Inverse‐Weighted Quantile Regression With Partially Interval‐Censored Data

ABSTRACT This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval‐censored data. Such data sets, often encountered in HIV/AIDS and cancer biom...

Full description

Saved in:
Bibliographic Details
Published inBiometrical journal Vol. 66; no. 8; pp. e70001 - n/a
Main Authors Kim, Yeji, Choi, Taehwa, Park, Seohyeon, Choi, Sangbum, Bandyopadhyay, Dipankar
Format Journal Article
LanguageEnglish
Published Germany Wiley - VCH Verlag GmbH & Co. KGaA 01.12.2024
Subjects
Online AccessGet full text
ISSN0323-3847
1521-4036
1521-4036
DOI10.1002/bimj.70001

Cover

Loading…
Abstract ABSTRACT This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval‐censored data. Such data sets, often encountered in HIV/AIDS and cancer biomedical research, may include doubly censored (DC) and partly interval‐censored (PIC) endpoints. DC responses involve either left‐censoring or right‐censoring alongside some exact failure time observations, while PIC responses are subject to interval‐censoring. Despite the existence of complex estimating techniques for interval‐censored quantile regression, we propose a simple and intuitive IPCW‐based method, easily implementable by assigning suitable inverse‐probability weights to subjects with exact failure time observations. The resulting estimator exhibits asymptotic properties, such as uniform consistency and weak convergence, and we explore an augmented‐IPCW (AIPCW) approach to enhance efficiency. In addition, our method can be adapted for multivariate partially interval‐censored data. Simulation studies demonstrate the new procedure's strong finite‐sample performance. We illustrate the practical application of our approach through an analysis of progression‐free survival endpoints in a phase III clinical trial focusing on metastatic colorectal cancer.
AbstractList This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval‐censored data. Such data sets, often encountered in HIV/AIDS and cancer biomedical research, may include doubly censored (DC) and partly interval‐censored (PIC) endpoints. DC responses involve either left‐censoring or right‐censoring alongside some exact failure time observations, while PIC responses are subject to interval‐censoring. Despite the existence of complex estimating techniques for interval‐censored quantile regression, we propose a simple and intuitive IPCW‐based method, easily implementable by assigning suitable inverse‐probability weights to subjects with exact failure time observations. The resulting estimator exhibits asymptotic properties, such as uniform consistency and weak convergence, and we explore an augmented‐IPCW (AIPCW) approach to enhance efficiency. In addition, our method can be adapted for multivariate partially interval‐censored data. Simulation studies demonstrate the new procedure's strong finite‐sample performance. We illustrate the practical application of our approach through an analysis of progression‐free survival endpoints in a phase III clinical trial focusing on metastatic colorectal cancer.
This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval-censored data. Such data sets, often encountered in HIV/AIDS and cancer biomedical research, may include doubly censored (DC) and partly interval-censored (PIC) endpoints. DC responses involve either left-censoring or right-censoring alongside some exact failure time observations, while PIC responses are subject to interval-censoring. Despite the existence of complex estimating techniques for interval-censored quantile regression, we propose a simple and intuitive IPCW-based method, easily implementable by assigning suitable inverse-probability weights to subjects with exact failure time observations. The resulting estimator exhibits asymptotic properties, such as uniform consistency and weak convergence, and we explore an augmented-IPCW (AIPCW) approach to enhance efficiency. In addition, our method can be adapted for multivariate partially interval-censored data. Simulation studies demonstrate the new procedure's strong finite-sample performance. We illustrate the practical application of our approach through an analysis of progression-free survival endpoints in a phase III clinical trial focusing on metastatic colorectal cancer.This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval-censored data. Such data sets, often encountered in HIV/AIDS and cancer biomedical research, may include doubly censored (DC) and partly interval-censored (PIC) endpoints. DC responses involve either left-censoring or right-censoring alongside some exact failure time observations, while PIC responses are subject to interval-censoring. Despite the existence of complex estimating techniques for interval-censored quantile regression, we propose a simple and intuitive IPCW-based method, easily implementable by assigning suitable inverse-probability weights to subjects with exact failure time observations. The resulting estimator exhibits asymptotic properties, such as uniform consistency and weak convergence, and we explore an augmented-IPCW (AIPCW) approach to enhance efficiency. In addition, our method can be adapted for multivariate partially interval-censored data. Simulation studies demonstrate the new procedure's strong finite-sample performance. We illustrate the practical application of our approach through an analysis of progression-free survival endpoints in a phase III clinical trial focusing on metastatic colorectal cancer.
ABSTRACT This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval‐censored data. Such data sets, often encountered in HIV/AIDS and cancer biomedical research, may include doubly censored (DC) and partly interval‐censored (PIC) endpoints. DC responses involve either left‐censoring or right‐censoring alongside some exact failure time observations, while PIC responses are subject to interval‐censoring. Despite the existence of complex estimating techniques for interval‐censored quantile regression, we propose a simple and intuitive IPCW‐based method, easily implementable by assigning suitable inverse‐probability weights to subjects with exact failure time observations. The resulting estimator exhibits asymptotic properties, such as uniform consistency and weak convergence, and we explore an augmented‐IPCW (AIPCW) approach to enhance efficiency. In addition, our method can be adapted for multivariate partially interval‐censored data. Simulation studies demonstrate the new procedure's strong finite‐sample performance. We illustrate the practical application of our approach through an analysis of progression‐free survival endpoints in a phase III clinical trial focusing on metastatic colorectal cancer.
This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval‐censored data. Such data sets, often encountered in HIV/AIDS and cancer biomedical research, may include doubly censored (DC) and partly interval‐censored (PIC) endpoints. DC responses involve either left‐censoring or right‐censoring alongside some exact failure time observations, while PIC responses are subject to interval‐censoring. Despite the existence of complex estimating techniques for interval‐censored quantile regression, we propose a simple and intuitive IPCW‐based method, easily implementable by assigning suitable inverse‐probability weights to subjects with exact failure time observations. The resulting estimator exhibits asymptotic properties, such as uniform consistency and weak convergence, and we explore an augmented‐IPCW (AIPCW) approach to enhance efficiency. In addition, our method can be adapted for multivariate partially interval‐censored data. Simulation studies demonstrate the new procedure's strong finite‐sample performance. We illustrate the practical application of our approach through an analysis of progression‐free survival endpoints in a phase III clinical trial focusing on metastatic colorectal cancer.
Author Choi, Sangbum
Bandyopadhyay, Dipankar
Park, Seohyeon
Choi, Taehwa
Kim, Yeji
Author_xml – sequence: 1
  givenname: Yeji
  orcidid: 0000-0003-4226-5077
  surname: Kim
  fullname: Kim, Yeji
  email: Yeji.Kim2@nyulangone.org
  organization: New York University School of Medicine
– sequence: 2
  givenname: Taehwa
  surname: Choi
  fullname: Choi, Taehwa
  organization: Sungshin Women's University
– sequence: 3
  givenname: Seohyeon
  orcidid: 0000-0002-0320-4629
  surname: Park
  fullname: Park, Seohyeon
  organization: Korea University
– sequence: 4
  givenname: Sangbum
  orcidid: 0000-0001-6983-5821
  surname: Choi
  fullname: Choi, Sangbum
  email: choisang@korea.ac.kr
  organization: Korea University
– sequence: 5
  givenname: Dipankar
  surname: Bandyopadhyay
  fullname: Bandyopadhyay, Dipankar
  organization: Virginia Commonwealth University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39540721$$D View this record in MEDLINE/PubMed
BookMark eNp90blOw0AQBuAVCiIHNDwAskSDkBz2jNclhMsonAKltNbOOHHkrMOuHZSOR-AZeRI2JFBQUE3z_aPR_G3U0KUGhPYJ7hKM6UmSz6bdAGNMtlCLCEp8jlmvgVqYUeYzyYMmals7dSLEnO6gJgsFxwElLXQX6QUYC5_vH0PIx5MKRt5jrXSVF-A9wdiAtXmpvWFeTbwHZapcFcXSi3QFZqEKF-uDtqVxsXNVqV20nanCwt5mdtDL5cVz_9of3F9F_dOBnzLSI75KMqWoYKCUSCmVQnIMoww4SRiTNAtCmkgZQJhIHIqU0ECFo4xD1hPAE6Csg47We-emfK3BVvEstykUhdJQ1jZmhEpJqQiJo4d_6LSsjXbXOcUEZgHvhU4dbFSdzGAUz00-U2YZ_3zKgeM1SE1prYHslxAcr2qIVzXE3zU4TNb4zb1x-Y-Mz6Lbm3XmC_mpimY
Cites_doi 10.1080/01621459.2018.1469996
10.1515/ijb-2021-0063
10.1111/sjos.12319
10.1198/016214508000000355
10.1198/jasa.2009.tm08230
10.1214/aos/1176349140
10.1007/978-1-4757-1229-2_14
10.1007/s42952-021-00155-z
10.1093/biostatistics/kxw036
10.1177/0962280220921552
10.1093/biomet/91.2.277
10.1007/978-1-4757-2545-2
10.1111/j.1541-0420.2007.00842.x
10.1214/aop/1176993141
10.1198/016214507000000563
10.1002/sim.6415
10.1111/biom.12700
10.1214/07-AOS507
10.1080/03610929408831243
10.1214/17-AOS1589
10.1214/aos/1030741089
10.1016/0047-259X(88)90134-0
10.1111/j.1541-0420.2006.00580.x
10.1111/j.1541-0420.2006.00730.x
10.1002/bimj.201700104
10.1016/j.csda.2011.03.009
10.1080/10618600.2024.2365740
10.1111/j.1541-0420.2011.01667.x
10.1201/9781315116945
10.1214/aos/1032181177
10.1111/j.0006-341X.2002.00643.x
10.1214/08-AOAS169
10.1002/sim.9232
10.1017/CBO9780511754098
10.1093/biomet/93.2.315
10.1080/03610926.2015.1073317
10.1200/JCO.2009.27.6055
10.1002/(SICI)1097-0258(20000115)19:1<1::AID-SIM296>3.0.CO;2-Q
10.1016/j.csda.2021.107306
10.1080/03610926.2019.1662046
10.2307/2532598
10.1080/01621459.1974.10480146
10.1080/10618600.2017.1385469
10.1198/jasa.2009.tm08228
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley‐VCH GmbH.
2024 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley‐VCH GmbH.
– notice: 2024 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/bimj.70001
DatabaseName Wiley Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-4036
EndPage n/a
ExternalDocumentID 39540721
10_1002_bimj_70001
BIMJ70001
Genre article
Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
– fundername: Korea University
– fundername: National Institutes of Health
  funderid: R01DE031134; R21DE031879; RS‐2024‐00340298; K2201231; 2022M3J6A1063595; 2022R1A2C1008514
– fundername: NIH HHS
  grantid: 2022M3J6A1063595
– fundername: NIH HHS
  grantid: 2022R1A2C1008514
– fundername: NIH HHS
  grantid: R01DE031134
– fundername: NIH HHS
  grantid: K2201231
– fundername: NIH HHS
  grantid: RS-2024-00340298
– fundername: NIH HHS
  grantid: R21DE031879
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
24P
3-9
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M67
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
Y6R
YHZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3161-abfaa253eaa5c2285840edfe41b3382f792b887e9b8095c127a9df4ef65e4be23
IEDL.DBID DR2
ISSN 0323-3847
1521-4036
IngestDate Fri Jul 11 11:12:55 EDT 2025
Fri Jul 25 19:13:20 EDT 2025
Wed Feb 19 02:11:52 EST 2025
Tue Jul 01 04:18:08 EDT 2025
Wed Jan 22 17:14:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords interval‐censoring
accelerated lifetime
censored quantile regression
inverse probability weighting
multivariate events
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3161-abfaa253eaa5c2285840edfe41b3382f792b887e9b8095c127a9df4ef65e4be23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6983-5821
0000-0003-4226-5077
0000-0002-0320-4629
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.70001
PMID 39540721
PQID 3135037469
PQPubID 105592
PageCount 16
ParticipantIDs proquest_miscellaneous_3128822591
proquest_journals_3135037469
pubmed_primary_39540721
crossref_primary_10_1002_bimj_70001
wiley_primary_10_1002_bimj_70001_BIMJ70001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-Dec
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Biometrical journal
PublicationTitleAlternate Biom J
PublicationYear 2024
Publisher Wiley - VCH Verlag GmbH & Co. KGaA
Publisher_xml – name: Wiley - VCH Verlag GmbH & Co. KGaA
References 2015; 34
2006; 93
2002; 58
2010; 32
1993; 49
2022; 51
1993; 21
1997; 25
2017; 46
1994; 23
2008; 36
2007
1996
2022; 41
2021; 164
2005
2008; 103
1992
2018; 60
2024
1991
2021; 50
2018; 45
2004; 91
2008; 2
2012; 56
2018; 27
2018; 46
2017; 73
1974; 69
2000; 19
2006; 62
2010; 28
1984; 12
1988; 27
2017
2019; 114
2017; 18
1981
2007; 63
2008; 64
2012; 68
1996; 24
2009; 104
2022; 19
2020; 29
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_49_1
Fleming T. R. (e_1_2_11_15_1) 1991
Sun J. (e_1_2_11_38_1) 2007
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_46_1
e_1_2_11_47_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
Varadhan R. (e_1_2_11_41_1) 2010; 32
e_1_2_11_19_1
References_xml – volume: 19
  start-page: 81
  issue: 1
  year: 2022
  end-page: 96
  article-title: A Quantile Regression Estimator for Interval‐Censored Data
  publication-title: International Journal of Biostatistics
– volume: 63
  start-page: 663
  issue: 3
  year: 2007
  end-page: 672
  article-title: Marginal Analysis of Correlated Failure Time Data With Informative Cluster Sizes
  publication-title: Biometrics
– volume: 104
  start-page: 1440
  issue: 488
  year: 2009
  end-page: 1453
  article-title: Competing Risks Quantile Regression
  publication-title: Journal of the American Statistical Association
– volume: 12
  start-page: 1041
  issue: 4
  year: 1984
  end-page: 1067
  article-title: Probability Inequalities for Empirical Processes and a Law of the Iterated Logarithm
  publication-title: Annals of Probability
– year: 1981
– volume: 29
  start-page: 3192
  issue: 11
  year: 2020
  end-page: 3204
  article-title: A Bayesian Approach for Analyzing Partly Interval‐Censored Data Under the Proportional Hazards Model
  publication-title: Statistical Methods in Medical Research
– volume: 34
  start-page: 1495
  issue: 9
  year: 2015
  end-page: 1510
  article-title: Rank‐Based Estimating Equations With General Weight for Accelerated Failure Time Models: An Induced Smoothing Approach
  publication-title: Statistics in Medicine
– year: 2005
– volume: 32
  start-page: 1
  year: 2010
  end-page: 26
  article-title: BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High‐Dimensional Nonlinear Objective Function
  publication-title: Journal of Statistical Software
– volume: 91
  start-page: 277
  issue: 2
  year: 2004
  end-page: 290
  article-title: Semiparametric Regression Analysis for Doubly Censored Data
  publication-title: Biometrika
– volume: 58
  start-page: 643
  issue: 3
  year: 2002
  end-page: 649
  article-title: Median Regression With Censored Cost Data
  publication-title: Biometrics
– volume: 23
  start-page: 123
  issue: 1
  year: 1994
  end-page: 135
  article-title: Asymptotic Properties of the Left Kaplan‐Meier Estimator
  publication-title: Communications in Statistics–Theory and Methods
– year: 2007
– volume: 114
  start-page: 1126
  issue: 527
  year: 2019
  end-page: 1137
  article-title: An Adapted Loss Function for Censored Quantile Regression
  publication-title: Journal of the American Statistical Association
– volume: 46
  start-page: 1415
  issue: 4
  year: 2018
  end-page: 1444
  article-title: Current Status Linear Regression
  publication-title: Annals of Statistics
– start-page: 297
  year: 1992
  end-page: 331
  article-title: Recovery of Information and Adjustment for Dependent Censoring Using Surrogate Markers
– volume: 49
  start-page: 13
  issue: 1
  year: 1993
  end-page: 22
  article-title: Analyzing Doubly Censored Data With Covariates, With Application to Aids
  publication-title: Biometrics
– year: 1996
– year: 2024
  article-title: Interval‐Censored Linear Quantile Regression
  publication-title: Journal of Computational and Graphical Statistics
– volume: 27
  start-page: 334
  issue: 2
  year: 1988
  end-page: 358
  article-title: Stochastic Integrals of Empirical‐Type Processes With Applications to Censored Regression
  publication-title: Journal of Multivariate Analysis
– volume: 93
  start-page: 315
  issue: 2
  year: 2006
  end-page: 328
  article-title: A K‐Sample Test With Interval Censored Data
  publication-title: Biometrika
– volume: 103
  start-page: 637
  issue: 482
  year: 2008
  end-page: 649
  article-title: Survival Analysis With Quantile Regression Models
  publication-title: Journal of the American Statistical Association
– volume: 64
  start-page: 39
  issue: 1
  year: 2008
  end-page: 45
  article-title: Weighted Rank Regression for Clustered Data Analysis
  publication-title: Biometrics
– volume: 56
  start-page: 797
  issue: 4
  year: 2012
  end-page: 812
  article-title: Quantile Regression With Doubly Censored Data
  publication-title: Computational Statistics & Data Analysis
– volume: 21
  start-page: 611
  issue: 2
  year: 1993
  end-page: 624
  article-title: Asymptotic Properties of Self‐Consistent Estimators Based on Doubly Censored Data
  publication-title: Annals of Statistics
– volume: 51
  start-page: 589
  year: 2022
  end-page: 607
  article-title: Regularized Linear Censored Quantile Regression
  publication-title: Journal of the Korean Statistical Society
– volume: 27
  start-page: 417
  issue: 2
  year: 2018
  end-page: 425
  article-title: A New Approach to Censored Quantile Regression Estimation
  publication-title: Journal of Computational and Graphical Statistics
– volume: 41
  start-page: 227
  issue: 2
  year: 2022
  end-page: 241
  article-title: Weighted Least‐Squares Regression With Competing Risks Data
  publication-title: Statistics in Medicine
– volume: 45
  start-page: 682
  issue: 3
  year: 2018
  end-page: 698
  article-title: A Class of Semiparametric Transformation Models for Doubly Censored Failure Time Data
  publication-title: Scandinavian Journal of Statistics
– volume: 103
  start-page: 523
  issue: 482
  year: 2008
  end-page: 533
  article-title: Bayesian Accelerated Failure Time Model With Multivariate Doubly Interval‐Censored Data and Flexible Distributional Assumptions
  publication-title: Journal of the American Statistical Association
– volume: 2
  start-page: 841
  issue: 3
  year: 2008
  end-page: 860
  article-title: Random Survival Forests
  publication-title: Annals of Applied Statistics
– volume: 19
  start-page: 1
  issue: 1
  year: 2000
  end-page: 11
  article-title: A Two‐Sample Test With Interval Censored Data via Multiple Imputation
  publication-title: Statistics in Medicine
– volume: 24
  start-page: 2720
  issue: 6
  year: 1996
  end-page: 2743
  article-title: Linear Regression With Doubly Censored Data
  publication-title: Annals of Statistics
– volume: 36
  start-page: 1108
  issue: 3
  year: 2008
  end-page: 1126
  article-title: Composite Quantile Regression and the Oracle Model Selection Theory
  publication-title: Annals of Statistics
– volume: 69
  start-page: 169
  issue: 345
  year: 1974
  end-page: 173
  article-title: Nonparametric Estimation of a Survivorship Function With Doubly Censored Data
  publication-title: Journal of the American Statistical Association
– volume: 164
  year: 2021
  article-title: Semiparametric Least‐Squares Regression With Doubly‐Censored Data
  publication-title: Computational Statistics & Data Analysis
– volume: 104
  start-page: 1117
  issue: 487
  year: 2009
  end-page: 1128
  article-title: Locally Weighted Censored Quantile Regression
  publication-title: Journal of the American Statistical Association
– volume: 18
  start-page: 132
  issue: 1
  year: 2017
  end-page: 146
  article-title: A Quantile Regression Model for Failure‐Time Data With Time‐Dependent Covariates
  publication-title: Biostatistics
– volume: 73
  start-page: 1161
  issue: 4
  year: 2017
  end-page: 1168
  article-title: Semiparametric Estimation of the Accelerated Failure Time Model With Partly Interval‐Censored Data
  publication-title: Biometrics
– volume: 60
  start-page: 934
  issue: 5
  year: 2018
  end-page: 946
  article-title: Smoothed Quantile Regression Analysis of Competing Risks
  publication-title: Biometrical Journal
– volume: 50
  start-page: 2188
  issue: 9
  year: 2021
  end-page: 2200
  article-title: Efficient Inferences for Linear Transformation Models With Doubly Censored Data
  publication-title: Communications in Statistics–Theory and Methods
– year: 2017
– year: 1991
– volume: 68
  start-page: 101
  issue: 1
  year: 2012
  end-page: 112
  article-title: Quantile Regression for Doubly Censored Data
  publication-title: Biometrics
– volume: 25
  start-page: 2638
  issue: 6
  year: 1997
  end-page: 2664
  article-title: Regression M‐Estimators With Doubly Censored Data
  publication-title: Annals of Statistics
– volume: 28
  start-page: 4706
  issue: 31
  year: 2010
  end-page: 4713
  article-title: Randomized Phase III Study of Panitumumab With Fluorouracil, Leucovorin, and Irinotecan (FOLFIRI) Compared With FOLFIRI Alone as Second‐Line Treatment in Patients With Metastatic Colorectal Cancer
  publication-title: Journal of Clinical Oncology
– volume: 62
  start-page: 1260
  issue: 4
  year: 2006
  end-page: 1268
  article-title: A Simple Local Sensitivity Analysis Tool for Nonignorable Coarsening: Application to Dependent Censoring
  publication-title: Biometrics
– volume: 46
  start-page: 3848
  issue: 8
  year: 2017
  end-page: 3863
  article-title: Quantile Regression for Interval Censored Data
  publication-title: Communications in Statistics–Theory and Methods
– ident: e_1_2_11_14_1
  doi: 10.1080/01621459.2018.1469996
– ident: e_1_2_11_16_1
  doi: 10.1515/ijb-2021-0063
– ident: e_1_2_11_28_1
  doi: 10.1111/sjos.12319
– ident: e_1_2_11_34_1
  doi: 10.1198/016214508000000355
– ident: e_1_2_11_42_1
  doi: 10.1198/jasa.2009.tm08230
– ident: e_1_2_11_21_1
  doi: 10.1214/aos/1176349140
– ident: e_1_2_11_36_1
  doi: 10.1007/978-1-4757-1229-2_14
– ident: e_1_2_11_37_1
  doi: 10.1007/s42952-021-00155-z
– ident: e_1_2_11_19_1
  doi: 10.1093/biostatistics/kxw036
– ident: e_1_2_11_30_1
  doi: 10.1177/0962280220921552
– ident: e_1_2_11_6_1
  doi: 10.1093/biomet/91.2.277
– volume-title: Counting Processes and Survival Analysis
  year: 1991
  ident: e_1_2_11_15_1
– ident: e_1_2_11_40_1
  doi: 10.1007/978-1-4757-2545-2
– ident: e_1_2_11_43_1
  doi: 10.1111/j.1541-0420.2007.00842.x
– ident: e_1_2_11_2_1
  doi: 10.1214/aop/1176993141
– ident: e_1_2_11_26_1
  doi: 10.1198/016214507000000563
– ident: e_1_2_11_7_1
  doi: 10.1002/sim.6415
– ident: e_1_2_11_17_1
  doi: 10.1111/biom.12700
– ident: e_1_2_11_49_1
  doi: 10.1214/07-AOS507
– ident: e_1_2_11_18_1
  doi: 10.1080/03610929408831243
– ident: e_1_2_11_20_1
  doi: 10.1214/17-AOS1589
– ident: e_1_2_11_35_1
  doi: 10.1214/aos/1030741089
– ident: e_1_2_11_27_1
  doi: 10.1016/0047-259X(88)90134-0
– ident: e_1_2_11_47_1
  doi: 10.1111/j.1541-0420.2006.00580.x
– ident: e_1_2_11_13_1
  doi: 10.1111/j.1541-0420.2006.00730.x
– ident: e_1_2_11_10_1
  doi: 10.1002/bimj.201700104
– ident: e_1_2_11_29_1
  doi: 10.1016/j.csda.2011.03.009
– ident: e_1_2_11_12_1
  doi: 10.1080/10618600.2024.2365740
– ident: e_1_2_11_23_1
  doi: 10.1111/j.1541-0420.2011.01667.x
– ident: e_1_2_11_5_1
  doi: 10.1201/9781315116945
– ident: e_1_2_11_4_1
– ident: e_1_2_11_46_1
  doi: 10.1214/aos/1032181177
– ident: e_1_2_11_3_1
  doi: 10.1111/j.0006-341X.2002.00643.x
– ident: e_1_2_11_22_1
  doi: 10.1214/08-AOAS169
– ident: e_1_2_11_8_1
  doi: 10.1002/sim.9232
– ident: e_1_2_11_25_1
  doi: 10.1017/CBO9780511754098
– ident: e_1_2_11_45_1
  doi: 10.1093/biomet/93.2.315
– ident: e_1_2_11_48_1
  doi: 10.1080/03610926.2015.1073317
– ident: e_1_2_11_32_1
  doi: 10.1200/JCO.2009.27.6055
– ident: e_1_2_11_31_1
  doi: 10.1002/(SICI)1097-0258(20000115)19:1<1::AID-SIM296>3.0.CO;2-Q
– volume: 32
  start-page: 1
  year: 2010
  ident: e_1_2_11_41_1
  article-title: BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High‐Dimensional Nonlinear Objective Function
  publication-title: Journal of Statistical Software
– ident: e_1_2_11_11_1
  doi: 10.1016/j.csda.2021.107306
– ident: e_1_2_11_9_1
  doi: 10.1080/03610926.2019.1662046
– ident: e_1_2_11_24_1
  doi: 10.2307/2532598
– ident: e_1_2_11_39_1
  doi: 10.1080/01621459.1974.10480146
– volume-title: The Statistical Analysis of Interval‐Censored Failure Time Data
  year: 2007
  ident: e_1_2_11_38_1
– ident: e_1_2_11_44_1
  doi: 10.1080/10618600.2017.1385469
– ident: e_1_2_11_33_1
  doi: 10.1198/jasa.2009.tm08228
SSID ssj0009042
Score 2.3718302
Snippet ABSTRACT This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology,...
This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e70001
SubjectTerms accelerated lifetime
Asymptotic methods
Asymptotic properties
Biomedical data
Biometry - methods
Cancer
Censored data (mathematics)
censored quantile regression
Colorectal cancer
Colorectal carcinoma
Datasets
Failure times
Humans
interval‐censoring
inverse probability weighting
Medical research
Metastases
Multivariate analysis
multivariate events
Quantiles
Regression
Regression Analysis
Statistical analysis
Title Inverse‐Weighted Quantile Regression With Partially Interval‐Censored Data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.70001
https://www.ncbi.nlm.nih.gov/pubmed/39540721
https://www.proquest.com/docview/3135037469
https://www.proquest.com/docview/3128822591
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RJCQupbyXAkoFJ6Qs2bGdh9QLpUUUCQQIBBcU2YndLo8s2s0e6ImfwG_kl3Rs70MUCYneIiWOE8_D34zHnwE2C5UZmqVt1kYmIS8oQEkNZ2EisGSRNKiF3Zx8eBTvn_ODS3E5AV-He2E8P8Qo4WYtw_lra-BS9bbHpKGqfXfdTCxGIQdsi7UsIjodc0dlEfdLCMhCRj54xE2K2-OmL2ejVxDzJWJ1U87eDFwNP9ZXmtw0-7VqFn_-4XH837_5BB8HWDTY8cozCxO6moMpfzrlwzwcWQ6Obk8_Pz5duASqLoOTPkmCOghO9S9fQVsFF-36d3BsVVDe3j4ELsdI-kvNdilG7nSp2XdZywU43_txtrsfDo5fCAtGODCUykiJgmkpRYGYElSJdGk0bymKa9EkGSpyUTpTKeG0ooWJzErDtYmF5kojW4TJqlPpZQjQtKRhIimLSHHyzQrjxMSRTJNUMlbGDdgYiiG_9ywbuedTxtyOTO5GpgGrQwnlA0vr5azFhOXQibMGfBndJhuxCx-y0p2-fQYpkKBAj16x5CU76oZlwnHENWDLyeeN_vNvPw8P3NXKex7-DNNISMjXwKzCZN3t6zVCMrVahw_Ij9ed3v4FlGbwHw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xCMGFfSlrEJyQUlI7znJkVVlaAQLBLbITmz1FbXqAE5_AN_IljO3SCpCQ4BYpdqx4Fr8Zj58B1lMRK1ylddaGh66fYoASKZ-6ISMZ9bgikunDybV6UL3wD6_YVac2R5-FsfwQ3YSbtgzjr7WB64T0Zo81VNw-3pVDDVL6YVBf6W0iqrMee1Ts-XYTgVCXohfuspOSzV7fr-vRD5D5FbOaRWd_zN6s2jJchbrW5L7cLkQ5ffnG5Pjv_xmH0Q4cdbas_kxAn8wnYcheUPk8BXVNw9FsyffXt0uTQ5WZc9pGYeAIzpm8tkW0uXN5W9w4J1oL-cPDs2PSjKjC2G0Hw-RGE7vt8oJPw8X-3vlO1e3cwOCmFKGgy4XinDAqOWcpIRGiFU9mSvoVgaEtUWFMBHopGYsIoVpaISGPM-VLFTDpC0noDAzkjVzOgUNUhSvKwiz1hI_uWZAgVIHHozDilGZBCdY-5ZA8WaKNxFIqk0TPTGJmpgSLnyJKOsbWSmiFMk2jE8QlWO2-RjPRex88l422bkMwlsBYDz8xa0XbHYbGzNDElWDDCOiX8ZPtg9qheZr_S-MVGK6e146T44P60QKMEARGtiRmEQaKZlsuIbApxLJR3w_lb_Nj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFH6ioFZc2EphWEpQe0LKkPGSReICDCOgZUQRCC5VZCc225AZDZkDnPgJ_EZ-Cc_2LKKVkNpbpNhx7Lf4e8_2Z4DvmUw0ztImayMin2UYoMSaUT_iJKeB0ERxczj5qBnun7HDC34xBluDszCOH2KYcDOWYf21MfBOrjdHpKHy-u6mGhmM8gEmWBjERqfrJyPyqCRgbg2BUJ-iEx6Sk5LNUd2309FfGPMtZLVzTmMafg_-1m01ua32SlnNHv8gcvzf7szAVB-MettOe2ZhTBVz8NFdT_nwGZqGhKN7r16ens9tBlXl3q8eigIb8E7UpdtCW3jn1-WVd2x0ULRaD55NMqICY7VdDJLbXaxWF6WYh7PG3unuvt-_f8HPKAJBX0gtBOFUCcEzQmLEKoHKtWI1iYEt0VFCJPoolcgYgVpWI5FIcs2UDrliUhH6BcaLdqEWwSO6JjTlUZ4FkqFzliSMdBiIOIoFpXlYgW8DMaQdR7OROkJlkpqRSe3IVGBlIKG0b2r3Ka1Rbkh0wqQC68PXaCRm5UMUqt0zZQhGEhjp4ScWnGSHzdCEW5K4CmxY-bzTfrpzcHRon5b-pfAafDquN9KfB80fyzBJEBW5_TArMF52e2oVUU0pv1rlfQU25vIb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse%E2%80%90Weighted+Quantile+Regression+With+Partially+Interval%E2%80%90Censored+Data&rft.jtitle=Biometrical+journal&rft.au=Kim%2C+Yeji&rft.au=Choi%2C+Taehwa&rft.au=Park%2C+Seohyeon&rft.au=Choi%2C+Sangbum&rft.date=2024-12-01&rft.issn=0323-3847&rft.eissn=1521-4036&rft.volume=66&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fbimj.70001&rft.externalDBID=10.1002%252Fbimj.70001&rft.externalDocID=BIMJ70001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon