General proportional integral observer (GPIO) - based disturbance compensation for minimum variance time synchronization
•A general proportional integral observer - based disturbance compensation framework is constructed, using the idea of two-degree-of-freedom design, to achieve compensation for local disturbances and state-consensus control of wireless sensor network systems.•A minimum variance controller based on L...
Saved in:
Published in | Journal of the Franklin Institute Vol. 360; no. 8; pp. 5588 - 5608 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.05.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | •A general proportional integral observer - based disturbance compensation framework is constructed, using the idea of two-degree-of-freedom design, to achieve compensation for local disturbances and state-consensus control of wireless sensor network systems.•A minimum variance controller based on LMI solving is designed to achieve state consensus control for the complex sensor networks.•The design of the disturbance compensation uses the idea of zero-pole optimization to achieve feedback disturbance rejection control for periodic disturbances, providing a new solution for the handling of periodic disturbances.
[Display omitted]
Precise time synchronization is an enabling technology for mission-critical time-sensitive Industrial Internet of Things (IIoT). However, the crystal oscillator clock which is widely used in IIoT may suffer from periodic disturbances caused by repetitive motion or periodic vibration. To improve the time synchronization of distributed nodes subject to periodic disturbances, this paper proposes a novel disturbance rejection framework, General-Proportional-Integral-Observer-based Disturbance Compensation (GPIO-DC), with the proof of stability, and combined with a 2-freedom control design strategy to optimize both the disturbance rejection and clock tracking performance. And the GPIO’s unique feature of blocking zeros are fully exploited to reject the periodic disturbance at its frequencies and a zero-pole optimal design algorithm is given. With the disturbance being compensated, a disturbance-free minimum variance time synchronization protocol for a complex network is developed and optimized by using Linear Matrix Inequality (LMI) to minimize the variance of networked synchronization errors. The performance of the proposed method is devalued by intensive simulation. Comparing with recent relevant research, the proposed method achieves a better performance in disturbance rejection and minimum variance. |
---|---|
AbstractList | •A general proportional integral observer - based disturbance compensation framework is constructed, using the idea of two-degree-of-freedom design, to achieve compensation for local disturbances and state-consensus control of wireless sensor network systems.•A minimum variance controller based on LMI solving is designed to achieve state consensus control for the complex sensor networks.•The design of the disturbance compensation uses the idea of zero-pole optimization to achieve feedback disturbance rejection control for periodic disturbances, providing a new solution for the handling of periodic disturbances.
[Display omitted]
Precise time synchronization is an enabling technology for mission-critical time-sensitive Industrial Internet of Things (IIoT). However, the crystal oscillator clock which is widely used in IIoT may suffer from periodic disturbances caused by repetitive motion or periodic vibration. To improve the time synchronization of distributed nodes subject to periodic disturbances, this paper proposes a novel disturbance rejection framework, General-Proportional-Integral-Observer-based Disturbance Compensation (GPIO-DC), with the proof of stability, and combined with a 2-freedom control design strategy to optimize both the disturbance rejection and clock tracking performance. And the GPIO’s unique feature of blocking zeros are fully exploited to reject the periodic disturbance at its frequencies and a zero-pole optimal design algorithm is given. With the disturbance being compensated, a disturbance-free minimum variance time synchronization protocol for a complex network is developed and optimized by using Linear Matrix Inequality (LMI) to minimize the variance of networked synchronization errors. The performance of the proposed method is devalued by intensive simulation. Comparing with recent relevant research, the proposed method achieves a better performance in disturbance rejection and minimum variance. |
Author | Dai, Xuewu Jia, Zhian Cui, Dongliang Hu, Yuxiang Qin, Fei Zhou, Dong |
Author_xml | – sequence: 1 givenname: Zhian surname: Jia fullname: Jia, Zhian organization: Department of State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, 110819, China – sequence: 2 givenname: Xuewu surname: Dai fullname: Dai, Xuewu email: daixuewu@mail.neu.edu.cn organization: Department of State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, 110819, China – sequence: 3 givenname: Dongliang surname: Cui fullname: Cui, Dongliang organization: Department of State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, 110819, China – sequence: 4 givenname: Fei orcidid: 0000-0003-1671-8968 surname: Qin fullname: Qin, Fei organization: School of Electronic Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China – sequence: 5 givenname: Dong surname: Zhou fullname: Zhou, Dong organization: Qiqihar Heavy CNC Equipment Corp., Ltd., Qiqihar, 161000, China – sequence: 6 givenname: Yuxiang surname: Hu fullname: Hu, Yuxiang organization: Department of State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, 110819, China |
BookMark | eNqNkE1PwzAMhiMEEuPjN5AjHDrchLbrgcOEYEyaNA5wjtLEhYw1mZwyAb-ebEMcuIBlybL1Ppb9HrF9HzwydpbDMIe8vFwMFy1p_7p0fihAyCGkFHKPDfJRVWeirOU-G0CSZgBSHLKjGBeprXKAAXufoEfSS76isArUu-BT43yPz5tpaCLSGomfTx6m8wue8UZHtNy62L9Ro71BbkK3Qh_1huVtIN4577q3jq81ua2idx3y-OHNCwXvPrfKE3bQ6mXE0-96zJ7ubh9v7rPZfDK9Gc8yI_Oiz1AYCUa22KYwhShAA2Bd6OrKNKWQ2BYjW0Jr67qqtbVNaUo0aKsCGlnVII_Z9W6voRAjYauM67cX9KTdUuWgNjaqhfqxUW1sVJBSyMRXv_gVuU7Txz_I8Y7E9N7aIaloHCY_rCM0vbLB_bnjCyKGmOs |
CitedBy_id | crossref_primary_10_1109_TCSII_2024_3349777 crossref_primary_10_1049_cth2_12488 crossref_primary_10_1109_TASE_2024_3419142 crossref_primary_10_1016_j_heliyon_2024_e36755 |
Cites_doi | 10.1109/TIE.2020.3036228 10.3390/app11115176 10.1109/TCYB.2020.2977934 10.1016/j.jfranklin.2022.03.021 10.1109/TII.2021.3107635 10.1109/TAC.2011.2107051 10.1109/JIOT.2021.3126059 10.1016/j.sysconle.2017.12.005 10.1016/j.jfranklin.2020.11.017 10.1109/ACCESS.2020.2984785 10.1109/TII.2020.2975289 10.1109/LCOMM.2022.3143843 10.1109/JIOT.2022.3144199 10.1109/TII.2018.2804338 10.1016/j.jfranklin.2020.02.005 10.1109/TII.2017.2778746 10.1109/TAC.2019.2957690 10.1109/TSP.2008.2010598 10.1109/TCST.2017.2692720 10.1109/TCYB.2020.2987758 10.1109/ACCESS.2022.3149595 10.1109/TII.2022.3182326 10.1109/TIE.2020.3039203 10.1109/TIE.2015.2478397 10.1109/9.956059 10.1080/00207170210140212 10.1109/TAC.2015.2480336 |
ContentType | Journal Article |
Copyright | 2023 The Franklin Institute |
Copyright_xml | – notice: 2023 The Franklin Institute |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jfranklin.2023.03.023 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2693 |
EndPage | 5608 |
ExternalDocumentID | 10_1016_j_jfranklin_2023_03_023 S0016003223001734 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61773111; 62071450 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 41~ 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFRF ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACCUC ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ACZNC ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AETEA AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 D1Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HAMUX HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M26 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SES SET SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 UHS VOH WH7 WUQ XOL XPP ZCG ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ADNMO ADXHL AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AHPAA AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c315t-e2c30c3feffffc5250a00e95a74cb623ef58d60fd9979addb6c6eced750b37903 |
IEDL.DBID | .~1 |
ISSN | 0016-0032 |
IngestDate | Thu Apr 24 22:55:39 EDT 2025 Tue Jul 01 01:38:27 EDT 2025 Fri Feb 23 02:40:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c315t-e2c30c3feffffc5250a00e95a74cb623ef58d60fd9979addb6c6eced750b37903 |
ORCID | 0000-0003-1671-8968 |
PageCount | 21 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jfranklin_2023_03_023 crossref_primary_10_1016_j_jfranklin_2023_03_023 elsevier_sciencedirect_doi_10_1016_j_jfranklin_2023_03_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-05-00 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of the Franklin Institute |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Phan, Kim (bib0016) 2022; 26 Tian, Wang, Yu, Dong, Xu (bib0029) 2022; 18 Wen, Wen, Roberts, Cai (bib0003) 2020; 357 Shi, Yang, Tuo, Ran, Huang (bib0001) 2022; 52 Liu, Zhao, Jiang, Hu, Yu, Li (bib0021) 2022; 10 Zhiqiang, Yue (bib0033) 2021 Filler (bib0032) 1980 Zong, Dai, Wei, Zou, Guo, Gao (bib0005) 2023; 10 Hulede, Kwon (bib0018) 2021; 7 Zong, Dai, Gao, Canyelles-Pericas, Liu (bib0019) 2022; 9 Schriegel, Jasperneite (bib0008) 2007 Chen, Yang, Guo, Li (bib0023) 2016; 63 Chen, Yang, Zong (bib0027) 2021; 358 Oliveira, Geromel, Bernussou (bib0035) 2002; 75 Gao (bib0030) 2003; Vol. 6 Yildirim, Carli, Schenato (bib0014) 2018; 26 Zhou, Ren (bib0022) 2001; 46 Muramatsu, Katsura (bib0025) 2018; 14 Zong, Liu, Liu, Gao, Dai, Gao (bib0017) 2022; 18 Dai, Gao, Breikin, Wang (bib0031) 2009; 57 Sulimov, Sherstyukov, Latypov, Nurgaliev (bib0004) 2021 Mei, Ren, Chen (bib0034) 2016; 61 Hu, He, Jiang (bib0015) 2021; 51 Elsts, Fafoutis, Duquennoy, Oikonomou, Piechocki, Craddock (bib0006) 2018; 14 Zhang, Zhu, Li, Wang (bib0028) 2020; 65 Zhang, Zhang, Wang, Zhang (bib0020) 2022; 19 Ge, Dunno, Singh, Yuan, Lu (bib0007) 2021; 11 Wang, Yu, Li, Zhong (bib0011) 2021; 17 Maróti, Kusy, Simon, Ákos Lédeczi (bib0010) 2004 Li, Wang, Zhu, Zhang (bib0026) 2021; 68 Ye, Sun, Ou, Zhang (bib0024) 2018; 114 Zong, Dai, Gao (bib0002) 2021; 68 Mesbahi, Papavassilopoulos (bib0036) 1996; Vol. 4 Carli, Chiuso, Schenato, Zampieri (bib0013) 2011; 56 Hu, Dai, Cui, Jia (bib0009) 2022; 359 Yang, Niu, Yu (bib0012) 2020; 8 Ye (10.1016/j.jfranklin.2023.03.023_bib0024) 2018; 114 Li (10.1016/j.jfranklin.2023.03.023_bib0026) 2021; 68 Yildirim (10.1016/j.jfranklin.2023.03.023_bib0014) 2018; 26 Zong (10.1016/j.jfranklin.2023.03.023_bib0019) 2022; 9 Zhang (10.1016/j.jfranklin.2023.03.023_bib0020) 2022; 19 Zhou (10.1016/j.jfranklin.2023.03.023_bib0022) 2001; 46 Shi (10.1016/j.jfranklin.2023.03.023_bib0001) 2022; 52 Zong (10.1016/j.jfranklin.2023.03.023_bib0017) 2022; 18 Wang (10.1016/j.jfranklin.2023.03.023_bib0011) 2021; 17 Zong (10.1016/j.jfranklin.2023.03.023_bib0002) 2021; 68 Yang (10.1016/j.jfranklin.2023.03.023_bib0012) 2020; 8 Zong (10.1016/j.jfranklin.2023.03.023_bib0005) 2023; 10 Chen (10.1016/j.jfranklin.2023.03.023_bib0027) 2021; 358 Zhang (10.1016/j.jfranklin.2023.03.023_bib0028) 2020; 65 Muramatsu (10.1016/j.jfranklin.2023.03.023_bib0025) 2018; 14 Hu (10.1016/j.jfranklin.2023.03.023_bib0015) 2021; 51 Schriegel (10.1016/j.jfranklin.2023.03.023_bib0008) 2007 Sulimov (10.1016/j.jfranklin.2023.03.023_bib0004) 2021 Carli (10.1016/j.jfranklin.2023.03.023_bib0013) 2011; 56 Elsts (10.1016/j.jfranklin.2023.03.023_bib0006) 2018; 14 Ge (10.1016/j.jfranklin.2023.03.023_bib0007) 2021; 11 Tian (10.1016/j.jfranklin.2023.03.023_bib0029) 2022; 18 Chen (10.1016/j.jfranklin.2023.03.023_bib0023) 2016; 63 Gao (10.1016/j.jfranklin.2023.03.023_bib0030) 2003; Vol. 6 Mei (10.1016/j.jfranklin.2023.03.023_bib0034) 2016; 61 Liu (10.1016/j.jfranklin.2023.03.023_bib0021) 2022; 10 Hu (10.1016/j.jfranklin.2023.03.023_bib0009) 2022; 359 Wen (10.1016/j.jfranklin.2023.03.023_bib0003) 2020; 357 Mesbahi (10.1016/j.jfranklin.2023.03.023_bib0036) 1996; Vol. 4 Maróti (10.1016/j.jfranklin.2023.03.023_bib0010) 2004 Phan (10.1016/j.jfranklin.2023.03.023_bib0016) 2022; 26 Zhiqiang (10.1016/j.jfranklin.2023.03.023_bib0033) 2021 Filler (10.1016/j.jfranklin.2023.03.023_bib0032) 1980 Hulede (10.1016/j.jfranklin.2023.03.023_bib0018) 2021; 7 Oliveira (10.1016/j.jfranklin.2023.03.023_bib0035) 2002; 75 Dai (10.1016/j.jfranklin.2023.03.023_bib0031) 2009; 57 |
References_xml | – volume: 63 start-page: 1083 year: 2016 end-page: 1095 ident: bib0023 article-title: Disturbance-observer-based control and related methods—an overview publication-title: IEEE Trans. Ind. Electron. – volume: 57 start-page: 1363 year: 2009 end-page: 1372 ident: bib0031 article-title: Zero assignment for robust publication-title: IEEE Trans. Signal Process. – volume: 9 start-page: 10862 year: 2022 end-page: 10871 ident: bib0019 article-title: PkCOs: synchronization of packet-coupled oscillators in blast wave monitoring networks publication-title: IEEE Internet Things J. – volume: 51 start-page: 2882 year: 2021 end-page: 2892 ident: bib0015 article-title: Fixed/preassigned-time synchronization of complex networks via improving fixed-time stability publication-title: IEEE Trans. Cybern. – volume: 14 start-page: 4446 year: 2018 end-page: 4456 ident: bib0025 article-title: An adaptive periodic-disturbance observer for periodic-disturbance suppression publication-title: IEEE Trans. Ind. Inf. – volume: 75 start-page: 666 year: 2002 end-page: 679 ident: bib0035 article-title: Extended H2 and H norm characterizations and controller parametrizations for discrete-time systems publication-title: Int. J. Control – volume: 68 start-page: 12679 year: 2021 end-page: 12688 ident: bib0026 article-title: Predictive active disturbance rejection control for servo systems with communication delays via sliding mode approach publication-title: IEEE Trans. Ind. Electron. – volume: 358 start-page: 834 year: 2021 end-page: 855 ident: bib0027 article-title: Leader-follower synchronization controller design for a network of boundary-controlled wave PDEs with structured time-varying perturbations and general disturbances publication-title: J. Franklin Inst. – volume: Vol. 6 start-page: 4989 year: 2003 end-page: 4996 ident: bib0030 article-title: Scaling and bandwidth-parameterization based controller tuning publication-title: Proceedings of the 2003 American Control Conference, 2003. – volume: 11 start-page: 5176 year: 2021 ident: bib0007 article-title: Development of a Drone’s vibration, shock, and atmospheric profiles publication-title: Appl. Sci. – start-page: 50 year: 2007 end-page: 55 ident: bib0008 article-title: Investigation of industrial environmental influences on clock sources and their effect on the synchronization accuracy of IEEE 1588 publication-title: 2007 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication – volume: 14 start-page: 2241 year: 2018 end-page: 2250 ident: bib0006 article-title: Temperature-resilient time synchronization for the internet of things publication-title: IEEE Trans. Ind. Inf. – volume: Vol. 4 start-page: 4625 year: 1996 end-page: 4630 ident: bib0036 article-title: LMIs, interior point methods, complexity theory, and robustness analysis publication-title: Proceedings of 35th IEEE Conference on Decision and Control – volume: 17 start-page: 90 year: 2021 end-page: 99 ident: bib0011 article-title: Clock skew estimation for timestamp-free synchronization in industrial wireless sensor networks publication-title: IEEE Trans. Ind. Inf. – volume: 8 start-page: 69683 year: 2020 end-page: 69694 ident: bib0012 article-title: Clock synchronization in wireless sensor networks based on Bayesian estimation publication-title: IEEE Access – volume: 68 start-page: 11598 year: 2021 end-page: 11608 ident: bib0002 article-title: Proportional–integral synchronization for nonidentical wireless packet-coupled oscillators with delays publication-title: IEEE Trans. Ind. Electron. – volume: 46 start-page: 1613 year: 2001 end-page: 1618 ident: bib0022 article-title: A new controller architecture for high performance, robust, and fault-tolerant control publication-title: IEEE Trans. Autom. Control – volume: 61 start-page: 2019 year: 2016 end-page: 2034 ident: bib0034 article-title: Distributed consensus of second-order multi-agent systems with heterogeneous unknown inertias and control gains under a directed graph publication-title: IEEE Trans. Autom. Control – volume: 26 start-page: 610 year: 2018 end-page: 623 ident: bib0014 article-title: Adaptive proportional–integral clock synchronization in wireless sensor networks publication-title: IEEE Trans. Control Syst. Technol. – year: 2004 ident: bib0010 article-title: The flooding time synchronization protocol publication-title: Proc International Conference on Embedded Network Sensor Systems – volume: 26 start-page: 947 year: 2022 end-page: 951 ident: bib0016 article-title: Enabling rapid time synchronization with slow-flooding in wireless sensor networks publication-title: IEEE Commun. Lett. – volume: 114 start-page: 66 year: 2018 end-page: 75 ident: bib0024 article-title: Disturbance observer-based control for consensus tracking of multi-agent systems with input delays from a frequency domain perspective publication-title: Syst. Control Lett. – volume: 357 year: 2020 ident: bib0003 article-title: Distributed filtering for a class of discrete-time systems over wireless sensor networks publication-title: J. Franklin Inst. – volume: 18 start-page: 3138 year: 2022 end-page: 3149 ident: bib0029 article-title: Discrete-time repetitive control-based ADRC for current loop disturbances suppression of PMSM drives publication-title: IEEE Trans. Ind. Inf. – volume: 19 start-page: 1 year: 2022 end-page: 5 ident: bib0020 article-title: The real-time framework of the push-to-talk (PTT) synchronization scheme for distributed SAR publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 56 start-page: 1146 year: 2011 end-page: 1152 ident: bib0013 article-title: Optimal synchronization for networks of noisy double integrators publication-title: IEEE Trans. Autom. Control – volume: 359 start-page: 3831 year: 2022 end-page: 3856 ident: bib0009 article-title: Zero-assignment and complex coefficient gain design of generalized proportional-integral observer for robust fault detection publication-title: J. Franklin Inst. – volume: 18 start-page: 9072 year: 2022 end-page: 9082 ident: bib0017 article-title: Robust synchronized data acquisition for biometric authentication publication-title: IEEE Trans. Ind. Inf. – volume: 65 start-page: 4424 year: 2020 end-page: 4429 ident: bib0028 article-title: ADRC dynamic stabilization of an unstable heat equation publication-title: IEEE Trans. Autom. Control – start-page: 1 year: 2021 end-page: 8 ident: bib0004 article-title: Simulation of periodic synchronization of UAV’s clock publication-title: 2021 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO – volume: 10 start-page: 16819 year: 2022 end-page: 16829 ident: bib0021 article-title: Fixed/preassigned-time synchronization control of complex networks with time varying delay publication-title: IEEE Access – year: 1980 ident: bib0032 article-title: The effect of vibration on quartz crystal resonators – volume: 10 start-page: 2021 year: 2023 end-page: 2030 ident: bib0005 article-title: Robust time synchronisation for industrial internet of things by publication-title: IEEE Internet Things J. – volume: 7 start-page: 660 year: 2021 end-page: 675 ident: bib0018 article-title: Distributed network time synchronization: social learning versus consensus publication-title: IEEE Trans. Signal Inf.Process. Netw. – start-page: 1107 year: 2021 end-page: 1110 ident: bib0033 article-title: Precise time synchronization system for TDOA sound source localization publication-title: 2021 IEEE 3rd International Conference on Civil Aviation Safety and Information Technology (ICCASIT) – volume: 52 start-page: 1415 year: 2022 end-page: 1428 ident: bib0001 article-title: A novel rapid-flooding approach with real-time delay compensation for wireless-sensor network time synchronization publication-title: IEEE Trans. Cybern. – volume: 68 start-page: 11598 issue: 11 year: 2021 ident: 10.1016/j.jfranklin.2023.03.023_bib0002 article-title: Proportional–integral synchronization for nonidentical wireless packet-coupled oscillators with delays publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.3036228 – start-page: 50 year: 2007 ident: 10.1016/j.jfranklin.2023.03.023_bib0008 article-title: Investigation of industrial environmental influences on clock sources and their effect on the synchronization accuracy of IEEE 1588 – volume: 11 start-page: 5176 issue: 11 year: 2021 ident: 10.1016/j.jfranklin.2023.03.023_bib0007 article-title: Development of a Drone’s vibration, shock, and atmospheric profiles publication-title: Appl. Sci. doi: 10.3390/app11115176 – volume: 51 start-page: 2882 issue: 6 year: 2021 ident: 10.1016/j.jfranklin.2023.03.023_bib0015 article-title: Fixed/preassigned-time synchronization of complex networks via improving fixed-time stability publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2977934 – volume: 359 start-page: 3831 issue: 8 year: 2022 ident: 10.1016/j.jfranklin.2023.03.023_bib0009 article-title: Zero-assignment and complex coefficient gain design of generalized proportional-integral observer for robust fault detection publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2022.03.021 – volume: 18 start-page: 3138 issue: 5 year: 2022 ident: 10.1016/j.jfranklin.2023.03.023_bib0029 article-title: Discrete-time repetitive control-based ADRC for current loop disturbances suppression of PMSM drives publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2021.3107635 – start-page: 1 year: 2021 ident: 10.1016/j.jfranklin.2023.03.023_bib0004 article-title: Simulation of periodic synchronization of UAV’s clock – volume: 56 start-page: 1146 issue: 5 year: 2011 ident: 10.1016/j.jfranklin.2023.03.023_bib0013 article-title: Optimal synchronization for networks of noisy double integrators publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2011.2107051 – volume: 9 start-page: 10862 issue: 13 year: 2022 ident: 10.1016/j.jfranklin.2023.03.023_bib0019 article-title: PkCOs: synchronization of packet-coupled oscillators in blast wave monitoring networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3126059 – volume: 114 start-page: 66 year: 2018 ident: 10.1016/j.jfranklin.2023.03.023_bib0024 article-title: Disturbance observer-based control for consensus tracking of multi-agent systems with input delays from a frequency domain perspective publication-title: Syst. Control Lett. doi: 10.1016/j.sysconle.2017.12.005 – year: 1980 ident: 10.1016/j.jfranklin.2023.03.023_bib0032 – volume: 358 start-page: 834 issue: 1 year: 2021 ident: 10.1016/j.jfranklin.2023.03.023_bib0027 article-title: Leader-follower synchronization controller design for a network of boundary-controlled wave PDEs with structured time-varying perturbations and general disturbances publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2020.11.017 – volume: Vol. 4 start-page: 4625 year: 1996 ident: 10.1016/j.jfranklin.2023.03.023_bib0036 article-title: LMIs, interior point methods, complexity theory, and robustness analysis – volume: 8 start-page: 69683 year: 2020 ident: 10.1016/j.jfranklin.2023.03.023_bib0012 article-title: Clock synchronization in wireless sensor networks based on Bayesian estimation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2984785 – volume: 17 start-page: 90 issue: 1 year: 2021 ident: 10.1016/j.jfranklin.2023.03.023_bib0011 article-title: Clock skew estimation for timestamp-free synchronization in industrial wireless sensor networks publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2020.2975289 – volume: 26 start-page: 947 issue: 4 year: 2022 ident: 10.1016/j.jfranklin.2023.03.023_bib0016 article-title: Enabling rapid time synchronization with slow-flooding in wireless sensor networks publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2022.3143843 – volume: 10 start-page: 2021 issue: 3 year: 2023 ident: 10.1016/j.jfranklin.2023.03.023_bib0005 article-title: Robust time synchronisation for industrial internet of things by H∞ output feedback control publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2022.3144199 – volume: 14 start-page: 4446 issue: 10 year: 2018 ident: 10.1016/j.jfranklin.2023.03.023_bib0025 article-title: An adaptive periodic-disturbance observer for periodic-disturbance suppression publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2804338 – volume: 357 issue: 5 year: 2020 ident: 10.1016/j.jfranklin.2023.03.023_bib0003 article-title: Distributed filtering for a class of discrete-time systems over wireless sensor networks publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2020.02.005 – volume: 14 start-page: 2241 issue: 5 year: 2018 ident: 10.1016/j.jfranklin.2023.03.023_bib0006 article-title: Temperature-resilient time synchronization for the internet of things publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2017.2778746 – volume: 65 start-page: 4424 issue: 10 year: 2020 ident: 10.1016/j.jfranklin.2023.03.023_bib0028 article-title: ADRC dynamic stabilization of an unstable heat equation publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2019.2957690 – volume: 57 start-page: 1363 issue: 4 year: 2009 ident: 10.1016/j.jfranklin.2023.03.023_bib0031 article-title: Zero assignment for robust H2/H∞ fault detection filter design publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.2010598 – volume: 26 start-page: 610 issue: 2 year: 2018 ident: 10.1016/j.jfranklin.2023.03.023_bib0014 article-title: Adaptive proportional–integral clock synchronization in wireless sensor networks publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2017.2692720 – volume: 52 start-page: 1415 issue: 3 year: 2022 ident: 10.1016/j.jfranklin.2023.03.023_bib0001 article-title: A novel rapid-flooding approach with real-time delay compensation for wireless-sensor network time synchronization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2987758 – volume: 10 start-page: 16819 year: 2022 ident: 10.1016/j.jfranklin.2023.03.023_bib0021 article-title: Fixed/preassigned-time synchronization control of complex networks with time varying delay publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3149595 – volume: 18 start-page: 9072 issue: 12 year: 2022 ident: 10.1016/j.jfranklin.2023.03.023_bib0017 article-title: Robust synchronized data acquisition for biometric authentication publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2022.3182326 – year: 2004 ident: 10.1016/j.jfranklin.2023.03.023_bib0010 article-title: The flooding time synchronization protocol – volume: Vol. 6 start-page: 4989 year: 2003 ident: 10.1016/j.jfranklin.2023.03.023_bib0030 article-title: Scaling and bandwidth-parameterization based controller tuning – volume: 19 start-page: 1 year: 2022 ident: 10.1016/j.jfranklin.2023.03.023_bib0020 article-title: The real-time framework of the push-to-talk (PTT) synchronization scheme for distributed SAR publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 7 start-page: 660 year: 2021 ident: 10.1016/j.jfranklin.2023.03.023_bib0018 article-title: Distributed network time synchronization: social learning versus consensus publication-title: IEEE Trans. Signal Inf.Process. Netw. – volume: 68 start-page: 12679 issue: 12 year: 2021 ident: 10.1016/j.jfranklin.2023.03.023_bib0026 article-title: Predictive active disturbance rejection control for servo systems with communication delays via sliding mode approach publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.3039203 – start-page: 1107 year: 2021 ident: 10.1016/j.jfranklin.2023.03.023_bib0033 article-title: Precise time synchronization system for TDOA sound source localization – volume: 63 start-page: 1083 issue: 2 year: 2016 ident: 10.1016/j.jfranklin.2023.03.023_bib0023 article-title: Disturbance-observer-based control and related methods—an overview publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2478397 – volume: 46 start-page: 1613 issue: 10 year: 2001 ident: 10.1016/j.jfranklin.2023.03.023_bib0022 article-title: A new controller architecture for high performance, robust, and fault-tolerant control publication-title: IEEE Trans. Autom. Control doi: 10.1109/9.956059 – volume: 75 start-page: 666 issue: 9 year: 2002 ident: 10.1016/j.jfranklin.2023.03.023_bib0035 article-title: Extended H2 and H norm characterizations and controller parametrizations for discrete-time systems publication-title: Int. J. Control doi: 10.1080/00207170210140212 – volume: 61 start-page: 2019 issue: 8 year: 2016 ident: 10.1016/j.jfranklin.2023.03.023_bib0034 article-title: Distributed consensus of second-order multi-agent systems with heterogeneous unknown inertias and control gains under a directed graph publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2015.2480336 |
SSID | ssj0017100 |
Score | 2.3683372 |
Snippet | •A general proportional integral observer - based disturbance compensation framework is constructed, using the idea of two-degree-of-freedom design, to achieve... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 5588 |
Title | General proportional integral observer (GPIO) - based disturbance compensation for minimum variance time synchronization |
URI | https://dx.doi.org/10.1016/j.jfranklin.2023.03.023 |
Volume | 360 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4QvOjB-Iz4IHvwoIfC0u2DeiNEBI3oQRJuDbvdJhAopILRi7_dmXZLJDHhYNNLm52mmW86M7ud_QbgWsaKu1RWgcEzspyRpEbuwrMiJ9BCOPhFZUg_973uwHkcusMStIu9MFRWaXx_7tMzb23u1I0264vxmPb4NjBao0EKcrWCOEEdxycrr32vyzwaxF6Te2OcOePojRqvSWw6o9eoi3jGdmqLvyPUr6jTOYB9ky6yVv5Gh1DSyRHs_SIRPIZPwxzNFtTwIM3X9pihgZiyuaR1V52ym4fX3sstsxgFrohFiO8qlQQ6o7pynM5mIDHMYhkRjsxWM_aBM-lsBLWgZ-9ficq4dPOtmycw6Ny_tbuW6adgKdFwl5a2leBKxDrGQ9H_zBHnOnBHvqMkpkE6dpuRx-MoCPwAUZKe8jTigEmFFH7AxSmUk3miz4DZtvKaNj7FlkQ36Tfxudolf4EZgeKyAl6hw1AZsnHqeTENi6qySbhWfkjKDzmetqgAXwsucr6N7SJ3BUjhhumEGBW2CZ__R_gCdukqr3-8hPIyXekrzFGWspoZYRV2Wr2nbv8Hg2TqLA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHNSD8RnxuQcPeqgs3T6oN0JEkIceIOHWsNttAuEVBKP_3pl2IZCYeLDpqe1sNvNtZ2Z3Z78BuJOx4i6lVaDzjCynL6mQu_CsyAm0EA7-UQnSrbZX6zqvPbeXgcrqLAylVRrbn9r0xFqbJwWjzcJsMKAzvkX01jggBZla4exAjtip3CzkyvVGrb3eTCACm9Qg4-QZBbbSvIaxKY7-SIXEE8JTW_zupDYcT_UQDkzEyMppp44goyfHsL_BI3gCX4Y8ms2o5sE8Xd5jhglixKaSll71nN2_vNffHpjFyHdFLEKIl3NJuDNKLccZbYITw0CWEefIeDlmnziZTr6gKvTs43uiEjrd9PTmKXSrz51KzTIlFSwliu7C0rYSXIlYx3gp2tLsc64Dt-87SmIkpGO3FHk8joLADxAo6SlPIxQYV0jhB1ycQXYynehzYLatvJKNrdiSGCf9ErarXTIZGBQoLvPgrXQYKsM3TmUvRuEqsWwYrpUfkvJDjrct8sDXgrOUcuNvkacVSOHW6AnRMfwlfPEf4VvYrXVazbBZbzcuYY_epOmQV5BdzJf6GkOWhbwxQ_IHhGDs3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+proportional+integral+observer+%28GPIO%29+-+based+disturbance+compensation+for+minimum+variance+time+synchronization&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Jia%2C+Zhian&rft.au=Dai%2C+Xuewu&rft.au=Cui%2C+Dongliang&rft.au=Qin%2C+Fei&rft.date=2023-05-01&rft.issn=0016-0032&rft.volume=360&rft.issue=8&rft.spage=5588&rft.epage=5608&rft_id=info:doi/10.1016%2Fj.jfranklin.2023.03.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfranklin_2023_03_023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon |