Functional data analysis: estimation of the relative error in functional regression under random left-truncation model

In this paper, we investigate the relationship between a functional random covariable and a scalar response which is subject to left-truncation by another random variable. Precisely, we use the mean squared relative error as a loss function to construct a nonparametric estimator of the regression op...

Full description

Saved in:
Bibliographic Details
Published inJournal of nonparametric statistics Vol. 30; no. 2; pp. 472 - 490
Main Authors Altendji, Belkais, Demongeot, Jacques, Laksaci, Ali, Rachdi, Mustapha
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis Ltd 03.04.2018
American Statistical Association
Subjects
Online AccessGet full text
ISSN1048-5252
1029-0311
DOI10.1080/10485252.2018.1438609

Cover

Abstract In this paper, we investigate the relationship between a functional random covariable and a scalar response which is subject to left-truncation by another random variable. Precisely, we use the mean squared relative error as a loss function to construct a nonparametric estimator of the regression operator of these functional truncated data. Under some standard assumptions in functional data analysis, we establish the almost sure consistency, with rates, of the constructed estimator as well as its asymptotic normality. Then, a simulation study, on finite-sized samples, was carried out in order to show the efficiency of our estimation procedure and to highlight its superiority over the classical kernel estimation, for different levels of simulated truncated data.
AbstractList In this paper, we investigate the relationship between a functional random covariable and a scalar response which is subject to left-truncation by another random variable. Precisely, we use the mean squared relative error as a loss function to construct a nonparametric estimator of the regression operator of these functional truncated data. Under some standard assumptions in functional data analysis, we establish the almost sure consistency, with rates, of the constructed estimator as well as its asymptotic normality. Then, a simulation study, on finite-sized samples, was carried out in order to show the efficiency of our estimation procedure and to highlight its superiority over the classical kernel estimation, for different levels of simulated truncated data.
Author Laksaci, Ali
Rachdi, Mustapha
Demongeot, Jacques
Altendji, Belkais
Author_xml – sequence: 1
  givenname: Belkais
  surname: Altendji
  fullname: Altendji, Belkais
  organization: Laboratoire de Mathématiques, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès, Algeria
– sequence: 2
  givenname: Jacques
  surname: Demongeot
  fullname: Demongeot, Jacques
  organization: Laboratoire AGEIS EA 7407, Faculté de Médecine de Grenoble, Univ. Grenoble-Alpes, Equipe AGIM, La Tronche, France
– sequence: 3
  givenname: Ali
  surname: Laksaci
  fullname: Laksaci, Ali
  organization: Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia
– sequence: 4
  givenname: Mustapha
  surname: Rachdi
  fullname: Rachdi, Mustapha
  organization: UFR SHS, Univ. Grenoble-Alpes, Equipe AGIM, Laboratoire AGEIS EA 7407, Université Grenoble-Alpes, Grenoble Cedex 09, France
BackLink https://hal.science/hal-04837780$$DView record in HAL
BookMark eNqFkc1KAzEUhYMoWKuPIARcuZh6k8xPRldSrBUKbnQdMplER6aTmmQKvr2JrQpuXOUk-c6Fc88JOhzsoBE6JzAjwOGKQM4LWtAZBcJnJGe8hPoATQjQOgNGyGHSOc8SdIxOvH8DIKxkMEHbxTio0NlB9riVQWIZ1Yfv_DXWPnRrmf6wNTi8aux0H-9bjbVz1uFuwObX7fSL094nfBxa7bCTQ2vXuNcmZMFFcDdrbVvdn6IjI3uvz_bnFD0v7p7my2z1eP8wv11lipEiZEYypiRTpFB1aShraqIJRF0VLdNVDswoTinPG16XBaiqrE3b0ILVDRDFCZuiy93cV9mLjYt53IewshPL25VIb3EtrKo4bBN7sWM3zr6PMb14s6OL0bygwKDK67xMVLGjlLPeO21-xhIQqQ7xXYdIdYh9HdF388enuvC1keBk1__j_gSCn5Gx
CitedBy_id crossref_primary_10_1007_s13171_021_00276_x
crossref_primary_10_1080_10485252_2023_2241572
crossref_primary_10_1007_s42952_024_00275_2
crossref_primary_10_1515_ms_2017_0443
crossref_primary_10_3934_math_2022298
crossref_primary_10_3390_diseases11040135
crossref_primary_10_1515_demo_2020_0013
crossref_primary_10_1007_s00362_022_01325_9
crossref_primary_10_1080_03610926_2024_2417232
crossref_primary_10_1093_imammb_dqae012
crossref_primary_10_1109_TPAMI_2021_3130535
Cites_doi 10.1002/9781118762547
10.15651/9788874887637
10.1080/10485250802668909
10.1080/15598608.2015.1032455
10.1214/aos/1176346584
10.1016/j.jmva.2008.03.008
10.1080/03610926.2013.784993
10.1214/aos/1176349748
10.1214/16-EJS1156
10.1016/j.jkss.2011.12.001
10.1080/00401706.1977.10489526
10.1080/10485252.2016.1254780
10.1016/j.spl.2016.09.021
10.1214/aos/1024691086
10.1214/aos/1176349019
10.1016/j.jspi.2015.02.001
10.1214/17-EJS1303
10.1093/mnras/155.1.95
10.1016/j.spl.2007.11.014
10.1080/03610921003778209
10.1007/s11464-013-0286-x
10.1214/11-EJS595
10.1007/978-3-319-55846-2
10.1080/02331888.2015.1122012
10.1016/j.csda.2014.03.017
10.1007/s10463-005-0011-y
10.1016/j.jspi.2009.07.019
10.7494/OpMath.2016.36.1.25
10.1111/j.1467-842X.2007.00480.x
10.1515/ROSE.2011.008
10.1016/j.jmva.2015.09.019
10.1080/03610920802422597
10.1016/j.csda.2005.10.012
10.1016/j.spl.2008.06.018
10.1016/j.spl.2012.12.004
10.1111/j.1467-9469.2009.00662.x
10.1016/j.jspi.2013.04.002
10.1016/j.spl.2013.04.017
10.1016/j.jspi.2006.10.001
ContentType Journal Article
Copyright American Statistical Association and Taylor & Francis 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: American Statistical Association and Taylor & Francis 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
DOI 10.1080/10485252.2018.1438609
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1029-0311
EndPage 490
ExternalDocumentID oai_HAL_hal_04837780v1
10_1080_10485252_2018_1438609
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAYXX
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMPGV
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CITATION
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
7SC
8FD
JQ2
L7M
L~C
L~D
TASJS
1XC
ID FETCH-LOGICAL-c315t-fa33ca3c15c96f23b91e10c9675d3e7403fc82284b89650c769fdb2539b01c813
ISSN 1048-5252
IngestDate Tue Jun 17 06:52:23 EDT 2025
Wed Aug 13 03:05:03 EDT 2025
Tue Jul 01 01:04:58 EDT 2025
Thu Apr 24 23:09:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-fa33ca3c15c96f23b91e10c9675d3e7403fc82284b89650c769fdb2539b01c813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9203-056X
PQID 2030749461
PQPubID 53053
PageCount 19
ParticipantIDs hal_primary_oai_HAL_hal_04837780v1
proquest_journals_2030749461
crossref_primary_10_1080_10485252_2018_1438609
crossref_citationtrail_10_1080_10485252_2018_1438609
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-03
PublicationDateYYYYMMDD 2018-04-03
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-03
  day: 03
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of nonparametric statistics
PublicationYear 2018
Publisher Taylor & Francis Ltd
American Statistical Association
Publisher_xml – name: Taylor & Francis Ltd
– name: American Statistical Association
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
Ferraty F. (CIT0016) 2006
CIT0014
CIT0013
CIT0035
CIT0015
CIT0037
CIT0018
CIT0017
CIT0039
CIT0019
CIT0041
CIT0040
CIT0021
CIT0043
CIT0020
CIT0042
Zhang J. (CIT0038) 2014; 127
CIT0001
CIT0023
CIT0022
CIT0044
CIT0003
CIT0025
CIT0002
CIT0024
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0023
  doi: 10.1002/9781118762547
– ident: CIT0006
  doi: 10.15651/9788874887637
– ident: CIT0007
  doi: 10.1080/10485250802668909
– ident: CIT0012
  doi: 10.1080/15598608.2015.1032455
– volume: 127
  volume-title: Analysis of Variance for Functional Data
  year: 2014
  ident: CIT0038
– volume-title: Nonparametric Functional Data Analysis. Theory and Practice
  year: 2006
  ident: CIT0016
– ident: CIT0037
  doi: 10.1214/aos/1176346584
– ident: CIT0004
  doi: 10.1016/j.jmva.2008.03.008
– ident: CIT0022
  doi: 10.1080/03610926.2013.784993
– ident: CIT0018
  doi: 10.1214/aos/1176349748
– ident: CIT0033
  doi: 10.1214/16-EJS1156
– ident: CIT0035
  doi: 10.1016/j.jkss.2011.12.001
– ident: CIT0042
  doi: 10.1080/00401706.1977.10489526
– ident: CIT0024
  doi: 10.1080/10485252.2016.1254780
– ident: CIT0011
  doi: 10.1016/j.spl.2016.09.021
– ident: CIT0019
  doi: 10.1214/aos/1024691086
– ident: CIT0034
  doi: 10.1214/aos/1176349019
– ident: CIT0028
  doi: 10.1016/j.jspi.2015.02.001
– ident: CIT0039
  doi: 10.1214/17-EJS1303
– ident: CIT0041
– ident: CIT0030
  doi: 10.1093/mnras/155.1.95
– ident: CIT0026
  doi: 10.1016/j.spl.2007.11.014
– ident: CIT0013
  doi: 10.1080/03610921003778209
– ident: CIT0044
  doi: 10.1007/s11464-013-0286-x
– ident: CIT0027
  doi: 10.1214/11-EJS595
– ident: CIT0001
  doi: 10.1007/978-3-319-55846-2
– ident: CIT0029
  doi: 10.1080/02331888.2015.1122012
– ident: CIT0031
  doi: 10.1016/j.csda.2014.03.017
– ident: CIT0032
  doi: 10.1007/s10463-005-0011-y
– ident: CIT0014
  doi: 10.1016/j.jspi.2009.07.019
– ident: CIT0020
  doi: 10.7494/OpMath.2016.36.1.25
– ident: CIT0040
  doi: 10.1111/j.1467-842X.2007.00480.x
– ident: CIT0021
  doi: 10.1515/ROSE.2011.008
– ident: CIT0010
  doi: 10.1016/j.jmva.2015.09.019
– ident: CIT0002
  doi: 10.1080/03610920802422597
– ident: CIT0009
  doi: 10.1016/j.csda.2005.10.012
– ident: CIT0003
  doi: 10.1016/j.spl.2008.06.018
– ident: CIT0017
  doi: 10.1016/j.spl.2012.12.004
– ident: CIT0015
  doi: 10.1111/j.1467-9469.2009.00662.x
– ident: CIT0008
  doi: 10.1016/j.jspi.2013.04.002
– ident: CIT0025
  doi: 10.1016/j.spl.2013.04.017
– ident: CIT0043
  doi: 10.1016/j.jspi.2006.10.001
SSID ssj0013630
Score 2.2096734
Snippet In this paper, we investigate the relationship between a functional random covariable and a scalar response which is subject to left-truncation by another...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 472
SubjectTerms Computer simulation
Data analysis
Error analysis
Estimating techniques
Mathematics
Normality
Random variables
Regression analysis
Regression models
Statistics
Well construction
Title Functional data analysis: estimation of the relative error in functional regression under random left-truncation model
URI https://www.proquest.com/docview/2030749461
https://hal.science/hal-04837780
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa6u5flgGABUViQhbhVKXHsxDa38lhViHJhV6y4RInj0LJtumqzPfD_-F-MH0lKWR7LJYqseNxmvnjG488zCD3nmoHPxlUgTIzJeNCB0DELpNIF4zTPmY3pTj4k4zP27jw-7_W-b7GWrup8qL5de67kf7QKbaBXc0r2BppthUID3IN-4Qoahus_6fgEjJKP5Rmm5yDzGUZsuR34dhetP2iJhJb3ttEDvVpZFvqg7Pqv9BfHiK1sZdzVAGxYsVwM5rqsg3p1VbnQnquc8xuPtlpWJpP4whTpUiZIUbss0C2o5ibg_tXyB17p-UU266raa1P0SC_dzkimjLVquULZxTpTM3ccZ9ZtTKlpYRsn5gzY5TTbDmAQYXkvdGvOhUkE1sMuke1Q-7ZIwkN-HvYTtd_AmW2tl92sy3i0ZcCZqz_6i21wZEozmhnMsPrE0BR_T0LZGcOGALBjI1vmIvEpVRsxqRGTejF76CDi3LAFDkbjN58_ddtZCfVpMdw_bY6SifDFtb_nJydpb2ooujuegnV_Tu-g217LeORAeBf1dHWEbk3apL_rI3T4sdX4PbTpsIkNNnGDzZe4QyZelhgE4AaZ2CITzyrcIRN3yMQWmdghE-8gE1tk3kdnJ29PX48DX-MjUJTEdVBmlKqMKhIrmZQRzSXRJIR7HhdUcxbSUoEPK1guJCwmFE9kWeRRTGUeEiUIfYD2Ad36IcKwOI5i8D85LyULdSgKCb1jHglYQ5C87CPWvNRU-QT4pg7LPP2jUvto2Ha7dBlg_tbhGWisfdbkbx-P3qemzdZv4CLckD46bhSa-hllDVLA4jLJEvLopoM-Rofdt3WM9uH16yfgLtf5Uw_GH6UnuhQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+data+analysis%3A+estimation+of+the+relative+error+in+functional+regression+under+random+left-truncation+model&rft.jtitle=Journal+of+nonparametric+statistics&rft.au=Altendji%2C+Belkais&rft.au=Demongeot%2C+Jacques&rft.au=Laksaci%2C+Ali&rft.au=Rachdi%2C+Mustapha&rft.date=2018-04-03&rft.issn=1048-5252&rft.eissn=1029-0311&rft.volume=30&rft.issue=2&rft.spage=472&rft.epage=490&rft_id=info:doi/10.1080%2F10485252.2018.1438609&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10485252_2018_1438609
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1048-5252&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1048-5252&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1048-5252&client=summon