Inverse‐Weighted Quantile Regression With Partially Interval‐Censored Data
ABSTRACT This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval‐censored data. Such data sets, often encountered in HIV/AIDS and cancer biom...
Saved in:
Published in | Biometrical journal Vol. 66; no. 8; pp. e70001 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley - VCH Verlag GmbH & Co. KGaA
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0323-3847 1521-4036 1521-4036 |
DOI | 10.1002/bimj.70001 |
Cover
Loading…
Abstract | ABSTRACT
This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval‐censored data. Such data sets, often encountered in HIV/AIDS and cancer biomedical research, may include doubly censored (DC) and partly interval‐censored (PIC) endpoints. DC responses involve either left‐censoring or right‐censoring alongside some exact failure time observations, while PIC responses are subject to interval‐censoring. Despite the existence of complex estimating techniques for interval‐censored quantile regression, we propose a simple and intuitive IPCW‐based method, easily implementable by assigning suitable inverse‐probability weights to subjects with exact failure time observations. The resulting estimator exhibits asymptotic properties, such as uniform consistency and weak convergence, and we explore an augmented‐IPCW (AIPCW) approach to enhance efficiency. In addition, our method can be adapted for multivariate partially interval‐censored data. Simulation studies demonstrate the new procedure's strong finite‐sample performance. We illustrate the practical application of our approach through an analysis of progression‐free survival endpoints in a phase III clinical trial focusing on metastatic colorectal cancer. |
---|---|
AbstractList | This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval‐censored data. Such data sets, often encountered in HIV/AIDS and cancer biomedical research, may include doubly censored (DC) and partly interval‐censored (PIC) endpoints. DC responses involve either left‐censoring or right‐censoring alongside some exact failure time observations, while PIC responses are subject to interval‐censoring. Despite the existence of complex estimating techniques for interval‐censored quantile regression, we propose a simple and intuitive IPCW‐based method, easily implementable by assigning suitable inverse‐probability weights to subjects with exact failure time observations. The resulting estimator exhibits asymptotic properties, such as uniform consistency and weak convergence, and we explore an augmented‐IPCW (AIPCW) approach to enhance efficiency. In addition, our method can be adapted for multivariate partially interval‐censored data. Simulation studies demonstrate the new procedure's strong finite‐sample performance. We illustrate the practical application of our approach through an analysis of progression‐free survival endpoints in a phase III clinical trial focusing on metastatic colorectal cancer. This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval-censored data. Such data sets, often encountered in HIV/AIDS and cancer biomedical research, may include doubly censored (DC) and partly interval-censored (PIC) endpoints. DC responses involve either left-censoring or right-censoring alongside some exact failure time observations, while PIC responses are subject to interval-censoring. Despite the existence of complex estimating techniques for interval-censored quantile regression, we propose a simple and intuitive IPCW-based method, easily implementable by assigning suitable inverse-probability weights to subjects with exact failure time observations. The resulting estimator exhibits asymptotic properties, such as uniform consistency and weak convergence, and we explore an augmented-IPCW (AIPCW) approach to enhance efficiency. In addition, our method can be adapted for multivariate partially interval-censored data. Simulation studies demonstrate the new procedure's strong finite-sample performance. We illustrate the practical application of our approach through an analysis of progression-free survival endpoints in a phase III clinical trial focusing on metastatic colorectal cancer.This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval-censored data. Such data sets, often encountered in HIV/AIDS and cancer biomedical research, may include doubly censored (DC) and partly interval-censored (PIC) endpoints. DC responses involve either left-censoring or right-censoring alongside some exact failure time observations, while PIC responses are subject to interval-censoring. Despite the existence of complex estimating techniques for interval-censored quantile regression, we propose a simple and intuitive IPCW-based method, easily implementable by assigning suitable inverse-probability weights to subjects with exact failure time observations. The resulting estimator exhibits asymptotic properties, such as uniform consistency and weak convergence, and we explore an augmented-IPCW (AIPCW) approach to enhance efficiency. In addition, our method can be adapted for multivariate partially interval-censored data. Simulation studies demonstrate the new procedure's strong finite-sample performance. We illustrate the practical application of our approach through an analysis of progression-free survival endpoints in a phase III clinical trial focusing on metastatic colorectal cancer. ABSTRACT This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval‐censored data. Such data sets, often encountered in HIV/AIDS and cancer biomedical research, may include doubly censored (DC) and partly interval‐censored (PIC) endpoints. DC responses involve either left‐censoring or right‐censoring alongside some exact failure time observations, while PIC responses are subject to interval‐censoring. Despite the existence of complex estimating techniques for interval‐censored quantile regression, we propose a simple and intuitive IPCW‐based method, easily implementable by assigning suitable inverse‐probability weights to subjects with exact failure time observations. The resulting estimator exhibits asymptotic properties, such as uniform consistency and weak convergence, and we explore an augmented‐IPCW (AIPCW) approach to enhance efficiency. In addition, our method can be adapted for multivariate partially interval‐censored data. Simulation studies demonstrate the new procedure's strong finite‐sample performance. We illustrate the practical application of our approach through an analysis of progression‐free survival endpoints in a phase III clinical trial focusing on metastatic colorectal cancer. This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval‐censored data. Such data sets, often encountered in HIV/AIDS and cancer biomedical research, may include doubly censored (DC) and partly interval‐censored (PIC) endpoints. DC responses involve either left‐censoring or right‐censoring alongside some exact failure time observations, while PIC responses are subject to interval‐censoring. Despite the existence of complex estimating techniques for interval‐censored quantile regression, we propose a simple and intuitive IPCW‐based method, easily implementable by assigning suitable inverse‐probability weights to subjects with exact failure time observations. The resulting estimator exhibits asymptotic properties, such as uniform consistency and weak convergence, and we explore an augmented‐IPCW (AIPCW) approach to enhance efficiency. In addition, our method can be adapted for multivariate partially interval‐censored data. Simulation studies demonstrate the new procedure's strong finite‐sample performance. We illustrate the practical application of our approach through an analysis of progression‐free survival endpoints in a phase III clinical trial focusing on metastatic colorectal cancer. |
Author | Choi, Sangbum Bandyopadhyay, Dipankar Park, Seohyeon Choi, Taehwa Kim, Yeji |
Author_xml | – sequence: 1 givenname: Yeji orcidid: 0000-0003-4226-5077 surname: Kim fullname: Kim, Yeji email: Yeji.Kim2@nyulangone.org organization: New York University School of Medicine – sequence: 2 givenname: Taehwa surname: Choi fullname: Choi, Taehwa organization: Sungshin Women's University – sequence: 3 givenname: Seohyeon orcidid: 0000-0002-0320-4629 surname: Park fullname: Park, Seohyeon organization: Korea University – sequence: 4 givenname: Sangbum orcidid: 0000-0001-6983-5821 surname: Choi fullname: Choi, Sangbum email: choisang@korea.ac.kr organization: Korea University – sequence: 5 givenname: Dipankar surname: Bandyopadhyay fullname: Bandyopadhyay, Dipankar organization: Virginia Commonwealth University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39540721$$D View this record in MEDLINE/PubMed |
BookMark | eNp90blOw0AQBuAVCiIHNDwAskSDkBz2jNclhMsonAKltNbOOHHkrMOuHZSOR-AZeRI2JFBQUE3z_aPR_G3U0KUGhPYJ7hKM6UmSz6bdAGNMtlCLCEp8jlmvgVqYUeYzyYMmals7dSLEnO6gJgsFxwElLXQX6QUYC5_vH0PIx5MKRt5jrXSVF-A9wdiAtXmpvWFeTbwHZapcFcXSi3QFZqEKF-uDtqVxsXNVqV20nanCwt5mdtDL5cVz_9of3F9F_dOBnzLSI75KMqWoYKCUSCmVQnIMoww4SRiTNAtCmkgZQJhIHIqU0ECFo4xD1hPAE6Csg47We-emfK3BVvEstykUhdJQ1jZmhEpJqQiJo4d_6LSsjXbXOcUEZgHvhU4dbFSdzGAUz00-U2YZ_3zKgeM1SE1prYHslxAcr2qIVzXE3zU4TNb4zb1x-Y-Mz6Lbm3XmC_mpimY |
Cites_doi | 10.1080/01621459.2018.1469996 10.1515/ijb-2021-0063 10.1111/sjos.12319 10.1198/016214508000000355 10.1198/jasa.2009.tm08230 10.1214/aos/1176349140 10.1007/978-1-4757-1229-2_14 10.1007/s42952-021-00155-z 10.1093/biostatistics/kxw036 10.1177/0962280220921552 10.1093/biomet/91.2.277 10.1007/978-1-4757-2545-2 10.1111/j.1541-0420.2007.00842.x 10.1214/aop/1176993141 10.1198/016214507000000563 10.1002/sim.6415 10.1111/biom.12700 10.1214/07-AOS507 10.1080/03610929408831243 10.1214/17-AOS1589 10.1214/aos/1030741089 10.1016/0047-259X(88)90134-0 10.1111/j.1541-0420.2006.00580.x 10.1111/j.1541-0420.2006.00730.x 10.1002/bimj.201700104 10.1016/j.csda.2011.03.009 10.1080/10618600.2024.2365740 10.1111/j.1541-0420.2011.01667.x 10.1201/9781315116945 10.1214/aos/1032181177 10.1111/j.0006-341X.2002.00643.x 10.1214/08-AOAS169 10.1002/sim.9232 10.1017/CBO9780511754098 10.1093/biomet/93.2.315 10.1080/03610926.2015.1073317 10.1200/JCO.2009.27.6055 10.1002/(SICI)1097-0258(20000115)19:1<1::AID-SIM296>3.0.CO;2-Q 10.1016/j.csda.2021.107306 10.1080/03610926.2019.1662046 10.2307/2532598 10.1080/01621459.1974.10480146 10.1080/10618600.2017.1385469 10.1198/jasa.2009.tm08228 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). published by Wiley‐VCH GmbH. 2024 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). published by Wiley‐VCH GmbH. – notice: 2024 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/bimj.70001 |
DatabaseName | Wiley Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (WRLC) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1521-4036 |
EndPage | n/a |
ExternalDocumentID | 39540721 10_1002_bimj_70001 BIMJ70001 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea – fundername: Korea University – fundername: National Institutes of Health funderid: R01DE031134; R21DE031879; RS‐2024‐00340298; K2201231; 2022M3J6A1063595; 2022R1A2C1008514 – fundername: NIH HHS grantid: 2022M3J6A1063595 – fundername: NIH HHS grantid: 2022R1A2C1008514 – fundername: NIH HHS grantid: R01DE031134 – fundername: NIH HHS grantid: K2201231 – fundername: NIH HHS grantid: RS-2024-00340298 – fundername: NIH HHS grantid: R21DE031879 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 24P 3-9 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M67 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XPP XV2 Y6R YHZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c3161-abfaa253eaa5c2285840edfe41b3382f792b887e9b8095c127a9df4ef65e4be23 |
IEDL.DBID | DR2 |
ISSN | 0323-3847 1521-4036 |
IngestDate | Fri Jul 11 11:12:55 EDT 2025 Fri Jul 25 19:13:20 EDT 2025 Wed Feb 19 02:11:52 EST 2025 Tue Jul 01 04:18:08 EDT 2025 Wed Jan 22 17:14:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | interval‐censoring accelerated lifetime censored quantile regression inverse probability weighting multivariate events |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2024 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3161-abfaa253eaa5c2285840edfe41b3382f792b887e9b8095c127a9df4ef65e4be23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6983-5821 0000-0003-4226-5077 0000-0002-0320-4629 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.70001 |
PMID | 39540721 |
PQID | 3135037469 |
PQPubID | 105592 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_3128822591 proquest_journals_3135037469 pubmed_primary_39540721 crossref_primary_10_1002_bimj_70001 wiley_primary_10_1002_bimj_70001_BIMJ70001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 2024-Dec 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Biometrical journal |
PublicationTitleAlternate | Biom J |
PublicationYear | 2024 |
Publisher | Wiley - VCH Verlag GmbH & Co. KGaA |
Publisher_xml | – name: Wiley - VCH Verlag GmbH & Co. KGaA |
References | 2015; 34 2006; 93 2002; 58 2010; 32 1993; 49 2022; 51 1993; 21 1997; 25 2017; 46 1994; 23 2008; 36 2007 1996 2022; 41 2021; 164 2005 2008; 103 1992 2018; 60 2024 1991 2021; 50 2018; 45 2004; 91 2008; 2 2012; 56 2018; 27 2018; 46 2017; 73 1974; 69 2000; 19 2006; 62 2010; 28 1984; 12 1988; 27 2017 2019; 114 2017; 18 1981 2007; 63 2008; 64 2012; 68 1996; 24 2009; 104 2022; 19 2020; 29 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_49_1 Fleming T. R. (e_1_2_11_15_1) 1991 Sun J. (e_1_2_11_38_1) 2007 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_46_1 e_1_2_11_47_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 Varadhan R. (e_1_2_11_41_1) 2010; 32 e_1_2_11_19_1 |
References_xml | – volume: 19 start-page: 81 issue: 1 year: 2022 end-page: 96 article-title: A Quantile Regression Estimator for Interval‐Censored Data publication-title: International Journal of Biostatistics – volume: 63 start-page: 663 issue: 3 year: 2007 end-page: 672 article-title: Marginal Analysis of Correlated Failure Time Data With Informative Cluster Sizes publication-title: Biometrics – volume: 104 start-page: 1440 issue: 488 year: 2009 end-page: 1453 article-title: Competing Risks Quantile Regression publication-title: Journal of the American Statistical Association – volume: 12 start-page: 1041 issue: 4 year: 1984 end-page: 1067 article-title: Probability Inequalities for Empirical Processes and a Law of the Iterated Logarithm publication-title: Annals of Probability – year: 1981 – volume: 29 start-page: 3192 issue: 11 year: 2020 end-page: 3204 article-title: A Bayesian Approach for Analyzing Partly Interval‐Censored Data Under the Proportional Hazards Model publication-title: Statistical Methods in Medical Research – volume: 34 start-page: 1495 issue: 9 year: 2015 end-page: 1510 article-title: Rank‐Based Estimating Equations With General Weight for Accelerated Failure Time Models: An Induced Smoothing Approach publication-title: Statistics in Medicine – year: 2005 – volume: 32 start-page: 1 year: 2010 end-page: 26 article-title: BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High‐Dimensional Nonlinear Objective Function publication-title: Journal of Statistical Software – volume: 91 start-page: 277 issue: 2 year: 2004 end-page: 290 article-title: Semiparametric Regression Analysis for Doubly Censored Data publication-title: Biometrika – volume: 58 start-page: 643 issue: 3 year: 2002 end-page: 649 article-title: Median Regression With Censored Cost Data publication-title: Biometrics – volume: 23 start-page: 123 issue: 1 year: 1994 end-page: 135 article-title: Asymptotic Properties of the Left Kaplan‐Meier Estimator publication-title: Communications in Statistics–Theory and Methods – year: 2007 – volume: 114 start-page: 1126 issue: 527 year: 2019 end-page: 1137 article-title: An Adapted Loss Function for Censored Quantile Regression publication-title: Journal of the American Statistical Association – volume: 46 start-page: 1415 issue: 4 year: 2018 end-page: 1444 article-title: Current Status Linear Regression publication-title: Annals of Statistics – start-page: 297 year: 1992 end-page: 331 article-title: Recovery of Information and Adjustment for Dependent Censoring Using Surrogate Markers – volume: 49 start-page: 13 issue: 1 year: 1993 end-page: 22 article-title: Analyzing Doubly Censored Data With Covariates, With Application to Aids publication-title: Biometrics – year: 1996 – year: 2024 article-title: Interval‐Censored Linear Quantile Regression publication-title: Journal of Computational and Graphical Statistics – volume: 27 start-page: 334 issue: 2 year: 1988 end-page: 358 article-title: Stochastic Integrals of Empirical‐Type Processes With Applications to Censored Regression publication-title: Journal of Multivariate Analysis – volume: 93 start-page: 315 issue: 2 year: 2006 end-page: 328 article-title: A K‐Sample Test With Interval Censored Data publication-title: Biometrika – volume: 103 start-page: 637 issue: 482 year: 2008 end-page: 649 article-title: Survival Analysis With Quantile Regression Models publication-title: Journal of the American Statistical Association – volume: 64 start-page: 39 issue: 1 year: 2008 end-page: 45 article-title: Weighted Rank Regression for Clustered Data Analysis publication-title: Biometrics – volume: 56 start-page: 797 issue: 4 year: 2012 end-page: 812 article-title: Quantile Regression With Doubly Censored Data publication-title: Computational Statistics & Data Analysis – volume: 21 start-page: 611 issue: 2 year: 1993 end-page: 624 article-title: Asymptotic Properties of Self‐Consistent Estimators Based on Doubly Censored Data publication-title: Annals of Statistics – volume: 51 start-page: 589 year: 2022 end-page: 607 article-title: Regularized Linear Censored Quantile Regression publication-title: Journal of the Korean Statistical Society – volume: 27 start-page: 417 issue: 2 year: 2018 end-page: 425 article-title: A New Approach to Censored Quantile Regression Estimation publication-title: Journal of Computational and Graphical Statistics – volume: 41 start-page: 227 issue: 2 year: 2022 end-page: 241 article-title: Weighted Least‐Squares Regression With Competing Risks Data publication-title: Statistics in Medicine – volume: 45 start-page: 682 issue: 3 year: 2018 end-page: 698 article-title: A Class of Semiparametric Transformation Models for Doubly Censored Failure Time Data publication-title: Scandinavian Journal of Statistics – volume: 103 start-page: 523 issue: 482 year: 2008 end-page: 533 article-title: Bayesian Accelerated Failure Time Model With Multivariate Doubly Interval‐Censored Data and Flexible Distributional Assumptions publication-title: Journal of the American Statistical Association – volume: 2 start-page: 841 issue: 3 year: 2008 end-page: 860 article-title: Random Survival Forests publication-title: Annals of Applied Statistics – volume: 19 start-page: 1 issue: 1 year: 2000 end-page: 11 article-title: A Two‐Sample Test With Interval Censored Data via Multiple Imputation publication-title: Statistics in Medicine – volume: 24 start-page: 2720 issue: 6 year: 1996 end-page: 2743 article-title: Linear Regression With Doubly Censored Data publication-title: Annals of Statistics – volume: 36 start-page: 1108 issue: 3 year: 2008 end-page: 1126 article-title: Composite Quantile Regression and the Oracle Model Selection Theory publication-title: Annals of Statistics – volume: 69 start-page: 169 issue: 345 year: 1974 end-page: 173 article-title: Nonparametric Estimation of a Survivorship Function With Doubly Censored Data publication-title: Journal of the American Statistical Association – volume: 164 year: 2021 article-title: Semiparametric Least‐Squares Regression With Doubly‐Censored Data publication-title: Computational Statistics & Data Analysis – volume: 104 start-page: 1117 issue: 487 year: 2009 end-page: 1128 article-title: Locally Weighted Censored Quantile Regression publication-title: Journal of the American Statistical Association – volume: 18 start-page: 132 issue: 1 year: 2017 end-page: 146 article-title: A Quantile Regression Model for Failure‐Time Data With Time‐Dependent Covariates publication-title: Biostatistics – volume: 73 start-page: 1161 issue: 4 year: 2017 end-page: 1168 article-title: Semiparametric Estimation of the Accelerated Failure Time Model With Partly Interval‐Censored Data publication-title: Biometrics – volume: 60 start-page: 934 issue: 5 year: 2018 end-page: 946 article-title: Smoothed Quantile Regression Analysis of Competing Risks publication-title: Biometrical Journal – volume: 50 start-page: 2188 issue: 9 year: 2021 end-page: 2200 article-title: Efficient Inferences for Linear Transformation Models With Doubly Censored Data publication-title: Communications in Statistics–Theory and Methods – year: 2017 – year: 1991 – volume: 68 start-page: 101 issue: 1 year: 2012 end-page: 112 article-title: Quantile Regression for Doubly Censored Data publication-title: Biometrics – volume: 25 start-page: 2638 issue: 6 year: 1997 end-page: 2664 article-title: Regression M‐Estimators With Doubly Censored Data publication-title: Annals of Statistics – volume: 28 start-page: 4706 issue: 31 year: 2010 end-page: 4713 article-title: Randomized Phase III Study of Panitumumab With Fluorouracil, Leucovorin, and Irinotecan (FOLFIRI) Compared With FOLFIRI Alone as Second‐Line Treatment in Patients With Metastatic Colorectal Cancer publication-title: Journal of Clinical Oncology – volume: 62 start-page: 1260 issue: 4 year: 2006 end-page: 1268 article-title: A Simple Local Sensitivity Analysis Tool for Nonignorable Coarsening: Application to Dependent Censoring publication-title: Biometrics – volume: 46 start-page: 3848 issue: 8 year: 2017 end-page: 3863 article-title: Quantile Regression for Interval Censored Data publication-title: Communications in Statistics–Theory and Methods – ident: e_1_2_11_14_1 doi: 10.1080/01621459.2018.1469996 – ident: e_1_2_11_16_1 doi: 10.1515/ijb-2021-0063 – ident: e_1_2_11_28_1 doi: 10.1111/sjos.12319 – ident: e_1_2_11_34_1 doi: 10.1198/016214508000000355 – ident: e_1_2_11_42_1 doi: 10.1198/jasa.2009.tm08230 – ident: e_1_2_11_21_1 doi: 10.1214/aos/1176349140 – ident: e_1_2_11_36_1 doi: 10.1007/978-1-4757-1229-2_14 – ident: e_1_2_11_37_1 doi: 10.1007/s42952-021-00155-z – ident: e_1_2_11_19_1 doi: 10.1093/biostatistics/kxw036 – ident: e_1_2_11_30_1 doi: 10.1177/0962280220921552 – ident: e_1_2_11_6_1 doi: 10.1093/biomet/91.2.277 – volume-title: Counting Processes and Survival Analysis year: 1991 ident: e_1_2_11_15_1 – ident: e_1_2_11_40_1 doi: 10.1007/978-1-4757-2545-2 – ident: e_1_2_11_43_1 doi: 10.1111/j.1541-0420.2007.00842.x – ident: e_1_2_11_2_1 doi: 10.1214/aop/1176993141 – ident: e_1_2_11_26_1 doi: 10.1198/016214507000000563 – ident: e_1_2_11_7_1 doi: 10.1002/sim.6415 – ident: e_1_2_11_17_1 doi: 10.1111/biom.12700 – ident: e_1_2_11_49_1 doi: 10.1214/07-AOS507 – ident: e_1_2_11_18_1 doi: 10.1080/03610929408831243 – ident: e_1_2_11_20_1 doi: 10.1214/17-AOS1589 – ident: e_1_2_11_35_1 doi: 10.1214/aos/1030741089 – ident: e_1_2_11_27_1 doi: 10.1016/0047-259X(88)90134-0 – ident: e_1_2_11_47_1 doi: 10.1111/j.1541-0420.2006.00580.x – ident: e_1_2_11_13_1 doi: 10.1111/j.1541-0420.2006.00730.x – ident: e_1_2_11_10_1 doi: 10.1002/bimj.201700104 – ident: e_1_2_11_29_1 doi: 10.1016/j.csda.2011.03.009 – ident: e_1_2_11_12_1 doi: 10.1080/10618600.2024.2365740 – ident: e_1_2_11_23_1 doi: 10.1111/j.1541-0420.2011.01667.x – ident: e_1_2_11_5_1 doi: 10.1201/9781315116945 – ident: e_1_2_11_4_1 – ident: e_1_2_11_46_1 doi: 10.1214/aos/1032181177 – ident: e_1_2_11_3_1 doi: 10.1111/j.0006-341X.2002.00643.x – ident: e_1_2_11_22_1 doi: 10.1214/08-AOAS169 – ident: e_1_2_11_8_1 doi: 10.1002/sim.9232 – ident: e_1_2_11_25_1 doi: 10.1017/CBO9780511754098 – ident: e_1_2_11_45_1 doi: 10.1093/biomet/93.2.315 – ident: e_1_2_11_48_1 doi: 10.1080/03610926.2015.1073317 – ident: e_1_2_11_32_1 doi: 10.1200/JCO.2009.27.6055 – ident: e_1_2_11_31_1 doi: 10.1002/(SICI)1097-0258(20000115)19:1<1::AID-SIM296>3.0.CO;2-Q – volume: 32 start-page: 1 year: 2010 ident: e_1_2_11_41_1 article-title: BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High‐Dimensional Nonlinear Objective Function publication-title: Journal of Statistical Software – ident: e_1_2_11_11_1 doi: 10.1016/j.csda.2021.107306 – ident: e_1_2_11_9_1 doi: 10.1080/03610926.2019.1662046 – ident: e_1_2_11_24_1 doi: 10.2307/2532598 – ident: e_1_2_11_39_1 doi: 10.1080/01621459.1974.10480146 – volume-title: The Statistical Analysis of Interval‐Censored Failure Time Data year: 2007 ident: e_1_2_11_38_1 – ident: e_1_2_11_44_1 doi: 10.1080/10618600.2017.1385469 – ident: e_1_2_11_33_1 doi: 10.1198/jasa.2009.tm08228 |
SSID | ssj0009042 |
Score | 2.3718302 |
Snippet | ABSTRACT
This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology,... This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e70001 |
SubjectTerms | accelerated lifetime Asymptotic methods Asymptotic properties Biomedical data Biometry - methods Cancer Censored data (mathematics) censored quantile regression Colorectal cancer Colorectal carcinoma Datasets Failure times Humans interval‐censoring inverse probability weighting Medical research Metastases Multivariate analysis multivariate events Quantiles Regression Regression Analysis Statistical analysis |
Title | Inverse‐Weighted Quantile Regression With Partially Interval‐Censored Data |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.70001 https://www.ncbi.nlm.nih.gov/pubmed/39540721 https://www.proquest.com/docview/3135037469 https://www.proquest.com/docview/3128822591 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RJCQupbyXAkoFJ6Qs2bGdh9QLpUUUCQQIBBcU2YndLo8s2s0e6ImfwG_kl3Rs70MUCYneIiWOE8_D34zHnwE2C5UZmqVt1kYmIS8oQEkNZ2EisGSRNKiF3Zx8eBTvn_ODS3E5AV-He2E8P8Qo4WYtw_lra-BS9bbHpKGqfXfdTCxGIQdsi7UsIjodc0dlEfdLCMhCRj54xE2K2-OmL2ejVxDzJWJ1U87eDFwNP9ZXmtw0-7VqFn_-4XH837_5BB8HWDTY8cozCxO6moMpfzrlwzwcWQ6Obk8_Pz5duASqLoOTPkmCOghO9S9fQVsFF-36d3BsVVDe3j4ELsdI-kvNdilG7nSp2XdZywU43_txtrsfDo5fCAtGODCUykiJgmkpRYGYElSJdGk0bymKa9EkGSpyUTpTKeG0ooWJzErDtYmF5kojW4TJqlPpZQjQtKRhIimLSHHyzQrjxMSRTJNUMlbGDdgYiiG_9ywbuedTxtyOTO5GpgGrQwnlA0vr5azFhOXQibMGfBndJhuxCx-y0p2-fQYpkKBAj16x5CU76oZlwnHENWDLyeeN_vNvPw8P3NXKex7-DNNISMjXwKzCZN3t6zVCMrVahw_Ij9ed3v4FlGbwHw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xCMGFfSlrEJyQUlI7znJkVVlaAQLBLbITmz1FbXqAE5_AN_IljO3SCpCQ4BYpdqx4Fr8Zj58B1lMRK1ylddaGh66fYoASKZ-6ISMZ9bgikunDybV6UL3wD6_YVac2R5-FsfwQ3YSbtgzjr7WB64T0Zo81VNw-3pVDDVL6YVBf6W0iqrMee1Ts-XYTgVCXohfuspOSzV7fr-vRD5D5FbOaRWd_zN6s2jJchbrW5L7cLkQ5ffnG5Pjv_xmH0Q4cdbas_kxAn8wnYcheUPk8BXVNw9FsyffXt0uTQ5WZc9pGYeAIzpm8tkW0uXN5W9w4J1oL-cPDs2PSjKjC2G0Hw-RGE7vt8oJPw8X-3vlO1e3cwOCmFKGgy4XinDAqOWcpIRGiFU9mSvoVgaEtUWFMBHopGYsIoVpaISGPM-VLFTDpC0noDAzkjVzOgUNUhSvKwiz1hI_uWZAgVIHHozDilGZBCdY-5ZA8WaKNxFIqk0TPTGJmpgSLnyJKOsbWSmiFMk2jE8QlWO2-RjPRex88l422bkMwlsBYDz8xa0XbHYbGzNDElWDDCOiX8ZPtg9qheZr_S-MVGK6e146T44P60QKMEARGtiRmEQaKZlsuIbApxLJR3w_lb_Nj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFH6ioFZc2EphWEpQe0LKkPGSReICDCOgZUQRCC5VZCc225AZDZkDnPgJ_EZ-Cc_2LKKVkNpbpNhx7Lf4e8_2Z4DvmUw0ztImayMin2UYoMSaUT_iJKeB0ERxczj5qBnun7HDC34xBluDszCOH2KYcDOWYf21MfBOrjdHpKHy-u6mGhmM8gEmWBjERqfrJyPyqCRgbg2BUJ-iEx6Sk5LNUd2309FfGPMtZLVzTmMafg_-1m01ua32SlnNHv8gcvzf7szAVB-MettOe2ZhTBVz8NFdT_nwGZqGhKN7r16ens9tBlXl3q8eigIb8E7UpdtCW3jn1-WVd2x0ULRaD55NMqICY7VdDJLbXaxWF6WYh7PG3unuvt-_f8HPKAJBX0gtBOFUCcEzQmLEKoHKtWI1iYEt0VFCJPoolcgYgVpWI5FIcs2UDrliUhH6BcaLdqEWwSO6JjTlUZ4FkqFzliSMdBiIOIoFpXlYgW8DMaQdR7OROkJlkpqRSe3IVGBlIKG0b2r3Ka1Rbkh0wqQC68PXaCRm5UMUqt0zZQhGEhjp4ScWnGSHzdCEW5K4CmxY-bzTfrpzcHRon5b-pfAafDquN9KfB80fyzBJEBW5_TArMF52e2oVUU0pv1rlfQU25vIb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse%E2%80%90Weighted+Quantile+Regression+With+Partially+Interval%E2%80%90Censored+Data&rft.jtitle=Biometrical+journal&rft.au=Kim%2C+Yeji&rft.au=Choi%2C+Taehwa&rft.au=Park%2C+Seohyeon&rft.au=Choi%2C+Sangbum&rft.date=2024-12-01&rft.issn=0323-3847&rft.eissn=1521-4036&rft.volume=66&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fbimj.70001&rft.externalDBID=10.1002%252Fbimj.70001&rft.externalDocID=BIMJ70001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon |