Core–shell tecto dendrimers formed via host–guest supramolecular assembly as pH-responsive intelligent carriers for enhanced anticancer drug delivery
The design of pH-sensitive supramolecular drug delivery systems for efficient antineoplastic drug delivery remains a huge challenge. Herein, we describe the development of pH-responsive core–shell tecto dendrimers (CSTDs) formed using benzimidazole (BM)-modified generation 3 (G3) poly(amidoamine) (P...
Saved in:
Published in | Nanoscale Vol. 11; no. 46; pp. 22343 - 22350 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
28.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The design of pH-sensitive supramolecular drug delivery systems for efficient antineoplastic drug delivery remains a huge challenge. Herein, we describe the development of pH-responsive core–shell tecto dendrimers (CSTDs) formed using benzimidazole (BM)-modified generation 3 (G3) poly(amidoamine) (PAMAM) dendrimers (G3.NHAc-BM) as a shell and β-cyclodextrin (CD)-modified G5 PAMAM dendrimers (G5.NHAc-CD) as a core. By virtue of the host–guest recognition and pH-responsiveness of BM/β-CD assembly, the pH-sensitive supramolecular CSTDs of G5.NHAc-CD/BM-G3.NHAc were formed and adopted to encapsulate the anticancer drug doxorubicin (DOX)
via
hydrophobic interactions for pH-responsive drug delivery applications. The synthesis of dendrimer derivatives and the loading of the DOX were well characterized
via
different methods. We show that the encapsulated DOX can be released in a sustained manner with a rapid release speed under a slightly acidic pH condition (pH < 6), which is similar to acidic tumor microenvironment. The enhanced intracellular release of DOX and improved anticancer activity of the drug-loaded pH-responsive CSTDs were demonstrated and compared with the control CSTDs formed without pH-responsiveness through flow cytometry and viability assays of cancer cells. Furthermore, the pH-sensitive CSTDs also showed efficient drug penetration and growth inhibition of three-dimensional tumor spheroids owing to the faster DOX release in an acidic pH environment. The pH-sensitive G5.NHAc-CD/BM-G3.NHAc CSTDs may be employed as a valuable intelligent delivery system for various anticancer drugs. |
---|---|
AbstractList | The design of pH-sensitive supramolecular drug delivery systems for efficient antineoplastic drug delivery remains a huge challenge. Herein, we describe the development of pH-responsive core–shell tecto dendrimers (CSTDs) formed using benzimidazole (BM)-modified generation 3 (G3) poly(amidoamine) (PAMAM) dendrimers (G3.NHAc-BM) as a shell and β-cyclodextrin (CD)-modified G5 PAMAM dendrimers (G5.NHAc-CD) as a core. By virtue of the host–guest recognition and pH-responsiveness of BM/β-CD assembly, the pH-sensitive supramolecular CSTDs of G5.NHAc-CD/BM-G3.NHAc were formed and adopted to encapsulate the anticancer drug doxorubicin (DOX) via hydrophobic interactions for pH-responsive drug delivery applications. The synthesis of dendrimer derivatives and the loading of the DOX were well characterized via different methods. We show that the encapsulated DOX can be released in a sustained manner with a rapid release speed under a slightly acidic pH condition (pH < 6), which is similar to acidic tumor microenvironment. The enhanced intracellular release of DOX and improved anticancer activity of the drug-loaded pH-responsive CSTDs were demonstrated and compared with the control CSTDs formed without pH-responsiveness through flow cytometry and viability assays of cancer cells. Furthermore, the pH-sensitive CSTDs also showed efficient drug penetration and growth inhibition of three-dimensional tumor spheroids owing to the faster DOX release in an acidic pH environment. The pH-sensitive G5.NHAc-CD/BM-G3.NHAc CSTDs may be employed as a valuable intelligent delivery system for various anticancer drugs. The design of pH-sensitive supramolecular drug delivery systems for efficient antineoplastic drug delivery remains a huge challenge. Herein, we describe the development of pH-responsive core-shell tecto dendrimers (CSTDs) formed using benzimidazole (BM)-modified generation 3 (G3) poly(amidoamine) (PAMAM) dendrimers (G3.NHAc-BM) as a shell and β-cyclodextrin (CD)-modified G5 PAMAM dendrimers (G5.NHAc-CD) as a core. By virtue of the host-guest recognition and pH-responsiveness of BM/β-CD assembly, the pH-sensitive supramolecular CSTDs of G5.NHAc-CD/BM-G3.NHAc were formed and adopted to encapsulate the anticancer drug doxorubicin (DOX) via hydrophobic interactions for pH-responsive drug delivery applications. The synthesis of dendrimer derivatives and the loading of the DOX were well characterized via different methods. We show that the encapsulated DOX can be released in a sustained manner with a rapid release speed under a slightly acidic pH condition (pH < 6), which is similar to acidic tumor microenvironment. The enhanced intracellular release of DOX and improved anticancer activity of the drug-loaded pH-responsive CSTDs were demonstrated and compared with the control CSTDs formed without pH-responsiveness through flow cytometry and viability assays of cancer cells. Furthermore, the pH-sensitive CSTDs also showed efficient drug penetration and growth inhibition of three-dimensional tumor spheroids owing to the faster DOX release in an acidic pH environment. The pH-sensitive G5.NHAc-CD/BM-G3.NHAc CSTDs may be employed as a valuable intelligent delivery system for various anticancer drugs.The design of pH-sensitive supramolecular drug delivery systems for efficient antineoplastic drug delivery remains a huge challenge. Herein, we describe the development of pH-responsive core-shell tecto dendrimers (CSTDs) formed using benzimidazole (BM)-modified generation 3 (G3) poly(amidoamine) (PAMAM) dendrimers (G3.NHAc-BM) as a shell and β-cyclodextrin (CD)-modified G5 PAMAM dendrimers (G5.NHAc-CD) as a core. By virtue of the host-guest recognition and pH-responsiveness of BM/β-CD assembly, the pH-sensitive supramolecular CSTDs of G5.NHAc-CD/BM-G3.NHAc were formed and adopted to encapsulate the anticancer drug doxorubicin (DOX) via hydrophobic interactions for pH-responsive drug delivery applications. The synthesis of dendrimer derivatives and the loading of the DOX were well characterized via different methods. We show that the encapsulated DOX can be released in a sustained manner with a rapid release speed under a slightly acidic pH condition (pH < 6), which is similar to acidic tumor microenvironment. The enhanced intracellular release of DOX and improved anticancer activity of the drug-loaded pH-responsive CSTDs were demonstrated and compared with the control CSTDs formed without pH-responsiveness through flow cytometry and viability assays of cancer cells. Furthermore, the pH-sensitive CSTDs also showed efficient drug penetration and growth inhibition of three-dimensional tumor spheroids owing to the faster DOX release in an acidic pH environment. The pH-sensitive G5.NHAc-CD/BM-G3.NHAc CSTDs may be employed as a valuable intelligent delivery system for various anticancer drugs. The design of pH-sensitive supramolecular drug delivery systems for efficient antineoplastic drug delivery remains a huge challenge. Herein, we describe the development of pH-responsive core–shell tecto dendrimers (CSTDs) formed using benzimidazole (BM)-modified generation 3 (G3) poly(amidoamine) (PAMAM) dendrimers (G3.NHAc-BM) as a shell and β-cyclodextrin (CD)-modified G5 PAMAM dendrimers (G5.NHAc-CD) as a core. By virtue of the host–guest recognition and pH-responsiveness of BM/β-CD assembly, the pH-sensitive supramolecular CSTDs of G5.NHAc-CD/BM-G3.NHAc were formed and adopted to encapsulate the anticancer drug doxorubicin (DOX) via hydrophobic interactions for pH-responsive drug delivery applications. The synthesis of dendrimer derivatives and the loading of the DOX were well characterized via different methods. We show that the encapsulated DOX can be released in a sustained manner with a rapid release speed under a slightly acidic pH condition (pH < 6), which is similar to acidic tumor microenvironment. The enhanced intracellular release of DOX and improved anticancer activity of the drug-loaded pH-responsive CSTDs were demonstrated and compared with the control CSTDs formed without pH-responsiveness through flow cytometry and viability assays of cancer cells. Furthermore, the pH-sensitive CSTDs also showed efficient drug penetration and growth inhibition of three-dimensional tumor spheroids owing to the faster DOX release in an acidic pH environment. The pH-sensitive G5.NHAc-CD/BM-G3.NHAc CSTDs may be employed as a valuable intelligent delivery system for various anticancer drugs. |
Author | Shi, Xiangyang Yang, Yunxia Wang, Jianhong Wang, Le Peng, Yitian Shen, Mingwu Shi, Menghan Li, Du Fan, Yu |
Author_xml | – sequence: 1 givenname: Jianhong surname: Wang fullname: Wang, Jianhong organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 – sequence: 2 givenname: Du surname: Li fullname: Li, Du organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 – sequence: 3 givenname: Yu surname: Fan fullname: Fan, Yu organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 – sequence: 4 givenname: Menghan surname: Shi fullname: Shi, Menghan organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 – sequence: 5 givenname: Yunxia surname: Yang fullname: Yang, Yunxia organization: College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China – sequence: 6 givenname: Le orcidid: 0000-0002-8504-4840 surname: Wang fullname: Wang, Le organization: College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China – sequence: 7 givenname: Yitian orcidid: 0000-0002-4951-4657 surname: Peng fullname: Peng, Yitian organization: College of Mechanical Engineering, Donghua University, Shanghai 201620, People's Republic of China – sequence: 8 givenname: Mingwu orcidid: 0000-0002-1065-0854 surname: Shen fullname: Shen, Mingwu organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 – sequence: 9 givenname: Xiangyang orcidid: 0000-0001-6785-6645 surname: Shi fullname: Shi, Xiangyang organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31728477$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctq3DAUhkVJaJJpN32AIsgmBJzq4stoWYZcWkIKJXsjy8czCrbkHsmB2eUdssrr9Ukqk2kCISv9Qt_5z9F_jsie8w4I-cLZGWdSfVupm99sKZn6-YEcCpazTMpK7L3oMj8gRyHcMVYqWcqP5EDySizzqjokTyuP8PfhMWyg72kEEz1twbVoB8BAO48DtPTearrxISZwPUGINEwj6sH3YKZeI9UhwND02yToeJUhhNG7YO-BWheTsV2Di9RoRLtzpeA22pnkrV20ZpZIW5zWqXufCnH7iex3ug_weXcuyO3F-e3qKrv-dflj9f06M5IXMesKpgxrRdeYvDQVT1dRcaFNqThvC8Z0p_NWNq2AShXpJedSNXIpOgCRV3JBTp5tR_R_5r_Vgw0mzawd-CnUQs6WhVQzevwGvfMTujTcTCm-FCqZL8jXHTU1Kbt6TFFq3Nb_M0_A6TNg0IeA0L0gnNXzQuvXhSaYvYGNjTpa7yJq279X8g-EQ6aQ |
CitedBy_id | crossref_primary_10_3390_pharmaceutics13030343 crossref_primary_10_1016_j_bioactmat_2020_09_015 crossref_primary_10_1002_marc_202400511 crossref_primary_10_1021_acsami_0c10372 crossref_primary_10_1021_acsami_2c22584 crossref_primary_10_1039_D4TB01747A crossref_primary_10_1021_acs_bioconjchem_1c00587 crossref_primary_10_1002_adhm_202000387 crossref_primary_10_1016_j_carbpol_2020_116871 crossref_primary_10_1016_j_carres_2023_108966 crossref_primary_10_1002_INMD_20220005 crossref_primary_10_1039_D3BM00375B crossref_primary_10_1039_D1TB01328A crossref_primary_10_1021_acs_biomac_1c01264 crossref_primary_10_1002_wnan_1670 crossref_primary_10_1016_j_ijbiomac_2021_05_204 crossref_primary_10_1016_j_molliq_2023_122936 crossref_primary_10_1039_D2BM00643J crossref_primary_10_1016_j_matpr_2024_05_130 crossref_primary_10_3390_pharmaceutics15071986 crossref_primary_10_1039_D0TB00346H crossref_primary_10_1007_s11426_020_9933_4 crossref_primary_10_1021_acsami_1c15282 crossref_primary_10_1016_j_ijpharm_2022_122570 crossref_primary_10_1021_acsphyschemau_4c00027 crossref_primary_10_1016_j_molstruc_2020_129855 crossref_primary_10_3390_molecules26113304 crossref_primary_10_1080_17425247_2022_2081320 crossref_primary_10_1021_acsabm_0c01525 crossref_primary_10_1021_acsami_3c12184 crossref_primary_10_1021_acs_biomac_1c00262 crossref_primary_10_1016_j_colsurfa_2021_126466 crossref_primary_10_1038_s41467_024_49217_w crossref_primary_10_1039_D3SM00549F crossref_primary_10_1007_s40139_021_00221_5 crossref_primary_10_1016_j_ccr_2020_213463 crossref_primary_10_1016_j_jconrel_2024_06_021 crossref_primary_10_1021_acs_bioconjchem_1c00005 crossref_primary_10_1039_D3TB02101G crossref_primary_10_1039_D4PY00124A crossref_primary_10_1016_j_reactfunctpolym_2022_105175 crossref_primary_10_1016_j_nantod_2021_101325 crossref_primary_10_1002_EXP_20210134 crossref_primary_10_1039_D2NJ02894H crossref_primary_10_1016_j_msec_2020_111455 crossref_primary_10_1016_j_jconrel_2023_05_021 crossref_primary_10_1021_acsnano_1c06667 crossref_primary_10_1016_j_colsurfa_2023_133026 crossref_primary_10_1080_25740881_2022_2029895 crossref_primary_10_1016_j_nantod_2024_102437 crossref_primary_10_1002_adtp_202300388 crossref_primary_10_1002_adma_202404608 crossref_primary_10_1016_j_nano_2024_102758 crossref_primary_10_1016_j_ijpharm_2024_124573 crossref_primary_10_1002_marc_202400251 crossref_primary_10_1016_j_jconrel_2022_05_056 |
Cites_doi | 10.1002/advs.201700821 10.1016/j.biomaterials.2015.04.009 10.1021/acsami.9b04236 10.1016/j.colsurfb.2018.02.010 10.1016/S0040-4020(97)00976-9 10.1021/acsami.6b12647 10.1021/mp0500216 10.1039/C8NR08141G 10.1002/mabi.201300175 10.1039/c1py00179e 10.1039/C9TC01629E 10.3390/nano8030131 10.1021/acs.langmuir.8b02901 10.1021/bm300545b 10.1039/c3py00141e 10.1166/jbn.2019.2729 10.1002/(SICI)1521-4095(200006)12:11<796::AID-ADMA796>3.0.CO;2-1 10.1039/C9NR01892A 10.1039/C7TB02585H 10.1021/acs.biomac.7b01515 10.1139/V10-079 10.1039/b925274f 10.1002/advs.201700339 10.1021/am5032874 10.1021/acsami.8b21679 10.3322/caac.21442 10.1039/C6RA03839E 10.1021/acsami.9b04871 10.3390/pharmaceutics10030162 10.1039/C7NR00962C 10.1039/b912502g 10.1021/acsami.8b18820 10.7150/thno.33958 10.1021/acsbiomaterials.9b00099 10.1002/anie.201612150 10.1021/acsami.8b14517 10.1021/am504849x 10.1016/j.biomaterials.2011.10.052 10.1016/j.actbio.2015.02.029 10.1016/j.jconrel.2018.02.001 10.1021/acs.biomac.9b00224 10.1002/app.46714 10.1073/pnas.062684999 10.1016/j.actbio.2017.08.024 10.1021/acsami.5b05836 10.1002/anie.199001381 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/C9NR08309J |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 22350 |
ExternalDocumentID | 31728477 10_1039_C9NR08309J |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RSCEA RVUXY -JG AGSTE CGR CUY CVF ECM EIF NPM RRC 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c315t-f509c0d2fbc46c715092712ac6911d500afa4d3bd2e7957124139b382fee2473 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 12:07:06 EDT 2025 Mon Jun 30 12:09:34 EDT 2025 Wed Feb 19 02:31:02 EST 2025 Tue Jul 01 01:13:46 EDT 2025 Thu Apr 24 22:54:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c315t-f509c0d2fbc46c715092712ac6911d500afa4d3bd2e7957124139b382fee2473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8504-4840 0000-0002-1065-0854 0000-0002-4951-4657 0000-0001-6785-6645 |
PMID | 31728477 |
PQID | 2319182941 |
PQPubID | 2047485 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2315095397 proquest_journals_2319182941 pubmed_primary_31728477 crossref_primary_10_1039_C9NR08309J crossref_citationtrail_10_1039_C9NR08309J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Nov-28 |
PublicationDateYYYYMMDD | 2019-11-28 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-Nov-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wu (C9NR08309J-(cit4)/*[position()=1]) 2018; 5 Yeh (C9NR08309J-(cit32)/*[position()=1]) 2018; 19 Zhang (C9NR08309J-(cit7)/*[position()=1]) 2013; 13 Uppuluri (C9NR08309J-(cit33)/*[position()=1]) 2000; 12 Li (C9NR08309J-(cit16)/*[position()=1]) 2015; 57 Chen (C9NR08309J-(cit6)/*[position()=1]) 2015; 18 Chen (C9NR08309J-(cit39)/*[position()=1]) 2017; 5 Qiu (C9NR08309J-(cit28)/*[position()=1]) 2018; 8 Wu (C9NR08309J-(cit11)/*[position()=1]) 2019; 15 Cheng (C9NR08309J-(cit3)/*[position()=1]) 2017; 9 Zhao (C9NR08309J-(cit29)/*[position()=1]) 2015; 7 Zhao (C9NR08309J-(cit18)/*[position()=1]) 2017; 9 Zhang (C9NR08309J-(cit25)/*[position()=1]) 2018; 10 Wang (C9NR08309J-(cit21)/*[position()=1]) 2014; 6 Zhang (C9NR08309J-(cit20)/*[position()=1]) 2018; 135 Koner (C9NR08309J-(cit38)/*[position()=1]) 2011; 89 Siegel (C9NR08309J-(cit1)/*[position()=1]) 2018; 68 Zhang (C9NR08309J-(cit43)/*[position()=1]) 2013; 4 Redondo-Gómez (C9NR08309J-(cit36)/*[position()=1]) 2019; 20 Zhang (C9NR08309J-(cit9)/*[position()=1]) 2018; 5 Shi (C9NR08309J-(cit26)/*[position()=1]) 2005; 2 Zhou (C9NR08309J-(cit40)/*[position()=1]) 2018; 10 Feng (C9NR08309J-(cit17)/*[position()=1]) 2019; 11 Liu (C9NR08309J-(cit35)/*[position()=1]) 2019; 11 Wang (C9NR08309J-(cit42)/*[position()=1]) 2009 Li (C9NR08309J-(cit5)/*[position()=1]) 2017; 62 Yang (C9NR08309J-(cit31)/*[position()=1]) 2012; 13 Qiu (C9NR08309J-(cit46)/*[position()=1]) 2016; 6 Laskar (C9NR08309J-(cit27)/*[position()=1]) 2018; 10 Cheng (C9NR08309J-(cit15)/*[position()=1]) 2019; 5 Schmidt (C9NR08309J-(cit37)/*[position()=1]) 2017; 56 Liu (C9NR08309J-(cit23)/*[position()=1]) 2019; 11 LothianTomalia (C9NR08309J-(cit30)/*[position()=1]) 1997; 53 Huang (C9NR08309J-(cit8)/*[position()=1]) 2019; 9 Peng (C9NR08309J-(cit45)/*[position()=1]) 2012; 33 Li (C9NR08309J-(cit2)/*[position()=1]) 2018; 15 Tomalia (C9NR08309J-(cit22)/*[position()=1]) 1990; 29 Nikravan (C9NR08309J-(cit19)/*[position()=1]) 2018; 165 Wang (C9NR08309J-(cit44)/*[position()=1]) 2011; 2 Li (C9NR08309J-(cit13)/*[position()=1]) 2018; 277 Hu (C9NR08309J-(cit10)/*[position()=1]) 2019; 11 Fu (C9NR08309J-(cit41)/*[position()=1]) 2014; 6 Zhu (C9NR08309J-(cit24)/*[position()=1]) 2018; 34 Pyne (C9NR08309J-(cit12)/*[position()=1]) 2019; 7 Ren (C9NR08309J-(cit14)/*[position()=1]) 2019; 11 Tomalia (C9NR08309J-(cit34)/*[position()=1]) 2002; 99 Shi (C9NR08309J-(cit47)/*[position()=1]) 2010; 6 |
References_xml | – volume: 5 start-page: 1700821 year: 2018 ident: C9NR08309J-(cit9)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201700821 – volume: 57 start-page: 1 year: 2015 ident: C9NR08309J-(cit16)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.04.009 – volume: 11 start-page: 20678 year: 2019 ident: C9NR08309J-(cit14)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04236 – volume: 165 start-page: 1 year: 2018 ident: C9NR08309J-(cit19)/*[position()=1] publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2018.02.010 – volume: 53 start-page: 15495 year: 1997 ident: C9NR08309J-(cit30)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/S0040-4020(97)00976-9 – volume: 9 start-page: 2093 year: 2017 ident: C9NR08309J-(cit3)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12647 – volume: 2 start-page: 278 year: 2005 ident: C9NR08309J-(cit26)/*[position()=1] publication-title: Mol. Pharmaceutics doi: 10.1021/mp0500216 – volume: 10 start-page: 22830 year: 2018 ident: C9NR08309J-(cit27)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR08141G – volume: 13 start-page: 1249 year: 2013 ident: C9NR08309J-(cit7)/*[position()=1] publication-title: Macromol. Biosci. doi: 10.1002/mabi.201300175 – volume: 2 start-page: 1754 year: 2011 ident: C9NR08309J-(cit44)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/c1py00179e – volume: 7 start-page: 6414 year: 2019 ident: C9NR08309J-(cit12)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C9TC01629E – volume: 8 start-page: 131 year: 2018 ident: C9NR08309J-(cit28)/*[position()=1] publication-title: Nanomaterials doi: 10.3390/nano8030131 – volume: 34 start-page: 12428 year: 2018 ident: C9NR08309J-(cit24)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.8b02901 – volume: 13 start-page: 2154 year: 2012 ident: C9NR08309J-(cit31)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/bm300545b – volume: 4 start-page: 3265 year: 2013 ident: C9NR08309J-(cit43)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/c3py00141e – volume: 15 start-page: 1415 year: 2019 ident: C9NR08309J-(cit11)/*[position()=1] publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2019.2729 – volume: 12 start-page: 796 year: 2000 ident: C9NR08309J-(cit33)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(200006)12:11<796::AID-ADMA796>3.0.CO;2-1 – volume: 11 start-page: 9201 year: 2019 ident: C9NR08309J-(cit10)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR01892A – volume: 5 start-page: 8459 year: 2017 ident: C9NR08309J-(cit39)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C7TB02585H – volume: 19 start-page: 426 year: 2018 ident: C9NR08309J-(cit32)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01515 – volume: 89 start-page: 139 year: 2011 ident: C9NR08309J-(cit38)/*[position()=1] publication-title: Can. J. Chem. doi: 10.1139/V10-079 – volume: 6 start-page: 2539 year: 2010 ident: C9NR08309J-(cit47)/*[position()=1] publication-title: Soft Matter doi: 10.1039/b925274f – volume: 5 start-page: 1700339 year: 2018 ident: C9NR08309J-(cit4)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201700339 – volume: 6 start-page: 16687 year: 2014 ident: C9NR08309J-(cit21)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5032874 – volume: 11 start-page: 15212 year: 2019 ident: C9NR08309J-(cit23)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b21679 – volume: 68 start-page: 7 year: 2018 ident: C9NR08309J-(cit1)/*[position()=1] publication-title: CA-Cancer J. Clin. doi: 10.3322/caac.21442 – volume: 6 start-page: 25633 year: 2016 ident: C9NR08309J-(cit46)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA03839E – volume: 11 start-page: 20394 year: 2019 ident: C9NR08309J-(cit35)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04871 – volume: 10 start-page: 162 year: 2018 ident: C9NR08309J-(cit25)/*[position()=1] publication-title: Pharmaceutics doi: 10.3390/pharmaceutics10030162 – volume: 9 start-page: 6264 year: 2017 ident: C9NR08309J-(cit18)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR00962C – start-page: 5380 year: 2009 ident: C9NR08309J-(cit42)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b912502g – volume: 11 start-page: 7357 year: 2019 ident: C9NR08309J-(cit17)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b18820 – volume: 9 start-page: 3825 year: 2019 ident: C9NR08309J-(cit8)/*[position()=1] publication-title: Theranostics doi: 10.7150/thno.33958 – volume: 5 start-page: 1878 year: 2019 ident: C9NR08309J-(cit15)/*[position()=1] publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.9b00099 – volume: 56 start-page: 8350 year: 2017 ident: C9NR08309J-(cit37)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201612150 – volume: 10 start-page: 35812 year: 2018 ident: C9NR08309J-(cit40)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14517 – volume: 6 start-page: 16416 year: 2014 ident: C9NR08309J-(cit41)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am504849x – volume: 15 start-page: 1343 year: 2018 ident: C9NR08309J-(cit2)/*[position()=1] publication-title: Oncol. Lett. – volume: 33 start-page: 1107 year: 2012 ident: C9NR08309J-(cit45)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.10.052 – volume: 18 start-page: 168 year: 2015 ident: C9NR08309J-(cit6)/*[position()=1] publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.02.029 – volume: 277 start-page: 114 year: 2018 ident: C9NR08309J-(cit13)/*[position()=1] publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2018.02.001 – volume: 20 start-page: 2276 year: 2019 ident: C9NR08309J-(cit36)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/acs.biomac.9b00224 – volume: 135 start-page: 46714 year: 2018 ident: C9NR08309J-(cit20)/*[position()=1] publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.46714 – volume: 99 start-page: 5081 year: 2002 ident: C9NR08309J-(cit34)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.062684999 – volume: 62 start-page: 273 year: 2017 ident: C9NR08309J-(cit5)/*[position()=1] publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.08.024 – volume: 7 start-page: 19798 year: 2015 ident: C9NR08309J-(cit29)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05836 – volume: 29 start-page: 138 year: 1990 ident: C9NR08309J-(cit22)/*[position()=1] publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199001381 |
SSID | ssj0069363 |
Score | 2.5226245 |
Snippet | The design of pH-sensitive supramolecular drug delivery systems for efficient antineoplastic drug delivery remains a huge challenge. Herein, we describe the... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 22343 |
SubjectTerms | Anticancer properties Antineoplastic Agents - chemistry Antineoplastic Agents - metabolism Antineoplastic Agents - pharmacology Assembly Benzimidazoles - chemistry beta-Cyclodextrins - chemistry Cancer Cell Survival - drug effects Cyclodextrins Dendrimers Dendrimers - chemistry Doxorubicin Doxorubicin - chemistry Doxorubicin - metabolism Doxorubicin - pharmacology Drug Carriers - chemistry Drug delivery systems Drug Liberation Encapsulation Flow cytometry HeLa Cells Humans Hydrogen-Ion Concentration Hydrophobicity Spheroids Tumors Viability |
Title | Core–shell tecto dendrimers formed via host–guest supramolecular assembly as pH-responsive intelligent carriers for enhanced anticancer drug delivery |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31728477 https://www.proquest.com/docview/2319182941 https://www.proquest.com/docview/2315095397 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKJqHxgPimMJARvKAokNj5mB9HBVRF7AGKGE9V4jgrqE2qNJk0_g_-X-4cO2nEJgEvURS7sdT75Xznu_sdIS8yX6iIy9SNwky4gQxzNz3ypCtybQFjKAYjuh9PoumXYHYano5GFztZS02dvpI_L60r-R-pwjOQK1bJ_oNku5fCA7gH-cIVJAzXv5LxpKyUu8VUTgdjAaUDSiRDvv5KsyzARuecf08cLORwz1D_O9tmUyVr2xLXActZrdPVBXab2UzdyiTMnitNI9FSddbIXo197bYtPXixbJMGQCSoQiW2GK-aM1h7hTkegzAx6O5yCyjoA0DmeHoGqFyWZtfEfKC23r3p4NSey37rHnzWzYd1Eu7SANqcVfgCi_ZM7bfSOo1hAiPn8VAB-ztACwbqlPGWxOkPRe9x5EmVoqjAhvTEj91JIKTNWoucY_etwPSJGdJq26FrZJ-BhwEqcv_4w5v3X-02Hgkecctny8XrfqkDct3-eGjMXOGhaEtlfovcNC4GPW7xcpuMVHGH3NghnrxLfvXIoRo5tEcObZFDATm0Rw4dIoda5MANHSCH7iCHWuTgO6lFDu2RQxE51CLnHpm_ezufTF3ToMOV3A9rNwdrU3oZy1MZRDIG30Kw2GeJjGALzULPS_IkyHiaMRWLEEbAYhIpP2K5UiyI-X2yV5SFekgoQx7AMI_yBPxbXc7tq9hLU8WkEmCmjslL-0cvpCGvxx4qq4VOouBiMREnn7R8ZmPyvJu7aSlbLp11aOW1MJ_0dgHOjgCHWwT-mDzrhkHhYhQtKVTZ6DkhkjSKeEwetHLulrG4eHTlyGNy0H8Yh2Svrhr1BMzaOn1qAPgbjrapVw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Core-shell+tecto+dendrimers+formed+via+host-guest+supramolecular+assembly+as+pH-responsive+intelligent+carriers+for+enhanced+anticancer+drug+delivery&rft.jtitle=Nanoscale&rft.au=Wang%2C+Jianhong&rft.au=Li%2C+Du&rft.au=Fan%2C+Yu&rft.au=Shi%2C+Menghan&rft.date=2019-11-28&rft.eissn=2040-3372&rft.volume=11&rft.issue=46&rft.spage=22343&rft_id=info:doi/10.1039%2Fc9nr08309j&rft_id=info%3Apmid%2F31728477&rft.externalDocID=31728477 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |