RAGN-R: A multi-subject ensemble machine-learning method for estimating mechanical properties of advanced structural materials
•Multi-subject ensemble ML method proposed to estimate mechanical properties of materials.•Automated optimizing and utilizing hyperparameters exhibited superior ML performance.•Proposed RAGN-R model is hyperparameter free to estimate mechanical properties.•Novel RAGN-R model showed superior accuraci...
Saved in:
Published in | Computers & structures Vol. 308; p. 107657 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0045-7949 |
DOI | 10.1016/j.compstruc.2025.107657 |
Cover
Loading…
Abstract | •Multi-subject ensemble ML method proposed to estimate mechanical properties of materials.•Automated optimizing and utilizing hyperparameters exhibited superior ML performance.•Proposed RAGN-R model is hyperparameter free to estimate mechanical properties.•Novel RAGN-R model showed superior accuracies compared to other well-known ML algorithms.
The utilization of advanced structural materials, such as preplaced aggregate concrete (PAC), fiber-reinforced concrete (FRC), and FRC beams has revolutionized the field of civil engineering. These materials exhibit enhanced mechanical properties compared to traditional construction materials, offering engineers unprecedented opportunities to optimize the design, construction, and performance of structures and infrastructures. This formal description elucidates the inherent mechanical properties of PAC, FRC, and FRC beams, explores their diverse applications in civil engineering projects. This research aims to propose a surrogate multi-subject ensemble machine-learning (ML) method (named RAGN-R) for estimating mechanical properties of aforementioned advanced materials. The proposed learning approach, RAGN-R, integrates Random forest, Adaptive boosting, and GradieNt boosting techniques, employing a Ridge regression framework for stacking the ensemble. For this purpose, three experimental dataset have been prepared to determine the capability of RAGN-R and the results of the study have been compared with six well-known ML models. It is noteworthy that the proposed RAGN-R has the ability of self-optimizing the hyperparameters, which facilitate the adoptability of the model with engineering problems. Moreover, three datasets have been investigated to show the ability of the RAGN-R for diverse problems. Different performance evaluation metrics have been conducted to present results and compare ML models, which confirms the highest performance of RAGN-R (i.e., 97.7% accuracy) in handling complex relationships and improving overall prediction accuracy. |
---|---|
AbstractList | •Multi-subject ensemble ML method proposed to estimate mechanical properties of materials.•Automated optimizing and utilizing hyperparameters exhibited superior ML performance.•Proposed RAGN-R model is hyperparameter free to estimate mechanical properties.•Novel RAGN-R model showed superior accuracies compared to other well-known ML algorithms.
The utilization of advanced structural materials, such as preplaced aggregate concrete (PAC), fiber-reinforced concrete (FRC), and FRC beams has revolutionized the field of civil engineering. These materials exhibit enhanced mechanical properties compared to traditional construction materials, offering engineers unprecedented opportunities to optimize the design, construction, and performance of structures and infrastructures. This formal description elucidates the inherent mechanical properties of PAC, FRC, and FRC beams, explores their diverse applications in civil engineering projects. This research aims to propose a surrogate multi-subject ensemble machine-learning (ML) method (named RAGN-R) for estimating mechanical properties of aforementioned advanced materials. The proposed learning approach, RAGN-R, integrates Random forest, Adaptive boosting, and GradieNt boosting techniques, employing a Ridge regression framework for stacking the ensemble. For this purpose, three experimental dataset have been prepared to determine the capability of RAGN-R and the results of the study have been compared with six well-known ML models. It is noteworthy that the proposed RAGN-R has the ability of self-optimizing the hyperparameters, which facilitate the adoptability of the model with engineering problems. Moreover, three datasets have been investigated to show the ability of the RAGN-R for diverse problems. Different performance evaluation metrics have been conducted to present results and compare ML models, which confirms the highest performance of RAGN-R (i.e., 97.7% accuracy) in handling complex relationships and improving overall prediction accuracy. |
ArticleNumber | 107657 |
Author | Jankowski, R. Asgarkhani, N. Kazemi, F. Ӧzyüksel Çiftçioğlu, A. Shafighfard, T. |
Author_xml | – sequence: 1 givenname: F. orcidid: 0000-0002-2448-1465 surname: Kazemi fullname: Kazemi, F. email: farzin.kazemi@pg.edu.pl organization: Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12 80-233, Gdansk, Poland – sequence: 2 givenname: A. surname: Ӧzyüksel Çiftçioğlu fullname: Ӧzyüksel Çiftçioğlu, A. email: aybike.ozyuksel@cbu.edu.tr organization: Department of Civil Engineering, Faculty of Engineering, Manisa Celal Bayar University, Turkey – sequence: 3 givenname: T. surname: Shafighfard fullname: Shafighfard, T. email: tshafighfard@imp.gda.pl organization: Institute of Fluid Flow Machinery, Polish Academy of Sciences, Generała Józefa Fiszera 14 80-231, Gdańsk, Poland – sequence: 4 givenname: N. surname: Asgarkhani fullname: Asgarkhani, N. email: neda.asgarkhani@pg.edu.pl organization: Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12 80-233, Gdansk, Poland – sequence: 5 givenname: R. surname: Jankowski fullname: Jankowski, R. email: jankowr@pg.edu.pl organization: Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12 80-233, Gdansk, Poland |
BookMark | eNqNkMFKAzEQhnOoYFt9BvMCW5NNstsVPJSiVSgKRc8hzU5sym5SkrTgxWc3teLBi54GhvmG__9GaOC8A4SuKJlQQqvr7UT7fhdT2OtJSUqRt3Ul6gEaEsJFUTe8OUejGLeEkIoTMkQfq9niqVjd4Bnu912yRdyvt6ATBhehX3eAe6U31kHRgQrOujfcQ9r4FhsfMMRke5VOW71RzmrV4V3wOwjJQsTeYNUelNPQ4q9YaR_yRWYgWNXFC3Rm8oDL7zlGr_d3L_OHYvm8eJzPloVmVKTCaFrW1VQ0zDBWtbRVrW6EYWtWG8EF4yXAlKuWQsNJTUVJmaYNV6apiFa8ZmN0e_qrg48xgJHaphzcuxSU7SQl8ihQbuWPQHkUKE8CM1__4nchNw_v_yBnJxJyvYOFIKO2cBRiQ_YsW2___PEJv8CXlw |
CitedBy_id | crossref_primary_10_3390_agriengineering7030075 crossref_primary_10_3390_buildings15060895 |
Cites_doi | 10.1016/j.engstruct.2020.111743 10.1016/j.engappai.2024.109053 10.1007/s43452-024-01067-5 10.1016/j.engstruct.2022.114953 10.1007/s10518-023-01745-4 10.1016/j.cemconcomp.2021.104378 10.1111/mice.13164 10.1016/j.engappai.2023.106382 10.1016/j.eswa.2022.117366 10.1016/j.istruc.2022.04.076 10.1007/s10694-023-01405-8 10.3389/fnbot.2013.00021 10.1016/j.jclepro.2020.122927 10.1016/j.measurement.2023.113155 10.1080/01621459.1983.10477973 10.1016/j.eswa.2024.124897 10.1007/s11749-016-0481-7 10.1016/j.rineng.2024.101750 10.1007/s10687-023-00473-x 10.1016/j.engappai.2023.107388 10.1016/j.engappai.2023.106387 10.1016/j.engappai.2023.106591 10.1016/j.compstruc.2023.107181 10.1016/j.eswa.2021.114920 10.1007/s43452-023-00631-9 10.1016/j.engfracmech.2022.108914 10.1016/j.eswa.2022.118771 10.1016/j.soildyn.2023.107761 10.1007/s10845-020-01648-0 10.1007/s11831-024-10143-1 10.1007/978-3-031-63759-9_47 10.1016/j.jmrt.2022.10.153 10.1016/j.ymssp.2023.110315 10.1016/j.cemconcomp.2021.104205 10.1016/j.compstruc.2022.106886 10.1016/j.engstruct.2021.112273 10.1016/j.engstruct.2023.116247 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compstruc.2025.107657 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_compstruc_2025_107657 S004579492500015X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYOK ABAOU ABBOA ABDPE ABEFU ABFNM ABJNI ABMAC ABTAH ABWVN ABXDB ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADGUI ADIYS ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSH SST SSV SSW SSZ T5K T9H TAE TN5 UAO VH1 WUQ XPP ZMT ZY4 ~02 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS |
ID | FETCH-LOGICAL-c315t-fc12768593f336d1dadc95f3b37f545342ee84ad1e940715213c194af960ca473 |
IEDL.DBID | .~1 |
ISSN | 0045-7949 |
IngestDate | Thu Apr 24 22:54:02 EDT 2025 Tue Aug 05 11:58:27 EDT 2025 Sun Apr 06 06:53:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Data processing Multi-subject machine-learning model Preplaced aggregate concrete Fiber-reinforced concrete Fiber-reinforced concrete beam Ensemble machine-learning model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c315t-fc12768593f336d1dadc95f3b37f545342ee84ad1e940715213c194af960ca473 |
ORCID | 0000-0002-2448-1465 |
ParticipantIDs | crossref_citationtrail_10_1016_j_compstruc_2025_107657 crossref_primary_10_1016_j_compstruc_2025_107657 elsevier_sciencedirect_doi_10_1016_j_compstruc_2025_107657 |
PublicationCentury | 2000 |
PublicationDate | February 2025 2025-02-00 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationTitle | Computers & structures |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Louppe, G. (2014). Understanding random forests: From theory to practice. arXiv preprint arXiv:1407.7502. Harirchian, Aghakouchaki Hosseini, Novelli, Lahmer, Rasulzade (b0065) 2024; 21 Velthoen, Dombry, Cai, Engelke (b0235) 2023; 26 Kazemi, Shafighfard, Yoo (b0040) 2024 Liu, Li, Lin (b0075) 2023; 289 Afzali, Hamidia, Safi (b0145) 2023; 218 Rahman, Ahmed, Khan, Islam, Mangalathu (b0100) 2021; 233 Kazemi, Asgarkhani, Jankowski (b0010) 2023; 166 Özyüksel Çiftçioğlu, Naser (b0025) 2022; 40 Kazemi, Shafighfard, Jankowski, Yoo (b0030) 2025; 25 Kazemi, Asgarkhani, Shafighfard, Jankowski, Yoo (b0095) 2025; 32 Nasiboglu, Nasibov (b0240) 2023; 212 Chalabi, Yazdanpanah, Dolatshahi (b0160) 2023; 79 Dehestani, Kazemi, Abdi, Nitka (b0115) 2022; 276 Kazemi, Asgarkhani, Jankowski (b0045) 2023; 274 Kazemi, Asgarkhani, Jankowski (b0150) 2024; 255 Anvari, Babanajad, Gandomi (b0110) 2023; 276 Moaf, Kazemi, Abdelgader, Kurpińska (b0080) 2023; 123 Kim, Baek (b0170) 2022; 203 Wang, Chen, Li, Tian, Zhao (b0220) 2023; 125 Naser, Çiftçioğlu (b0035) 2023; 59 Joseph, Mwafy, Alam (b0070) 2022; 59 Shafighfard, Kazemi, Bagherzadeh, Mieloszyk, Yoo (b0090) 2024 Qureshi, Alyami, Nawaz, Hakeem, Aslam, Iftikhar (b0085) 2023; 19 Khalilpourazari, Hashemi Doulabi, Özyüksel Çiftçioğlu, Weber (b0190) 2021; 177 Asgarkhani, N., Kazemi, F., & Jankowski, R. (2024). Active learning on ensemble machine-learning model to retrofit buildings under seismic mainshock-aftershock sequence. In International Conference on Computational Science (pp. 470-478). Asgarkhani, Kazemi, Jankowski (b0050) 2023; 289 Kazemi, Jankowski (b0175) 2023; 274 Du, Patil, Roeder, Kuchibhotla (b0130) 2024 Yue, Wang, Beskos (b0120) 2021; 123 Kazemi, Asgarkhani, Jankowski (b0005) 2023; 23 Khalilpourazari, Khalilpourazary, Özyüksel Çiftçioğlu, Weber (b0195) 2021; 32 Shafighfard, Bagherzadeh, Rizi, Yoo (b0180) 2022; 21 Bagherzadeh, Shafighfard, Khan, Szczuko, Mieloszyk (b0020) 2023; 195 Tirkolaee, Goli, Faridnia, Soltani, Weber (b0165) 2020; 276 Çiftçioğlu (b0200) 2024; 240 Efron (b0125) 1983; 78 Bagherzadeh, Shafighfard (b0185) 2022; 17 Gkournelos, Triantafillou, Bournas (b0060) 2021; 240 Almustafa, Nehdi (b0105) 2022; 126 Biau, Scornet (b0210) 2016; 25 Natekin, Knoll (b0230) 2013; 7 Zhou, Zhang, Zhao, Qi, Chang, Bai (b0135) 2023; 123 Ying, Qi-Guang, Jia-Chen, Lin (b0215) 2013; 39 Asgarkhani, Kazemi, Jakubczyk-Gałczyńska, Mohebi, Jankowski (b0055) 2024; 128 Liu, Huang, Ou, Xu, Li, Ai (b0225) 2023; 36 Shafighfard, Kazemi, Asgarkhani, Yoo (b0015) 2024; 136 Jamshidian, Hamidia (b0140) 2023; 21 Afzali (10.1016/j.compstruc.2025.107657_b0145) 2023; 218 Joseph (10.1016/j.compstruc.2025.107657_b0070) 2022; 59 Kazemi (10.1016/j.compstruc.2025.107657_b0030) 2025; 25 Shafighfard (10.1016/j.compstruc.2025.107657_b0180) 2022; 21 Kim (10.1016/j.compstruc.2025.107657_b0170) 2022; 203 Kazemi (10.1016/j.compstruc.2025.107657_b0175) 2023; 274 Velthoen (10.1016/j.compstruc.2025.107657_b0235) 2023; 26 Kazemi (10.1016/j.compstruc.2025.107657_b0095) 2025; 32 Asgarkhani (10.1016/j.compstruc.2025.107657_b0055) 2024; 128 Dehestani (10.1016/j.compstruc.2025.107657_b0115) 2022; 276 Bagherzadeh (10.1016/j.compstruc.2025.107657_b0185) 2022; 17 Zhou (10.1016/j.compstruc.2025.107657_b0135) 2023; 123 Rahman (10.1016/j.compstruc.2025.107657_b0100) 2021; 233 10.1016/j.compstruc.2025.107657_b0155 Du (10.1016/j.compstruc.2025.107657_b0130) 2024 Jamshidian (10.1016/j.compstruc.2025.107657_b0140) 2023; 21 Yue (10.1016/j.compstruc.2025.107657_b0120) 2021; 123 Efron (10.1016/j.compstruc.2025.107657_b0125) 1983; 78 Chalabi (10.1016/j.compstruc.2025.107657_b0160) 2023; 79 Asgarkhani (10.1016/j.compstruc.2025.107657_b0050) 2023; 289 Anvari (10.1016/j.compstruc.2025.107657_b0110) 2023; 276 Tirkolaee (10.1016/j.compstruc.2025.107657_b0165) 2020; 276 Naser (10.1016/j.compstruc.2025.107657_b0035) 2023; 59 Liu (10.1016/j.compstruc.2025.107657_b0075) 2023; 289 Kazemi (10.1016/j.compstruc.2025.107657_b0040) 2024 Wang (10.1016/j.compstruc.2025.107657_b0220) 2023; 125 Shafighfard (10.1016/j.compstruc.2025.107657_b0015) 2024; 136 Khalilpourazari (10.1016/j.compstruc.2025.107657_b0190) 2021; 177 Harirchian (10.1016/j.compstruc.2025.107657_b0065) 2024; 21 Moaf (10.1016/j.compstruc.2025.107657_b0080) 2023; 123 Almustafa (10.1016/j.compstruc.2025.107657_b0105) 2022; 126 Özyüksel Çiftçioğlu (10.1016/j.compstruc.2025.107657_b0025) 2022; 40 Gkournelos (10.1016/j.compstruc.2025.107657_b0060) 2021; 240 Qureshi (10.1016/j.compstruc.2025.107657_b0085) 2023; 19 Çiftçioğlu (10.1016/j.compstruc.2025.107657_b0200) 2024; 240 Ying (10.1016/j.compstruc.2025.107657_b0215) 2013; 39 Khalilpourazari (10.1016/j.compstruc.2025.107657_b0195) 2021; 32 Liu (10.1016/j.compstruc.2025.107657_b0225) 2023; 36 Biau (10.1016/j.compstruc.2025.107657_b0210) 2016; 25 Natekin (10.1016/j.compstruc.2025.107657_b0230) 2013; 7 Kazemi (10.1016/j.compstruc.2025.107657_b0010) 2023; 166 Nasiboglu (10.1016/j.compstruc.2025.107657_b0240) 2023; 212 Kazemi (10.1016/j.compstruc.2025.107657_b0150) 2024; 255 Kazemi (10.1016/j.compstruc.2025.107657_b0005) 2023; 23 Bagherzadeh (10.1016/j.compstruc.2025.107657_b0020) 2023; 195 10.1016/j.compstruc.2025.107657_b0205 Kazemi (10.1016/j.compstruc.2025.107657_b0045) 2023; 274 Shafighfard (10.1016/j.compstruc.2025.107657_b0090) 2024 |
References_xml | – volume: 177 year: 2021 ident: b0190 article-title: Gradient-based grey wolf optimizer with Gaussian walk: application in modelling and prediction of the COVID-19 pandemic publication-title: Expert Syst Appl – volume: 59 start-page: 1761 year: 2023 end-page: 1788 ident: b0035 article-title: Revisiting forgotten fire tests: causal inference and counterfactuals for learning idealized fire-induced response of RC columns publication-title: Fire Technol – reference: Asgarkhani, N., Kazemi, F., & Jankowski, R. (2024). Active learning on ensemble machine-learning model to retrofit buildings under seismic mainshock-aftershock sequence. In International Conference on Computational Science (pp. 470-478). – volume: 17 year: 2022 ident: b0185 article-title: Ensemble Machine Learning approach for evaluating the material characterization of carbon nanotube-reinforced cementitious composites publication-title: Case Stud Constr Mater – volume: 25 start-page: 197 year: 2016 end-page: 227 ident: b0210 article-title: A random forest guided tour publication-title: TEST – volume: 203 year: 2022 ident: b0170 article-title: Bagging ensemble-based novel data generation method for univariate time series forecasting publication-title: Expert Syst Appl – volume: 21 start-page: 3777 year: 2022 end-page: 3794 ident: b0180 article-title: Data-driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms publication-title: J Mater Res Technol – volume: 40 start-page: 920 year: 2022 end-page: 935 ident: b0025 article-title: Hiding in plain sight: what can interpretable unsupervised machine learning and clustering analysis tell us about the fire behavior of reinforced concrete columns publication-title: Structures – volume: 123 year: 2023 ident: b0135 article-title: Pre-clustering active learning method for automatic classification of building structures in urban areas publication-title: Eng Appl Artif Intel – volume: 218 year: 2023 ident: b0145 article-title: Data-driven strength-based seismic damage index measurement for RC columns using crack image-derived parameters publication-title: Measurement – volume: 166 year: 2023 ident: b0010 article-title: Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures publication-title: Soil Dyn Earthq Eng – volume: 19 year: 2023 ident: b0085 article-title: Prediction of compressive strength of two-stage (preplaced aggregate) concrete using gene expression programming and random forest publication-title: Case Stud Constr Mater – volume: 32 start-page: 571 year: 2025 end-page: 603 ident: b0095 article-title: Machine-learning methods for estimating performance of structural concrete members reinforced with fiber-reinforced polymers publication-title: Arch Comput Meth Eng – volume: 195 year: 2023 ident: b0020 article-title: Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: a comparative study publication-title: Mech Syst Sig Process – start-page: 1 year: 2024 end-page: 30 ident: b0040 article-title: Data-driven modeling of mechanical properties of fiber-reinforced concrete: a critical review publication-title: Arch Comput Meth Eng – volume: 274 year: 2023 ident: b0175 article-title: Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction publication-title: Comput Struct – start-page: 1 year: 2024 end-page: 12 ident: b0130 article-title: Extrapolated cross-validation for randomized ensembles publication-title: J Comput Graph Stat – volume: 123 year: 2023 ident: b0080 article-title: Machine learning-based prediction of preplaced aggregate concrete characteristics publication-title: Eng Appl Artif Intel – volume: 126 year: 2022 ident: b0105 article-title: Machine learning prediction of structural response of steel fiber-reinforced concrete beams subjected to far-field blast loading publication-title: Cem Concr Compos – volume: 276 year: 2020 ident: b0165 article-title: Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms publication-title: J Clean Prod – volume: 240 year: 2024 ident: b0200 article-title: RAGN-L: a stacked ensemble learning technique for classification of fire-resistant columns publication-title: Expert Syst Appl – volume: 39 start-page: 745 year: 2013 end-page: 758 ident: b0215 article-title: Advance and prospects of AdaBoost algorithm publication-title: Acta Autom Sin – volume: 240 year: 2021 ident: b0060 article-title: Seismic upgrading of existing reinforced concrete buildings: a state-of-the-art review publication-title: Eng Struct – volume: 78 start-page: 316 year: 1983 end-page: 331 ident: b0125 article-title: Estimating the error rate of a prediction rule: improvement on cross-validation publication-title: J Am Stat Assoc – volume: 32 start-page: 1621 year: 2021 end-page: 1647 ident: b0195 article-title: Designing energy-efficient high-precision multi-pass turning processes via robust optimization and artificial intelligence publication-title: J Intell Manuf – volume: 23 start-page: 94 year: 2023 ident: b0005 article-title: Machine learning-based seismic response and performance assessment of reinforced concrete buildings publication-title: Archives of Civil and Mechanical Engineering – volume: 59 year: 2022 ident: b0070 article-title: Seismic performance upgrade of substandard RC buildings with different structural systems using advanced retrofit techniques publication-title: J Build Eng – volume: 136 year: 2024 ident: b0015 article-title: Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete publication-title: Eng Appl Artif Intel – volume: 21 year: 2024 ident: b0065 article-title: Utilizing advanced machine learning approaches to assess the seismic fragility of non-engineered masonry structures publication-title: Results Eng – volume: 36 year: 2023 ident: b0225 article-title: Modeling the load carrying capacity of corroded reinforced concrete compression bending members using explainable machine learning publication-title: Mater Today Commun – volume: 25 start-page: 24 year: 2025 ident: b0030 article-title: Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete publication-title: Archives of Civil and Mechanical Engineering – volume: 289 year: 2023 ident: b0050 article-title: Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction publication-title: Comput Struct – volume: 276 year: 2022 ident: b0115 article-title: Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various machine learning techniques publication-title: Eng Fract Mech – volume: 21 start-page: 6029 year: 2023 end-page: 6063 ident: b0140 article-title: Post-earthquake damage assessment for RC columns using crack image complexity measures publication-title: Bull Earthq Eng – volume: 289 year: 2023 ident: b0075 article-title: Seismic performance of advanced three-dimensional base-isolated nuclear structures in complex-layered sites publication-title: Eng Struct – volume: 274 year: 2023 ident: b0045 article-title: Predicting seismic response of SMRFs founded on different soil types using machine learning techniques publication-title: Eng Struct – volume: 123 year: 2021 ident: b0120 article-title: Uniaxial tension damage mechanics of steel fiber reinforced concrete using acoustic emission and machine learning crack mode classification publication-title: Cem Concr Compos – volume: 7 start-page: 21 year: 2013 ident: b0230 article-title: Gradient boosting machines, a tutorial publication-title: Front Neurorob – volume: 125 year: 2023 ident: b0220 article-title: AdaBoost-driven multi-parameter real-time warning of rock burst risk in coal mines publication-title: Eng Appl Artif Intel – volume: 276 year: 2023 ident: b0110 article-title: Data-driven prediction models for total shear strength of reinforced concrete beams with fiber reinforced polymers using an evolutionary machine learning approach publication-title: Eng Struct – volume: 233 year: 2021 ident: b0100 article-title: Data-driven shear strength prediction of steel fiber reinforced concrete beams using machine learning approach publication-title: Eng Struct – volume: 26 start-page: 639 year: 2023 end-page: 667 ident: b0235 article-title: Gradient boosting for extreme quantile regression publication-title: Extremes – year: 2024 ident: b0090 article-title: Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams publication-title: Comput‐Aided Civ Infrastruct Eng – volume: 255 year: 2024 ident: b0150 article-title: Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls publication-title: Expert Syst Appl – volume: 128 year: 2024 ident: b0055 article-title: Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods publication-title: Eng Appl Artif Intel – volume: 79 year: 2023 ident: b0160 article-title: Nonmodel rapid seismic assessment of eccentrically braced frames incorporating masonry infills using machine learning techniques publication-title: J Build Eng – reference: Louppe, G. (2014). Understanding random forests: From theory to practice. arXiv preprint arXiv:1407.7502. – volume: 212 year: 2023 ident: b0240 article-title: WABL method as a universal defuzzifier in the fuzzy gradient boosting regression model publication-title: Expert Syst Appl – volume: 233 year: 2021 ident: 10.1016/j.compstruc.2025.107657_b0100 article-title: Data-driven shear strength prediction of steel fiber reinforced concrete beams using machine learning approach publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.111743 – volume: 136 year: 2024 ident: 10.1016/j.compstruc.2025.107657_b0015 article-title: Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2024.109053 – volume: 25 start-page: 24 year: 2025 ident: 10.1016/j.compstruc.2025.107657_b0030 article-title: Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete publication-title: Archives of Civil and Mechanical Engineering doi: 10.1007/s43452-024-01067-5 – volume: 274 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0045 article-title: Predicting seismic response of SMRFs founded on different soil types using machine learning techniques publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.114953 – volume: 21 start-page: 6029 issue: 13 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0140 article-title: Post-earthquake damage assessment for RC columns using crack image complexity measures publication-title: Bull Earthq Eng doi: 10.1007/s10518-023-01745-4 – volume: 126 year: 2022 ident: 10.1016/j.compstruc.2025.107657_b0105 article-title: Machine learning prediction of structural response of steel fiber-reinforced concrete beams subjected to far-field blast loading publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2021.104378 – year: 2024 ident: 10.1016/j.compstruc.2025.107657_b0090 article-title: Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams publication-title: Comput‐Aided Civ Infrastruct Eng doi: 10.1111/mice.13164 – volume: 240 year: 2024 ident: 10.1016/j.compstruc.2025.107657_b0200 article-title: RAGN-L: a stacked ensemble learning technique for classification of fire-resistant columns publication-title: Expert Syst Appl – volume: 123 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0135 article-title: Pre-clustering active learning method for automatic classification of building structures in urban areas publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2023.106382 – volume: 203 year: 2022 ident: 10.1016/j.compstruc.2025.107657_b0170 article-title: Bagging ensemble-based novel data generation method for univariate time series forecasting publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117366 – volume: 40 start-page: 920 year: 2022 ident: 10.1016/j.compstruc.2025.107657_b0025 article-title: Hiding in plain sight: what can interpretable unsupervised machine learning and clustering analysis tell us about the fire behavior of reinforced concrete columns publication-title: Structures doi: 10.1016/j.istruc.2022.04.076 – volume: 59 start-page: 1761 issue: 4 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0035 article-title: Revisiting forgotten fire tests: causal inference and counterfactuals for learning idealized fire-induced response of RC columns publication-title: Fire Technol doi: 10.1007/s10694-023-01405-8 – volume: 79 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0160 article-title: Nonmodel rapid seismic assessment of eccentrically braced frames incorporating masonry infills using machine learning techniques publication-title: J Build Eng – volume: 7 start-page: 21 year: 2013 ident: 10.1016/j.compstruc.2025.107657_b0230 article-title: Gradient boosting machines, a tutorial publication-title: Front Neurorob doi: 10.3389/fnbot.2013.00021 – volume: 276 year: 2020 ident: 10.1016/j.compstruc.2025.107657_b0165 article-title: Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.122927 – volume: 218 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0145 article-title: Data-driven strength-based seismic damage index measurement for RC columns using crack image-derived parameters publication-title: Measurement doi: 10.1016/j.measurement.2023.113155 – ident: 10.1016/j.compstruc.2025.107657_b0205 – volume: 59 year: 2022 ident: 10.1016/j.compstruc.2025.107657_b0070 article-title: Seismic performance upgrade of substandard RC buildings with different structural systems using advanced retrofit techniques publication-title: J Build Eng – volume: 78 start-page: 316 issue: 382 year: 1983 ident: 10.1016/j.compstruc.2025.107657_b0125 article-title: Estimating the error rate of a prediction rule: improvement on cross-validation publication-title: J Am Stat Assoc doi: 10.1080/01621459.1983.10477973 – start-page: 1 year: 2024 ident: 10.1016/j.compstruc.2025.107657_b0130 article-title: Extrapolated cross-validation for randomized ensembles publication-title: J Comput Graph Stat – volume: 255 year: 2024 ident: 10.1016/j.compstruc.2025.107657_b0150 article-title: Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2024.124897 – volume: 25 start-page: 197 year: 2016 ident: 10.1016/j.compstruc.2025.107657_b0210 article-title: A random forest guided tour publication-title: TEST doi: 10.1007/s11749-016-0481-7 – volume: 21 year: 2024 ident: 10.1016/j.compstruc.2025.107657_b0065 article-title: Utilizing advanced machine learning approaches to assess the seismic fragility of non-engineered masonry structures publication-title: Results Eng doi: 10.1016/j.rineng.2024.101750 – volume: 26 start-page: 639 issue: 4 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0235 article-title: Gradient boosting for extreme quantile regression publication-title: Extremes doi: 10.1007/s10687-023-00473-x – volume: 128 year: 2024 ident: 10.1016/j.compstruc.2025.107657_b0055 article-title: Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2023.107388 – volume: 123 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0080 article-title: Machine learning-based prediction of preplaced aggregate concrete characteristics publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2023.106387 – volume: 125 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0220 article-title: AdaBoost-driven multi-parameter real-time warning of rock burst risk in coal mines publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2023.106591 – volume: 289 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0050 article-title: Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction publication-title: Comput Struct doi: 10.1016/j.compstruc.2023.107181 – volume: 177 year: 2021 ident: 10.1016/j.compstruc.2025.107657_b0190 article-title: Gradient-based grey wolf optimizer with Gaussian walk: application in modelling and prediction of the COVID-19 pandemic publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114920 – volume: 23 start-page: 94 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0005 article-title: Machine learning-based seismic response and performance assessment of reinforced concrete buildings publication-title: Archives of Civil and Mechanical Engineering doi: 10.1007/s43452-023-00631-9 – volume: 276 year: 2022 ident: 10.1016/j.compstruc.2025.107657_b0115 article-title: Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various machine learning techniques publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2022.108914 – volume: 212 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0240 article-title: WABL method as a universal defuzzifier in the fuzzy gradient boosting regression model publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118771 – volume: 166 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0010 article-title: Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2023.107761 – volume: 32 start-page: 1621 issue: 6 year: 2021 ident: 10.1016/j.compstruc.2025.107657_b0195 article-title: Designing energy-efficient high-precision multi-pass turning processes via robust optimization and artificial intelligence publication-title: J Intell Manuf doi: 10.1007/s10845-020-01648-0 – volume: 32 start-page: 571 year: 2025 ident: 10.1016/j.compstruc.2025.107657_b0095 article-title: Machine-learning methods for estimating performance of structural concrete members reinforced with fiber-reinforced polymers publication-title: Arch Comput Meth Eng doi: 10.1007/s11831-024-10143-1 – volume: 39 start-page: 745 issue: 6 year: 2013 ident: 10.1016/j.compstruc.2025.107657_b0215 article-title: Advance and prospects of AdaBoost algorithm publication-title: Acta Autom Sin – ident: 10.1016/j.compstruc.2025.107657_b0155 doi: 10.1007/978-3-031-63759-9_47 – volume: 21 start-page: 3777 year: 2022 ident: 10.1016/j.compstruc.2025.107657_b0180 article-title: Data-driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2022.10.153 – volume: 195 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0020 article-title: Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: a comparative study publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2023.110315 – volume: 36 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0225 article-title: Modeling the load carrying capacity of corroded reinforced concrete compression bending members using explainable machine learning publication-title: Mater Today Commun – volume: 123 year: 2021 ident: 10.1016/j.compstruc.2025.107657_b0120 article-title: Uniaxial tension damage mechanics of steel fiber reinforced concrete using acoustic emission and machine learning crack mode classification publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2021.104205 – volume: 19 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0085 article-title: Prediction of compressive strength of two-stage (preplaced aggregate) concrete using gene expression programming and random forest publication-title: Case Stud Constr Mater – start-page: 1 year: 2024 ident: 10.1016/j.compstruc.2025.107657_b0040 article-title: Data-driven modeling of mechanical properties of fiber-reinforced concrete: a critical review publication-title: Arch Comput Meth Eng – volume: 274 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0175 article-title: Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction publication-title: Comput Struct doi: 10.1016/j.compstruc.2022.106886 – volume: 276 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0110 article-title: Data-driven prediction models for total shear strength of reinforced concrete beams with fiber reinforced polymers using an evolutionary machine learning approach publication-title: Eng Struct – volume: 240 year: 2021 ident: 10.1016/j.compstruc.2025.107657_b0060 article-title: Seismic upgrading of existing reinforced concrete buildings: a state-of-the-art review publication-title: Eng Struct doi: 10.1016/j.engstruct.2021.112273 – volume: 289 year: 2023 ident: 10.1016/j.compstruc.2025.107657_b0075 article-title: Seismic performance of advanced three-dimensional base-isolated nuclear structures in complex-layered sites publication-title: Eng Struct doi: 10.1016/j.engstruct.2023.116247 – volume: 17 year: 2022 ident: 10.1016/j.compstruc.2025.107657_b0185 article-title: Ensemble Machine Learning approach for evaluating the material characterization of carbon nanotube-reinforced cementitious composites publication-title: Case Stud Constr Mater |
SSID | ssj0006400 |
Score | 2.5580966 |
Snippet | •Multi-subject ensemble ML method proposed to estimate mechanical properties of materials.•Automated optimizing and utilizing hyperparameters exhibited... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107657 |
SubjectTerms | Data processing Ensemble machine-learning model Fiber-reinforced concrete Fiber-reinforced concrete beam Multi-subject machine-learning model Preplaced aggregate concrete |
Title | RAGN-R: A multi-subject ensemble machine-learning method for estimating mechanical properties of advanced structural materials |
URI | https://dx.doi.org/10.1016/j.compstruc.2025.107657 |
Volume | 308 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB6KXvQgrliXMgevYzNblt5KsVbFHoqF3kIymUilG1qv_e2-l0lqC0IPHjPhhTDv8Zbh-74h5I6bCIqq9JnMU82U4QlLhJcxboXwlEoDq5Eo_Nr3e0P1PNKjGulUXBiEVZa53-X0IluXK81yN5uL8Rg5vkpDNEVCF4TgETLYVYD6-ferX5iHryoaCkozqmgL44Ww7UKnFQZFoWE18LFO_VWhNqpO95gcle0ibbs_OiE1OzslhxsigmdkNWg_9tmgRdu0QAeyr-8UD1coDKh2mk4snRaAScvKGyLeqbs2mkK_SlFkA5vWYhVZwOg0usAj-k_UWqXznFY4AerEZlGoA765dLF7Tobdh7dOj5W3KjAjuV6y3HABM4aOZA4-yniWZCbSuUxlkEM7JZWwNlRJxm2Ewx6Ud2l4pJIcZh2TqEBekL3ZfGYvCVXGhNDvWCOQn-oloZAZpMswzKBJ5F5YJ361k7EpJcfx5otJXGHLPuK1C2J0QexcUCfe2nDhVDd2m7QqV8VbARRDbdhlfPUf42tygE8Oyn1D9uC9vYVOZZk2ilBskP3200uv_wMvFOs- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4gHNSD8RnxuQevG7qv0nIjRAR5HAgk3Jp2uzUYXlG8-tud6YNIYsLB67TTNDuTeWy--YaQJ258SKrSZTKJNFOGhywUTsy4FcJRKqpbjYPCg6HbmajXqZ6WSKuYhUFYZR77s5ieRutcUstPs7aezXDGV2nwJl_odCB4ekAqyE4Fzl5pdnud4TYgu6qYREF2RuXvwLwQuZ1StUKvKDRI6y6mqr-S1K_E0z4lJ3nFSJvZT52Rkl2ek-NfPIIX5HvUfBmyUYM2aQoQZJ9fEd6vUOhR7SKaW7pIMZOW5Usi3mi2OZpCyUqRZwPr1lSKg8BoN7rGW_oPpFulq4QWUAGa8c0iVwd8c5O57yWZtJ_HrQ7LFyswI7nesMRwAW2G9mUCZop5HMbG14mMZD2BikoqYa2nwphbH_s9yPDScF-FCbQ7JoQjviLl5WpprwlVxnhQ8lgjcETVCT0hY4iYnhdDncgdr0rc4iQDk7OO4_KLeVDAy96DrQkCNEGQmaBKnK3iOiPe2K_SKEwV7PhQAOlhn_LNf5QfyWFnPOgH_e6wd0uO8EmG7L4jZXjX3kPhsokecsf8ATu47e8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RAGN-R%3A+A+multi-subject+ensemble+machine-learning+method+for+estimating+mechanical+properties+of+advanced+structural+materials&rft.jtitle=Computers+%26+structures&rft.au=Kazemi%2C+F.&rft.au=%D3%A6zy%C3%BCksel+%C3%87ift%C3%A7io%C4%9Flu%2C+A.&rft.au=Shafighfard%2C+T.&rft.au=Asgarkhani%2C+N.&rft.date=2025-02-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7949&rft.volume=308&rft_id=info:doi/10.1016%2Fj.compstruc.2025.107657&rft.externalDocID=S004579492500015X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon |