Yi
  organization: Hubei Key Laboratory of Cardiology
– sequence: 5
  givenname: Xiukun
  surname: Wang
  fullname: Wang, Xiukun
  organization: Hubei Key Laboratory of Cardiology
– sequence: 6
  givenname: Chuan
  surname: Qu
  fullname: Qu, Chuan
  organization: Hubei Key Laboratory of Cardiology
– sequence: 7
  givenname: Bo
  orcidid: 0000-0001-8789-4198
  surname: Yang
  fullname: Yang, Bo
  email: yybb112@whu.edu.cn
  organization: Hubei Key Laboratory of Cardiology
– sequence: 8
  givenname: Xin
  orcidid: 0000-0002-7175-9896
  surname: Liu
  fullname: Liu, Xin
  email: rm003805@whu.edu.cn
  organization: Hubei Key Laboratory of Cardiology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39345002$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFu1DAQhi1UREvphQdAlrhUSFvsONnEx1VVKKISHOAc2c5k4-LYwU665MYj8EDcuPEYPAmTbtsDB3wZS_P9M6N_5ik58MEDIc85O-P4XquhU2c8z0T5iBzxMq9WvOTrg4c_qw7JSUrXjDGecZFn2RNyKKTIC8ayI_L7QkU3020Mu7GjEdIQfALKKXxTBqJWIyQ6diEqYw1VIY5L8DDFOfX4aWhjUwIz2uBpaGlvDVA9U-ubyVi_RS3QoQMfxnlAadrZ0XRLAuEblczkVKSpDwHb91MyDqgB51AXw7TtbvUKy9-o-xbv46-fwwDuz_cfzn4B2mI6RFo8I49b5RKc3MVj8vnNxafzy9XVh7fvzjdXKyP4ulxJDpqtVdW0Smv0JBcFusdNIyrd5qLJTQWVaDOpM1lq9EkrploujZZ5ZYQRx-R0X3eI4esEaax7m5aZ0ZYwpVrgWjJWFFIi-vIf9DpM0eN0C1VWsmCcIfXijpp0D009RNurONf3W0Lg1R4wMaQUoX1AOKuXK6iXK6hvrwBhvod31sH8H7LefLzc7DV_ASViuTg
Cites_doi 10.1038/s41421-021-00362-2
10.1016/j.gene.2018.09.010
10.1016/j.jtcvs.2016.05.036
10.1161/01.RES.0000190613.22565.13
10.1038/15215
10.1111/bpa.12688
10.1093/jmcb/mjaa080
10.1016/j.jacc.2019.07.063
10.1172/JCI8592
10.1161/JAHA.121.023539
10.1016/j.ejphar.2020.172924
10.1161/CIRCULATIONAHA.116.024545
10.1053/j.semvascsurg.2021.02.003
10.1038/nm738
10.1016/j.ebiom.2018.12.023
10.1111/cge.12713
10.1161/ATVBAHA.118.310956
10.1016/j.cellsig.2018.08.019
10.1172/JCI158309
10.1016/j.redox.2017.11.012
10.3389/fcvm.2020.592550
10.1161/01.RES.0000112405.61577.95
10.1161/ATVBAHA.118.311917
10.1016/j.bbadis.2019.06.010
10.1016/j.jacc.2014.08.025
10.1001/jama.2023.0265
10.1093/nar/gkh543
10.1016/j.actbio.2019.07.030
10.1161/ATVBAHA.120.314560
10.1002/jcp.31200
10.1161/CIRCRESAHA.117.311450
10.1152/ajpheart.00683.2020
10.1016/j.ijcard.2016.06.300
10.1016/j.jvs.2012.05.084
10.1016/j.cardiores.2007.06.015
10.1161/CIRCRESAHA.117.310692
10.1038/cddis.2015.370
10.1161/CIRCULATIONAHA.120.047375
10.1161/CIRCRESAHA.118.313187
10.1038/s12276-019-0217-3
10.1016/j.ijcard.2016.03.037
10.1038/s41598-019-43322-3
10.18632/aging.103077
10.1093/eurheartj/ehaa352
10.1152/physrev.00041.2003
10.1016/j.athoracsur.2009.04.030
10.1111/j.1538-7836.2005.01366.x
10.1161/ATVBAHA.116.303229
10.1002/jcp.25810
10.1161/ATVBAHA.111.243212
10.1161/CIRCULATIONAHA.117.031264
10.1152/ajpcell.00067.2019
10.1016/j.jacc.2020.07.061
10.1016/j.omtn.2019.02.021
10.1161/CIRCULATIONAHA.122.063029
10.1111/eci.13697
10.1038/ncomms16016
10.1186/s12967-023-04043-4
10.1016/j.bbrc.2019.04.128
10.1161/ATVBAHA.119.312131
10.1093/cvr/cvy022
10.1161/CIRCRESAHA.118.313105
10.1002/jcb.21145
10.1161/ATVBAHA.119.312787
10.1146/annurev-physiol-012110-142315
10.3390/ijms241411701
10.1093/eurheartj/ehac823
10.1038/s41569-020-00472-6
10.1161/CIRCULATIONAHA.123.063332
10.1038/s41388-019-0873-8
10.1016/j.phymed.2018.11.014
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.
2024 The Author(s). Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.
2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.
– notice: 2024 The Author(s). Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7TK
7TS
7X8
DOI 10.1111/apha.14237
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
PubMed
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1748-1716
EndPage n/a
ExternalDocumentID 39345002
10_1111_apha_14237
APHA14237
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Key Research & Development plan of Hubei Province
  funderid: 2023BCB017
– fundername: Knowledge Innovation Program of Wuhan‐Shuguang
  funderid: 2022020801020479
– fundername: National Natural Science Foundation of China
  funderid: 82200520
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2042022kf1085
– fundername: Knowledge Innovation Program of Wuhan-Shuguang
  grantid: 2022020801020479
– fundername: Key Research & Development plan of Hubei Province
  grantid: 2023BCB017
– fundername: National Natural Science Foundation of China
  grantid: 82200520
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2042022kf1085
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23M
24P
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DXH
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
GODZA
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
O66
O9-
OHT
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
~IA
~KM
~WT
AAYXX
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
1OB
7TK
7TS
7X8
ID FETCH-LOGICAL-c3167-91eb06a8dfabb0124354231cd38bf43d4c8e83f29b297b345ba0af19cb948c3c3
IEDL.DBID DR2
ISSN 1748-1708
1748-1716
IngestDate Fri Jul 11 10:34:56 EDT 2025
Wed Aug 13 11:04:56 EDT 2025
Mon Jul 21 05:40:45 EDT 2025
Tue Jul 01 00:56:46 EDT 2025
Wed Jan 22 17:15:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords phenotypic switching
Egr1
KLF5
thoracic aortic aneurysm and dissection
vascular smooth muscle cells
Language English
License Attribution-NonCommercial
2024 The Author(s). Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3167-91eb06a8dfabb0124354231cd38bf43d4c8e83f29b297b345ba0af19cb948c3c3
Notes Xueyu Han, Shengnan Xu, and Ke Hu contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7175-9896
0000-0001-8789-4198
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fapha.14237
PMID 39345002
PQID 3117895010
PQPubID 1036382
PageCount 18
ParticipantIDs proquest_miscellaneous_3111205599
proquest_journals_3117895010
pubmed_primary_39345002
crossref_primary_10_1111_apha_14237
wiley_primary_10_1111_apha_14237_APHA14237
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Stockholm
PublicationTitle Acta Physiologica
PublicationTitleAlternate Acta Physiol (Oxf)
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 88
2017; 8
2022; 132
2019; 51
2020; 20
2019; 96
2018; 123
2007; 100
2019; 58
2019; 16
2019; 124
2023; 148
2016; 220
2020; 12
2021; 320
2017; 232
2007; 76
2012; 56
2014; 64
2004; 32
2020; 7
2023; 21
2023; 24
2021; 34
2017; 37
2024; 239
2018; 137
2019; 29
2019; 317
2019; 514
2017; 121
2016; 152
2016; 89
2019; 1865
2019; 9
2015; 6
2004; 84
2019; 74
2020; 41
2020; 40
2002; 8
2019; 39
2019; 38
2023; 329
2021; 143
2020; 76
2017; 135
1999; 5
2012; 32
2012; 74
2021; 13
2021; 10
2004; 94
2023; 44
2000; 105
2018; 679
2021; 18
2022; 8
2018; 114
2016; 212
2005; 97
2018; 52
2022; 52
2005; 3
2020; 872
2018; 14
e_1_2_11_70_1
e_1_2_11_72_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
Milutinović A (e_1_2_11_60_1) 2020; 20
e_1_2_11_71_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_61_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 232
  start-page: 3496
  issue: 12
  year: 2017
  end-page: 3509
  article-title: STIM‐1 and ORAI‐1 channel mediate angiotensin‐II‐induced expression of Egr‐1 in vascular smooth muscle cells
  publication-title: J Cell Physiol
– volume: 329
  start-page: 756
  issue: 9
  year: 2023
  end-page: 757
  article-title: Management of thoracic aortic dissection
  publication-title: JAMA
– volume: 137
  start-page: 1846
  issue: 17
  year: 2018
  end-page: 1860
  article-title: Insights from the international registry of acute aortic dissection: a 20‐year experience of collaborative clinical research
  publication-title: Circulation
– volume: 872
  year: 2020
  article-title: The role of circadian clock gene BMAL1 in vascular proliferation
  publication-title: Eur J Pharmacol
– volume: 97
  start-page: 1132
  issue: 11
  year: 2005
  end-page: 1141
  article-title: Synthetic retinoid Am80 suppresses smooth muscle phenotypic modulation and in‐stent neointima formation by inhibiting KLF5
  publication-title: Circ Res
– volume: 124
  start-page: 607
  issue: 4
  year: 2019
  end-page: 618
  article-title: Cellular mechanisms of aortic aneurysm formation
  publication-title: Circ Res
– volume: 8
  start-page: 11
  issue: 1
  year: 2022
  article-title: Single‐cell RNA sequencing identifies an Il1rn(+)/Trem1(+) macrophage subpopulation as a cellular target for mitigating the progression of thoracic aortic aneurysm and dissection
  publication-title: Cell Discov
– volume: 18
  start-page: 331
  issue: 5
  year: 2021
  end-page: 348
  article-title: Epidemiology and management of aortic disease: aortic aneurysms and acute aortic syndromes
  publication-title: Nat Rev Cardiol
– volume: 220
  start-page: 185
  year: 2016
  end-page: 191
  article-title: Inhibition of intimal thickening after vascular injury with a cocktail of vascular endothelial growth factor and cyclic Arg‐Gly‐asp peptide
  publication-title: Int J Cardiol
– volume: 212
  start-page: 299
  year: 2016
  end-page: 302
  article-title: MicroRNA miR‐191 targets the zinc finger transcription factor Egr‐1 and suppresses intimal thickening after carotid injury
  publication-title: Int J Cardiol
– volume: 514
  start-page: 280
  issue: 1
  year: 2019
  end-page: 286
  article-title: p22phox promotes ang‐II‐induced vascular smooth muscle cell phenotypic switch by regulating KLF4 expression
  publication-title: Biochem Biophys Res Commun
– volume: 41
  start-page: 2442
  issue: 26
  year: 2020
  end-page: 2453
  article-title: Prevention of aortic dissection and aneurysm via an ALDH2‐mediated switch in vascular smooth muscle cell phenotype
  publication-title: Eur Heart J
– volume: 29
  start-page: 502
  issue: 4
  year: 2019
  end-page: 512
  article-title: Early growth response‐1 regulates acetylcholinesterase and its relation with the course of Alzheimer's disease
  publication-title: Brain Pathol
– volume: 20
  start-page: 21
  issue: 1
  year: 2020
  end-page: 30
  article-title: Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: an updated review
  publication-title: Bosn J Basic Med Sci
– volume: 64
  start-page: 1725
  issue: 16
  year: 2014
  end-page: 1739
  article-title: Thoracic aortic aneurysm and dissection
  publication-title: J Am Coll Cardiol
– volume: 152
  start-page: 820
  issue: 3
  year: 2016
  end-page: 829
  article-title: Involvement of Oct4 in the pathogenesis of thoracic aortic dissection via inducing the dedifferentiated phenotype of human aortic smooth muscle cells by directly upregulating KLF5
  publication-title: J Thorac Cardiovasc Surg
– volume: 51
  start-page: 1
  issue: 2
  year: 2019
  end-page: 10
  article-title: Lysophosphatidic acid increases mesangial cell proliferation in models of diabetic nephropathy via Rac1/MAPK/KLF5 signaling
  publication-title: Exp Mol Med
– volume: 16
  start-page: 284
  year: 2019
  end-page: 294
  article-title: MicroRNA‐134‐5p regulates media degeneration through inhibiting VSMC phenotypic switch and migration in thoracic aortic dissection
  publication-title: Mol Ther Nucleic Acids
– volume: 9
  start-page: 6837
  issue: 1
  year: 2019
  article-title: Impaired smooth muscle cell contractility as a novel concept of abdominal aortic aneurysm pathophysiology
  publication-title: Sci Rep
– volume: 39
  start-page: 126
  issue: 2
  year: 2019
  end-page: 136
  article-title: Therapies for thoracic aortic aneurysms and acute aortic dissections
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 320
  start-page: H1543
  issue: 4
  year: 2021
  end-page: H1554
  article-title: Angiotensin II‐induced histone deacetylase 5 phosphorylation, nuclear export, and Egr‐1 expression are mediated by Akt pathway in A10 vascular smooth muscle cells
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 21
  start-page: 201
  issue: 1
  year: 2023
  article-title: EGR1 induces EMT in pancreatic cancer via a P300/SNAI2 pathway
  publication-title: J Transl Med
– volume: 58
  year: 2019
  article-title: Salvianolic acid B inhibits ang II‐induced VSMC proliferation in vitro and intimal hyperplasia in vivo by downregulating miR‐146a expression
  publication-title: Phytomedicine
– volume: 114
  start-page: 540
  issue: 4
  year: 2018
  end-page: 550
  article-title: Smooth muscle cell fate and plasticity in atherosclerosis
  publication-title: Cardiovasc Res
– volume: 37
  start-page: 26
  issue: 1
  year: 2017
  end-page: 34
  article-title: Altered smooth muscle cell force generation as a driver of thoracic aortic aneurysms and dissections
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 24
  start-page: 11701
  issue: 14
  year: 2023
  article-title: Smooth muscle heterogeneity and plasticity in health and aortic aneurysmal disease
  publication-title: Int J Mol Sci
– volume: 32
  start-page: 2281
  issue: 7
  year: 2004
  end-page: 2285
  article-title: Locked nucleic acid modified DNA enzymes targeting early growth response‐1 inhibit human vascular smooth muscle cell growth
  publication-title: Nucleic Acids Res
– volume: 52
  start-page: 48
  year: 2018
  end-page: 64
  article-title: Smooth muscle cell‐driven vascular diseases and molecular mechanisms of VSMC plasticity
  publication-title: Cell Signal
– volume: 317
  start-page: C262
  issue: 2
  year: 2019
  end-page: C269
  article-title: Involvement of DHX9/YB‐1 complex induced alternative splicing of Krüppel‐like factor 5 mRNA in phenotypic transformation of vascular smooth muscle cells
  publication-title: Am J Physiol Cell Physiol
– volume: 74
  start-page: 13
  year: 2012
  end-page: 40
  article-title: Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease
  publication-title: Annu Rev Physiol
– volume: 32
  start-page: 1784
  issue: 8
  year: 2012
  end-page: 1789
  article-title: Smooth muscle phenotypic modulation—a personal experience
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 100
  start-page: 1526
  issue: 6
  year: 2007
  end-page: 1535
  article-title: Suppression of growth factor expression and human vascular smooth muscle cell growth by small interfering RNA targeting EGR‐1
  publication-title: J Cell Biochem
– volume: 39
  start-page: 1715
  issue: 9
  year: 2019
  end-page: 1723
  article-title: Smooth muscle cell phenotypic diversity
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 96
  start-page: 321
  year: 2019
  end-page: 329
  article-title: Substrate stiffness directs diverging vascular fates
  publication-title: Acta Biomater
– volume: 105
  start-page: 653
  issue: 5
  year: 2000
  end-page: 662
  article-title: High‐level expression of Egr‐1 and Egr‐1‐inducible genes in mouse and human atherosclerosis
  publication-title: J Clin Invest
– volume: 5
  start-page: 1264
  issue: 11
  year: 1999
  end-page: 1269
  article-title: New DNA enzyme targeting Egr‐1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury
  publication-title: Nat Med
– volume: 40
  start-page: 1905
  issue: 8
  year: 2020
  end-page: 1917
  article-title: Role of PAR1‐Egr1 in the initiation of thoracic aortic aneurysm in Fbln4‐deficient mice
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 121
  start-page: 1331
  issue: 12
  year: 2017
  end-page: 1345
  article-title: Unspliced XBP1 confers VSMC homeostasis and prevents aortic aneurysm formation via FoxO4 interaction
  publication-title: Circ Res
– volume: 56
  start-page: 1698
  issue: 6
  year: 2012
  end-page: 1709
  article-title: Association of smooth muscle cell phenotypes with extracellular matrix disorders in thoracic aortic dissection
  publication-title: J Vasc Surg
– volume: 132
  issue: 21
  year: 2022
  article-title: BAF60c prevents abdominal aortic aneurysm formation through epigenetic control of vascular smooth muscle cell homeostasis
  publication-title: J Clin Invest
– volume: 679
  start-page: 266
  year: 2018
  end-page: 273
  article-title: The miR‐143/145 cluster reverses the regulation effect of KLF5 in smooth muscle cells with proliferation and contractility in intracranial aneurysm
  publication-title: Gene
– volume: 39
  start-page: 95
  year: 2019
  end-page: 108
  article-title: Semaphorin‐3A protects against neointimal hyperplasia after vascular injury
  publication-title: EBioMedicine
– volume: 88
  start-page: 506
  issue: 2
  year: 2009
  end-page: 513
  article-title: Differential expression of collagen type V and XI alpha‐1 in human ascending thoracic aortic aneurysms
  publication-title: Ann Thorac Surg
– volume: 39
  start-page: e10
  issue: 1
  year: 2019
  end-page: e25
  article-title: SM22α (smooth muscle 22α) prevents aortic aneurysm formation by inhibiting smooth muscle cell phenotypic switching through suppressing reactive oxygen species/NF‐κB (nuclear factor‐κB)
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 8
  start-page: 16016
  year: 2017
  article-title: SRSF1 promotes vascular smooth muscle cell proliferation through a Δ133p53/EGR1/KLF5 pathway
  publication-title: Nat Commun
– volume: 148
  start-page: 589
  issue: 7
  year: 2023
  end-page: 606
  article-title: Bestrophin3 deficiency in vascular smooth muscle cells activates MEKK2/3‐MAPK signaling to trigger spontaneous aortic dissection
  publication-title: Circulation
– volume: 123
  start-page: 660
  issue: 6
  year: 2018
  end-page: 672
  article-title: Role of thrombospondin‐1 in mechanotransduction and development of thoracic aortic aneurysm in mouse and humans
  publication-title: Circ Res
– volume: 121
  start-page: 512
  issue: 5
  year: 2017
  end-page: 524
  article-title: ARHGAP18 protects against thoracic aortic aneurysm formation by mitigating the synthetic and proinflammatory smooth muscle cell phenotype
  publication-title: Circ Res
– volume: 14
  start-page: 656
  year: 2018
  end-page: 668
  article-title: Chicoric acid prevents PDGF‐BB‐induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFκB/mTOR/P70S6K signaling cascade
  publication-title: Redox Biol
– volume: 135
  start-page: 964
  issue: 10
  year: 2017
  end-page: 977
  article-title: High‐fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice
  publication-title: Circulation
– volume: 94
  start-page: 333
  issue: 3
  year: 2004
  end-page: 339
  article-title: Early growth response‐1 promotes atherogenesis: mice deficient in early growth response‐1 and apolipoprotein E display decreased atherosclerosis and vascular inflammation
  publication-title: Circ Res
– volume: 74
  start-page: 1494
  issue: 11
  year: 2019
  end-page: 1504
  article-title: Optimal treatment of uncomplicated type B aortic dissection: JACC review topic of the week
  publication-title: J Am Coll Cardiol
– volume: 1865
  start-page: 2490
  issue: 9
  year: 2019
  end-page: 2503
  article-title: EGR1 promotes the cartilage degeneration and hypertrophy by activating the Krüppel‐like factor 5 and β‐catenin signaling
  publication-title: Biochim Biophys Acta Mol Basis Dis
– volume: 12
  start-page: 12684
  issue: 13
  year: 2020
  end-page: 12702
  article-title: Silencing of long non‐coding RNA Sox2ot inhibits oxidative stress and inflammation of vascular smooth muscle cells in abdominal aortic aneurysm via microRNA‐145‐mediated Egr1 inhibition
  publication-title: Aging (Albany NY)
– volume: 13
  start-page: 79
  issue: 2
  year: 2021
  end-page: 90
  article-title: Current knowledge of Krüppel‐like factor 5 and vascular remodeling: providing insights for therapeutic strategies
  publication-title: J Mol Cell Biol
– volume: 143
  start-page: 1394
  issue: 14
  year: 2021
  end-page: 1410
  article-title: BMP9 and BMP10 act directly on vascular smooth muscle cells for generation and maintenance of the contractile state
  publication-title: Circulation
– volume: 148
  start-page: 959
  issue: 12
  year: 2023
  end-page: 977
  article-title: Epigenetic induction of smooth muscle cell phenotypic alterations in aortic aneurysms and dissections
  publication-title: Circulation
– volume: 6
  issue: 12
  year: 2015
  article-title: C2238/αANP modulates apolipoprotein E through Egr‐1/miR199a in vascular smooth muscle cells in vitro
  publication-title: Cell Death Dis
– volume: 84
  start-page: 767
  issue: 3
  year: 2004
  end-page: 801
  article-title: Molecular regulation of vascular smooth muscle cell differentiation in development and disease
  publication-title: Physiol Rev
– volume: 76
  start-page: 1703
  issue: 14
  year: 2020
  end-page: 1713
  article-title: Type a aortic dissection‐experience over 5 decades: JACC historical breakthroughs in perspective
  publication-title: J Am Coll Cardiol
– volume: 44
  start-page: 1248
  issue: 14
  year: 2023
  end-page: 1261
  article-title: Targeting endothelial tight junctions to predict and protect thoracic aortic aneurysm and dissection
  publication-title: Eur Heart J
– volume: 76
  start-page: 141
  issue: 1
  year: 2007
  end-page: 148
  article-title: Interleukin‐1 beta‐induced Id2 gene expression is mediated by Egr‐1 in vascular smooth muscle cells
  publication-title: Cardiovasc Res
– volume: 52
  issue: 4
  year: 2022
  article-title: The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections
  publication-title: Eur J Clin Investig
– volume: 7
  year: 2020
  article-title: Vascular smooth muscle FTO promotes aortic dissecting aneurysms via m6A modification of Klf5
  publication-title: Front Cardiovasc Med
– volume: 89
  start-page: 639
  issue: 6
  year: 2016
  end-page: 646
  article-title: The genetics and pathogenesis of thoracic aortic aneurysm disorder and dissections
  publication-title: Clin Genet
– volume: 34
  start-page: 10
  issue: 1
  year: 2021
  end-page: 17
  article-title: Epidemiology of aortic dissection
  publication-title: Semin Vasc Surg
– volume: 3
  start-page: 1569
  issue: 8
  year: 2005
  end-page: 1576
  article-title: Significance of the transcription factor KLF5 in cardiovascular remodeling
  publication-title: J Thromb Haemost
– volume: 39
  start-page: 1351
  issue: 7
  year: 2019
  end-page: 1368
  article-title: Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 10
  issue: 22
  year: 2021
  article-title: Early growth Response‐1, an integrative sensor in cardiovascular and inflammatory disease
  publication-title: J Am Heart Assoc
– volume: 8
  start-page: 856
  issue: 8
  year: 2002
  end-page: 863
  article-title: Krüppel‐like zinc‐finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling
  publication-title: Nat Med
– volume: 38
  start-page: 6241
  issue: 35
  year: 2019
  end-page: 6255
  article-title: EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis
  publication-title: Oncogene
– volume: 239
  issue: 4
  year: 2024
  article-title: Phenotypic switching of vascular smooth muscle cells in atherosclerosis, hypertension, and aortic dissection
  publication-title: J Cell Physiol
– ident: e_1_2_11_38_1
  doi: 10.1038/s41421-021-00362-2
– ident: e_1_2_11_32_1
  doi: 10.1016/j.gene.2018.09.010
– ident: e_1_2_11_33_1
  doi: 10.1016/j.jtcvs.2016.05.036
– ident: e_1_2_11_71_1
  doi: 10.1161/01.RES.0000190613.22565.13
– ident: e_1_2_11_23_1
  doi: 10.1038/15215
– ident: e_1_2_11_50_1
  doi: 10.1111/bpa.12688
– ident: e_1_2_11_37_1
  doi: 10.1093/jmcb/mjaa080
– ident: e_1_2_11_45_1
  doi: 10.1016/j.jacc.2019.07.063
– ident: e_1_2_11_21_1
  doi: 10.1172/JCI8592
– ident: e_1_2_11_17_1
  doi: 10.1161/JAHA.121.023539
– ident: e_1_2_11_27_1
  doi: 10.1016/j.ejphar.2020.172924
– ident: e_1_2_11_52_1
  doi: 10.1161/CIRCULATIONAHA.116.024545
– ident: e_1_2_11_4_1
  doi: 10.1053/j.semvascsurg.2021.02.003
– ident: e_1_2_11_35_1
  doi: 10.1038/nm738
– ident: e_1_2_11_40_1
  doi: 10.1016/j.ebiom.2018.12.023
– ident: e_1_2_11_9_1
  doi: 10.1111/cge.12713
– ident: e_1_2_11_6_1
  doi: 10.1161/ATVBAHA.118.310956
– ident: e_1_2_11_15_1
  doi: 10.1016/j.cellsig.2018.08.019
– ident: e_1_2_11_72_1
  doi: 10.1172/JCI158309
– ident: e_1_2_11_41_1
  doi: 10.1016/j.redox.2017.11.012
– ident: e_1_2_11_30_1
  doi: 10.3389/fcvm.2020.592550
– ident: e_1_2_11_18_1
  doi: 10.1161/01.RES.0000112405.61577.95
– ident: e_1_2_11_12_1
  doi: 10.1161/ATVBAHA.118.311917
– ident: e_1_2_11_70_1
  doi: 10.1016/j.bbadis.2019.06.010
– ident: e_1_2_11_2_1
  doi: 10.1016/j.jacc.2014.08.025
– ident: e_1_2_11_44_1
  doi: 10.1001/jama.2023.0265
– ident: e_1_2_11_22_1
  doi: 10.1093/nar/gkh543
– ident: e_1_2_11_67_1
  doi: 10.1016/j.actbio.2019.07.030
– ident: e_1_2_11_29_1
  doi: 10.1161/ATVBAHA.120.314560
– ident: e_1_2_11_61_1
  doi: 10.1002/jcp.31200
– ident: e_1_2_11_11_1
  doi: 10.1161/CIRCRESAHA.117.311450
– ident: e_1_2_11_25_1
  doi: 10.1152/ajpheart.00683.2020
– ident: e_1_2_11_19_1
  doi: 10.1016/j.ijcard.2016.06.300
– ident: e_1_2_11_65_1
  doi: 10.1016/j.jvs.2012.05.084
– ident: e_1_2_11_55_1
  doi: 10.1016/j.cardiores.2007.06.015
– ident: e_1_2_11_16_1
  doi: 10.1161/CIRCRESAHA.117.310692
– ident: e_1_2_11_54_1
  doi: 10.1038/cddis.2015.370
– ident: e_1_2_11_14_1
  doi: 10.1161/CIRCULATIONAHA.120.047375
– ident: e_1_2_11_8_1
  doi: 10.1161/CIRCRESAHA.118.313187
– ident: e_1_2_11_42_1
  doi: 10.1038/s12276-019-0217-3
– ident: e_1_2_11_20_1
  doi: 10.1016/j.ijcard.2016.03.037
– ident: e_1_2_11_13_1
  doi: 10.1038/s41598-019-43322-3
– ident: e_1_2_11_26_1
  doi: 10.18632/aging.103077
– ident: e_1_2_11_48_1
  doi: 10.1093/eurheartj/ehaa352
– ident: e_1_2_11_59_1
  doi: 10.1152/physrev.00041.2003
– ident: e_1_2_11_66_1
  doi: 10.1016/j.athoracsur.2009.04.030
– ident: e_1_2_11_34_1
  doi: 10.1111/j.1538-7836.2005.01366.x
– ident: e_1_2_11_7_1
  doi: 10.1161/ATVBAHA.116.303229
– ident: e_1_2_11_24_1
  doi: 10.1002/jcp.25810
– ident: e_1_2_11_58_1
  doi: 10.1161/ATVBAHA.111.243212
– ident: e_1_2_11_5_1
  doi: 10.1161/CIRCULATIONAHA.117.031264
– ident: e_1_2_11_31_1
  doi: 10.1152/ajpcell.00067.2019
– ident: e_1_2_11_46_1
  doi: 10.1016/j.jacc.2020.07.061
– ident: e_1_2_11_63_1
  doi: 10.1016/j.omtn.2019.02.021
– ident: e_1_2_11_49_1
  doi: 10.1161/CIRCULATIONAHA.122.063029
– ident: e_1_2_11_68_1
  doi: 10.1111/eci.13697
– ident: e_1_2_11_36_1
  doi: 10.1038/ncomms16016
– ident: e_1_2_11_53_1
  doi: 10.1186/s12967-023-04043-4
– ident: e_1_2_11_10_1
  doi: 10.1016/j.bbrc.2019.04.128
– ident: e_1_2_11_47_1
  doi: 10.1161/ATVBAHA.119.312131
– ident: e_1_2_11_56_1
  doi: 10.1093/cvr/cvy022
– ident: e_1_2_11_28_1
  doi: 10.1161/CIRCRESAHA.118.313105
– ident: e_1_2_11_69_1
  doi: 10.1002/jcb.21145
– ident: e_1_2_11_43_1
  doi: 10.1161/ATVBAHA.119.312787
– ident: e_1_2_11_57_1
  doi: 10.1146/annurev-physiol-012110-142315
– ident: e_1_2_11_64_1
  doi: 10.3390/ijms241411701
– volume: 20
  start-page: 21
  issue: 1
  year: 2020
  ident: e_1_2_11_60_1
  article-title: Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: an updated review
  publication-title: Bosn J Basic Med Sci
– ident: e_1_2_11_39_1
  doi: 10.1093/eurheartj/ehac823
– ident: e_1_2_11_3_1
  doi: 10.1038/s41569-020-00472-6
– ident: e_1_2_11_62_1
  doi: 10.1161/CIRCULATIONAHA.123.063332
– ident: e_1_2_11_51_1
  doi: 10.1038/s41388-019-0873-8
– ident: e_1_2_11_73_1
  doi: 10.1016/j.phymed.2018.11.014
SSID ssj0001213422
ssj0043892
Score 2.4362423
Snippet Aim Vascular smooth muscle cell (VSMC) phenotypic switching has been reported to regulate vascular function and thoracic aortic aneurysm and dissection (TAAD)...
Vascular smooth muscle cell (VSMC) phenotypic switching has been reported to regulate vascular function and thoracic aortic aneurysm and dissection (TAAD)...
AimVascular smooth muscle cell (VSMC) phenotypic switching has been reported to regulate vascular function and thoracic aortic aneurysm and dissection (TAAD)...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e14237
SubjectTerms Aortic aneurysms
Cell activation
EGR-1 protein
Egr1
Immunofluorescence
KLF5
phenotypic switching
Smooth muscle
thoracic aortic aneurysm and dissection
Thorax
Transcription activation
vascular smooth muscle cells
Wound healing
Title Early growth response 1 exacerbates thoracic aortic aneurysm and dissection of mice by inducing the phenotypic switching of vascular smooth muscle cell through the activation of Krüppel‐like factor 5
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fapha.14237
https://www.ncbi.nlm.nih.gov/pubmed/39345002
https://www.proquest.com/docview/3117895010
https://www.proquest.com/docview/3111205599
Volume 240
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKT1z4Kz-BUg0CcUBKlcTOriNxWSGqFQhUISr1giLbceiqTbLaJILlxCPwQNy48Rg8CTN2srQgIcHNUmzHsefX-WaGsUc2K6mwVRlqa9NQcBOFUvIoFDJVymSpspoCnF-9nsyPxIvj9HiLPR1jYXx-iM2FG3GGk9fE4Eq355hcUTqlmFAdKIAJrEUW0Zvk3AVLzEWyySVFVb4THx2JbtM0kkOuUoL1_Jrqonb6w-S8aME6FXRwlb0bF--RJ6f7faf3zaff8jr-79ddY1cG2xRmnpiusy1b32A7sxr98moNj8GhRd01_A777jIjw3v04rsTWHmkrYUY7Edl8KjIhIXuBAnMLAyohuYERdkz122FjQIcEsBFVUBTQoUCC_QaFnXRG1SnONYC4c-abr3Eoe2HRedgn9R5hM9CWzVIaVD1LS4Y6CcEDIWH3HgK2vBXzjTq5erb1-XSnv34_OVscWrBlxqC9CY7Onj-9tk8HOpChIbi9lE-Wx1NlCxKpTWeM1p8uFGxKbjUpeCFMNJKXiaZTrKp5iLVKlJlnBmdCWm44bfYdt3U9g4DoRXXhYkNLydCZYk0EtX1RNpCZdxORcAejvSQL336j3x0m-iIcndEAdsdSSUfRECb8zieyixFfzdgDzaPkXlpM3C_m971iZOIkr4F7LYnsc1reIYrR30VsCeOUP7y_nx2OJ-51t1_6XyPXU7QRPORlbtsu1v19j6aWJ3eY5cScbjnGOonDRAngQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagHOBCgfLYUmAQiANSqiR2dp3jClEt9CGEWqm3yHacdtUmWW0SwXLiJ_CDuHHjZ_BLmLGzSwsSEtwirZ2HPeN57DffMPbcpgU1tioCbW0SCG7CQEoeBkImSpk0UVZTgfP-wXByJN4eJ8c9NodqYTw_xCrhRprhzmtScEpIX9ByRXxKEcE6rrJr1NLbRVTv4wsploiLeMUmRX2-Y18fiYHTKJQ9WykBe37d67J9-sPpvOzDOiO0s-47rTaOu5CwJ2fbXau3zaffmB3_-_tusZu9ewpjL0-32RVb3WEb4wpD83IBL8ABRl0mfoN9d-TIcIKBfHsKcw-2tRCB_agM7hZ5sdCeooyZqQFV0z1BEYHmoinxIgcHBnCFFVAXUOKZBXoB0yrvDFpUnGuBIGh1u5jh1ObDtHXITxq8RNBCU9YobFB2Db4w0P8Q0PcecvOpbsNnnWnW7vzb19nMnv_4_OV8embBdxuC5C472nl9-GoS9K0hAkOl-3hEWx0OlcwLpTVuNDp9uFCRybnUheC5MNJKXsSpjtOR5iLRKlRFlBqdCmm44ffYWlVX9gEDoRXXuYkML4ZCpbE0Ei32UNpcpdyOxIA9WwpENvMMINkycqItytwWDdjWUlay_hRoMh5FI5kmGPIO2NPVz6i_tBi43nXnxkRxSLxvA3bfy9jqMTzFN0eTNWAvnaT85fnZ-N1k7K42_2XwE3Z9cri_l-29Odh9yG7E6LH5QsstttbOO_sIPa5WP3Z69RNd0SrF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKkRAXCpSflAKDQByQUiWxs-tIXFaU1UKhqhCVekGR7Th01Waz2s0KlhOPwANx48Zj8CTM2MnSgoQEt0ixE8ee8cw433zD2COblVTYqgy1tWkouIlCKXkUCpkqZbJUWU0Jzq_3e6ND8fIoPVpjT7tcGM8PsTpwI81w-zUp-LQozyi5IjqlmFAdF9hF0YskyfTum-TMCUvMRbIik6Iy34lPj8S4qR_JlqyUcD2_nnXePP3hc553YZ0NGm6wd93oPfTkZGfR6B3z6Tdix__9vKvsSuucwsBL0zW2ZifX2eZggoF5tYTH4OCi7hx-k3131MjwHsP45hhmHmprIQb7URlcK_JhoTlGCTNjA6qmZ4Ii-szlvMKLAhwUwKVVQF1ChTsW6CWMJ8XCoD3FvhYIgFY3yyl2nX8YNw73SY07_CzMqxpFDarFHAcM9BcC2spDrj9lbfgzZ-q1N_v2dTq1pz8-fzkdn1jwtYYgvcEOh8_fPhuFbWGI0FDiPm7QVkc9JYtSaY3rjC4fTlRsCi51KXghjLSSl0mmk6yvuUi1ilQZZ0ZnQhpu-E22Pqkn9jYDoRXXhYkNL3tCZYk0Eu11T9pCZdz2RcAedvKQTz3_R97FTbREuVuigG13opK3e8A853Hcl1mKAW_AHqxuo_bSZOB81wvXJk4iYn0L2C0vYqvX8AxHjgYrYE-coPzl_fngYDRwV1v_0vg-u3SwO8xfvdjfu8MuJ-iu-SzLbbbezBb2Lrpbjb7ntOon7dIpfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+growth+response+1+exacerbates+thoracic+aortic+aneurysm+and+dissection+of+mice+by+inducing+the+phenotypic+switching+of+vascular+smooth+muscle+cell+through+the+activation+of+Kr%C3%BCppel-like+factor+5&rft.jtitle=Acta+physiologica+%28Oxford%2C+England%29&rft.au=Han%2C+Xueyu&rft.au=Xu%2C+Shengnan&rft.au=Hu%2C+Ke&rft.au=Yu%2C+Yi&rft.date=2024-11-01&rft.issn=1748-1716&rft.eissn=1748-1716&rft.volume=240&rft.issue=11&rft.spage=e14237&rft_id=info:doi/10.1111%2Fapha.14237&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-1708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-1708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-1708&client=summon