Core–shell tecto dendrimers formed via host–guest supramolecular assembly as pH-responsive intelligent carriers for enhanced anticancer drug delivery

The design of pH-sensitive supramolecular drug delivery systems for efficient antineoplastic drug delivery remains a huge challenge. Herein, we describe the development of pH-responsive core–shell tecto dendrimers (CSTDs) formed using benzimidazole (BM)-modified generation 3 (G3) poly(amidoamine) (P...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 11; no. 46; pp. 22343 - 22350
Main Authors Wang, Jianhong, Li, Du, Fan, Yu, Shi, Menghan, Yang, Yunxia, Wang, Le, Peng, Yitian, Shen, Mingwu, Shi, Xiangyang
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 28.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The design of pH-sensitive supramolecular drug delivery systems for efficient antineoplastic drug delivery remains a huge challenge. Herein, we describe the development of pH-responsive core–shell tecto dendrimers (CSTDs) formed using benzimidazole (BM)-modified generation 3 (G3) poly(amidoamine) (PAMAM) dendrimers (G3.NHAc-BM) as a shell and β-cyclodextrin (CD)-modified G5 PAMAM dendrimers (G5.NHAc-CD) as a core. By virtue of the host–guest recognition and pH-responsiveness of BM/β-CD assembly, the pH-sensitive supramolecular CSTDs of G5.NHAc-CD/BM-G3.NHAc were formed and adopted to encapsulate the anticancer drug doxorubicin (DOX) via hydrophobic interactions for pH-responsive drug delivery applications. The synthesis of dendrimer derivatives and the loading of the DOX were well characterized via different methods. We show that the encapsulated DOX can be released in a sustained manner with a rapid release speed under a slightly acidic pH condition (pH < 6), which is similar to acidic tumor microenvironment. The enhanced intracellular release of DOX and improved anticancer activity of the drug-loaded pH-responsive CSTDs were demonstrated and compared with the control CSTDs formed without pH-responsiveness through flow cytometry and viability assays of cancer cells. Furthermore, the pH-sensitive CSTDs also showed efficient drug penetration and growth inhibition of three-dimensional tumor spheroids owing to the faster DOX release in an acidic pH environment. The pH-sensitive G5.NHAc-CD/BM-G3.NHAc CSTDs may be employed as a valuable intelligent delivery system for various anticancer drugs.
AbstractList The design of pH-sensitive supramolecular drug delivery systems for efficient antineoplastic drug delivery remains a huge challenge. Herein, we describe the development of pH-responsive core–shell tecto dendrimers (CSTDs) formed using benzimidazole (BM)-modified generation 3 (G3) poly(amidoamine) (PAMAM) dendrimers (G3.NHAc-BM) as a shell and β-cyclodextrin (CD)-modified G5 PAMAM dendrimers (G5.NHAc-CD) as a core. By virtue of the host–guest recognition and pH-responsiveness of BM/β-CD assembly, the pH-sensitive supramolecular CSTDs of G5.NHAc-CD/BM-G3.NHAc were formed and adopted to encapsulate the anticancer drug doxorubicin (DOX) via hydrophobic interactions for pH-responsive drug delivery applications. The synthesis of dendrimer derivatives and the loading of the DOX were well characterized via different methods. We show that the encapsulated DOX can be released in a sustained manner with a rapid release speed under a slightly acidic pH condition (pH < 6), which is similar to acidic tumor microenvironment. The enhanced intracellular release of DOX and improved anticancer activity of the drug-loaded pH-responsive CSTDs were demonstrated and compared with the control CSTDs formed without pH-responsiveness through flow cytometry and viability assays of cancer cells. Furthermore, the pH-sensitive CSTDs also showed efficient drug penetration and growth inhibition of three-dimensional tumor spheroids owing to the faster DOX release in an acidic pH environment. The pH-sensitive G5.NHAc-CD/BM-G3.NHAc CSTDs may be employed as a valuable intelligent delivery system for various anticancer drugs.
The design of pH-sensitive supramolecular drug delivery systems for efficient antineoplastic drug delivery remains a huge challenge. Herein, we describe the development of pH-responsive core-shell tecto dendrimers (CSTDs) formed using benzimidazole (BM)-modified generation 3 (G3) poly(amidoamine) (PAMAM) dendrimers (G3.NHAc-BM) as a shell and β-cyclodextrin (CD)-modified G5 PAMAM dendrimers (G5.NHAc-CD) as a core. By virtue of the host-guest recognition and pH-responsiveness of BM/β-CD assembly, the pH-sensitive supramolecular CSTDs of G5.NHAc-CD/BM-G3.NHAc were formed and adopted to encapsulate the anticancer drug doxorubicin (DOX) via hydrophobic interactions for pH-responsive drug delivery applications. The synthesis of dendrimer derivatives and the loading of the DOX were well characterized via different methods. We show that the encapsulated DOX can be released in a sustained manner with a rapid release speed under a slightly acidic pH condition (pH < 6), which is similar to acidic tumor microenvironment. The enhanced intracellular release of DOX and improved anticancer activity of the drug-loaded pH-responsive CSTDs were demonstrated and compared with the control CSTDs formed without pH-responsiveness through flow cytometry and viability assays of cancer cells. Furthermore, the pH-sensitive CSTDs also showed efficient drug penetration and growth inhibition of three-dimensional tumor spheroids owing to the faster DOX release in an acidic pH environment. The pH-sensitive G5.NHAc-CD/BM-G3.NHAc CSTDs may be employed as a valuable intelligent delivery system for various anticancer drugs.The design of pH-sensitive supramolecular drug delivery systems for efficient antineoplastic drug delivery remains a huge challenge. Herein, we describe the development of pH-responsive core-shell tecto dendrimers (CSTDs) formed using benzimidazole (BM)-modified generation 3 (G3) poly(amidoamine) (PAMAM) dendrimers (G3.NHAc-BM) as a shell and β-cyclodextrin (CD)-modified G5 PAMAM dendrimers (G5.NHAc-CD) as a core. By virtue of the host-guest recognition and pH-responsiveness of BM/β-CD assembly, the pH-sensitive supramolecular CSTDs of G5.NHAc-CD/BM-G3.NHAc were formed and adopted to encapsulate the anticancer drug doxorubicin (DOX) via hydrophobic interactions for pH-responsive drug delivery applications. The synthesis of dendrimer derivatives and the loading of the DOX were well characterized via different methods. We show that the encapsulated DOX can be released in a sustained manner with a rapid release speed under a slightly acidic pH condition (pH < 6), which is similar to acidic tumor microenvironment. The enhanced intracellular release of DOX and improved anticancer activity of the drug-loaded pH-responsive CSTDs were demonstrated and compared with the control CSTDs formed without pH-responsiveness through flow cytometry and viability assays of cancer cells. Furthermore, the pH-sensitive CSTDs also showed efficient drug penetration and growth inhibition of three-dimensional tumor spheroids owing to the faster DOX release in an acidic pH environment. The pH-sensitive G5.NHAc-CD/BM-G3.NHAc CSTDs may be employed as a valuable intelligent delivery system for various anticancer drugs.
The design of pH-sensitive supramolecular drug delivery systems for efficient antineoplastic drug delivery remains a huge challenge. Herein, we describe the development of pH-responsive core–shell tecto dendrimers (CSTDs) formed using benzimidazole (BM)-modified generation 3 (G3) poly(amidoamine) (PAMAM) dendrimers (G3.NHAc-BM) as a shell and β-cyclodextrin (CD)-modified G5 PAMAM dendrimers (G5.NHAc-CD) as a core. By virtue of the host–guest recognition and pH-responsiveness of BM/β-CD assembly, the pH-sensitive supramolecular CSTDs of G5.NHAc-CD/BM-G3.NHAc were formed and adopted to encapsulate the anticancer drug doxorubicin (DOX) via hydrophobic interactions for pH-responsive drug delivery applications. The synthesis of dendrimer derivatives and the loading of the DOX were well characterized via different methods. We show that the encapsulated DOX can be released in a sustained manner with a rapid release speed under a slightly acidic pH condition (pH < 6), which is similar to acidic tumor microenvironment. The enhanced intracellular release of DOX and improved anticancer activity of the drug-loaded pH-responsive CSTDs were demonstrated and compared with the control CSTDs formed without pH-responsiveness through flow cytometry and viability assays of cancer cells. Furthermore, the pH-sensitive CSTDs also showed efficient drug penetration and growth inhibition of three-dimensional tumor spheroids owing to the faster DOX release in an acidic pH environment. The pH-sensitive G5.NHAc-CD/BM-G3.NHAc CSTDs may be employed as a valuable intelligent delivery system for various anticancer drugs.
Author Shi, Xiangyang
Yang, Yunxia
Wang, Jianhong
Wang, Le
Peng, Yitian
Shen, Mingwu
Shi, Menghan
Li, Du
Fan, Yu
Author_xml – sequence: 1
  givenname: Jianhong
  surname: Wang
  fullname: Wang, Jianhong
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620
– sequence: 2
  givenname: Du
  surname: Li
  fullname: Li, Du
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620
– sequence: 3
  givenname: Yu
  surname: Fan
  fullname: Fan, Yu
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620
– sequence: 4
  givenname: Menghan
  surname: Shi
  fullname: Shi, Menghan
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620
– sequence: 5
  givenname: Yunxia
  surname: Yang
  fullname: Yang, Yunxia
  organization: College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
– sequence: 6
  givenname: Le
  orcidid: 0000-0002-8504-4840
  surname: Wang
  fullname: Wang, Le
  organization: College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
– sequence: 7
  givenname: Yitian
  orcidid: 0000-0002-4951-4657
  surname: Peng
  fullname: Peng, Yitian
  organization: College of Mechanical Engineering, Donghua University, Shanghai 201620, People's Republic of China
– sequence: 8
  givenname: Mingwu
  orcidid: 0000-0002-1065-0854
  surname: Shen
  fullname: Shen, Mingwu
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620
– sequence: 9
  givenname: Xiangyang
  orcidid: 0000-0001-6785-6645
  surname: Shi
  fullname: Shi, Xiangyang
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31728477$$D View this record in MEDLINE/PubMed
BookMark eNptkctq3DAUhkVJaJJpN32AIsgmBJzq4stoWYZcWkIKJXsjy8czCrbkHsmB2eUdssrr9Ukqk2kCISv9Qt_5z9F_jsie8w4I-cLZGWdSfVupm99sKZn6-YEcCpazTMpK7L3oMj8gRyHcMVYqWcqP5EDySizzqjokTyuP8PfhMWyg72kEEz1twbVoB8BAO48DtPTearrxISZwPUGINEwj6sH3YKZeI9UhwND02yToeJUhhNG7YO-BWheTsV2Di9RoRLtzpeA22pnkrV20ZpZIW5zWqXufCnH7iex3ug_weXcuyO3F-e3qKrv-dflj9f06M5IXMesKpgxrRdeYvDQVT1dRcaFNqThvC8Z0p_NWNq2AShXpJedSNXIpOgCRV3JBTp5tR_R_5r_Vgw0mzawd-CnUQs6WhVQzevwGvfMTujTcTCm-FCqZL8jXHTU1Kbt6TFFq3Nb_M0_A6TNg0IeA0L0gnNXzQuvXhSaYvYGNjTpa7yJq279X8g-EQ6aQ
CitedBy_id crossref_primary_10_3390_pharmaceutics13030343
crossref_primary_10_1016_j_bioactmat_2020_09_015
crossref_primary_10_1002_marc_202400511
crossref_primary_10_1021_acsami_0c10372
crossref_primary_10_1021_acsami_2c22584
crossref_primary_10_1039_D4TB01747A
crossref_primary_10_1021_acs_bioconjchem_1c00587
crossref_primary_10_1002_adhm_202000387
crossref_primary_10_1016_j_carbpol_2020_116871
crossref_primary_10_1016_j_carres_2023_108966
crossref_primary_10_1002_INMD_20220005
crossref_primary_10_1039_D3BM00375B
crossref_primary_10_1039_D1TB01328A
crossref_primary_10_1021_acs_biomac_1c01264
crossref_primary_10_1002_wnan_1670
crossref_primary_10_1016_j_ijbiomac_2021_05_204
crossref_primary_10_1016_j_molliq_2023_122936
crossref_primary_10_1039_D2BM00643J
crossref_primary_10_1016_j_matpr_2024_05_130
crossref_primary_10_3390_pharmaceutics15071986
crossref_primary_10_1039_D0TB00346H
crossref_primary_10_1007_s11426_020_9933_4
crossref_primary_10_1021_acsami_1c15282
crossref_primary_10_1016_j_ijpharm_2022_122570
crossref_primary_10_1021_acsphyschemau_4c00027
crossref_primary_10_1016_j_molstruc_2020_129855
crossref_primary_10_3390_molecules26113304
crossref_primary_10_1080_17425247_2022_2081320
crossref_primary_10_1021_acsabm_0c01525
crossref_primary_10_1021_acsami_3c12184
crossref_primary_10_1021_acs_biomac_1c00262
crossref_primary_10_1016_j_colsurfa_2021_126466
crossref_primary_10_1038_s41467_024_49217_w
crossref_primary_10_1039_D3SM00549F
crossref_primary_10_1007_s40139_021_00221_5
crossref_primary_10_1016_j_ccr_2020_213463
crossref_primary_10_1016_j_jconrel_2024_06_021
crossref_primary_10_1021_acs_bioconjchem_1c00005
crossref_primary_10_1039_D3TB02101G
crossref_primary_10_1039_D4PY00124A
crossref_primary_10_1016_j_reactfunctpolym_2022_105175
crossref_primary_10_1016_j_nantod_2021_101325
crossref_primary_10_1002_EXP_20210134
crossref_primary_10_1039_D2NJ02894H
crossref_primary_10_1016_j_msec_2020_111455
crossref_primary_10_1016_j_jconrel_2023_05_021
crossref_primary_10_1021_acsnano_1c06667
crossref_primary_10_1016_j_colsurfa_2023_133026
crossref_primary_10_1080_25740881_2022_2029895
crossref_primary_10_1016_j_nantod_2024_102437
crossref_primary_10_1002_adtp_202300388
crossref_primary_10_1002_adma_202404608
crossref_primary_10_1016_j_nano_2024_102758
crossref_primary_10_1016_j_ijpharm_2024_124573
crossref_primary_10_1002_marc_202400251
crossref_primary_10_1016_j_jconrel_2022_05_056
Cites_doi 10.1002/advs.201700821
10.1016/j.biomaterials.2015.04.009
10.1021/acsami.9b04236
10.1016/j.colsurfb.2018.02.010
10.1016/S0040-4020(97)00976-9
10.1021/acsami.6b12647
10.1021/mp0500216
10.1039/C8NR08141G
10.1002/mabi.201300175
10.1039/c1py00179e
10.1039/C9TC01629E
10.3390/nano8030131
10.1021/acs.langmuir.8b02901
10.1021/bm300545b
10.1039/c3py00141e
10.1166/jbn.2019.2729
10.1002/(SICI)1521-4095(200006)12:11<796::AID-ADMA796>3.0.CO;2-1
10.1039/C9NR01892A
10.1039/C7TB02585H
10.1021/acs.biomac.7b01515
10.1139/V10-079
10.1039/b925274f
10.1002/advs.201700339
10.1021/am5032874
10.1021/acsami.8b21679
10.3322/caac.21442
10.1039/C6RA03839E
10.1021/acsami.9b04871
10.3390/pharmaceutics10030162
10.1039/C7NR00962C
10.1039/b912502g
10.1021/acsami.8b18820
10.7150/thno.33958
10.1021/acsbiomaterials.9b00099
10.1002/anie.201612150
10.1021/acsami.8b14517
10.1021/am504849x
10.1016/j.biomaterials.2011.10.052
10.1016/j.actbio.2015.02.029
10.1016/j.jconrel.2018.02.001
10.1021/acs.biomac.9b00224
10.1002/app.46714
10.1073/pnas.062684999
10.1016/j.actbio.2017.08.024
10.1021/acsami.5b05836
10.1002/anie.199001381
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/C9NR08309J
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 22350
ExternalDocumentID 31728477
10_1039_C9NR08309J
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
-JG
AGSTE
CGR
CUY
CVF
ECM
EIF
NPM
RRC
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c315t-f509c0d2fbc46c715092712ac6911d500afa4d3bd2e7957124139b382fee2473
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 12:07:06 EDT 2025
Mon Jun 30 12:09:34 EDT 2025
Wed Feb 19 02:31:02 EST 2025
Tue Jul 01 01:13:46 EDT 2025
Thu Apr 24 22:54:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-f509c0d2fbc46c715092712ac6911d500afa4d3bd2e7957124139b382fee2473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8504-4840
0000-0002-1065-0854
0000-0002-4951-4657
0000-0001-6785-6645
PMID 31728477
PQID 2319182941
PQPubID 2047485
PageCount 8
ParticipantIDs proquest_miscellaneous_2315095397
proquest_journals_2319182941
pubmed_primary_31728477
crossref_primary_10_1039_C9NR08309J
crossref_citationtrail_10_1039_C9NR08309J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Nov-28
PublicationDateYYYYMMDD 2019-11-28
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov-28
  day: 28
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wu (C9NR08309J-(cit4)/*[position()=1]) 2018; 5
Yeh (C9NR08309J-(cit32)/*[position()=1]) 2018; 19
Zhang (C9NR08309J-(cit7)/*[position()=1]) 2013; 13
Uppuluri (C9NR08309J-(cit33)/*[position()=1]) 2000; 12
Li (C9NR08309J-(cit16)/*[position()=1]) 2015; 57
Chen (C9NR08309J-(cit6)/*[position()=1]) 2015; 18
Chen (C9NR08309J-(cit39)/*[position()=1]) 2017; 5
Qiu (C9NR08309J-(cit28)/*[position()=1]) 2018; 8
Wu (C9NR08309J-(cit11)/*[position()=1]) 2019; 15
Cheng (C9NR08309J-(cit3)/*[position()=1]) 2017; 9
Zhao (C9NR08309J-(cit29)/*[position()=1]) 2015; 7
Zhao (C9NR08309J-(cit18)/*[position()=1]) 2017; 9
Zhang (C9NR08309J-(cit25)/*[position()=1]) 2018; 10
Wang (C9NR08309J-(cit21)/*[position()=1]) 2014; 6
Zhang (C9NR08309J-(cit20)/*[position()=1]) 2018; 135
Koner (C9NR08309J-(cit38)/*[position()=1]) 2011; 89
Siegel (C9NR08309J-(cit1)/*[position()=1]) 2018; 68
Zhang (C9NR08309J-(cit43)/*[position()=1]) 2013; 4
Redondo-Gómez (C9NR08309J-(cit36)/*[position()=1]) 2019; 20
Zhang (C9NR08309J-(cit9)/*[position()=1]) 2018; 5
Shi (C9NR08309J-(cit26)/*[position()=1]) 2005; 2
Zhou (C9NR08309J-(cit40)/*[position()=1]) 2018; 10
Feng (C9NR08309J-(cit17)/*[position()=1]) 2019; 11
Liu (C9NR08309J-(cit35)/*[position()=1]) 2019; 11
Wang (C9NR08309J-(cit42)/*[position()=1]) 2009
Li (C9NR08309J-(cit5)/*[position()=1]) 2017; 62
Yang (C9NR08309J-(cit31)/*[position()=1]) 2012; 13
Qiu (C9NR08309J-(cit46)/*[position()=1]) 2016; 6
Laskar (C9NR08309J-(cit27)/*[position()=1]) 2018; 10
Cheng (C9NR08309J-(cit15)/*[position()=1]) 2019; 5
Schmidt (C9NR08309J-(cit37)/*[position()=1]) 2017; 56
Liu (C9NR08309J-(cit23)/*[position()=1]) 2019; 11
LothianTomalia (C9NR08309J-(cit30)/*[position()=1]) 1997; 53
Huang (C9NR08309J-(cit8)/*[position()=1]) 2019; 9
Peng (C9NR08309J-(cit45)/*[position()=1]) 2012; 33
Li (C9NR08309J-(cit2)/*[position()=1]) 2018; 15
Tomalia (C9NR08309J-(cit22)/*[position()=1]) 1990; 29
Nikravan (C9NR08309J-(cit19)/*[position()=1]) 2018; 165
Wang (C9NR08309J-(cit44)/*[position()=1]) 2011; 2
Li (C9NR08309J-(cit13)/*[position()=1]) 2018; 277
Hu (C9NR08309J-(cit10)/*[position()=1]) 2019; 11
Fu (C9NR08309J-(cit41)/*[position()=1]) 2014; 6
Zhu (C9NR08309J-(cit24)/*[position()=1]) 2018; 34
Pyne (C9NR08309J-(cit12)/*[position()=1]) 2019; 7
Ren (C9NR08309J-(cit14)/*[position()=1]) 2019; 11
Tomalia (C9NR08309J-(cit34)/*[position()=1]) 2002; 99
Shi (C9NR08309J-(cit47)/*[position()=1]) 2010; 6
References_xml – volume: 5
  start-page: 1700821
  year: 2018
  ident: C9NR08309J-(cit9)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700821
– volume: 57
  start-page: 1
  year: 2015
  ident: C9NR08309J-(cit16)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.04.009
– volume: 11
  start-page: 20678
  year: 2019
  ident: C9NR08309J-(cit14)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04236
– volume: 165
  start-page: 1
  year: 2018
  ident: C9NR08309J-(cit19)/*[position()=1]
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2018.02.010
– volume: 53
  start-page: 15495
  year: 1997
  ident: C9NR08309J-(cit30)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(97)00976-9
– volume: 9
  start-page: 2093
  year: 2017
  ident: C9NR08309J-(cit3)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12647
– volume: 2
  start-page: 278
  year: 2005
  ident: C9NR08309J-(cit26)/*[position()=1]
  publication-title: Mol. Pharmaceutics
  doi: 10.1021/mp0500216
– volume: 10
  start-page: 22830
  year: 2018
  ident: C9NR08309J-(cit27)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR08141G
– volume: 13
  start-page: 1249
  year: 2013
  ident: C9NR08309J-(cit7)/*[position()=1]
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201300175
– volume: 2
  start-page: 1754
  year: 2011
  ident: C9NR08309J-(cit44)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/c1py00179e
– volume: 7
  start-page: 6414
  year: 2019
  ident: C9NR08309J-(cit12)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC01629E
– volume: 8
  start-page: 131
  year: 2018
  ident: C9NR08309J-(cit28)/*[position()=1]
  publication-title: Nanomaterials
  doi: 10.3390/nano8030131
– volume: 34
  start-page: 12428
  year: 2018
  ident: C9NR08309J-(cit24)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b02901
– volume: 13
  start-page: 2154
  year: 2012
  ident: C9NR08309J-(cit31)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/bm300545b
– volume: 4
  start-page: 3265
  year: 2013
  ident: C9NR08309J-(cit43)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/c3py00141e
– volume: 15
  start-page: 1415
  year: 2019
  ident: C9NR08309J-(cit11)/*[position()=1]
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2019.2729
– volume: 12
  start-page: 796
  year: 2000
  ident: C9NR08309J-(cit33)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(200006)12:11<796::AID-ADMA796>3.0.CO;2-1
– volume: 11
  start-page: 9201
  year: 2019
  ident: C9NR08309J-(cit10)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR01892A
– volume: 5
  start-page: 8459
  year: 2017
  ident: C9NR08309J-(cit39)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB02585H
– volume: 19
  start-page: 426
  year: 2018
  ident: C9NR08309J-(cit32)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01515
– volume: 89
  start-page: 139
  year: 2011
  ident: C9NR08309J-(cit38)/*[position()=1]
  publication-title: Can. J. Chem.
  doi: 10.1139/V10-079
– volume: 6
  start-page: 2539
  year: 2010
  ident: C9NR08309J-(cit47)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/b925274f
– volume: 5
  start-page: 1700339
  year: 2018
  ident: C9NR08309J-(cit4)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700339
– volume: 6
  start-page: 16687
  year: 2014
  ident: C9NR08309J-(cit21)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5032874
– volume: 11
  start-page: 15212
  year: 2019
  ident: C9NR08309J-(cit23)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b21679
– volume: 68
  start-page: 7
  year: 2018
  ident: C9NR08309J-(cit1)/*[position()=1]
  publication-title: CA-Cancer J. Clin.
  doi: 10.3322/caac.21442
– volume: 6
  start-page: 25633
  year: 2016
  ident: C9NR08309J-(cit46)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA03839E
– volume: 11
  start-page: 20394
  year: 2019
  ident: C9NR08309J-(cit35)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04871
– volume: 10
  start-page: 162
  year: 2018
  ident: C9NR08309J-(cit25)/*[position()=1]
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics10030162
– volume: 9
  start-page: 6264
  year: 2017
  ident: C9NR08309J-(cit18)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR00962C
– start-page: 5380
  year: 2009
  ident: C9NR08309J-(cit42)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b912502g
– volume: 11
  start-page: 7357
  year: 2019
  ident: C9NR08309J-(cit17)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b18820
– volume: 9
  start-page: 3825
  year: 2019
  ident: C9NR08309J-(cit8)/*[position()=1]
  publication-title: Theranostics
  doi: 10.7150/thno.33958
– volume: 5
  start-page: 1878
  year: 2019
  ident: C9NR08309J-(cit15)/*[position()=1]
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b00099
– volume: 56
  start-page: 8350
  year: 2017
  ident: C9NR08309J-(cit37)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201612150
– volume: 10
  start-page: 35812
  year: 2018
  ident: C9NR08309J-(cit40)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b14517
– volume: 6
  start-page: 16416
  year: 2014
  ident: C9NR08309J-(cit41)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am504849x
– volume: 15
  start-page: 1343
  year: 2018
  ident: C9NR08309J-(cit2)/*[position()=1]
  publication-title: Oncol. Lett.
– volume: 33
  start-page: 1107
  year: 2012
  ident: C9NR08309J-(cit45)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.10.052
– volume: 18
  start-page: 168
  year: 2015
  ident: C9NR08309J-(cit6)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.02.029
– volume: 277
  start-page: 114
  year: 2018
  ident: C9NR08309J-(cit13)/*[position()=1]
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2018.02.001
– volume: 20
  start-page: 2276
  year: 2019
  ident: C9NR08309J-(cit36)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.9b00224
– volume: 135
  start-page: 46714
  year: 2018
  ident: C9NR08309J-(cit20)/*[position()=1]
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.46714
– volume: 99
  start-page: 5081
  year: 2002
  ident: C9NR08309J-(cit34)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.062684999
– volume: 62
  start-page: 273
  year: 2017
  ident: C9NR08309J-(cit5)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.08.024
– volume: 7
  start-page: 19798
  year: 2015
  ident: C9NR08309J-(cit29)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05836
– volume: 29
  start-page: 138
  year: 1990
  ident: C9NR08309J-(cit22)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199001381
SSID ssj0069363
Score 2.5226245
Snippet The design of pH-sensitive supramolecular drug delivery systems for efficient antineoplastic drug delivery remains a huge challenge. Herein, we describe the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 22343
SubjectTerms Anticancer properties
Antineoplastic Agents - chemistry
Antineoplastic Agents - metabolism
Antineoplastic Agents - pharmacology
Assembly
Benzimidazoles - chemistry
beta-Cyclodextrins - chemistry
Cancer
Cell Survival - drug effects
Cyclodextrins
Dendrimers
Dendrimers - chemistry
Doxorubicin
Doxorubicin - chemistry
Doxorubicin - metabolism
Doxorubicin - pharmacology
Drug Carriers - chemistry
Drug delivery systems
Drug Liberation
Encapsulation
Flow cytometry
HeLa Cells
Humans
Hydrogen-Ion Concentration
Hydrophobicity
Spheroids
Tumors
Viability
Title Core–shell tecto dendrimers formed via host–guest supramolecular assembly as pH-responsive intelligent carriers for enhanced anticancer drug delivery
URI https://www.ncbi.nlm.nih.gov/pubmed/31728477
https://www.proquest.com/docview/2319182941
https://www.proquest.com/docview/2315095397
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKJqHxgPimMJARvKAokNj5mB9HBVRF7AGKGE9V4jgrqE2qNJk0_g_-X-4cO2nEJgEvURS7sdT75Xznu_sdIS8yX6iIy9SNwky4gQxzNz3ypCtybQFjKAYjuh9PoumXYHYano5GFztZS02dvpI_L60r-R-pwjOQK1bJ_oNku5fCA7gH-cIVJAzXv5LxpKyUu8VUTgdjAaUDSiRDvv5KsyzARuecf08cLORwz1D_O9tmUyVr2xLXActZrdPVBXab2UzdyiTMnitNI9FSddbIXo197bYtPXixbJMGQCSoQiW2GK-aM1h7hTkegzAx6O5yCyjoA0DmeHoGqFyWZtfEfKC23r3p4NSey37rHnzWzYd1Eu7SANqcVfgCi_ZM7bfSOo1hAiPn8VAB-ztACwbqlPGWxOkPRe9x5EmVoqjAhvTEj91JIKTNWoucY_etwPSJGdJq26FrZJ-BhwEqcv_4w5v3X-02Hgkecctny8XrfqkDct3-eGjMXOGhaEtlfovcNC4GPW7xcpuMVHGH3NghnrxLfvXIoRo5tEcObZFDATm0Rw4dIoda5MANHSCH7iCHWuTgO6lFDu2RQxE51CLnHpm_ezufTF3ToMOV3A9rNwdrU3oZy1MZRDIG30Kw2GeJjGALzULPS_IkyHiaMRWLEEbAYhIpP2K5UiyI-X2yV5SFekgoQx7AMI_yBPxbXc7tq9hLU8WkEmCmjslL-0cvpCGvxx4qq4VOouBiMREnn7R8ZmPyvJu7aSlbLp11aOW1MJ_0dgHOjgCHWwT-mDzrhkHhYhQtKVTZ6DkhkjSKeEwetHLulrG4eHTlyGNy0H8Yh2Svrhr1BMzaOn1qAPgbjrapVw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Core-shell+tecto+dendrimers+formed+via+host-guest+supramolecular+assembly+as+pH-responsive+intelligent+carriers+for+enhanced+anticancer+drug+delivery&rft.jtitle=Nanoscale&rft.au=Wang%2C+Jianhong&rft.au=Li%2C+Du&rft.au=Fan%2C+Yu&rft.au=Shi%2C+Menghan&rft.date=2019-11-28&rft.eissn=2040-3372&rft.volume=11&rft.issue=46&rft.spage=22343&rft_id=info:doi/10.1039%2Fc9nr08309j&rft_id=info%3Apmid%2F31728477&rft.externalDocID=31728477
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon