UV–visible broadband polarization-independent metamaterial absorber based on two-dimensional Au grating

•A simple broadband absorber consisting of 2D Au square grating on graphene-SiO2 film and Au substrate is proposed.•The absorber achieve nearly perfect absorption with absorption of exceeding 90 % spanning a broad range from100 nm to 700 nm).•The absorber is polarization and angle insensitive for in...

Full description

Saved in:
Bibliographic Details
Published inOptics and laser technology Vol. 157; p. 108729
Main Authors Tian, Xinye, Qiu, Xuejun, Cao, Zhenzhou, Hou, Jin, Yang, Chunyong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A simple broadband absorber consisting of 2D Au square grating on graphene-SiO2 film and Au substrate is proposed.•The absorber achieve nearly perfect absorption with absorption of exceeding 90 % spanning a broad range from100 nm to 700 nm).•The absorber is polarization and angle insensitive for incident light even at large angle.•The absorption are well explained by Rayleigh anomaly, cavity resonance, surface plasmon polaritons and magnetic polaritons. A broadband metamaterial absorber (BMA) based on a thin metamaterial nanostructure consisting of 2D Au square grating on graphene-SiO2 film and Au substrate is proposed and designed. The optimized structure can achieve nearly perfect absorption with absorption of exceeding 90 % spanning a broad range from deep UV light to visible light (100 nm−700 nm). The excitation of Rayleigh anomaly (RA), cavity resonance (CR), surface plasmon polaritons (SPPs) and magnetic polaritons (MPs) are responsible for nearly perfect broadband absorption, which have been analysed clearly by finite-difference time-domain (FDTD) method and the LC circuit model. Furthermore, the BMA is polarization and angle insensitive for incident light even at large angle. This proposed BMA not only has a simple geometry and ordinary metal-based material composition, but also shows a high performance in both bandwidth and absorptivity, suggesting that great potential in solar cell and photodetector applications.
AbstractList •A simple broadband absorber consisting of 2D Au square grating on graphene-SiO2 film and Au substrate is proposed.•The absorber achieve nearly perfect absorption with absorption of exceeding 90 % spanning a broad range from100 nm to 700 nm).•The absorber is polarization and angle insensitive for incident light even at large angle.•The absorption are well explained by Rayleigh anomaly, cavity resonance, surface plasmon polaritons and magnetic polaritons. A broadband metamaterial absorber (BMA) based on a thin metamaterial nanostructure consisting of 2D Au square grating on graphene-SiO2 film and Au substrate is proposed and designed. The optimized structure can achieve nearly perfect absorption with absorption of exceeding 90 % spanning a broad range from deep UV light to visible light (100 nm−700 nm). The excitation of Rayleigh anomaly (RA), cavity resonance (CR), surface plasmon polaritons (SPPs) and magnetic polaritons (MPs) are responsible for nearly perfect broadband absorption, which have been analysed clearly by finite-difference time-domain (FDTD) method and the LC circuit model. Furthermore, the BMA is polarization and angle insensitive for incident light even at large angle. This proposed BMA not only has a simple geometry and ordinary metal-based material composition, but also shows a high performance in both bandwidth and absorptivity, suggesting that great potential in solar cell and photodetector applications.
ArticleNumber 108729
Author Yang, Chunyong
Tian, Xinye
Cao, Zhenzhou
Qiu, Xuejun
Hou, Jin
Author_xml – sequence: 1
  givenname: Xinye
  surname: Tian
  fullname: Tian, Xinye
– sequence: 2
  givenname: Xuejun
  surname: Qiu
  fullname: Qiu, Xuejun
  email: xjqiu@mail.scuec.edu.cn
– sequence: 3
  givenname: Zhenzhou
  surname: Cao
  fullname: Cao, Zhenzhou
– sequence: 4
  givenname: Jin
  surname: Hou
  fullname: Hou, Jin
– sequence: 5
  givenname: Chunyong
  surname: Yang
  fullname: Yang, Chunyong
BookMark eNqFkMtKAzEUhoNUsK0-g3mBqbnMLctSvEHBjXUbcjlTUmaSksSKrnwH39AncUrFrZtz4PB_P4dvhiY-eEDompIFJbS-2S3CPvcqZTALRhgbr23DxBma0rYRBavKaoKmhHBScCHYBZqltCOElHXFp8htXr4_vw4uOd0D1jEoq5W3eB96Fd2Hyi74wnkLexiHz3iArAaVITrVY6VTiBoi1iqBxcHj_BYK6wbwaQTHxPIVb-PY4reX6LxTfYKr3z1Hm7vb59VDsX66f1wt14XhtMoFcFNDpduuEboUVOmG2aY0StRGGcI6wgytGa06RUTHjWGECM0sp21rKdXA56g59ZoYUorQyX10g4rvkhJ5NCZ38s-YPBqTJ2MjuTyRML53cBBlMg68AesimCxtcP92_ABcjH7e
CitedBy_id crossref_primary_10_1088_2040_8986_aced16
crossref_primary_10_1016_j_optlastec_2024_110676
crossref_primary_10_1016_j_mtcomm_2023_105416
crossref_primary_10_1016_j_mtsust_2024_100877
crossref_primary_10_1016_j_surfin_2024_103849
crossref_primary_10_1016_j_mtcomm_2024_108712
crossref_primary_10_1016_j_vacuum_2023_112536
crossref_primary_10_1016_j_ijleo_2024_171916
crossref_primary_10_1016_j_optcom_2024_130811
crossref_primary_10_1016_j_rinp_2024_107509
crossref_primary_10_1364_AO_524563
crossref_primary_10_1039_D3NR01941A
crossref_primary_10_1007_s11082_023_05412_5
Cites_doi 10.1063/1.4864395
10.1063/1.3226661
10.1016/j.mee.2015.02.042
10.1038/ncomms1058
10.1364/OL.42.003052
10.1016/j.rinp.2021.104466
10.1016/j.jqsrt.2016.05.010
10.1364/OE.16.011328
10.1186/s11671-019-3237-y
10.1364/OME.9.001298
10.1364/OSAC.1.000573
10.1103/PhysRevB.58.6779
10.1088/2040-8986/abfaa9
10.1016/j.physb.2017.11.038
10.1038/s41598-020-71032-8
10.1364/OE.26.005686
10.1021/nl9041033
10.1088/2040-8978/14/2/024012
10.1364/OSAC.2.003223
10.1088/0960-1317/15/9/S12
10.1364/OL.43.004985
10.1364/OE.393423
10.1364/OME.383008
10.1364/AO.22.001099
10.1103/PhysRevLett.107.045901
10.1088/2040-8978/17/3/035004
10.1063/1.4908182
10.1364/OME.9.003193
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.optlastec.2022.108729
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-2545
ExternalDocumentID 10_1016_j_optlastec_2022_108729
S0030399222008751
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XFK
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c315t-e3c6e5b8f79b491ab72d74ca96cac02f02c16215fa09f3cc2009b2d3188d11be3
IEDL.DBID .~1
ISSN 0030-3992
IngestDate Thu Sep 26 19:29:04 EDT 2024
Fri Feb 23 02:40:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metal grating
Metamaterial
Finite difference time domain method
Broadband absorber
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-e3c6e5b8f79b491ab72d74ca96cac02f02c16215fa09f3cc2009b2d3188d11be3
ParticipantIDs crossref_primary_10_1016_j_optlastec_2022_108729
elsevier_sciencedirect_doi_10_1016_j_optlastec_2022_108729
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Optics and laser technology
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lei, Li, Huang, Tao, Xu (b0055) 2018; 26
Zhu, Wu, Ren (b0045) 2021; 26
Qi, Liu (b0040) 2019; 9
Chong, Wilson, Mokkapati, Catchpole (b0015) 2012; 14
Chen (b0110) 2015; 135
Liu, Mesch, Weiss, Hentschel, Giessen (b0005) 2010; 10
Liu, Tyler, Starr, Starr, Jokerst, Padilla (b0020) 2011; 107
Honda, Kumamoto, Taguchi, Saito, Kawata (b0075) 2014; 104
Wang, Zhang (b0140) 2009; 95
Tian, Liu, Chen, Zheng (b0025) 2019; 2
Lee, Chen, Han, Chiu, Lee (b0120) 2014; 136
Wang, Song (b0080) 2018; 530
Liang, Duan, Zhu, Chen, Xia (b0060) 2019; 9
Ordal, Long, Bell, Bell, Bell, Alexander, Ward (b0115) 1983; 22
Bilal, Saeed, Choudhury, Baqir, Kamal, Ali, Rahim (b0030) 2020; 10
Lee, Wang, Zhang (b0145) 2008; 16
Liu, Zhao, Zhang (b0085) 2015; 17
Xu, Xu, Sha, Zhang, Tong, Lin (b0035) 2018; 1
Ghaemi, Thio, Grupp, Ebbesen, Lezec (b0135) 1998; 58
Liu, Gao, Zhang, Li, Xu, Zhang, Luo, Zhou (b0100) 2020; 15
Cai, Sun, Wang, Zhan (b0070) 2020; 28
Qing, Ma, Cui (b0130) 2018; 43
Xia, Zhai, Huang, Liu, Wang, Wen (b0095) 2017; 42
Zhao, Fu (b0065) 2016; 182
Wang, Zhang, Zhang, Cao (b0090) 2020; 10
Xu, Wu, Luo, Guo (b0010) 2010; 1
Xie, Jia, Sun, Xiang, Jin, Liu, Zhou, Zhou (b0050) 2021; 23
Ding, Mo, Zhu, He (b0105) 2015; 106
Sai, Kanamori, Yugami (b0125) 2005; 15
Qing (10.1016/j.optlastec.2022.108729_b0130) 2018; 43
Xie (10.1016/j.optlastec.2022.108729_b0050) 2021; 23
Zhao (10.1016/j.optlastec.2022.108729_b0065) 2016; 182
Wang (10.1016/j.optlastec.2022.108729_b0080) 2018; 530
Wang (10.1016/j.optlastec.2022.108729_b0090) 2020; 10
Lee (10.1016/j.optlastec.2022.108729_b0120) 2014; 136
Tian (10.1016/j.optlastec.2022.108729_b0025) 2019; 2
Liang (10.1016/j.optlastec.2022.108729_b0060) 2019; 9
Honda (10.1016/j.optlastec.2022.108729_b0075) 2014; 104
Lee (10.1016/j.optlastec.2022.108729_b0145) 2008; 16
Cai (10.1016/j.optlastec.2022.108729_b0070) 2020; 28
Xu (10.1016/j.optlastec.2022.108729_b0035) 2018; 1
Liu (10.1016/j.optlastec.2022.108729_b0005) 2010; 10
Ghaemi (10.1016/j.optlastec.2022.108729_b0135) 1998; 58
Qi (10.1016/j.optlastec.2022.108729_b0040) 2019; 9
Ordal (10.1016/j.optlastec.2022.108729_b0115) 1983; 22
Sai (10.1016/j.optlastec.2022.108729_b0125) 2005; 15
Liu (10.1016/j.optlastec.2022.108729_b0020) 2011; 107
Zhu (10.1016/j.optlastec.2022.108729_b0045) 2021; 26
Xia (10.1016/j.optlastec.2022.108729_b0095) 2017; 42
Bilal (10.1016/j.optlastec.2022.108729_b0030) 2020; 10
Xu (10.1016/j.optlastec.2022.108729_b0010) 2010; 1
Chong (10.1016/j.optlastec.2022.108729_b0015) 2012; 14
Liu (10.1016/j.optlastec.2022.108729_b0100) 2020; 15
Ding (10.1016/j.optlastec.2022.108729_b0105) 2015; 106
Liu (10.1016/j.optlastec.2022.108729_b0085) 2015; 17
Chen (10.1016/j.optlastec.2022.108729_b0110) 2015; 135
Wang (10.1016/j.optlastec.2022.108729_b0140) 2009; 95
Lei (10.1016/j.optlastec.2022.108729_b0055) 2018; 26
References_xml – volume: 43
  start-page: 4985
  year: 2018
  end-page: 4988
  ident: b0130
  article-title: Strong coupling between magnetic plasmons and surface plasmons in a black phosphorus-spacer-metallic grating hybrid system
  publication-title: Opt. Lett.
  contributor:
    fullname: Cui
– volume: 95
  year: 2009
  ident: b0140
  article-title: Resonance transmission or absorption in deep gratings explained by magnetic polaritons
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Zhang
– volume: 1
  start-page: 573
  year: 2018
  end-page: 580
  ident: b0035
  article-title: Infrared metamaterial absorber by using chalcogenide glass material with a cyclic ring-disk structure
  publication-title: OSA Continuum.
  contributor:
    fullname: Lin
– volume: 9
  start-page: 1298
  year: 2019
  end-page: 1309
  ident: b0040
  article-title: Broadband multilayer graphene metamaterial absorbers
  publication-title: Opt. Mater. Express.
  contributor:
    fullname: Liu
– volume: 16
  start-page: 11328
  year: 2008
  end-page: 11336
  ident: b0145
  article-title: Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film
  publication-title: Opt. Express.
  contributor:
    fullname: Zhang
– volume: 15
  start-page: 1
  year: 2020
  ident: b0100
  article-title: Dual-Mode on-to-off modulation of plasmon-induced transparency and coupling effect in patterned graphene-based terahertz metasurface
  publication-title: Nanoscale Res. Lett.
  contributor:
    fullname: Zhou
– volume: 107
  year: 2011
  ident: b0020
  article-title: Taming the blackbody with infrared metamaterials as selective thermal emitters
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Padilla
– volume: 42
  start-page: 3052
  year: 2017
  end-page: 3055
  ident: b0095
  article-title: Multi-band perfect plasmonic absorptions using rectangular graphene gratings
  publication-title: Opt. Lett.
  contributor:
    fullname: Wen
– volume: 2
  start-page: 3223
  year: 2019
  end-page: 3239
  ident: b0025
  article-title: Perfect grating-Mie-metamaterial based spectrally selective solar absorbers
  publication-title: OSA Continuum.
  contributor:
    fullname: Zheng
– volume: 104
  year: 2014
  ident: b0075
  article-title: Plasmon-enhanced UV photocatalysis
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Kawata
– volume: 23
  year: 2021
  ident: b0050
  article-title: Ultra-broadband polarization-independent high-efficiency transmission grating based on three-layer dielectric rectangle groove
  publication-title: J Opt.
  contributor:
    fullname: Zhou
– volume: 182
  start-page: 35
  year: 2016
  end-page: 44
  ident: b0065
  article-title: Numerical simulation on the thermal radiative properties of a 2D SiO
  publication-title: J Quant Spectrosc Radiat Transf.
  contributor:
    fullname: Fu
– volume: 26
  start-page: 5686
  year: 2018
  end-page: 5693
  ident: b0055
  article-title: Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial
  publication-title: Opt. Express.
  contributor:
    fullname: Xu
– volume: 14
  year: 2012
  ident: b0015
  article-title: Optimal wavelength scale diffraction gratings for light trapping in solar cells
  publication-title: J Opt.
  contributor:
    fullname: Catchpole
– volume: 10
  start-page: 14035
  year: 2020
  ident: b0030
  article-title: Elliptical metallic rings-shaped fractal metamaterial absorber in the visible regime
  publication-title: Sci. Rep.
  contributor:
    fullname: Rahim
– volume: 58
  start-page: 6779
  year: 1998
  ident: b0135
  article-title: Surface plasmons enhance optical transmission through subwavelength holes
  publication-title: Phys. Rev. B.
  contributor:
    fullname: Lezec
– volume: 26
  year: 2021
  ident: b0045
  article-title: Broadband terahertz metamaterial absorber based on graphene resonators with perfect absorption
  publication-title: Results Phys.
  contributor:
    fullname: Ren
– volume: 1
  start-page: 59
  year: 2010
  ident: b0010
  article-title: Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging
  publication-title: Nat. Commun.
  contributor:
    fullname: Guo
– volume: 135
  start-page: 57
  year: 2015
  end-page: 72
  ident: b0110
  article-title: Nanofabrication by electron beam lithography and its applications: A review
  publication-title: Microelectron. Eng.
  contributor:
    fullname: Chen
– volume: 15
  start-page: S243
  year: 2005
  end-page: S249
  ident: b0125
  article-title: Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures
  publication-title: J. Micromech. Microeng.
  contributor:
    fullname: Yugami
– volume: 28
  start-page: 15347
  year: 2020
  end-page: 15359
  ident: b0070
  article-title: Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm
  publication-title: Opt. Express.
  contributor:
    fullname: Zhan
– volume: 17
  year: 2015
  ident: b0085
  article-title: Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene
  publication-title: J Opt.
  contributor:
    fullname: Zhang
– volume: 22
  start-page: 1099
  year: 1983
  end-page: 1119
  ident: b0115
  article-title: Optical properties of the metals Al Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared
  publication-title: Appl Opt
  contributor:
    fullname: Ward
– volume: 10
  start-page: 2342
  year: 2010
  end-page: 2348
  ident: b0005
  article-title: Infrared perfect absorber and its application as plasmonic sensor
  publication-title: Nano Lett.
  contributor:
    fullname: Giessen
– volume: 530
  start-page: 142
  year: 2018
  end-page: 146
  ident: b0080
  article-title: Multipole plasmons in graphene nanoellipses
  publication-title: Phys. B Condens. Matter.
  contributor:
    fullname: Song
– volume: 9
  start-page: 3193
  year: 2019
  end-page: 3203
  ident: b0060
  article-title: Solar thermal absorber based on dielectric filled two-dimensional nickel grating
  publication-title: Opt. Mater. Express.
  contributor:
    fullname: Xia
– volume: 106
  year: 2015
  ident: b0105
  article-title: Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: He
– volume: 136
  year: 2014
  ident: b0120
  article-title: Wavelength-selective solar thermal absorber with two-dimensional nickel gratings
  publication-title: J. Heat Transfer
  contributor:
    fullname: Lee
– volume: 10
  start-page: 369
  year: 2020
  end-page: 386
  ident: b0090
  article-title: Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial
  publication-title: Opt. Mater. Express.
  contributor:
    fullname: Cao
– volume: 104
  issue: 6
  year: 2014
  ident: 10.1016/j.optlastec.2022.108729_b0075
  article-title: Plasmon-enhanced UV photocatalysis
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4864395
  contributor:
    fullname: Honda
– volume: 95
  issue: 11
  year: 2009
  ident: 10.1016/j.optlastec.2022.108729_b0140
  article-title: Resonance transmission or absorption in deep gratings explained by magnetic polaritons
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3226661
  contributor:
    fullname: Wang
– volume: 135
  start-page: 57
  year: 2015
  ident: 10.1016/j.optlastec.2022.108729_b0110
  article-title: Nanofabrication by electron beam lithography and its applications: A review
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2015.02.042
  contributor:
    fullname: Chen
– volume: 1
  start-page: 59
  year: 2010
  ident: 10.1016/j.optlastec.2022.108729_b0010
  article-title: Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1058
  contributor:
    fullname: Xu
– volume: 42
  start-page: 3052
  issue: 15
  year: 2017
  ident: 10.1016/j.optlastec.2022.108729_b0095
  article-title: Multi-band perfect plasmonic absorptions using rectangular graphene gratings
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.003052
  contributor:
    fullname: Xia
– volume: 26
  year: 2021
  ident: 10.1016/j.optlastec.2022.108729_b0045
  article-title: Broadband terahertz metamaterial absorber based on graphene resonators with perfect absorption
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2021.104466
  contributor:
    fullname: Zhu
– volume: 182
  start-page: 35
  year: 2016
  ident: 10.1016/j.optlastec.2022.108729_b0065
  article-title: Numerical simulation on the thermal radiative properties of a 2D SiO2/W/SiO2/W layered grating for thermophotovoltaic applications
  publication-title: J Quant Spectrosc Radiat Transf.
  doi: 10.1016/j.jqsrt.2016.05.010
  contributor:
    fullname: Zhao
– volume: 16
  start-page: 11328
  issue: 15
  year: 2008
  ident: 10.1016/j.optlastec.2022.108729_b0145
  article-title: Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film
  publication-title: Opt. Express.
  doi: 10.1364/OE.16.011328
  contributor:
    fullname: Lee
– volume: 15
  start-page: 1
  year: 2020
  ident: 10.1016/j.optlastec.2022.108729_b0100
  article-title: Dual-Mode on-to-off modulation of plasmon-induced transparency and coupling effect in patterned graphene-based terahertz metasurface
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-019-3237-y
  contributor:
    fullname: Liu
– volume: 9
  start-page: 1298
  issue: 3
  year: 2019
  ident: 10.1016/j.optlastec.2022.108729_b0040
  article-title: Broadband multilayer graphene metamaterial absorbers
  publication-title: Opt. Mater. Express.
  doi: 10.1364/OME.9.001298
  contributor:
    fullname: Qi
– volume: 1
  start-page: 573
  issue: 2
  year: 2018
  ident: 10.1016/j.optlastec.2022.108729_b0035
  article-title: Infrared metamaterial absorber by using chalcogenide glass material with a cyclic ring-disk structure
  publication-title: OSA Continuum.
  doi: 10.1364/OSAC.1.000573
  contributor:
    fullname: Xu
– volume: 58
  start-page: 6779
  issue: 11
  year: 1998
  ident: 10.1016/j.optlastec.2022.108729_b0135
  article-title: Surface plasmons enhance optical transmission through subwavelength holes
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.58.6779
  contributor:
    fullname: Ghaemi
– volume: 23
  issue: 7
  year: 2021
  ident: 10.1016/j.optlastec.2022.108729_b0050
  article-title: Ultra-broadband polarization-independent high-efficiency transmission grating based on three-layer dielectric rectangle groove
  publication-title: J Opt.
  doi: 10.1088/2040-8986/abfaa9
  contributor:
    fullname: Xie
– volume: 530
  start-page: 142
  year: 2018
  ident: 10.1016/j.optlastec.2022.108729_b0080
  article-title: Multipole plasmons in graphene nanoellipses
  publication-title: Phys. B Condens. Matter.
  doi: 10.1016/j.physb.2017.11.038
  contributor:
    fullname: Wang
– volume: 10
  start-page: 14035
  year: 2020
  ident: 10.1016/j.optlastec.2022.108729_b0030
  article-title: Elliptical metallic rings-shaped fractal metamaterial absorber in the visible regime
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71032-8
  contributor:
    fullname: Bilal
– volume: 26
  start-page: 5686
  issue: 5
  year: 2018
  ident: 10.1016/j.optlastec.2022.108729_b0055
  article-title: Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial
  publication-title: Opt. Express.
  doi: 10.1364/OE.26.005686
  contributor:
    fullname: Lei
– volume: 10
  start-page: 2342
  issue: 7
  year: 2010
  ident: 10.1016/j.optlastec.2022.108729_b0005
  article-title: Infrared perfect absorber and its application as plasmonic sensor
  publication-title: Nano Lett.
  doi: 10.1021/nl9041033
  contributor:
    fullname: Liu
– volume: 14
  issue: 2
  year: 2012
  ident: 10.1016/j.optlastec.2022.108729_b0015
  article-title: Optimal wavelength scale diffraction gratings for light trapping in solar cells
  publication-title: J Opt.
  doi: 10.1088/2040-8978/14/2/024012
  contributor:
    fullname: Chong
– volume: 2
  start-page: 3223
  issue: 11
  year: 2019
  ident: 10.1016/j.optlastec.2022.108729_b0025
  article-title: Perfect grating-Mie-metamaterial based spectrally selective solar absorbers
  publication-title: OSA Continuum.
  doi: 10.1364/OSAC.2.003223
  contributor:
    fullname: Tian
– volume: 15
  start-page: S243
  issue: 9
  year: 2005
  ident: 10.1016/j.optlastec.2022.108729_b0125
  article-title: Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/15/9/S12
  contributor:
    fullname: Sai
– volume: 43
  start-page: 4985
  issue: 20
  year: 2018
  ident: 10.1016/j.optlastec.2022.108729_b0130
  article-title: Strong coupling between magnetic plasmons and surface plasmons in a black phosphorus-spacer-metallic grating hybrid system
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.004985
  contributor:
    fullname: Qing
– volume: 28
  start-page: 15347
  issue: 10
  year: 2020
  ident: 10.1016/j.optlastec.2022.108729_b0070
  article-title: Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm
  publication-title: Opt. Express.
  doi: 10.1364/OE.393423
  contributor:
    fullname: Cai
– volume: 10
  start-page: 369
  issue: 2
  year: 2020
  ident: 10.1016/j.optlastec.2022.108729_b0090
  article-title: Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial
  publication-title: Opt. Mater. Express.
  doi: 10.1364/OME.383008
  contributor:
    fullname: Wang
– volume: 22
  start-page: 1099
  issue: 7
  year: 1983
  ident: 10.1016/j.optlastec.2022.108729_b0115
  article-title: Optical properties of the metals Al Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared
  publication-title: Appl Opt.
  doi: 10.1364/AO.22.001099
  contributor:
    fullname: Ordal
– volume: 107
  issue: 4
  year: 2011
  ident: 10.1016/j.optlastec.2022.108729_b0020
  article-title: Taming the blackbody with infrared metamaterials as selective thermal emitters
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.045901
  contributor:
    fullname: Liu
– volume: 17
  issue: 3
  year: 2015
  ident: 10.1016/j.optlastec.2022.108729_b0085
  article-title: Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene
  publication-title: J Opt.
  doi: 10.1088/2040-8978/17/3/035004
  contributor:
    fullname: Liu
– volume: 106
  issue: 6
  year: 2015
  ident: 10.1016/j.optlastec.2022.108729_b0105
  article-title: Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4908182
  contributor:
    fullname: Ding
– volume: 136
  issue: 7
  year: 2014
  ident: 10.1016/j.optlastec.2022.108729_b0120
  article-title: Wavelength-selective solar thermal absorber with two-dimensional nickel gratings
  publication-title: J. Heat Transfer
  contributor:
    fullname: Lee
– volume: 9
  start-page: 3193
  issue: 8
  year: 2019
  ident: 10.1016/j.optlastec.2022.108729_b0060
  article-title: Solar thermal absorber based on dielectric filled two-dimensional nickel grating
  publication-title: Opt. Mater. Express.
  doi: 10.1364/OME.9.003193
  contributor:
    fullname: Liang
SSID ssj0004653
Score 2.4611359
Snippet •A simple broadband absorber consisting of 2D Au square grating on graphene-SiO2 film and Au substrate is proposed.•The absorber achieve nearly perfect...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 108729
SubjectTerms Broadband absorber
Finite difference time domain method
Metal grating
Metamaterial
Title UV–visible broadband polarization-independent metamaterial absorber based on two-dimensional Au grating
URI https://dx.doi.org/10.1016/j.optlastec.2022.108729
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB2KIuhCtCrWR5mF27HJ5NHGXSmWqtiVle5C5hGIaBLSKe7Ef_AP_RLvzaO0ILhwFQgZEm5u7jkzuecMIVdyELiuEIrBUTBX85jBzDZmFg8QvQEgBC4NPE79ycy9n3vzFhk1Whhsq6xrf1XTy2pdn-nV0ezlSYIaXyi_aKvKS1v2UsEO8Ac5ff1hr2kjaydKB-oNXL3R45XlBjiq0ehlyDn221Vc8xeEWkOd8QHZr-kiHVZPdEhaOm2TvTUTwTbZKZs45eKIJLPn788vVIuLV01FkUVKRKmiOU5fa70lS1b73hr6pk0EjLVMQhqJRVYIXVAENkWzlJr3jCl0_6-cO-hwSdFZAu56TGbj26fRhNVbKTDp2J5h2pG-9sQg7gfCDexI9LnquzIKfBlJi8cWl7YP6B9HVhA7UuI_E8EVfPADZdtCOydkK81SfUqoJxRwSEvF2OAm-zC7Rq0rYJzWDrAzv0OsJnxhXjlmhE0r2Uu4iniIEQ-riHfITRPmcOPlh1DX_xp89p_B52QX94-v1lQuyJYplvoSWIYR3TKNumR7ePcwmf4AIAHUZQ
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5Ki6gH0apYn3vwujTZPNp4K8VS7ePUSm8h-whUNAlpilf_g__QX-JMsy0tCB48BQJDwmR35pvNfN8Qci_bgesKoRhcBXM1jxlUtjGzeIDZGxKEwKOB0djvT93nmTerkO6aC4NtlSb2lzF9Fa3NnabxZjObz5HjC-EXZVX5SpYdSqAaoIEAdmet8zToj7fokUaM0oGQAwY7bV5pVgBMLTTKGXKOLXcl3PwlSW0lnt4xOTKIkXbKlzohFZ3UyeGWjmCd7K36OOXilMynL9-fX0gYF2-aijyNlIgSRTOsYA3lks03o28L-q6LCEDrah3SSCzSXOicYm5TNE1o8ZEyhQMASvEO2llSFJeAp56Rae9x0u0zM02BScf2CqYd6WtPtONWINzAjkSLq5Yro8CXkbR4bHFp-wAA4sgKYkdK_G0iuII931a2LbRzTqpJmugLQj2hAEZaKsYeN9mCAhvprpDmtHYAoPkNYq3dF2alaEa47iZ7DTceD9HjYenxBnlYuznc-f4hhPa_jC__Y3xH9vuT0TAcPo0HV-QAx8mXRyzXpFrkS30DoKMQt2ZR_QB1WdcZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UV%E2%80%93visible+broadband+polarization-independent+metamaterial+absorber+based+on+two-dimensional+Au+grating&rft.jtitle=Optics+and+laser+technology&rft.au=Tian%2C+Xinye&rft.au=Qiu%2C+Xuejun&rft.au=Cao%2C+Zhenzhou&rft.au=Hou%2C+Jin&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0030-3992&rft.eissn=1879-2545&rft.volume=157&rft_id=info:doi/10.1016%2Fj.optlastec.2022.108729&rft.externalDocID=S0030399222008751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon