General proportional integral observer (GPIO) - based disturbance compensation for minimum variance time synchronization

•A general proportional integral observer - based disturbance compensation framework is constructed, using the idea of two-degree-of-freedom design, to achieve compensation for local disturbances and state-consensus control of wireless sensor network systems.•A minimum variance controller based on L...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Franklin Institute Vol. 360; no. 8; pp. 5588 - 5608
Main Authors Jia, Zhian, Dai, Xuewu, Cui, Dongliang, Qin, Fei, Zhou, Dong, Hu, Yuxiang
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.05.2023
Online AccessGet full text

Cover

Loading…
Abstract •A general proportional integral observer - based disturbance compensation framework is constructed, using the idea of two-degree-of-freedom design, to achieve compensation for local disturbances and state-consensus control of wireless sensor network systems.•A minimum variance controller based on LMI solving is designed to achieve state consensus control for the complex sensor networks.•The design of the disturbance compensation uses the idea of zero-pole optimization to achieve feedback disturbance rejection control for periodic disturbances, providing a new solution for the handling of periodic disturbances. [Display omitted] Precise time synchronization is an enabling technology for mission-critical time-sensitive Industrial Internet of Things (IIoT). However, the crystal oscillator clock which is widely used in IIoT may suffer from periodic disturbances caused by repetitive motion or periodic vibration. To improve the time synchronization of distributed nodes subject to periodic disturbances, this paper proposes a novel disturbance rejection framework, General-Proportional-Integral-Observer-based Disturbance Compensation (GPIO-DC), with the proof of stability, and combined with a 2-freedom control design strategy to optimize both the disturbance rejection and clock tracking performance. And the GPIO’s unique feature of blocking zeros are fully exploited to reject the periodic disturbance at its frequencies and a zero-pole optimal design algorithm is given. With the disturbance being compensated, a disturbance-free minimum variance time synchronization protocol for a complex network is developed and optimized by using Linear Matrix Inequality (LMI) to minimize the variance of networked synchronization errors. The performance of the proposed method is devalued by intensive simulation. Comparing with recent relevant research, the proposed method achieves a better performance in disturbance rejection and minimum variance.
AbstractList •A general proportional integral observer - based disturbance compensation framework is constructed, using the idea of two-degree-of-freedom design, to achieve compensation for local disturbances and state-consensus control of wireless sensor network systems.•A minimum variance controller based on LMI solving is designed to achieve state consensus control for the complex sensor networks.•The design of the disturbance compensation uses the idea of zero-pole optimization to achieve feedback disturbance rejection control for periodic disturbances, providing a new solution for the handling of periodic disturbances. [Display omitted] Precise time synchronization is an enabling technology for mission-critical time-sensitive Industrial Internet of Things (IIoT). However, the crystal oscillator clock which is widely used in IIoT may suffer from periodic disturbances caused by repetitive motion or periodic vibration. To improve the time synchronization of distributed nodes subject to periodic disturbances, this paper proposes a novel disturbance rejection framework, General-Proportional-Integral-Observer-based Disturbance Compensation (GPIO-DC), with the proof of stability, and combined with a 2-freedom control design strategy to optimize both the disturbance rejection and clock tracking performance. And the GPIO’s unique feature of blocking zeros are fully exploited to reject the periodic disturbance at its frequencies and a zero-pole optimal design algorithm is given. With the disturbance being compensated, a disturbance-free minimum variance time synchronization protocol for a complex network is developed and optimized by using Linear Matrix Inequality (LMI) to minimize the variance of networked synchronization errors. The performance of the proposed method is devalued by intensive simulation. Comparing with recent relevant research, the proposed method achieves a better performance in disturbance rejection and minimum variance.
Author Dai, Xuewu
Jia, Zhian
Cui, Dongliang
Hu, Yuxiang
Qin, Fei
Zhou, Dong
Author_xml – sequence: 1
  givenname: Zhian
  surname: Jia
  fullname: Jia, Zhian
  organization: Department of State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, 110819, China
– sequence: 2
  givenname: Xuewu
  surname: Dai
  fullname: Dai, Xuewu
  email: daixuewu@mail.neu.edu.cn
  organization: Department of State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, 110819, China
– sequence: 3
  givenname: Dongliang
  surname: Cui
  fullname: Cui, Dongliang
  organization: Department of State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, 110819, China
– sequence: 4
  givenname: Fei
  orcidid: 0000-0003-1671-8968
  surname: Qin
  fullname: Qin, Fei
  organization: School of Electronic Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China
– sequence: 5
  givenname: Dong
  surname: Zhou
  fullname: Zhou, Dong
  organization: Qiqihar Heavy CNC Equipment Corp., Ltd., Qiqihar, 161000, China
– sequence: 6
  givenname: Yuxiang
  surname: Hu
  fullname: Hu, Yuxiang
  organization: Department of State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, 110819, China
BookMark eNqNkE1PwzAMhiMEEuPjN5AjHDrchLbrgcOEYEyaNA5wjtLEhYw1mZwyAb-ebEMcuIBlybL1Ppb9HrF9HzwydpbDMIe8vFwMFy1p_7p0fihAyCGkFHKPDfJRVWeirOU-G0CSZgBSHLKjGBeprXKAAXufoEfSS76isArUu-BT43yPz5tpaCLSGomfTx6m8wue8UZHtNy62L9Ro71BbkK3Qh_1huVtIN4577q3jq81ua2idx3y-OHNCwXvPrfKE3bQ6mXE0-96zJ7ubh9v7rPZfDK9Gc8yI_Oiz1AYCUa22KYwhShAA2Bd6OrKNKWQ2BYjW0Jr67qqtbVNaUo0aKsCGlnVII_Z9W6voRAjYauM67cX9KTdUuWgNjaqhfqxUW1sVJBSyMRXv_gVuU7Txz_I8Y7E9N7aIaloHCY_rCM0vbLB_bnjCyKGmOs
CitedBy_id crossref_primary_10_1109_TCSII_2024_3349777
crossref_primary_10_1049_cth2_12488
crossref_primary_10_1109_TASE_2024_3419142
crossref_primary_10_1016_j_heliyon_2024_e36755
Cites_doi 10.1109/TIE.2020.3036228
10.3390/app11115176
10.1109/TCYB.2020.2977934
10.1016/j.jfranklin.2022.03.021
10.1109/TII.2021.3107635
10.1109/TAC.2011.2107051
10.1109/JIOT.2021.3126059
10.1016/j.sysconle.2017.12.005
10.1016/j.jfranklin.2020.11.017
10.1109/ACCESS.2020.2984785
10.1109/TII.2020.2975289
10.1109/LCOMM.2022.3143843
10.1109/JIOT.2022.3144199
10.1109/TII.2018.2804338
10.1016/j.jfranklin.2020.02.005
10.1109/TII.2017.2778746
10.1109/TAC.2019.2957690
10.1109/TSP.2008.2010598
10.1109/TCST.2017.2692720
10.1109/TCYB.2020.2987758
10.1109/ACCESS.2022.3149595
10.1109/TII.2022.3182326
10.1109/TIE.2020.3039203
10.1109/TIE.2015.2478397
10.1109/9.956059
10.1080/00207170210140212
10.1109/TAC.2015.2480336
ContentType Journal Article
Copyright 2023 The Franklin Institute
Copyright_xml – notice: 2023 The Franklin Institute
DBID AAYXX
CITATION
DOI 10.1016/j.jfranklin.2023.03.023
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2693
EndPage 5608
ExternalDocumentID 10_1016_j_jfranklin_2023_03_023
S0016003223001734
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61773111; 62071450
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
41~
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFRF
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AETEA
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
D1Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SET
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
UHS
VOH
WH7
WUQ
XOL
XPP
ZCG
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
ADXHL
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AHPAA
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c315t-e2c30c3feffffc5250a00e95a74cb623ef58d60fd9979addb6c6eced750b37903
IEDL.DBID .~1
ISSN 0016-0032
IngestDate Thu Apr 24 22:55:39 EDT 2025
Tue Jul 01 01:38:27 EDT 2025
Fri Feb 23 02:40:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-e2c30c3feffffc5250a00e95a74cb623ef58d60fd9979addb6c6eced750b37903
ORCID 0000-0003-1671-8968
PageCount 21
ParticipantIDs crossref_citationtrail_10_1016_j_jfranklin_2023_03_023
crossref_primary_10_1016_j_jfranklin_2023_03_023
elsevier_sciencedirect_doi_10_1016_j_jfranklin_2023_03_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle Journal of the Franklin Institute
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Phan, Kim (bib0016) 2022; 26
Tian, Wang, Yu, Dong, Xu (bib0029) 2022; 18
Wen, Wen, Roberts, Cai (bib0003) 2020; 357
Shi, Yang, Tuo, Ran, Huang (bib0001) 2022; 52
Liu, Zhao, Jiang, Hu, Yu, Li (bib0021) 2022; 10
Zhiqiang, Yue (bib0033) 2021
Filler (bib0032) 1980
Zong, Dai, Wei, Zou, Guo, Gao (bib0005) 2023; 10
Hulede, Kwon (bib0018) 2021; 7
Zong, Dai, Gao, Canyelles-Pericas, Liu (bib0019) 2022; 9
Schriegel, Jasperneite (bib0008) 2007
Chen, Yang, Guo, Li (bib0023) 2016; 63
Chen, Yang, Zong (bib0027) 2021; 358
Oliveira, Geromel, Bernussou (bib0035) 2002; 75
Gao (bib0030) 2003; Vol. 6
Yildirim, Carli, Schenato (bib0014) 2018; 26
Zhou, Ren (bib0022) 2001; 46
Muramatsu, Katsura (bib0025) 2018; 14
Zong, Liu, Liu, Gao, Dai, Gao (bib0017) 2022; 18
Dai, Gao, Breikin, Wang (bib0031) 2009; 57
Sulimov, Sherstyukov, Latypov, Nurgaliev (bib0004) 2021
Mei, Ren, Chen (bib0034) 2016; 61
Hu, He, Jiang (bib0015) 2021; 51
Elsts, Fafoutis, Duquennoy, Oikonomou, Piechocki, Craddock (bib0006) 2018; 14
Zhang, Zhu, Li, Wang (bib0028) 2020; 65
Zhang, Zhang, Wang, Zhang (bib0020) 2022; 19
Ge, Dunno, Singh, Yuan, Lu (bib0007) 2021; 11
Wang, Yu, Li, Zhong (bib0011) 2021; 17
Maróti, Kusy, Simon, Ákos Lédeczi (bib0010) 2004
Li, Wang, Zhu, Zhang (bib0026) 2021; 68
Ye, Sun, Ou, Zhang (bib0024) 2018; 114
Zong, Dai, Gao (bib0002) 2021; 68
Mesbahi, Papavassilopoulos (bib0036) 1996; Vol. 4
Carli, Chiuso, Schenato, Zampieri (bib0013) 2011; 56
Hu, Dai, Cui, Jia (bib0009) 2022; 359
Yang, Niu, Yu (bib0012) 2020; 8
Ye (10.1016/j.jfranklin.2023.03.023_bib0024) 2018; 114
Li (10.1016/j.jfranklin.2023.03.023_bib0026) 2021; 68
Yildirim (10.1016/j.jfranklin.2023.03.023_bib0014) 2018; 26
Zong (10.1016/j.jfranklin.2023.03.023_bib0019) 2022; 9
Zhang (10.1016/j.jfranklin.2023.03.023_bib0020) 2022; 19
Zhou (10.1016/j.jfranklin.2023.03.023_bib0022) 2001; 46
Shi (10.1016/j.jfranklin.2023.03.023_bib0001) 2022; 52
Zong (10.1016/j.jfranklin.2023.03.023_bib0017) 2022; 18
Wang (10.1016/j.jfranklin.2023.03.023_bib0011) 2021; 17
Zong (10.1016/j.jfranklin.2023.03.023_bib0002) 2021; 68
Yang (10.1016/j.jfranklin.2023.03.023_bib0012) 2020; 8
Zong (10.1016/j.jfranklin.2023.03.023_bib0005) 2023; 10
Chen (10.1016/j.jfranklin.2023.03.023_bib0027) 2021; 358
Zhang (10.1016/j.jfranklin.2023.03.023_bib0028) 2020; 65
Muramatsu (10.1016/j.jfranklin.2023.03.023_bib0025) 2018; 14
Hu (10.1016/j.jfranklin.2023.03.023_bib0015) 2021; 51
Schriegel (10.1016/j.jfranklin.2023.03.023_bib0008) 2007
Sulimov (10.1016/j.jfranklin.2023.03.023_bib0004) 2021
Carli (10.1016/j.jfranklin.2023.03.023_bib0013) 2011; 56
Elsts (10.1016/j.jfranklin.2023.03.023_bib0006) 2018; 14
Ge (10.1016/j.jfranklin.2023.03.023_bib0007) 2021; 11
Tian (10.1016/j.jfranklin.2023.03.023_bib0029) 2022; 18
Chen (10.1016/j.jfranklin.2023.03.023_bib0023) 2016; 63
Gao (10.1016/j.jfranklin.2023.03.023_bib0030) 2003; Vol. 6
Mei (10.1016/j.jfranklin.2023.03.023_bib0034) 2016; 61
Liu (10.1016/j.jfranklin.2023.03.023_bib0021) 2022; 10
Hu (10.1016/j.jfranklin.2023.03.023_bib0009) 2022; 359
Wen (10.1016/j.jfranklin.2023.03.023_bib0003) 2020; 357
Mesbahi (10.1016/j.jfranklin.2023.03.023_bib0036) 1996; Vol. 4
Maróti (10.1016/j.jfranklin.2023.03.023_bib0010) 2004
Phan (10.1016/j.jfranklin.2023.03.023_bib0016) 2022; 26
Zhiqiang (10.1016/j.jfranklin.2023.03.023_bib0033) 2021
Filler (10.1016/j.jfranklin.2023.03.023_bib0032) 1980
Hulede (10.1016/j.jfranklin.2023.03.023_bib0018) 2021; 7
Oliveira (10.1016/j.jfranklin.2023.03.023_bib0035) 2002; 75
Dai (10.1016/j.jfranklin.2023.03.023_bib0031) 2009; 57
References_xml – volume: 63
  start-page: 1083
  year: 2016
  end-page: 1095
  ident: bib0023
  article-title: Disturbance-observer-based control and related methods—an overview
  publication-title: IEEE Trans. Ind. Electron.
– volume: 57
  start-page: 1363
  year: 2009
  end-page: 1372
  ident: bib0031
  article-title: Zero assignment for robust
  publication-title: IEEE Trans. Signal Process.
– volume: 9
  start-page: 10862
  year: 2022
  end-page: 10871
  ident: bib0019
  article-title: PkCOs: synchronization of packet-coupled oscillators in blast wave monitoring networks
  publication-title: IEEE Internet Things J.
– volume: 51
  start-page: 2882
  year: 2021
  end-page: 2892
  ident: bib0015
  article-title: Fixed/preassigned-time synchronization of complex networks via improving fixed-time stability
  publication-title: IEEE Trans. Cybern.
– volume: 14
  start-page: 4446
  year: 2018
  end-page: 4456
  ident: bib0025
  article-title: An adaptive periodic-disturbance observer for periodic-disturbance suppression
  publication-title: IEEE Trans. Ind. Inf.
– volume: 75
  start-page: 666
  year: 2002
  end-page: 679
  ident: bib0035
  article-title: Extended H2 and H norm characterizations and controller parametrizations for discrete-time systems
  publication-title: Int. J. Control
– volume: 68
  start-page: 12679
  year: 2021
  end-page: 12688
  ident: bib0026
  article-title: Predictive active disturbance rejection control for servo systems with communication delays via sliding mode approach
  publication-title: IEEE Trans. Ind. Electron.
– volume: 358
  start-page: 834
  year: 2021
  end-page: 855
  ident: bib0027
  article-title: Leader-follower synchronization controller design for a network of boundary-controlled wave PDEs with structured time-varying perturbations and general disturbances
  publication-title: J. Franklin Inst.
– volume: Vol. 6
  start-page: 4989
  year: 2003
  end-page: 4996
  ident: bib0030
  article-title: Scaling and bandwidth-parameterization based controller tuning
  publication-title: Proceedings of the 2003 American Control Conference, 2003.
– volume: 11
  start-page: 5176
  year: 2021
  ident: bib0007
  article-title: Development of a Drone’s vibration, shock, and atmospheric profiles
  publication-title: Appl. Sci.
– start-page: 50
  year: 2007
  end-page: 55
  ident: bib0008
  article-title: Investigation of industrial environmental influences on clock sources and their effect on the synchronization accuracy of IEEE 1588
  publication-title: 2007 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication
– volume: 14
  start-page: 2241
  year: 2018
  end-page: 2250
  ident: bib0006
  article-title: Temperature-resilient time synchronization for the internet of things
  publication-title: IEEE Trans. Ind. Inf.
– volume: Vol. 4
  start-page: 4625
  year: 1996
  end-page: 4630
  ident: bib0036
  article-title: LMIs, interior point methods, complexity theory, and robustness analysis
  publication-title: Proceedings of 35th IEEE Conference on Decision and Control
– volume: 17
  start-page: 90
  year: 2021
  end-page: 99
  ident: bib0011
  article-title: Clock skew estimation for timestamp-free synchronization in industrial wireless sensor networks
  publication-title: IEEE Trans. Ind. Inf.
– volume: 8
  start-page: 69683
  year: 2020
  end-page: 69694
  ident: bib0012
  article-title: Clock synchronization in wireless sensor networks based on Bayesian estimation
  publication-title: IEEE Access
– volume: 68
  start-page: 11598
  year: 2021
  end-page: 11608
  ident: bib0002
  article-title: Proportional–integral synchronization for nonidentical wireless packet-coupled oscillators with delays
  publication-title: IEEE Trans. Ind. Electron.
– volume: 46
  start-page: 1613
  year: 2001
  end-page: 1618
  ident: bib0022
  article-title: A new controller architecture for high performance, robust, and fault-tolerant control
  publication-title: IEEE Trans. Autom. Control
– volume: 61
  start-page: 2019
  year: 2016
  end-page: 2034
  ident: bib0034
  article-title: Distributed consensus of second-order multi-agent systems with heterogeneous unknown inertias and control gains under a directed graph
  publication-title: IEEE Trans. Autom. Control
– volume: 26
  start-page: 610
  year: 2018
  end-page: 623
  ident: bib0014
  article-title: Adaptive proportional–integral clock synchronization in wireless sensor networks
  publication-title: IEEE Trans. Control Syst. Technol.
– year: 2004
  ident: bib0010
  article-title: The flooding time synchronization protocol
  publication-title: Proc International Conference on Embedded Network Sensor Systems
– volume: 26
  start-page: 947
  year: 2022
  end-page: 951
  ident: bib0016
  article-title: Enabling rapid time synchronization with slow-flooding in wireless sensor networks
  publication-title: IEEE Commun. Lett.
– volume: 114
  start-page: 66
  year: 2018
  end-page: 75
  ident: bib0024
  article-title: Disturbance observer-based control for consensus tracking of multi-agent systems with input delays from a frequency domain perspective
  publication-title: Syst. Control Lett.
– volume: 357
  year: 2020
  ident: bib0003
  article-title: Distributed filtering for a class of discrete-time systems over wireless sensor networks
  publication-title: J. Franklin Inst.
– volume: 18
  start-page: 3138
  year: 2022
  end-page: 3149
  ident: bib0029
  article-title: Discrete-time repetitive control-based ADRC for current loop disturbances suppression of PMSM drives
  publication-title: IEEE Trans. Ind. Inf.
– volume: 19
  start-page: 1
  year: 2022
  end-page: 5
  ident: bib0020
  article-title: The real-time framework of the push-to-talk (PTT) synchronization scheme for distributed SAR
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 56
  start-page: 1146
  year: 2011
  end-page: 1152
  ident: bib0013
  article-title: Optimal synchronization for networks of noisy double integrators
  publication-title: IEEE Trans. Autom. Control
– volume: 359
  start-page: 3831
  year: 2022
  end-page: 3856
  ident: bib0009
  article-title: Zero-assignment and complex coefficient gain design of generalized proportional-integral observer for robust fault detection
  publication-title: J. Franklin Inst.
– volume: 18
  start-page: 9072
  year: 2022
  end-page: 9082
  ident: bib0017
  article-title: Robust synchronized data acquisition for biometric authentication
  publication-title: IEEE Trans. Ind. Inf.
– volume: 65
  start-page: 4424
  year: 2020
  end-page: 4429
  ident: bib0028
  article-title: ADRC dynamic stabilization of an unstable heat equation
  publication-title: IEEE Trans. Autom. Control
– start-page: 1
  year: 2021
  end-page: 8
  ident: bib0004
  article-title: Simulation of periodic synchronization of UAV’s clock
  publication-title: 2021 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO
– volume: 10
  start-page: 16819
  year: 2022
  end-page: 16829
  ident: bib0021
  article-title: Fixed/preassigned-time synchronization control of complex networks with time varying delay
  publication-title: IEEE Access
– year: 1980
  ident: bib0032
  article-title: The effect of vibration on quartz crystal resonators
– volume: 10
  start-page: 2021
  year: 2023
  end-page: 2030
  ident: bib0005
  article-title: Robust time synchronisation for industrial internet of things by
  publication-title: IEEE Internet Things J.
– volume: 7
  start-page: 660
  year: 2021
  end-page: 675
  ident: bib0018
  article-title: Distributed network time synchronization: social learning versus consensus
  publication-title: IEEE Trans. Signal Inf.Process. Netw.
– start-page: 1107
  year: 2021
  end-page: 1110
  ident: bib0033
  article-title: Precise time synchronization system for TDOA sound source localization
  publication-title: 2021 IEEE 3rd International Conference on Civil Aviation Safety and Information Technology (ICCASIT)
– volume: 52
  start-page: 1415
  year: 2022
  end-page: 1428
  ident: bib0001
  article-title: A novel rapid-flooding approach with real-time delay compensation for wireless-sensor network time synchronization
  publication-title: IEEE Trans. Cybern.
– volume: 68
  start-page: 11598
  issue: 11
  year: 2021
  ident: 10.1016/j.jfranklin.2023.03.023_bib0002
  article-title: Proportional–integral synchronization for nonidentical wireless packet-coupled oscillators with delays
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.3036228
– start-page: 50
  year: 2007
  ident: 10.1016/j.jfranklin.2023.03.023_bib0008
  article-title: Investigation of industrial environmental influences on clock sources and their effect on the synchronization accuracy of IEEE 1588
– volume: 11
  start-page: 5176
  issue: 11
  year: 2021
  ident: 10.1016/j.jfranklin.2023.03.023_bib0007
  article-title: Development of a Drone’s vibration, shock, and atmospheric profiles
  publication-title: Appl. Sci.
  doi: 10.3390/app11115176
– volume: 51
  start-page: 2882
  issue: 6
  year: 2021
  ident: 10.1016/j.jfranklin.2023.03.023_bib0015
  article-title: Fixed/preassigned-time synchronization of complex networks via improving fixed-time stability
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2977934
– volume: 359
  start-page: 3831
  issue: 8
  year: 2022
  ident: 10.1016/j.jfranklin.2023.03.023_bib0009
  article-title: Zero-assignment and complex coefficient gain design of generalized proportional-integral observer for robust fault detection
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2022.03.021
– volume: 18
  start-page: 3138
  issue: 5
  year: 2022
  ident: 10.1016/j.jfranklin.2023.03.023_bib0029
  article-title: Discrete-time repetitive control-based ADRC for current loop disturbances suppression of PMSM drives
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2021.3107635
– start-page: 1
  year: 2021
  ident: 10.1016/j.jfranklin.2023.03.023_bib0004
  article-title: Simulation of periodic synchronization of UAV’s clock
– volume: 56
  start-page: 1146
  issue: 5
  year: 2011
  ident: 10.1016/j.jfranklin.2023.03.023_bib0013
  article-title: Optimal synchronization for networks of noisy double integrators
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2011.2107051
– volume: 9
  start-page: 10862
  issue: 13
  year: 2022
  ident: 10.1016/j.jfranklin.2023.03.023_bib0019
  article-title: PkCOs: synchronization of packet-coupled oscillators in blast wave monitoring networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3126059
– volume: 114
  start-page: 66
  year: 2018
  ident: 10.1016/j.jfranklin.2023.03.023_bib0024
  article-title: Disturbance observer-based control for consensus tracking of multi-agent systems with input delays from a frequency domain perspective
  publication-title: Syst. Control Lett.
  doi: 10.1016/j.sysconle.2017.12.005
– year: 1980
  ident: 10.1016/j.jfranklin.2023.03.023_bib0032
– volume: 358
  start-page: 834
  issue: 1
  year: 2021
  ident: 10.1016/j.jfranklin.2023.03.023_bib0027
  article-title: Leader-follower synchronization controller design for a network of boundary-controlled wave PDEs with structured time-varying perturbations and general disturbances
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2020.11.017
– volume: Vol. 4
  start-page: 4625
  year: 1996
  ident: 10.1016/j.jfranklin.2023.03.023_bib0036
  article-title: LMIs, interior point methods, complexity theory, and robustness analysis
– volume: 8
  start-page: 69683
  year: 2020
  ident: 10.1016/j.jfranklin.2023.03.023_bib0012
  article-title: Clock synchronization in wireless sensor networks based on Bayesian estimation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2984785
– volume: 17
  start-page: 90
  issue: 1
  year: 2021
  ident: 10.1016/j.jfranklin.2023.03.023_bib0011
  article-title: Clock skew estimation for timestamp-free synchronization in industrial wireless sensor networks
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2020.2975289
– volume: 26
  start-page: 947
  issue: 4
  year: 2022
  ident: 10.1016/j.jfranklin.2023.03.023_bib0016
  article-title: Enabling rapid time synchronization with slow-flooding in wireless sensor networks
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2022.3143843
– volume: 10
  start-page: 2021
  issue: 3
  year: 2023
  ident: 10.1016/j.jfranklin.2023.03.023_bib0005
  article-title: Robust time synchronisation for industrial internet of things by H∞ output feedback control
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2022.3144199
– volume: 14
  start-page: 4446
  issue: 10
  year: 2018
  ident: 10.1016/j.jfranklin.2023.03.023_bib0025
  article-title: An adaptive periodic-disturbance observer for periodic-disturbance suppression
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2804338
– volume: 357
  issue: 5
  year: 2020
  ident: 10.1016/j.jfranklin.2023.03.023_bib0003
  article-title: Distributed filtering for a class of discrete-time systems over wireless sensor networks
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2020.02.005
– volume: 14
  start-page: 2241
  issue: 5
  year: 2018
  ident: 10.1016/j.jfranklin.2023.03.023_bib0006
  article-title: Temperature-resilient time synchronization for the internet of things
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2778746
– volume: 65
  start-page: 4424
  issue: 10
  year: 2020
  ident: 10.1016/j.jfranklin.2023.03.023_bib0028
  article-title: ADRC dynamic stabilization of an unstable heat equation
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2019.2957690
– volume: 57
  start-page: 1363
  issue: 4
  year: 2009
  ident: 10.1016/j.jfranklin.2023.03.023_bib0031
  article-title: Zero assignment for robust H2/H∞ fault detection filter design
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.2010598
– volume: 26
  start-page: 610
  issue: 2
  year: 2018
  ident: 10.1016/j.jfranklin.2023.03.023_bib0014
  article-title: Adaptive proportional–integral clock synchronization in wireless sensor networks
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2017.2692720
– volume: 52
  start-page: 1415
  issue: 3
  year: 2022
  ident: 10.1016/j.jfranklin.2023.03.023_bib0001
  article-title: A novel rapid-flooding approach with real-time delay compensation for wireless-sensor network time synchronization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2987758
– volume: 10
  start-page: 16819
  year: 2022
  ident: 10.1016/j.jfranklin.2023.03.023_bib0021
  article-title: Fixed/preassigned-time synchronization control of complex networks with time varying delay
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3149595
– volume: 18
  start-page: 9072
  issue: 12
  year: 2022
  ident: 10.1016/j.jfranklin.2023.03.023_bib0017
  article-title: Robust synchronized data acquisition for biometric authentication
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2022.3182326
– year: 2004
  ident: 10.1016/j.jfranklin.2023.03.023_bib0010
  article-title: The flooding time synchronization protocol
– volume: Vol. 6
  start-page: 4989
  year: 2003
  ident: 10.1016/j.jfranklin.2023.03.023_bib0030
  article-title: Scaling and bandwidth-parameterization based controller tuning
– volume: 19
  start-page: 1
  year: 2022
  ident: 10.1016/j.jfranklin.2023.03.023_bib0020
  article-title: The real-time framework of the push-to-talk (PTT) synchronization scheme for distributed SAR
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 7
  start-page: 660
  year: 2021
  ident: 10.1016/j.jfranklin.2023.03.023_bib0018
  article-title: Distributed network time synchronization: social learning versus consensus
  publication-title: IEEE Trans. Signal Inf.Process. Netw.
– volume: 68
  start-page: 12679
  issue: 12
  year: 2021
  ident: 10.1016/j.jfranklin.2023.03.023_bib0026
  article-title: Predictive active disturbance rejection control for servo systems with communication delays via sliding mode approach
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.3039203
– start-page: 1107
  year: 2021
  ident: 10.1016/j.jfranklin.2023.03.023_bib0033
  article-title: Precise time synchronization system for TDOA sound source localization
– volume: 63
  start-page: 1083
  issue: 2
  year: 2016
  ident: 10.1016/j.jfranklin.2023.03.023_bib0023
  article-title: Disturbance-observer-based control and related methods—an overview
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2478397
– volume: 46
  start-page: 1613
  issue: 10
  year: 2001
  ident: 10.1016/j.jfranklin.2023.03.023_bib0022
  article-title: A new controller architecture for high performance, robust, and fault-tolerant control
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.956059
– volume: 75
  start-page: 666
  issue: 9
  year: 2002
  ident: 10.1016/j.jfranklin.2023.03.023_bib0035
  article-title: Extended H2 and H norm characterizations and controller parametrizations for discrete-time systems
  publication-title: Int. J. Control
  doi: 10.1080/00207170210140212
– volume: 61
  start-page: 2019
  issue: 8
  year: 2016
  ident: 10.1016/j.jfranklin.2023.03.023_bib0034
  article-title: Distributed consensus of second-order multi-agent systems with heterogeneous unknown inertias and control gains under a directed graph
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2015.2480336
SSID ssj0017100
Score 2.3683372
Snippet •A general proportional integral observer - based disturbance compensation framework is constructed, using the idea of two-degree-of-freedom design, to achieve...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 5588
Title General proportional integral observer (GPIO) - based disturbance compensation for minimum variance time synchronization
URI https://dx.doi.org/10.1016/j.jfranklin.2023.03.023
Volume 360
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4QvOjB-Iz4IHvwoIfC0u2DeiNEBI3oQRJuDbvdJhAopILRi7_dmXZLJDHhYNNLm52mmW86M7ud_QbgWsaKu1RWgcEzspyRpEbuwrMiJ9BCOPhFZUg_973uwHkcusMStIu9MFRWaXx_7tMzb23u1I0264vxmPb4NjBao0EKcrWCOEEdxycrr32vyzwaxF6Te2OcOePojRqvSWw6o9eoi3jGdmqLvyPUr6jTOYB9ky6yVv5Gh1DSyRHs_SIRPIZPwxzNFtTwIM3X9pihgZiyuaR1V52ym4fX3sstsxgFrohFiO8qlQQ6o7pynM5mIDHMYhkRjsxWM_aBM-lsBLWgZ-9ficq4dPOtmycw6Ny_tbuW6adgKdFwl5a2leBKxDrGQ9H_zBHnOnBHvqMkpkE6dpuRx-MoCPwAUZKe8jTigEmFFH7AxSmUk3miz4DZtvKaNj7FlkQ36Tfxudolf4EZgeKyAl6hw1AZsnHqeTENi6qySbhWfkjKDzmetqgAXwsucr6N7SJ3BUjhhumEGBW2CZ__R_gCdukqr3-8hPIyXekrzFGWspoZYRV2Wr2nbv8Hg2TqLA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHNSD8RnxuQcPeqgs3T6oN0JEkIceIOHWsNttAuEVBKP_3pl2IZCYeLDpqe1sNvNtZ2Z3Z78BuJOx4i6lVaDzjCynL6mQu_CsyAm0EA7-UQnSrbZX6zqvPbeXgcrqLAylVRrbn9r0xFqbJwWjzcJsMKAzvkX01jggBZla4exAjtip3CzkyvVGrb3eTCACm9Qg4-QZBbbSvIaxKY7-SIXEE8JTW_zupDYcT_UQDkzEyMppp44goyfHsL_BI3gCX4Y8ms2o5sE8Xd5jhglixKaSll71nN2_vNffHpjFyHdFLEKIl3NJuDNKLccZbYITw0CWEefIeDlmnziZTr6gKvTs43uiEjrd9PTmKXSrz51KzTIlFSwliu7C0rYSXIlYx3gp2tLsc64Dt-87SmIkpGO3FHk8joLADxAo6SlPIxQYV0jhB1ycQXYynehzYLatvJKNrdiSGCf9ErarXTIZGBQoLvPgrXQYKsM3TmUvRuEqsWwYrpUfkvJDjrct8sDXgrOUcuNvkacVSOHW6AnRMfwlfPEf4VvYrXVazbBZbzcuYY_epOmQV5BdzJf6GkOWhbwxQ_IHhGDs3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+proportional+integral+observer+%28GPIO%29+-+based+disturbance+compensation+for+minimum+variance+time+synchronization&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Jia%2C+Zhian&rft.au=Dai%2C+Xuewu&rft.au=Cui%2C+Dongliang&rft.au=Qin%2C+Fei&rft.date=2023-05-01&rft.issn=0016-0032&rft.volume=360&rft.issue=8&rft.spage=5588&rft.epage=5608&rft_id=info:doi/10.1016%2Fj.jfranklin.2023.03.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfranklin_2023_03_023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon