Optimised spectral pre-processing for discrimination of biofluids via ATR-FTIR spectroscopy
Pre-processing is an essential step in the analysis of spectral data. Mid-IR spectroscopy of biological samples is often subject to instrumental and sample specific variances which may often conceal valuable biological information. Whilst pre-processing can effectively reduce this unwanted variance,...
Saved in:
Published in | Analyst (London) Vol. 143; no. 24; pp. 6121 - 6134 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
03.12.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-2654 1364-5528 1364-5528 |
DOI | 10.1039/C8AN01384E |
Cover
Loading…
Abstract | Pre-processing is an essential step in the analysis of spectral data. Mid-IR spectroscopy of biological samples is often subject to instrumental and sample specific variances which may often conceal valuable biological information. Whilst pre-processing can effectively reduce this unwanted variance, the plethora of possible processing steps has resulted in a lack of consensus in the field, often meaning that analysis outputs are not comparable. As pre-processing is specific to the sample under investigation, here we present a systematic approach for defining the optimum pre-processing protocol for biofluid ATR-FTIR spectroscopy. Using a trial-and-error based approach and a clinically relevant dataset describing control and brain cancer patients, the effects of pre-processing permutations on subsequent classification algorithms were observed, by assessing key diagnostic performance parameters, including sensitivity and specificity. It was found that optimum diagnostic performance correlated with the use of minimal binning and baseline correction, with derivative functions improving diagnostic performance most significantly. If smoothing is required, a Sovitzky–Golay approach was the preferred option in this investigation. Heavy binning appeared to reduce classification most significantly, alongside wavelet noise reduction (filter length ≥6), resulting in the lowest diagnostic performances of all pre-processing permutations tested. |
---|---|
AbstractList | Pre-processing is an essential step in the analysis of spectral data. Mid-IR spectroscopy of biological samples is often subject to instrumental and sample specific variances which may often conceal valuable biological information. Whilst pre-processing can effectively reduce this unwanted variance, the plethora of possible processing steps has resulted in a lack of consensus in the field, often meaning that analysis outputs are not comparable. As pre-processing is specific to the sample under investigation, here we present a systematic approach for defining the optimum pre-processing protocol for biofluid ATR-FTIR spectroscopy. Using a trial-and-error based approach and a clinically relevant dataset describing control and brain cancer patients, the effects of pre-processing permutations on subsequent classification algorithms were observed, by assessing key diagnostic performance parameters, including sensitivity and specificity. It was found that optimum diagnostic performance correlated with the use of minimal binning and baseline correction, with derivative functions improving diagnostic performance most significantly. If smoothing is required, a Sovitzky–Golay approach was the preferred option in this investigation. Heavy binning appeared to reduce classification most significantly, alongside wavelet noise reduction (filter length ≥6), resulting in the lowest diagnostic performances of all pre-processing permutations tested. Pre-processing is an essential step in the analysis of spectral data. Mid-IR spectroscopy of biological samples is often subject to instrumental and sample specific variances which may often conceal valuable biological information. Whilst pre-processing can effectively reduce this unwanted variance, the plethora of possible processing steps has resulted in a lack of consensus in the field, often meaning that analysis outputs are not comparable. As pre-processing is specific to the sample under investigation, here we present a systematic approach for defining the optimum pre-processing protocol for biofluid ATR-FTIR spectroscopy. Using a trial-and-error based approach and a clinically relevant dataset describing control and brain cancer patients, the effects of pre-processing permutations on subsequent classification algorithms were observed, by assessing key diagnostic performance parameters, including sensitivity and specificity. It was found that optimum diagnostic performance correlated with the use of minimal binning and baseline correction, with derivative functions improving diagnostic performance most significantly. If smoothing is required, a Sovitzky-Golay approach was the preferred option in this investigation. Heavy binning appeared to reduce classification most significantly, alongside wavelet noise reduction (filter length ≥6), resulting in the lowest diagnostic performances of all pre-processing permutations tested.Pre-processing is an essential step in the analysis of spectral data. Mid-IR spectroscopy of biological samples is often subject to instrumental and sample specific variances which may often conceal valuable biological information. Whilst pre-processing can effectively reduce this unwanted variance, the plethora of possible processing steps has resulted in a lack of consensus in the field, often meaning that analysis outputs are not comparable. As pre-processing is specific to the sample under investigation, here we present a systematic approach for defining the optimum pre-processing protocol for biofluid ATR-FTIR spectroscopy. Using a trial-and-error based approach and a clinically relevant dataset describing control and brain cancer patients, the effects of pre-processing permutations on subsequent classification algorithms were observed, by assessing key diagnostic performance parameters, including sensitivity and specificity. It was found that optimum diagnostic performance correlated with the use of minimal binning and baseline correction, with derivative functions improving diagnostic performance most significantly. If smoothing is required, a Sovitzky-Golay approach was the preferred option in this investigation. Heavy binning appeared to reduce classification most significantly, alongside wavelet noise reduction (filter length ≥6), resulting in the lowest diagnostic performances of all pre-processing permutations tested. |
Author | Radhakrishnan, Pretheepan Fritzsch, Robby Smith, Benjamin R. Palmer, David S. Baker, Matthew J. Butler, Holly J. |
Author_xml | – sequence: 1 givenname: Holly J. orcidid: 0000-0002-8988-0811 surname: Butler fullname: Butler, Holly J. organization: WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, Glasgow – sequence: 2 givenname: Benjamin R. orcidid: 0000-0002-7893-4159 surname: Smith fullname: Smith, Benjamin R. organization: WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK – sequence: 3 givenname: Robby orcidid: 0000-0003-0198-1691 surname: Fritzsch fullname: Fritzsch, Robby organization: Department of Physics, University of Strathclyde, Glasgow, UK – sequence: 4 givenname: Pretheepan surname: Radhakrishnan fullname: Radhakrishnan, Pretheepan organization: Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK – sequence: 5 givenname: David S. surname: Palmer fullname: Palmer, David S. organization: ClinSpec Diagnostics Limited, Technology and Innovation Centre, Glasgow, UK, WestCHEM – sequence: 6 givenname: Matthew J. orcidid: 0000-0003-2362-8581 surname: Baker fullname: Baker, Matthew J. organization: WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, Glasgow |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30484797$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtLAzEUhYNU7EM3_gAJuBFhNJkk81iW0mqhWCh15SJk8pCU6WSczAj996a2RSiuLhe-c7jn3CHoVa7SANxi9IQRyZ8n2fgNYZLR6QUYYJLQiLE464EBQohEccJoHwy934QVI4auQJ8gmtE0TwfgY1m3dmu9VtDXWraNKGHd6KhunNTe2-oTGtdAZb1sAleJ1roKOgML60zZWeXhtxVwvF5Fs_V8dTRxXrp6dw0ujSi9vjnOEXifTdeT12ixfJlPxotIEszaSCEqqEI5ljHRKi6SVFCTJRobpmKJchQXRCFSqDwLUC6oLIo80FhSs09IRuDh4BuO_uq0b3kIJHVZikq7zvM4dJMQRtMsoPdn6MZ1TRWuCxTNCGOYsUDdHamu2GrF6xBdNDt-qi0A6ADIENU32nBp299qQoG25Bjx_Wf432eC5PFMcnL9B_4BKqCMjA |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2023_139771 crossref_primary_10_1002_anie_202411596 crossref_primary_10_1016_j_saa_2024_125101 crossref_primary_10_1002_dta_3520 crossref_primary_10_1177_00037028221088320 crossref_primary_10_1016_j_ijbiomac_2022_02_104 crossref_primary_10_1016_j_canlet_2020_02_020 crossref_primary_10_1371_journal_pone_0279669 crossref_primary_10_1002_tbio_202000025 crossref_primary_10_1016_j_talanta_2025_127738 crossref_primary_10_1016_j_compchemeng_2024_108892 crossref_primary_10_1016_j_saa_2022_121339 crossref_primary_10_1038_s41467_019_12527_5 crossref_primary_10_3390_cancers14133048 crossref_primary_10_1016_j_microc_2023_108466 crossref_primary_10_1016_j_chemolab_2020_104006 crossref_primary_10_1177_00037028211041172 crossref_primary_10_1186_s43591_024_00106_5 crossref_primary_10_1039_C9AN01731C crossref_primary_10_1093_noajnl_vdac024 crossref_primary_10_3390_metabo14010002 crossref_primary_10_1002_ange_202411596 crossref_primary_10_3390_cancers12071710 crossref_primary_10_1093_braincomms_fcab056 crossref_primary_10_1016_j_talanta_2023_124457 crossref_primary_10_1177_0003702819885958 crossref_primary_10_1007_s11051_020_05004_4 crossref_primary_10_1039_D5AY00196J crossref_primary_10_1016_j_fuel_2024_132701 crossref_primary_10_1039_D0AY01749C crossref_primary_10_3390_analytica4030028 crossref_primary_10_1186_s12870_021_03293_y crossref_primary_10_3390_molecules25225256 crossref_primary_10_1039_D2AN02041F crossref_primary_10_1021_acsomega_3c09563 crossref_primary_10_3390_jpm13111596 crossref_primary_10_1016_j_molliq_2020_112961 crossref_primary_10_1016_j_saa_2020_119259 crossref_primary_10_1016_j_microc_2025_112655 crossref_primary_10_1371_journal_pone_0261742 crossref_primary_10_1021_acssuschemeng_4c05074 crossref_primary_10_3390_cancers13153851 crossref_primary_10_1016_j_pdpdt_2022_103177 crossref_primary_10_1016_j_saa_2024_123848 crossref_primary_10_1021_acsomega_3c05819 crossref_primary_10_1039_D3RA07575C |
Cites_doi | 10.1529/biophysj.104.057950 10.1366/000370203322554518 10.1073/pnas.1701517114 10.1039/a608255f 10.1016/j.chemolab.2012.03.011 10.1039/c3an00337j 10.1002/0470011149 10.1002/cem.990 10.1039/C5CS00585J 10.1007/s00216-008-1989-9 10.1039/C7AN01871A 10.1038/nprot.2016.036 10.3233/CBM-2006-23-405 10.1039/C5AY00377F 10.1039/C5CS00440C 10.1016/j.chemolab.2012.03.004 10.1039/b904808a 10.1002/jbio.201400504 10.1039/C6FD90014C 10.1016/S0169-7439(01)00130-7 10.1007/s00216-011-5402-8 10.1038/nprot.2014.110 10.1039/C2AN16300D 10.1016/j.trac.2013.04.015 10.1007/s00216-006-1070-5 10.1039/c3an36654e 10.1002/jbio.201300167 10.1093/bioinformatics/bti102 10.1016/j.foodchem.2013.10.020 10.1016/j.trac.2009.07.007 10.1039/C6AN01888B 10.1021/acs.analchem.5b02832 10.1016/j.chemolab.2017.10.024 10.1016/j.aca.2011.06.043 10.1136/bmjopen-2017-017593 10.1016/S0039-9140(98)00126-X 10.1039/C5AN02452H 10.1039/B715924B 10.1039/C5AN00939A 10.1039/c2an16088a 10.1002/jbio.201300163 10.1007/s11060-016-2060-x 10.1038/nprot.2010.133 10.1039/C3AY42270D 10.1002/jbio.201400018 10.1016/j.chemolab.2017.02.008 10.1007/s00216-006-0851-1 10.1080/05704920701829043 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/C8AN01384E |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-5528 |
EndPage | 6134 |
ExternalDocumentID | 30484797 10_1039_C8AN01384E |
Genre | Journal Article |
GroupedDBID | --- -~X .HR 0-7 0R~ 23M 2WC 4.4 5RE 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABOCM ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION COF CS3 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- P2P R56 R7B R7E RAOCF RCNCU RPMJG RRA RRC RSCEA SKM SKR SKZ SLC SLF TN5 UPT VH6 WH7 ~02 CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c315t-d04a4d091c23ed2b67a4f86e1f5d2c0902b3d03bd980919a4cbb991c1c4f00033 |
ISSN | 0003-2654 1364-5528 |
IngestDate | Fri Jul 11 12:17:33 EDT 2025 Sun Jun 29 15:46:39 EDT 2025 Mon Jul 21 05:58:51 EDT 2025 Tue Jul 01 01:56:53 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c315t-d04a4d091c23ed2b67a4f86e1f5d2c0902b3d03bd980919a4cbb991c1c4f00033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8988-0811 0000-0002-7893-4159 0000-0003-2362-8581 0000-0003-0198-1691 |
PMID | 30484797 |
PQID | 2148355155 |
PQPubID | 2047505 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2138635478 proquest_journals_2148355155 pubmed_primary_30484797 crossref_citationtrail_10_1039_C8AN01384E crossref_primary_10_1039_C8AN01384E |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Dec-03 |
PublicationDateYYYYMMDD | 2018-12-03 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-Dec-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Analyst (London) |
PublicationTitleAlternate | Analyst |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Butler (C8AN01384E-(cit21)/*[position()=1]) 2015; 7 Bocklitz (C8AN01384E-(cit26)/*[position()=1]) 2011; 704 Jarvis (C8AN01384E-(cit27)/*[position()=1]) 2005; 21 Rinnan (C8AN01384E-(cit19)/*[position()=1]) 2009; 28 Bonnier (C8AN01384E-(cit41)/*[position()=1]) 2017; 142 Theophilou (C8AN01384E-(cit7)/*[position()=1]) 2016; 141 Naumann (C8AN01384E-(cit1)/*[position()=1]) 2009; 2 Mohlenhoff (C8AN01384E-(cit12)/*[position()=1]) 2005; 88 Stuart (C8AN01384E-(cit8)/*[position()=1]) 2000 Gajjar (C8AN01384E-(cit6)/*[position()=1]) 2013; 138 Gerretzen (C8AN01384E-(cit15)/*[position()=1]) 2015; 87 Rinnan (C8AN01384E-(cit14)/*[position()=1]) 2014; 6 Mitchell (C8AN01384E-(cit34)/*[position()=1]) 2014; 7 Butler (C8AN01384E-(cit50)/*[position()=1]) 2016; 11 C8AN01384E-(cit25)/*[position()=1] Menze (C8AN01384E-(cit38)/*[position()=1]) 2007; 387 Baker (C8AN01384E-(cit17)/*[position()=1]) 2016; 45 Gray (C8AN01384E-(cit33)/*[position()=1]) 2018; 8 Baker (C8AN01384E-(cit3)/*[position()=1]) 2014; 9 Paraskevaidi (C8AN01384E-(cit36)/*[position()=1]) 2017; 114 Wang (C8AN01384E-(cit4)/*[position()=1]) 2008; 391 Bassan (C8AN01384E-(cit31)/*[position()=1]) 2012; 137 Movasaghi (C8AN01384E-(cit9)/*[position()=1]) 2008; 43 Wartewig (C8AN01384E-(cit48)/*[position()=1]) 2006 Hughes (C8AN01384E-(cit49)/*[position()=1]) 2014; 7 Goodacre (C8AN01384E-(cit37)/*[position()=1]) 2016; 187 Ollesch (C8AN01384E-(cit22)/*[position()=1]) 2013; 138 Aruga (C8AN01384E-(cit18)/*[position()=1]) 1998; 47 Devos (C8AN01384E-(cit52)/*[position()=1]) 2014; 148 Baker (C8AN01384E-(cit32)/*[position()=1]) 2018; 143 Alsberg (C8AN01384E-(cit46)/*[position()=1]) 1997; 122 Trevisan (C8AN01384E-(cit5)/*[position()=1]) 2012; 137 Martin (C8AN01384E-(cit24)/*[position()=1]) 2010; 5 Hands (C8AN01384E-(cit42)/*[position()=1]) 2016; 127 Bassan (C8AN01384E-(cit13)/*[position()=1]) 2009; 134 Byrne (C8AN01384E-(cit28)/*[position()=1]) 2016; 45 Scaglia (C8AN01384E-(cit39)/*[position()=1]) 2011; 401 Randolph (C8AN01384E-(cit47)/*[position()=1]) 2006; 2 Preisner (C8AN01384E-(cit29)/*[position()=1]) 2007; 387 Smith (C8AN01384E-(cit43)/*[position()=1]) 2016; 141 Ly (C8AN01384E-(cit30)/*[position()=1]) 2008; 133 Afseth (C8AN01384E-(cit11)/*[position()=1]) 2012; 117 Baker (C8AN01384E-(cit35)/*[position()=1]) 2014; 7 Heraud (C8AN01384E-(cit20)/*[position()=1]) 2006; 20 Lee (C8AN01384E-(cit44)/*[position()=1]) 2017; 163 Singh (C8AN01384E-(cit10)/*[position()=1]) 2012; 102 Lieber (C8AN01384E-(cit51)/*[position()=1]) 2003; 57 Ganganwar (C8AN01384E-(cit53)/*[position()=1]) 2012; 2 Vogt (C8AN01384E-(cit23)/*[position()=1]) 2001; 59 Engel (C8AN01384E-(cit16)/*[position()=1]) 2013; 50 Lasch (C8AN01384E-(cit2)/*[position()=1]) 2012; 117 Ollesch (C8AN01384E-(cit40)/*[position()=1]) 2014; 7 Smith (C8AN01384E-(cit45)/*[position()=1]) 2018; 172 |
References_xml | – volume: 2 start-page: 42 issue: 4 year: 2012 ident: C8AN01384E-(cit53)/*[position()=1] publication-title: Int. J. Emerg. Technol. Adv. Eng. – volume: 102 start-page: 232 issue: 2 year: 2012 ident: C8AN01384E-(cit10)/*[position()=1] publication-title: Curr. Sci. – volume-title: IR and Raman spectroscopy: fundamental processing year: 2006 ident: C8AN01384E-(cit48)/*[position()=1] – volume: 88 start-page: 3635 issue: 5 year: 2005 ident: C8AN01384E-(cit12)/*[position()=1] publication-title: Biophys. J. doi: 10.1529/biophysj.104.057950 – volume: 57 start-page: 1363 issue: 11 year: 2003 ident: C8AN01384E-(cit51)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/000370203322554518 – volume: 114 start-page: E7929 issue: 38 year: 2017 ident: C8AN01384E-(cit36)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1701517114 – volume: 122 start-page: 645 issue: 7 year: 1997 ident: C8AN01384E-(cit46)/*[position()=1] publication-title: Analyst doi: 10.1039/a608255f – volume: 117 start-page: 100 issue: Supplement C year: 2012 ident: C8AN01384E-(cit2)/*[position()=1] publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2012.03.011 – volume: 138 start-page: 4092 issue: 14 year: 2013 ident: C8AN01384E-(cit22)/*[position()=1] publication-title: Analyst doi: 10.1039/c3an00337j – volume-title: Infrared Spectroscopy. in Kirk-Othmer Encyclopedia of Chemical Technology year: 2000 ident: C8AN01384E-(cit8)/*[position()=1] doi: 10.1002/0470011149 – volume: 20 start-page: 193 issue: 5 year: 2006 ident: C8AN01384E-(cit20)/*[position()=1] publication-title: J. Chemom. doi: 10.1002/cem.990 – volume: 45 start-page: 1803 issue: 7 year: 2016 ident: C8AN01384E-(cit17)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00585J – volume: 391 start-page: 1641 issue: 5 year: 2008 ident: C8AN01384E-(cit4)/*[position()=1] publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-008-1989-9 – volume: 143 start-page: 1735 issue: 8 year: 2018 ident: C8AN01384E-(cit32)/*[position()=1] publication-title: Analyst doi: 10.1039/C7AN01871A – volume: 11 start-page: 664 issue: 4 year: 2016 ident: C8AN01384E-(cit50)/*[position()=1] publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.036 – volume: 2 start-page: 135 issue: 3–4 year: 2006 ident: C8AN01384E-(cit47)/*[position()=1] publication-title: Cancer Biomarkers doi: 10.3233/CBM-2006-23-405 – volume: 7 start-page: 4059 issue: 10 year: 2015 ident: C8AN01384E-(cit21)/*[position()=1] publication-title: Anal. Methods doi: 10.1039/C5AY00377F – volume: 45 start-page: 1865 issue: 7 year: 2016 ident: C8AN01384E-(cit28)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00440C – volume: 117 start-page: 92 year: 2012 ident: C8AN01384E-(cit11)/*[position()=1] publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2012.03.004 – volume: 134 start-page: 1586 issue: 8 year: 2009 ident: C8AN01384E-(cit13)/*[position()=1] publication-title: Analyst doi: 10.1039/b904808a – volume: 7 start-page: 151 issue: 3–4 year: 2014 ident: C8AN01384E-(cit35)/*[position()=1] publication-title: J. Biophotonics doi: 10.1002/jbio.201400504 – volume: 187 start-page: 575 year: 2016 ident: C8AN01384E-(cit37)/*[position()=1] publication-title: Faraday Discuss. doi: 10.1039/C6FD90014C – volume: 59 start-page: 1 issue: 1 year: 2001 ident: C8AN01384E-(cit23)/*[position()=1] publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(01)00130-7 – volume: 401 start-page: 2919 issue: 9 year: 2011 ident: C8AN01384E-(cit39)/*[position()=1] publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-011-5402-8 – volume: 9 start-page: 1771 year: 2014 ident: C8AN01384E-(cit3)/*[position()=1] publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.110 – volume: 137 start-page: 3202 issue: 14 year: 2012 ident: C8AN01384E-(cit5)/*[position()=1] publication-title: Analyst doi: 10.1039/C2AN16300D – volume: 50 start-page: 96 year: 2013 ident: C8AN01384E-(cit16)/*[position()=1] publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2013.04.015 – volume: 387 start-page: 1801 issue: 5 year: 2007 ident: C8AN01384E-(cit38)/*[position()=1] publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-006-1070-5 – volume: 138 start-page: 3917 issue: 14 year: 2013 ident: C8AN01384E-(cit6)/*[position()=1] publication-title: Analyst doi: 10.1039/c3an36654e – volume: 7 start-page: 180 issue: 3 year: 2014 ident: C8AN01384E-(cit49)/*[position()=1] publication-title: J. Biophotonics doi: 10.1002/jbio.201300167 – volume: 2 start-page: 312 year: 2009 ident: C8AN01384E-(cit1)/*[position()=1] publication-title: Biol. Biomed. Infrared Spectrosc. – volume: 21 start-page: 860 issue: 7 year: 2005 ident: C8AN01384E-(cit27)/*[position()=1] publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti102 – volume: 148 start-page: 124 year: 2014 ident: C8AN01384E-(cit52)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2013.10.020 – volume: 28 start-page: 1201 issue: 10 year: 2009 ident: C8AN01384E-(cit19)/*[position()=1] publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2009.07.007 – volume: 142 start-page: 1285 issue: 8 year: 2017 ident: C8AN01384E-(cit41)/*[position()=1] publication-title: Analyst doi: 10.1039/C6AN01888B – volume: 87 start-page: 12096 issue: 24 year: 2015 ident: C8AN01384E-(cit15)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b02832 – volume: 172 start-page: 33 year: 2018 ident: C8AN01384E-(cit45)/*[position()=1] publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.10.024 – ident: C8AN01384E-(cit25)/*[position()=1] – volume: 704 start-page: 47 issue: 1 year: 2011 ident: C8AN01384E-(cit26)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2011.06.043 – volume: 8 issue: 5 year: 2018 ident: C8AN01384E-(cit33)/*[position()=1] publication-title: BMJ Open doi: 10.1136/bmjopen-2017-017593 – volume: 47 start-page: 1053 issue: 4 year: 1998 ident: C8AN01384E-(cit18)/*[position()=1] publication-title: Talanta doi: 10.1016/S0039-9140(98)00126-X – volume: 141 start-page: 3668 issue: 12 year: 2016 ident: C8AN01384E-(cit43)/*[position()=1] publication-title: Analyst doi: 10.1039/C5AN02452H – volume: 133 start-page: 197 issue: 2 year: 2008 ident: C8AN01384E-(cit30)/*[position()=1] publication-title: Analyst doi: 10.1039/B715924B – volume: 141 start-page: 585 issue: 2 year: 2016 ident: C8AN01384E-(cit7)/*[position()=1] publication-title: Analyst doi: 10.1039/C5AN00939A – volume: 137 start-page: 1370 issue: 6 year: 2012 ident: C8AN01384E-(cit31)/*[position()=1] publication-title: Analyst doi: 10.1039/c2an16088a – volume: 7 start-page: 210 issue: 3–4 year: 2014 ident: C8AN01384E-(cit40)/*[position()=1] publication-title: J. Biophotonics doi: 10.1002/jbio.201300163 – volume: 127 start-page: 463 issue: 3 year: 2016 ident: C8AN01384E-(cit42)/*[position()=1] publication-title: J. Neurooncol. doi: 10.1007/s11060-016-2060-x – volume: 5 start-page: 1748 issue: 11 year: 2010 ident: C8AN01384E-(cit24)/*[position()=1] publication-title: Nat. Protoc. doi: 10.1038/nprot.2010.133 – volume: 6 start-page: 7124 issue: 18 year: 2014 ident: C8AN01384E-(cit14)/*[position()=1] publication-title: Anal. Methods doi: 10.1039/C3AY42270D – volume: 7 start-page: 153 issue: 3–4 year: 2014 ident: C8AN01384E-(cit34)/*[position()=1] publication-title: J. Biophotonics doi: 10.1002/jbio.201400018 – volume: 163 start-page: 64 issue: Supplement C year: 2017 ident: C8AN01384E-(cit44)/*[position()=1] publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.02.008 – volume: 387 start-page: 1739 issue: 5 year: 2007 ident: C8AN01384E-(cit29)/*[position()=1] publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-006-0851-1 – volume: 43 start-page: 134 issue: 2 year: 2008 ident: C8AN01384E-(cit9)/*[position()=1] publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704920701829043 |
SSID | ssj0001050 |
Score | 2.478557 |
Snippet | Pre-processing is an essential step in the analysis of spectral data. Mid-IR spectroscopy of biological samples is often subject to instrumental and sample... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 6121 |
SubjectTerms | Adolescent Adult Aged Aged, 80 and over Algorithms Biological properties Blood Chemical Analysis - statistics & numerical data Brain Brain Neoplasms - blood Brain Neoplasms - diagnosis Classification Datasets as Topic Diagnostic systems Female Fourier transforms Humans Infrared spectroscopy Machine Learning Male Middle Aged Noise reduction Parameter sensitivity Permutations Sensitivity analysis Sensitivity and Specificity Spectroscopy, Fourier Transform Infrared - methods Spectrum analysis Wavelet Young Adult |
Title | Optimised spectral pre-processing for discrimination of biofluids via ATR-FTIR spectroscopy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30484797 https://www.proquest.com/docview/2148355155 https://www.proquest.com/docview/2138635478 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZGJ8FeEOO2wpiM4AVNgcR22uSxq1p1CAaqMmkSD5FvEUFbUrUpD_v1HMdxmqJOYrxEVezGkr8vJ-f43BB6TyjzdaTAyBkGsceo0B4PY-JlAfdjFWchJyYb-evFYHbJPl-FVxsPfp1dUomP8nZnXsn_oAr3AFeTJXsPZNuHwg34DfjCFRCG6z9h_A3ed8AJdMY6YdLk2puojoUN_ncxkibx1jbvctqhyMvsep2r1envnJ-Okrk3Tc7nzUNKk6iy5ey1hUuqbveP9vjgzAQU1ajPTNfqjpfJHdmc6eIXh9U3oYnTZV7drmwPqnkpRHuqP-fKRBnkq59N1-TvS5OPDF_Mons6EUR1pIeVWNpKVDpgXhg2GeBO5NrSTA23COtIUFPRbKdo96mpjCojXhjnKtPdSQDL4qYGmYJEYkMb8vtXIW039ADtE7ApSA_tjybJ-Zf2ww2qpu8q2NL402apA_TQ_XlbfbnDJql1k-QJetwYFXhkGXKI9nTxFD0au15-z9CPlinYMQVvMwUDU_A2U3CZ4ZYpGJiCHVNwlynP0eV0koxnXtNWw5M0CCtP-YwzBXqiJFQrIgZDzrJooIMsVESaOF1BlU-FiiOYFHMmhQArQgaSZcaEpi9QrygLfYRwGEqlqMwySWLmcyU0IbCzoJIay1OSPvrgdiuVTc150_rkOq1jH2icjqPRRb3Jkz56185d2EorO2cdu01PmzdxlRKw6UFvBtW4j962w7CrxvnFC12uzRwagXLNhlEfvbRgtcs4cF_dOfIaHWzYfYx61XKt34A2WomThkV_AG_7i_s |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimised+spectral+pre-processing+for+discrimination+of+biofluids+via+ATR-FTIR+spectroscopy&rft.jtitle=Analyst+%28London%29&rft.au=Butler%2C+Holly+J&rft.au=Smith%2C+Benjamin+R&rft.au=Fritzsch%2C+Robby&rft.au=Radhakrishnan%2C+Pretheepan&rft.date=2018-12-03&rft.eissn=1364-5528&rft.volume=143&rft.issue=24&rft.spage=6121&rft_id=info:doi/10.1039%2Fc8an01384e&rft_id=info%3Apmid%2F30484797&rft.externalDocID=30484797 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon |