RAGN-R: A multi-subject ensemble machine-learning method for estimating mechanical properties of advanced structural materials

•Multi-subject ensemble ML method proposed to estimate mechanical properties of materials.•Automated optimizing and utilizing hyperparameters exhibited superior ML performance.•Proposed RAGN-R model is hyperparameter free to estimate mechanical properties.•Novel RAGN-R model showed superior accuraci...

Full description

Saved in:
Bibliographic Details
Published inComputers & structures Vol. 308; p. 107657
Main Authors Kazemi, F., Ӧzyüksel Çiftçioğlu, A., Shafighfard, T., Asgarkhani, N., Jankowski, R.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2025
Subjects
Online AccessGet full text
ISSN0045-7949
DOI10.1016/j.compstruc.2025.107657

Cover

Loading…
Abstract •Multi-subject ensemble ML method proposed to estimate mechanical properties of materials.•Automated optimizing and utilizing hyperparameters exhibited superior ML performance.•Proposed RAGN-R model is hyperparameter free to estimate mechanical properties.•Novel RAGN-R model showed superior accuracies compared to other well-known ML algorithms. The utilization of advanced structural materials, such as preplaced aggregate concrete (PAC), fiber-reinforced concrete (FRC), and FRC beams has revolutionized the field of civil engineering. These materials exhibit enhanced mechanical properties compared to traditional construction materials, offering engineers unprecedented opportunities to optimize the design, construction, and performance of structures and infrastructures. This formal description elucidates the inherent mechanical properties of PAC, FRC, and FRC beams, explores their diverse applications in civil engineering projects. This research aims to propose a surrogate multi-subject ensemble machine-learning (ML) method (named RAGN-R) for estimating mechanical properties of aforementioned advanced materials. The proposed learning approach, RAGN-R, integrates Random forest, Adaptive boosting, and GradieNt boosting techniques, employing a Ridge regression framework for stacking the ensemble. For this purpose, three experimental dataset have been prepared to determine the capability of RAGN-R and the results of the study have been compared with six well-known ML models. It is noteworthy that the proposed RAGN-R has the ability of self-optimizing the hyperparameters, which facilitate the adoptability of the model with engineering problems. Moreover, three datasets have been investigated to show the ability of the RAGN-R for diverse problems. Different performance evaluation metrics have been conducted to present results and compare ML models, which confirms the highest performance of RAGN-R (i.e., 97.7% accuracy) in handling complex relationships and improving overall prediction accuracy.
AbstractList •Multi-subject ensemble ML method proposed to estimate mechanical properties of materials.•Automated optimizing and utilizing hyperparameters exhibited superior ML performance.•Proposed RAGN-R model is hyperparameter free to estimate mechanical properties.•Novel RAGN-R model showed superior accuracies compared to other well-known ML algorithms. The utilization of advanced structural materials, such as preplaced aggregate concrete (PAC), fiber-reinforced concrete (FRC), and FRC beams has revolutionized the field of civil engineering. These materials exhibit enhanced mechanical properties compared to traditional construction materials, offering engineers unprecedented opportunities to optimize the design, construction, and performance of structures and infrastructures. This formal description elucidates the inherent mechanical properties of PAC, FRC, and FRC beams, explores their diverse applications in civil engineering projects. This research aims to propose a surrogate multi-subject ensemble machine-learning (ML) method (named RAGN-R) for estimating mechanical properties of aforementioned advanced materials. The proposed learning approach, RAGN-R, integrates Random forest, Adaptive boosting, and GradieNt boosting techniques, employing a Ridge regression framework for stacking the ensemble. For this purpose, three experimental dataset have been prepared to determine the capability of RAGN-R and the results of the study have been compared with six well-known ML models. It is noteworthy that the proposed RAGN-R has the ability of self-optimizing the hyperparameters, which facilitate the adoptability of the model with engineering problems. Moreover, three datasets have been investigated to show the ability of the RAGN-R for diverse problems. Different performance evaluation metrics have been conducted to present results and compare ML models, which confirms the highest performance of RAGN-R (i.e., 97.7% accuracy) in handling complex relationships and improving overall prediction accuracy.
ArticleNumber 107657
Author Jankowski, R.
Asgarkhani, N.
Kazemi, F.
Ӧzyüksel Çiftçioğlu, A.
Shafighfard, T.
Author_xml – sequence: 1
  givenname: F.
  orcidid: 0000-0002-2448-1465
  surname: Kazemi
  fullname: Kazemi, F.
  email: farzin.kazemi@pg.edu.pl
  organization: Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12 80-233, Gdansk, Poland
– sequence: 2
  givenname: A.
  surname: Ӧzyüksel Çiftçioğlu
  fullname: Ӧzyüksel Çiftçioğlu, A.
  email: aybike.ozyuksel@cbu.edu.tr
  organization: Department of Civil Engineering, Faculty of Engineering, Manisa Celal Bayar University, Turkey
– sequence: 3
  givenname: T.
  surname: Shafighfard
  fullname: Shafighfard, T.
  email: tshafighfard@imp.gda.pl
  organization: Institute of Fluid Flow Machinery, Polish Academy of Sciences, Generała Józefa Fiszera 14 80-231, Gdańsk, Poland
– sequence: 4
  givenname: N.
  surname: Asgarkhani
  fullname: Asgarkhani, N.
  email: neda.asgarkhani@pg.edu.pl
  organization: Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12 80-233, Gdansk, Poland
– sequence: 5
  givenname: R.
  surname: Jankowski
  fullname: Jankowski, R.
  email: jankowr@pg.edu.pl
  organization: Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12 80-233, Gdansk, Poland
BookMark eNqNkMFKAzEQhnOoYFt9BvMCW5NNstsVPJSiVSgKRc8hzU5sym5SkrTgxWc3teLBi54GhvmG__9GaOC8A4SuKJlQQqvr7UT7fhdT2OtJSUqRt3Ul6gEaEsJFUTe8OUejGLeEkIoTMkQfq9niqVjd4Bnu912yRdyvt6ATBhehX3eAe6U31kHRgQrOujfcQ9r4FhsfMMRke5VOW71RzmrV4V3wOwjJQsTeYNUelNPQ4q9YaR_yRWYgWNXFC3Rm8oDL7zlGr_d3L_OHYvm8eJzPloVmVKTCaFrW1VQ0zDBWtbRVrW6EYWtWG8EF4yXAlKuWQsNJTUVJmaYNV6apiFa8ZmN0e_qrg48xgJHaphzcuxSU7SQl8ihQbuWPQHkUKE8CM1__4nchNw_v_yBnJxJyvYOFIKO2cBRiQ_YsW2___PEJv8CXlw
CitedBy_id crossref_primary_10_3390_agriengineering7030075
crossref_primary_10_3390_buildings15060895
Cites_doi 10.1016/j.engstruct.2020.111743
10.1016/j.engappai.2024.109053
10.1007/s43452-024-01067-5
10.1016/j.engstruct.2022.114953
10.1007/s10518-023-01745-4
10.1016/j.cemconcomp.2021.104378
10.1111/mice.13164
10.1016/j.engappai.2023.106382
10.1016/j.eswa.2022.117366
10.1016/j.istruc.2022.04.076
10.1007/s10694-023-01405-8
10.3389/fnbot.2013.00021
10.1016/j.jclepro.2020.122927
10.1016/j.measurement.2023.113155
10.1080/01621459.1983.10477973
10.1016/j.eswa.2024.124897
10.1007/s11749-016-0481-7
10.1016/j.rineng.2024.101750
10.1007/s10687-023-00473-x
10.1016/j.engappai.2023.107388
10.1016/j.engappai.2023.106387
10.1016/j.engappai.2023.106591
10.1016/j.compstruc.2023.107181
10.1016/j.eswa.2021.114920
10.1007/s43452-023-00631-9
10.1016/j.engfracmech.2022.108914
10.1016/j.eswa.2022.118771
10.1016/j.soildyn.2023.107761
10.1007/s10845-020-01648-0
10.1007/s11831-024-10143-1
10.1007/978-3-031-63759-9_47
10.1016/j.jmrt.2022.10.153
10.1016/j.ymssp.2023.110315
10.1016/j.cemconcomp.2021.104205
10.1016/j.compstruc.2022.106886
10.1016/j.engstruct.2021.112273
10.1016/j.engstruct.2023.116247
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compstruc.2025.107657
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compstruc_2025_107657
S004579492500015X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABDPE
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSH
SST
SSV
SSW
SSZ
T5K
T9H
TAE
TN5
UAO
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c315t-fc12768593f336d1dadc95f3b37f545342ee84ad1e940715213c194af960ca473
IEDL.DBID .~1
ISSN 0045-7949
IngestDate Thu Apr 24 22:54:02 EDT 2025
Tue Aug 05 11:58:27 EDT 2025
Sun Apr 06 06:53:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Data processing
Multi-subject machine-learning model
Preplaced aggregate concrete
Fiber-reinforced concrete
Fiber-reinforced concrete beam
Ensemble machine-learning model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-fc12768593f336d1dadc95f3b37f545342ee84ad1e940715213c194af960ca473
ORCID 0000-0002-2448-1465
ParticipantIDs crossref_citationtrail_10_1016_j_compstruc_2025_107657
crossref_primary_10_1016_j_compstruc_2025_107657
elsevier_sciencedirect_doi_10_1016_j_compstruc_2025_107657
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Computers & structures
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Louppe, G. (2014). Understanding random forests: From theory to practice. arXiv preprint arXiv:1407.7502.
Harirchian, Aghakouchaki Hosseini, Novelli, Lahmer, Rasulzade (b0065) 2024; 21
Velthoen, Dombry, Cai, Engelke (b0235) 2023; 26
Kazemi, Shafighfard, Yoo (b0040) 2024
Liu, Li, Lin (b0075) 2023; 289
Afzali, Hamidia, Safi (b0145) 2023; 218
Rahman, Ahmed, Khan, Islam, Mangalathu (b0100) 2021; 233
Kazemi, Asgarkhani, Jankowski (b0010) 2023; 166
Özyüksel Çiftçioğlu, Naser (b0025) 2022; 40
Kazemi, Shafighfard, Jankowski, Yoo (b0030) 2025; 25
Kazemi, Asgarkhani, Shafighfard, Jankowski, Yoo (b0095) 2025; 32
Nasiboglu, Nasibov (b0240) 2023; 212
Chalabi, Yazdanpanah, Dolatshahi (b0160) 2023; 79
Dehestani, Kazemi, Abdi, Nitka (b0115) 2022; 276
Kazemi, Asgarkhani, Jankowski (b0045) 2023; 274
Kazemi, Asgarkhani, Jankowski (b0150) 2024; 255
Anvari, Babanajad, Gandomi (b0110) 2023; 276
Moaf, Kazemi, Abdelgader, Kurpińska (b0080) 2023; 123
Kim, Baek (b0170) 2022; 203
Wang, Chen, Li, Tian, Zhao (b0220) 2023; 125
Naser, Çiftçioğlu (b0035) 2023; 59
Joseph, Mwafy, Alam (b0070) 2022; 59
Shafighfard, Kazemi, Bagherzadeh, Mieloszyk, Yoo (b0090) 2024
Qureshi, Alyami, Nawaz, Hakeem, Aslam, Iftikhar (b0085) 2023; 19
Khalilpourazari, Hashemi Doulabi, Özyüksel Çiftçioğlu, Weber (b0190) 2021; 177
Asgarkhani, N., Kazemi, F., & Jankowski, R. (2024). Active learning on ensemble machine-learning model to retrofit buildings under seismic mainshock-aftershock sequence. In International Conference on Computational Science (pp. 470-478).
Asgarkhani, Kazemi, Jankowski (b0050) 2023; 289
Kazemi, Jankowski (b0175) 2023; 274
Du, Patil, Roeder, Kuchibhotla (b0130) 2024
Yue, Wang, Beskos (b0120) 2021; 123
Kazemi, Asgarkhani, Jankowski (b0005) 2023; 23
Khalilpourazari, Khalilpourazary, Özyüksel Çiftçioğlu, Weber (b0195) 2021; 32
Shafighfard, Bagherzadeh, Rizi, Yoo (b0180) 2022; 21
Bagherzadeh, Shafighfard, Khan, Szczuko, Mieloszyk (b0020) 2023; 195
Tirkolaee, Goli, Faridnia, Soltani, Weber (b0165) 2020; 276
Çiftçioğlu (b0200) 2024; 240
Efron (b0125) 1983; 78
Bagherzadeh, Shafighfard (b0185) 2022; 17
Gkournelos, Triantafillou, Bournas (b0060) 2021; 240
Almustafa, Nehdi (b0105) 2022; 126
Biau, Scornet (b0210) 2016; 25
Natekin, Knoll (b0230) 2013; 7
Zhou, Zhang, Zhao, Qi, Chang, Bai (b0135) 2023; 123
Ying, Qi-Guang, Jia-Chen, Lin (b0215) 2013; 39
Asgarkhani, Kazemi, Jakubczyk-Gałczyńska, Mohebi, Jankowski (b0055) 2024; 128
Liu, Huang, Ou, Xu, Li, Ai (b0225) 2023; 36
Shafighfard, Kazemi, Asgarkhani, Yoo (b0015) 2024; 136
Jamshidian, Hamidia (b0140) 2023; 21
Afzali (10.1016/j.compstruc.2025.107657_b0145) 2023; 218
Joseph (10.1016/j.compstruc.2025.107657_b0070) 2022; 59
Kazemi (10.1016/j.compstruc.2025.107657_b0030) 2025; 25
Shafighfard (10.1016/j.compstruc.2025.107657_b0180) 2022; 21
Kim (10.1016/j.compstruc.2025.107657_b0170) 2022; 203
Kazemi (10.1016/j.compstruc.2025.107657_b0175) 2023; 274
Velthoen (10.1016/j.compstruc.2025.107657_b0235) 2023; 26
Kazemi (10.1016/j.compstruc.2025.107657_b0095) 2025; 32
Asgarkhani (10.1016/j.compstruc.2025.107657_b0055) 2024; 128
Dehestani (10.1016/j.compstruc.2025.107657_b0115) 2022; 276
Bagherzadeh (10.1016/j.compstruc.2025.107657_b0185) 2022; 17
Zhou (10.1016/j.compstruc.2025.107657_b0135) 2023; 123
Rahman (10.1016/j.compstruc.2025.107657_b0100) 2021; 233
10.1016/j.compstruc.2025.107657_b0155
Du (10.1016/j.compstruc.2025.107657_b0130) 2024
Jamshidian (10.1016/j.compstruc.2025.107657_b0140) 2023; 21
Yue (10.1016/j.compstruc.2025.107657_b0120) 2021; 123
Efron (10.1016/j.compstruc.2025.107657_b0125) 1983; 78
Chalabi (10.1016/j.compstruc.2025.107657_b0160) 2023; 79
Asgarkhani (10.1016/j.compstruc.2025.107657_b0050) 2023; 289
Anvari (10.1016/j.compstruc.2025.107657_b0110) 2023; 276
Tirkolaee (10.1016/j.compstruc.2025.107657_b0165) 2020; 276
Naser (10.1016/j.compstruc.2025.107657_b0035) 2023; 59
Liu (10.1016/j.compstruc.2025.107657_b0075) 2023; 289
Kazemi (10.1016/j.compstruc.2025.107657_b0040) 2024
Wang (10.1016/j.compstruc.2025.107657_b0220) 2023; 125
Shafighfard (10.1016/j.compstruc.2025.107657_b0015) 2024; 136
Khalilpourazari (10.1016/j.compstruc.2025.107657_b0190) 2021; 177
Harirchian (10.1016/j.compstruc.2025.107657_b0065) 2024; 21
Moaf (10.1016/j.compstruc.2025.107657_b0080) 2023; 123
Almustafa (10.1016/j.compstruc.2025.107657_b0105) 2022; 126
Özyüksel Çiftçioğlu (10.1016/j.compstruc.2025.107657_b0025) 2022; 40
Gkournelos (10.1016/j.compstruc.2025.107657_b0060) 2021; 240
Qureshi (10.1016/j.compstruc.2025.107657_b0085) 2023; 19
Çiftçioğlu (10.1016/j.compstruc.2025.107657_b0200) 2024; 240
Ying (10.1016/j.compstruc.2025.107657_b0215) 2013; 39
Khalilpourazari (10.1016/j.compstruc.2025.107657_b0195) 2021; 32
Liu (10.1016/j.compstruc.2025.107657_b0225) 2023; 36
Biau (10.1016/j.compstruc.2025.107657_b0210) 2016; 25
Natekin (10.1016/j.compstruc.2025.107657_b0230) 2013; 7
Kazemi (10.1016/j.compstruc.2025.107657_b0010) 2023; 166
Nasiboglu (10.1016/j.compstruc.2025.107657_b0240) 2023; 212
Kazemi (10.1016/j.compstruc.2025.107657_b0150) 2024; 255
Kazemi (10.1016/j.compstruc.2025.107657_b0005) 2023; 23
Bagherzadeh (10.1016/j.compstruc.2025.107657_b0020) 2023; 195
10.1016/j.compstruc.2025.107657_b0205
Kazemi (10.1016/j.compstruc.2025.107657_b0045) 2023; 274
Shafighfard (10.1016/j.compstruc.2025.107657_b0090) 2024
References_xml – volume: 177
  year: 2021
  ident: b0190
  article-title: Gradient-based grey wolf optimizer with Gaussian walk: application in modelling and prediction of the COVID-19 pandemic
  publication-title: Expert Syst Appl
– volume: 59
  start-page: 1761
  year: 2023
  end-page: 1788
  ident: b0035
  article-title: Revisiting forgotten fire tests: causal inference and counterfactuals for learning idealized fire-induced response of RC columns
  publication-title: Fire Technol
– reference: Asgarkhani, N., Kazemi, F., & Jankowski, R. (2024). Active learning on ensemble machine-learning model to retrofit buildings under seismic mainshock-aftershock sequence. In International Conference on Computational Science (pp. 470-478).
– volume: 17
  year: 2022
  ident: b0185
  article-title: Ensemble Machine Learning approach for evaluating the material characterization of carbon nanotube-reinforced cementitious composites
  publication-title: Case Stud Constr Mater
– volume: 25
  start-page: 197
  year: 2016
  end-page: 227
  ident: b0210
  article-title: A random forest guided tour
  publication-title: TEST
– volume: 203
  year: 2022
  ident: b0170
  article-title: Bagging ensemble-based novel data generation method for univariate time series forecasting
  publication-title: Expert Syst Appl
– volume: 21
  start-page: 3777
  year: 2022
  end-page: 3794
  ident: b0180
  article-title: Data-driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms
  publication-title: J Mater Res Technol
– volume: 40
  start-page: 920
  year: 2022
  end-page: 935
  ident: b0025
  article-title: Hiding in plain sight: what can interpretable unsupervised machine learning and clustering analysis tell us about the fire behavior of reinforced concrete columns
  publication-title: Structures
– volume: 123
  year: 2023
  ident: b0135
  article-title: Pre-clustering active learning method for automatic classification of building structures in urban areas
  publication-title: Eng Appl Artif Intel
– volume: 218
  year: 2023
  ident: b0145
  article-title: Data-driven strength-based seismic damage index measurement for RC columns using crack image-derived parameters
  publication-title: Measurement
– volume: 166
  year: 2023
  ident: b0010
  article-title: Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
  publication-title: Soil Dyn Earthq Eng
– volume: 19
  year: 2023
  ident: b0085
  article-title: Prediction of compressive strength of two-stage (preplaced aggregate) concrete using gene expression programming and random forest
  publication-title: Case Stud Constr Mater
– volume: 32
  start-page: 571
  year: 2025
  end-page: 603
  ident: b0095
  article-title: Machine-learning methods for estimating performance of structural concrete members reinforced with fiber-reinforced polymers
  publication-title: Arch Comput Meth Eng
– volume: 195
  year: 2023
  ident: b0020
  article-title: Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: a comparative study
  publication-title: Mech Syst Sig Process
– start-page: 1
  year: 2024
  end-page: 30
  ident: b0040
  article-title: Data-driven modeling of mechanical properties of fiber-reinforced concrete: a critical review
  publication-title: Arch Comput Meth Eng
– volume: 274
  year: 2023
  ident: b0175
  article-title: Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
  publication-title: Comput Struct
– start-page: 1
  year: 2024
  end-page: 12
  ident: b0130
  article-title: Extrapolated cross-validation for randomized ensembles
  publication-title: J Comput Graph Stat
– volume: 123
  year: 2023
  ident: b0080
  article-title: Machine learning-based prediction of preplaced aggregate concrete characteristics
  publication-title: Eng Appl Artif Intel
– volume: 126
  year: 2022
  ident: b0105
  article-title: Machine learning prediction of structural response of steel fiber-reinforced concrete beams subjected to far-field blast loading
  publication-title: Cem Concr Compos
– volume: 276
  year: 2020
  ident: b0165
  article-title: Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms
  publication-title: J Clean Prod
– volume: 240
  year: 2024
  ident: b0200
  article-title: RAGN-L: a stacked ensemble learning technique for classification of fire-resistant columns
  publication-title: Expert Syst Appl
– volume: 39
  start-page: 745
  year: 2013
  end-page: 758
  ident: b0215
  article-title: Advance and prospects of AdaBoost algorithm
  publication-title: Acta Autom Sin
– volume: 240
  year: 2021
  ident: b0060
  article-title: Seismic upgrading of existing reinforced concrete buildings: a state-of-the-art review
  publication-title: Eng Struct
– volume: 78
  start-page: 316
  year: 1983
  end-page: 331
  ident: b0125
  article-title: Estimating the error rate of a prediction rule: improvement on cross-validation
  publication-title: J Am Stat Assoc
– volume: 32
  start-page: 1621
  year: 2021
  end-page: 1647
  ident: b0195
  article-title: Designing energy-efficient high-precision multi-pass turning processes via robust optimization and artificial intelligence
  publication-title: J Intell Manuf
– volume: 23
  start-page: 94
  year: 2023
  ident: b0005
  article-title: Machine learning-based seismic response and performance assessment of reinforced concrete buildings
  publication-title: Archives of Civil and Mechanical Engineering
– volume: 59
  year: 2022
  ident: b0070
  article-title: Seismic performance upgrade of substandard RC buildings with different structural systems using advanced retrofit techniques
  publication-title: J Build Eng
– volume: 136
  year: 2024
  ident: b0015
  article-title: Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete
  publication-title: Eng Appl Artif Intel
– volume: 21
  year: 2024
  ident: b0065
  article-title: Utilizing advanced machine learning approaches to assess the seismic fragility of non-engineered masonry structures
  publication-title: Results Eng
– volume: 36
  year: 2023
  ident: b0225
  article-title: Modeling the load carrying capacity of corroded reinforced concrete compression bending members using explainable machine learning
  publication-title: Mater Today Commun
– volume: 25
  start-page: 24
  year: 2025
  ident: b0030
  article-title: Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete
  publication-title: Archives of Civil and Mechanical Engineering
– volume: 289
  year: 2023
  ident: b0050
  article-title: Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
  publication-title: Comput Struct
– volume: 276
  year: 2022
  ident: b0115
  article-title: Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various machine learning techniques
  publication-title: Eng Fract Mech
– volume: 21
  start-page: 6029
  year: 2023
  end-page: 6063
  ident: b0140
  article-title: Post-earthquake damage assessment for RC columns using crack image complexity measures
  publication-title: Bull Earthq Eng
– volume: 289
  year: 2023
  ident: b0075
  article-title: Seismic performance of advanced three-dimensional base-isolated nuclear structures in complex-layered sites
  publication-title: Eng Struct
– volume: 274
  year: 2023
  ident: b0045
  article-title: Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
  publication-title: Eng Struct
– volume: 123
  year: 2021
  ident: b0120
  article-title: Uniaxial tension damage mechanics of steel fiber reinforced concrete using acoustic emission and machine learning crack mode classification
  publication-title: Cem Concr Compos
– volume: 7
  start-page: 21
  year: 2013
  ident: b0230
  article-title: Gradient boosting machines, a tutorial
  publication-title: Front Neurorob
– volume: 125
  year: 2023
  ident: b0220
  article-title: AdaBoost-driven multi-parameter real-time warning of rock burst risk in coal mines
  publication-title: Eng Appl Artif Intel
– volume: 276
  year: 2023
  ident: b0110
  article-title: Data-driven prediction models for total shear strength of reinforced concrete beams with fiber reinforced polymers using an evolutionary machine learning approach
  publication-title: Eng Struct
– volume: 233
  year: 2021
  ident: b0100
  article-title: Data-driven shear strength prediction of steel fiber reinforced concrete beams using machine learning approach
  publication-title: Eng Struct
– volume: 26
  start-page: 639
  year: 2023
  end-page: 667
  ident: b0235
  article-title: Gradient boosting for extreme quantile regression
  publication-title: Extremes
– year: 2024
  ident: b0090
  article-title: Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
  publication-title: Comput‐Aided Civ Infrastruct Eng
– volume: 255
  year: 2024
  ident: b0150
  article-title: Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls
  publication-title: Expert Syst Appl
– volume: 128
  year: 2024
  ident: b0055
  article-title: Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods
  publication-title: Eng Appl Artif Intel
– volume: 79
  year: 2023
  ident: b0160
  article-title: Nonmodel rapid seismic assessment of eccentrically braced frames incorporating masonry infills using machine learning techniques
  publication-title: J Build Eng
– reference: Louppe, G. (2014). Understanding random forests: From theory to practice. arXiv preprint arXiv:1407.7502.
– volume: 212
  year: 2023
  ident: b0240
  article-title: WABL method as a universal defuzzifier in the fuzzy gradient boosting regression model
  publication-title: Expert Syst Appl
– volume: 233
  year: 2021
  ident: 10.1016/j.compstruc.2025.107657_b0100
  article-title: Data-driven shear strength prediction of steel fiber reinforced concrete beams using machine learning approach
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.111743
– volume: 136
  year: 2024
  ident: 10.1016/j.compstruc.2025.107657_b0015
  article-title: Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2024.109053
– volume: 25
  start-page: 24
  year: 2025
  ident: 10.1016/j.compstruc.2025.107657_b0030
  article-title: Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete
  publication-title: Archives of Civil and Mechanical Engineering
  doi: 10.1007/s43452-024-01067-5
– volume: 274
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0045
  article-title: Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.114953
– volume: 21
  start-page: 6029
  issue: 13
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0140
  article-title: Post-earthquake damage assessment for RC columns using crack image complexity measures
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-023-01745-4
– volume: 126
  year: 2022
  ident: 10.1016/j.compstruc.2025.107657_b0105
  article-title: Machine learning prediction of structural response of steel fiber-reinforced concrete beams subjected to far-field blast loading
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2021.104378
– year: 2024
  ident: 10.1016/j.compstruc.2025.107657_b0090
  article-title: Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
  publication-title: Comput‐Aided Civ Infrastruct Eng
  doi: 10.1111/mice.13164
– volume: 240
  year: 2024
  ident: 10.1016/j.compstruc.2025.107657_b0200
  article-title: RAGN-L: a stacked ensemble learning technique for classification of fire-resistant columns
  publication-title: Expert Syst Appl
– volume: 123
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0135
  article-title: Pre-clustering active learning method for automatic classification of building structures in urban areas
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2023.106382
– volume: 203
  year: 2022
  ident: 10.1016/j.compstruc.2025.107657_b0170
  article-title: Bagging ensemble-based novel data generation method for univariate time series forecasting
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117366
– volume: 40
  start-page: 920
  year: 2022
  ident: 10.1016/j.compstruc.2025.107657_b0025
  article-title: Hiding in plain sight: what can interpretable unsupervised machine learning and clustering analysis tell us about the fire behavior of reinforced concrete columns
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.04.076
– volume: 59
  start-page: 1761
  issue: 4
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0035
  article-title: Revisiting forgotten fire tests: causal inference and counterfactuals for learning idealized fire-induced response of RC columns
  publication-title: Fire Technol
  doi: 10.1007/s10694-023-01405-8
– volume: 79
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0160
  article-title: Nonmodel rapid seismic assessment of eccentrically braced frames incorporating masonry infills using machine learning techniques
  publication-title: J Build Eng
– volume: 7
  start-page: 21
  year: 2013
  ident: 10.1016/j.compstruc.2025.107657_b0230
  article-title: Gradient boosting machines, a tutorial
  publication-title: Front Neurorob
  doi: 10.3389/fnbot.2013.00021
– volume: 276
  year: 2020
  ident: 10.1016/j.compstruc.2025.107657_b0165
  article-title: Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.122927
– volume: 218
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0145
  article-title: Data-driven strength-based seismic damage index measurement for RC columns using crack image-derived parameters
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113155
– ident: 10.1016/j.compstruc.2025.107657_b0205
– volume: 59
  year: 2022
  ident: 10.1016/j.compstruc.2025.107657_b0070
  article-title: Seismic performance upgrade of substandard RC buildings with different structural systems using advanced retrofit techniques
  publication-title: J Build Eng
– volume: 78
  start-page: 316
  issue: 382
  year: 1983
  ident: 10.1016/j.compstruc.2025.107657_b0125
  article-title: Estimating the error rate of a prediction rule: improvement on cross-validation
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1983.10477973
– start-page: 1
  year: 2024
  ident: 10.1016/j.compstruc.2025.107657_b0130
  article-title: Extrapolated cross-validation for randomized ensembles
  publication-title: J Comput Graph Stat
– volume: 255
  year: 2024
  ident: 10.1016/j.compstruc.2025.107657_b0150
  article-title: Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2024.124897
– volume: 25
  start-page: 197
  year: 2016
  ident: 10.1016/j.compstruc.2025.107657_b0210
  article-title: A random forest guided tour
  publication-title: TEST
  doi: 10.1007/s11749-016-0481-7
– volume: 21
  year: 2024
  ident: 10.1016/j.compstruc.2025.107657_b0065
  article-title: Utilizing advanced machine learning approaches to assess the seismic fragility of non-engineered masonry structures
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2024.101750
– volume: 26
  start-page: 639
  issue: 4
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0235
  article-title: Gradient boosting for extreme quantile regression
  publication-title: Extremes
  doi: 10.1007/s10687-023-00473-x
– volume: 128
  year: 2024
  ident: 10.1016/j.compstruc.2025.107657_b0055
  article-title: Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2023.107388
– volume: 123
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0080
  article-title: Machine learning-based prediction of preplaced aggregate concrete characteristics
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2023.106387
– volume: 125
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0220
  article-title: AdaBoost-driven multi-parameter real-time warning of rock burst risk in coal mines
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2023.106591
– volume: 289
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0050
  article-title: Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2023.107181
– volume: 177
  year: 2021
  ident: 10.1016/j.compstruc.2025.107657_b0190
  article-title: Gradient-based grey wolf optimizer with Gaussian walk: application in modelling and prediction of the COVID-19 pandemic
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114920
– volume: 23
  start-page: 94
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0005
  article-title: Machine learning-based seismic response and performance assessment of reinforced concrete buildings
  publication-title: Archives of Civil and Mechanical Engineering
  doi: 10.1007/s43452-023-00631-9
– volume: 276
  year: 2022
  ident: 10.1016/j.compstruc.2025.107657_b0115
  article-title: Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various machine learning techniques
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2022.108914
– volume: 212
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0240
  article-title: WABL method as a universal defuzzifier in the fuzzy gradient boosting regression model
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.118771
– volume: 166
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0010
  article-title: Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2023.107761
– volume: 32
  start-page: 1621
  issue: 6
  year: 2021
  ident: 10.1016/j.compstruc.2025.107657_b0195
  article-title: Designing energy-efficient high-precision multi-pass turning processes via robust optimization and artificial intelligence
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-020-01648-0
– volume: 32
  start-page: 571
  year: 2025
  ident: 10.1016/j.compstruc.2025.107657_b0095
  article-title: Machine-learning methods for estimating performance of structural concrete members reinforced with fiber-reinforced polymers
  publication-title: Arch Comput Meth Eng
  doi: 10.1007/s11831-024-10143-1
– volume: 39
  start-page: 745
  issue: 6
  year: 2013
  ident: 10.1016/j.compstruc.2025.107657_b0215
  article-title: Advance and prospects of AdaBoost algorithm
  publication-title: Acta Autom Sin
– ident: 10.1016/j.compstruc.2025.107657_b0155
  doi: 10.1007/978-3-031-63759-9_47
– volume: 21
  start-page: 3777
  year: 2022
  ident: 10.1016/j.compstruc.2025.107657_b0180
  article-title: Data-driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2022.10.153
– volume: 195
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0020
  article-title: Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: a comparative study
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2023.110315
– volume: 36
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0225
  article-title: Modeling the load carrying capacity of corroded reinforced concrete compression bending members using explainable machine learning
  publication-title: Mater Today Commun
– volume: 123
  year: 2021
  ident: 10.1016/j.compstruc.2025.107657_b0120
  article-title: Uniaxial tension damage mechanics of steel fiber reinforced concrete using acoustic emission and machine learning crack mode classification
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2021.104205
– volume: 19
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0085
  article-title: Prediction of compressive strength of two-stage (preplaced aggregate) concrete using gene expression programming and random forest
  publication-title: Case Stud Constr Mater
– start-page: 1
  year: 2024
  ident: 10.1016/j.compstruc.2025.107657_b0040
  article-title: Data-driven modeling of mechanical properties of fiber-reinforced concrete: a critical review
  publication-title: Arch Comput Meth Eng
– volume: 274
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0175
  article-title: Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2022.106886
– volume: 276
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0110
  article-title: Data-driven prediction models for total shear strength of reinforced concrete beams with fiber reinforced polymers using an evolutionary machine learning approach
  publication-title: Eng Struct
– volume: 240
  year: 2021
  ident: 10.1016/j.compstruc.2025.107657_b0060
  article-title: Seismic upgrading of existing reinforced concrete buildings: a state-of-the-art review
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.112273
– volume: 289
  year: 2023
  ident: 10.1016/j.compstruc.2025.107657_b0075
  article-title: Seismic performance of advanced three-dimensional base-isolated nuclear structures in complex-layered sites
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2023.116247
– volume: 17
  year: 2022
  ident: 10.1016/j.compstruc.2025.107657_b0185
  article-title: Ensemble Machine Learning approach for evaluating the material characterization of carbon nanotube-reinforced cementitious composites
  publication-title: Case Stud Constr Mater
SSID ssj0006400
Score 2.5580966
Snippet •Multi-subject ensemble ML method proposed to estimate mechanical properties of materials.•Automated optimizing and utilizing hyperparameters exhibited...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107657
SubjectTerms Data processing
Ensemble machine-learning model
Fiber-reinforced concrete
Fiber-reinforced concrete beam
Multi-subject machine-learning model
Preplaced aggregate concrete
Title RAGN-R: A multi-subject ensemble machine-learning method for estimating mechanical properties of advanced structural materials
URI https://dx.doi.org/10.1016/j.compstruc.2025.107657
Volume 308
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB6KXvQgrliXMgevYzNblt5KsVbFHoqF3kIymUilG1qv_e2-l0lqC0IPHjPhhTDv8Zbh-74h5I6bCIqq9JnMU82U4QlLhJcxboXwlEoDq5Eo_Nr3e0P1PNKjGulUXBiEVZa53-X0IluXK81yN5uL8Rg5vkpDNEVCF4TgETLYVYD6-ferX5iHryoaCkozqmgL44Ww7UKnFQZFoWE18LFO_VWhNqpO95gcle0ibbs_OiE1OzslhxsigmdkNWg_9tmgRdu0QAeyr-8UD1coDKh2mk4snRaAScvKGyLeqbs2mkK_SlFkA5vWYhVZwOg0usAj-k_UWqXznFY4AerEZlGoA765dLF7Tobdh7dOj5W3KjAjuV6y3HABM4aOZA4-yniWZCbSuUxlkEM7JZWwNlRJxm2Ewx6Ud2l4pJIcZh2TqEBekL3ZfGYvCVXGhNDvWCOQn-oloZAZpMswzKBJ5F5YJ361k7EpJcfx5otJXGHLPuK1C2J0QexcUCfe2nDhVDd2m7QqV8VbARRDbdhlfPUf42tygE8Oyn1D9uC9vYVOZZk2ilBskP3200uv_wMvFOs-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4gHNSD8RnxuQevG7qv0nIjRAR5HAgk3Jp2uzUYXlG8-tud6YNIYsLB67TTNDuTeWy--YaQJ258SKrSZTKJNFOGhywUTsy4FcJRKqpbjYPCg6HbmajXqZ6WSKuYhUFYZR77s5ieRutcUstPs7aezXDGV2nwJl_odCB4ekAqyE4Fzl5pdnud4TYgu6qYREF2RuXvwLwQuZ1StUKvKDRI6y6mqr-S1K_E0z4lJ3nFSJvZT52Rkl2ek-NfPIIX5HvUfBmyUYM2aQoQZJ9fEd6vUOhR7SKaW7pIMZOW5Usi3mi2OZpCyUqRZwPr1lSKg8BoN7rGW_oPpFulq4QWUAGa8c0iVwd8c5O57yWZtJ_HrQ7LFyswI7nesMRwAW2G9mUCZop5HMbG14mMZD2BikoqYa2nwphbH_s9yPDScF-FCbQ7JoQjviLl5WpprwlVxnhQ8lgjcETVCT0hY4iYnhdDncgdr0rc4iQDk7OO4_KLeVDAy96DrQkCNEGQmaBKnK3iOiPe2K_SKEwV7PhQAOlhn_LNf5QfyWFnPOgH_e6wd0uO8EmG7L4jZXjX3kPhsokecsf8ATu47e8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RAGN-R%3A+A+multi-subject+ensemble+machine-learning+method+for+estimating+mechanical+properties+of+advanced+structural+materials&rft.jtitle=Computers+%26+structures&rft.au=Kazemi%2C+F.&rft.au=%D3%A6zy%C3%BCksel+%C3%87ift%C3%A7io%C4%9Flu%2C+A.&rft.au=Shafighfard%2C+T.&rft.au=Asgarkhani%2C+N.&rft.date=2025-02-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7949&rft.volume=308&rft_id=info:doi/10.1016%2Fj.compstruc.2025.107657&rft.externalDocID=S004579492500015X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon