Optimised spectral pre-processing for discrimination of biofluids via ATR-FTIR spectroscopy

Pre-processing is an essential step in the analysis of spectral data. Mid-IR spectroscopy of biological samples is often subject to instrumental and sample specific variances which may often conceal valuable biological information. Whilst pre-processing can effectively reduce this unwanted variance,...

Full description

Saved in:
Bibliographic Details
Published inAnalyst (London) Vol. 143; no. 24; pp. 6121 - 6134
Main Authors Butler, Holly J., Smith, Benjamin R., Fritzsch, Robby, Radhakrishnan, Pretheepan, Palmer, David S., Baker, Matthew J.
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 03.12.2018
Subjects
Online AccessGet full text
ISSN0003-2654
1364-5528
1364-5528
DOI10.1039/C8AN01384E

Cover

Loading…
Abstract Pre-processing is an essential step in the analysis of spectral data. Mid-IR spectroscopy of biological samples is often subject to instrumental and sample specific variances which may often conceal valuable biological information. Whilst pre-processing can effectively reduce this unwanted variance, the plethora of possible processing steps has resulted in a lack of consensus in the field, often meaning that analysis outputs are not comparable. As pre-processing is specific to the sample under investigation, here we present a systematic approach for defining the optimum pre-processing protocol for biofluid ATR-FTIR spectroscopy. Using a trial-and-error based approach and a clinically relevant dataset describing control and brain cancer patients, the effects of pre-processing permutations on subsequent classification algorithms were observed, by assessing key diagnostic performance parameters, including sensitivity and specificity. It was found that optimum diagnostic performance correlated with the use of minimal binning and baseline correction, with derivative functions improving diagnostic performance most significantly. If smoothing is required, a Sovitzky–Golay approach was the preferred option in this investigation. Heavy binning appeared to reduce classification most significantly, alongside wavelet noise reduction (filter length ≥6), resulting in the lowest diagnostic performances of all pre-processing permutations tested.
AbstractList Pre-processing is an essential step in the analysis of spectral data. Mid-IR spectroscopy of biological samples is often subject to instrumental and sample specific variances which may often conceal valuable biological information. Whilst pre-processing can effectively reduce this unwanted variance, the plethora of possible processing steps has resulted in a lack of consensus in the field, often meaning that analysis outputs are not comparable. As pre-processing is specific to the sample under investigation, here we present a systematic approach for defining the optimum pre-processing protocol for biofluid ATR-FTIR spectroscopy. Using a trial-and-error based approach and a clinically relevant dataset describing control and brain cancer patients, the effects of pre-processing permutations on subsequent classification algorithms were observed, by assessing key diagnostic performance parameters, including sensitivity and specificity. It was found that optimum diagnostic performance correlated with the use of minimal binning and baseline correction, with derivative functions improving diagnostic performance most significantly. If smoothing is required, a Sovitzky–Golay approach was the preferred option in this investigation. Heavy binning appeared to reduce classification most significantly, alongside wavelet noise reduction (filter length ≥6), resulting in the lowest diagnostic performances of all pre-processing permutations tested.
Pre-processing is an essential step in the analysis of spectral data. Mid-IR spectroscopy of biological samples is often subject to instrumental and sample specific variances which may often conceal valuable biological information. Whilst pre-processing can effectively reduce this unwanted variance, the plethora of possible processing steps has resulted in a lack of consensus in the field, often meaning that analysis outputs are not comparable. As pre-processing is specific to the sample under investigation, here we present a systematic approach for defining the optimum pre-processing protocol for biofluid ATR-FTIR spectroscopy. Using a trial-and-error based approach and a clinically relevant dataset describing control and brain cancer patients, the effects of pre-processing permutations on subsequent classification algorithms were observed, by assessing key diagnostic performance parameters, including sensitivity and specificity. It was found that optimum diagnostic performance correlated with the use of minimal binning and baseline correction, with derivative functions improving diagnostic performance most significantly. If smoothing is required, a Sovitzky-Golay approach was the preferred option in this investigation. Heavy binning appeared to reduce classification most significantly, alongside wavelet noise reduction (filter length ≥6), resulting in the lowest diagnostic performances of all pre-processing permutations tested.Pre-processing is an essential step in the analysis of spectral data. Mid-IR spectroscopy of biological samples is often subject to instrumental and sample specific variances which may often conceal valuable biological information. Whilst pre-processing can effectively reduce this unwanted variance, the plethora of possible processing steps has resulted in a lack of consensus in the field, often meaning that analysis outputs are not comparable. As pre-processing is specific to the sample under investigation, here we present a systematic approach for defining the optimum pre-processing protocol for biofluid ATR-FTIR spectroscopy. Using a trial-and-error based approach and a clinically relevant dataset describing control and brain cancer patients, the effects of pre-processing permutations on subsequent classification algorithms were observed, by assessing key diagnostic performance parameters, including sensitivity and specificity. It was found that optimum diagnostic performance correlated with the use of minimal binning and baseline correction, with derivative functions improving diagnostic performance most significantly. If smoothing is required, a Sovitzky-Golay approach was the preferred option in this investigation. Heavy binning appeared to reduce classification most significantly, alongside wavelet noise reduction (filter length ≥6), resulting in the lowest diagnostic performances of all pre-processing permutations tested.
Author Radhakrishnan, Pretheepan
Fritzsch, Robby
Smith, Benjamin R.
Palmer, David S.
Baker, Matthew J.
Butler, Holly J.
Author_xml – sequence: 1
  givenname: Holly J.
  orcidid: 0000-0002-8988-0811
  surname: Butler
  fullname: Butler, Holly J.
  organization: WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, Glasgow
– sequence: 2
  givenname: Benjamin R.
  orcidid: 0000-0002-7893-4159
  surname: Smith
  fullname: Smith, Benjamin R.
  organization: WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
– sequence: 3
  givenname: Robby
  orcidid: 0000-0003-0198-1691
  surname: Fritzsch
  fullname: Fritzsch, Robby
  organization: Department of Physics, University of Strathclyde, Glasgow, UK
– sequence: 4
  givenname: Pretheepan
  surname: Radhakrishnan
  fullname: Radhakrishnan, Pretheepan
  organization: Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
– sequence: 5
  givenname: David S.
  surname: Palmer
  fullname: Palmer, David S.
  organization: ClinSpec Diagnostics Limited, Technology and Innovation Centre, Glasgow, UK, WestCHEM
– sequence: 6
  givenname: Matthew J.
  orcidid: 0000-0003-2362-8581
  surname: Baker
  fullname: Baker, Matthew J.
  organization: WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, Glasgow
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30484797$$D View this record in MEDLINE/PubMed
BookMark eNptkUtLAzEUhYNU7EM3_gAJuBFhNJkk81iW0mqhWCh15SJk8pCU6WSczAj996a2RSiuLhe-c7jn3CHoVa7SANxi9IQRyZ8n2fgNYZLR6QUYYJLQiLE464EBQohEccJoHwy934QVI4auQJ8gmtE0TwfgY1m3dmu9VtDXWraNKGHd6KhunNTe2-oTGtdAZb1sAleJ1roKOgML60zZWeXhtxVwvF5Fs_V8dTRxXrp6dw0ujSi9vjnOEXifTdeT12ixfJlPxotIEszaSCEqqEI5ljHRKi6SVFCTJRobpmKJchQXRCFSqDwLUC6oLIo80FhSs09IRuDh4BuO_uq0b3kIJHVZikq7zvM4dJMQRtMsoPdn6MZ1TRWuCxTNCGOYsUDdHamu2GrF6xBdNDt-qi0A6ADIENU32nBp299qQoG25Bjx_Wf432eC5PFMcnL9B_4BKqCMjA
CitedBy_id crossref_primary_10_1016_j_jclepro_2023_139771
crossref_primary_10_1002_anie_202411596
crossref_primary_10_1016_j_saa_2024_125101
crossref_primary_10_1002_dta_3520
crossref_primary_10_1177_00037028221088320
crossref_primary_10_1016_j_ijbiomac_2022_02_104
crossref_primary_10_1016_j_canlet_2020_02_020
crossref_primary_10_1371_journal_pone_0279669
crossref_primary_10_1002_tbio_202000025
crossref_primary_10_1016_j_talanta_2025_127738
crossref_primary_10_1016_j_compchemeng_2024_108892
crossref_primary_10_1016_j_saa_2022_121339
crossref_primary_10_1038_s41467_019_12527_5
crossref_primary_10_3390_cancers14133048
crossref_primary_10_1016_j_microc_2023_108466
crossref_primary_10_1016_j_chemolab_2020_104006
crossref_primary_10_1177_00037028211041172
crossref_primary_10_1186_s43591_024_00106_5
crossref_primary_10_1039_C9AN01731C
crossref_primary_10_1093_noajnl_vdac024
crossref_primary_10_3390_metabo14010002
crossref_primary_10_1002_ange_202411596
crossref_primary_10_3390_cancers12071710
crossref_primary_10_1093_braincomms_fcab056
crossref_primary_10_1016_j_talanta_2023_124457
crossref_primary_10_1177_0003702819885958
crossref_primary_10_1007_s11051_020_05004_4
crossref_primary_10_1039_D5AY00196J
crossref_primary_10_1016_j_fuel_2024_132701
crossref_primary_10_1039_D0AY01749C
crossref_primary_10_3390_analytica4030028
crossref_primary_10_1186_s12870_021_03293_y
crossref_primary_10_3390_molecules25225256
crossref_primary_10_1039_D2AN02041F
crossref_primary_10_1021_acsomega_3c09563
crossref_primary_10_3390_jpm13111596
crossref_primary_10_1016_j_molliq_2020_112961
crossref_primary_10_1016_j_saa_2020_119259
crossref_primary_10_1016_j_microc_2025_112655
crossref_primary_10_1371_journal_pone_0261742
crossref_primary_10_1021_acssuschemeng_4c05074
crossref_primary_10_3390_cancers13153851
crossref_primary_10_1016_j_pdpdt_2022_103177
crossref_primary_10_1016_j_saa_2024_123848
crossref_primary_10_1021_acsomega_3c05819
crossref_primary_10_1039_D3RA07575C
Cites_doi 10.1529/biophysj.104.057950
10.1366/000370203322554518
10.1073/pnas.1701517114
10.1039/a608255f
10.1016/j.chemolab.2012.03.011
10.1039/c3an00337j
10.1002/0470011149
10.1002/cem.990
10.1039/C5CS00585J
10.1007/s00216-008-1989-9
10.1039/C7AN01871A
10.1038/nprot.2016.036
10.3233/CBM-2006-23-405
10.1039/C5AY00377F
10.1039/C5CS00440C
10.1016/j.chemolab.2012.03.004
10.1039/b904808a
10.1002/jbio.201400504
10.1039/C6FD90014C
10.1016/S0169-7439(01)00130-7
10.1007/s00216-011-5402-8
10.1038/nprot.2014.110
10.1039/C2AN16300D
10.1016/j.trac.2013.04.015
10.1007/s00216-006-1070-5
10.1039/c3an36654e
10.1002/jbio.201300167
10.1093/bioinformatics/bti102
10.1016/j.foodchem.2013.10.020
10.1016/j.trac.2009.07.007
10.1039/C6AN01888B
10.1021/acs.analchem.5b02832
10.1016/j.chemolab.2017.10.024
10.1016/j.aca.2011.06.043
10.1136/bmjopen-2017-017593
10.1016/S0039-9140(98)00126-X
10.1039/C5AN02452H
10.1039/B715924B
10.1039/C5AN00939A
10.1039/c2an16088a
10.1002/jbio.201300163
10.1007/s11060-016-2060-x
10.1038/nprot.2010.133
10.1039/C3AY42270D
10.1002/jbio.201400018
10.1016/j.chemolab.2017.02.008
10.1007/s00216-006-0851-1
10.1080/05704920701829043
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/C8AN01384E
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-5528
EndPage 6134
ExternalDocumentID 30484797
10_1039_C8AN01384E
Genre Journal Article
GroupedDBID ---
-~X
.HR
0-7
0R~
23M
2WC
4.4
5RE
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABOCM
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
COF
CS3
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
P2P
R56
R7B
R7E
RAOCF
RCNCU
RPMJG
RRA
RRC
RSCEA
SKM
SKR
SKZ
SLC
SLF
TN5
UPT
VH6
WH7
~02
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c315t-d04a4d091c23ed2b67a4f86e1f5d2c0902b3d03bd980919a4cbb991c1c4f00033
ISSN 0003-2654
1364-5528
IngestDate Fri Jul 11 12:17:33 EDT 2025
Sun Jun 29 15:46:39 EDT 2025
Mon Jul 21 05:58:51 EDT 2025
Tue Jul 01 01:56:53 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-d04a4d091c23ed2b67a4f86e1f5d2c0902b3d03bd980919a4cbb991c1c4f00033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8988-0811
0000-0002-7893-4159
0000-0003-2362-8581
0000-0003-0198-1691
PMID 30484797
PQID 2148355155
PQPubID 2047505
PageCount 14
ParticipantIDs proquest_miscellaneous_2138635478
proquest_journals_2148355155
pubmed_primary_30484797
crossref_citationtrail_10_1039_C8AN01384E
crossref_primary_10_1039_C8AN01384E
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Dec-03
PublicationDateYYYYMMDD 2018-12-03
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-Dec-03
  day: 03
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Analyst (London)
PublicationTitleAlternate Analyst
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Butler (C8AN01384E-(cit21)/*[position()=1]) 2015; 7
Bocklitz (C8AN01384E-(cit26)/*[position()=1]) 2011; 704
Jarvis (C8AN01384E-(cit27)/*[position()=1]) 2005; 21
Rinnan (C8AN01384E-(cit19)/*[position()=1]) 2009; 28
Bonnier (C8AN01384E-(cit41)/*[position()=1]) 2017; 142
Theophilou (C8AN01384E-(cit7)/*[position()=1]) 2016; 141
Naumann (C8AN01384E-(cit1)/*[position()=1]) 2009; 2
Mohlenhoff (C8AN01384E-(cit12)/*[position()=1]) 2005; 88
Stuart (C8AN01384E-(cit8)/*[position()=1]) 2000
Gajjar (C8AN01384E-(cit6)/*[position()=1]) 2013; 138
Gerretzen (C8AN01384E-(cit15)/*[position()=1]) 2015; 87
Rinnan (C8AN01384E-(cit14)/*[position()=1]) 2014; 6
Mitchell (C8AN01384E-(cit34)/*[position()=1]) 2014; 7
Butler (C8AN01384E-(cit50)/*[position()=1]) 2016; 11
C8AN01384E-(cit25)/*[position()=1]
Menze (C8AN01384E-(cit38)/*[position()=1]) 2007; 387
Baker (C8AN01384E-(cit17)/*[position()=1]) 2016; 45
Gray (C8AN01384E-(cit33)/*[position()=1]) 2018; 8
Baker (C8AN01384E-(cit3)/*[position()=1]) 2014; 9
Paraskevaidi (C8AN01384E-(cit36)/*[position()=1]) 2017; 114
Wang (C8AN01384E-(cit4)/*[position()=1]) 2008; 391
Bassan (C8AN01384E-(cit31)/*[position()=1]) 2012; 137
Movasaghi (C8AN01384E-(cit9)/*[position()=1]) 2008; 43
Wartewig (C8AN01384E-(cit48)/*[position()=1]) 2006
Hughes (C8AN01384E-(cit49)/*[position()=1]) 2014; 7
Goodacre (C8AN01384E-(cit37)/*[position()=1]) 2016; 187
Ollesch (C8AN01384E-(cit22)/*[position()=1]) 2013; 138
Aruga (C8AN01384E-(cit18)/*[position()=1]) 1998; 47
Devos (C8AN01384E-(cit52)/*[position()=1]) 2014; 148
Baker (C8AN01384E-(cit32)/*[position()=1]) 2018; 143
Alsberg (C8AN01384E-(cit46)/*[position()=1]) 1997; 122
Trevisan (C8AN01384E-(cit5)/*[position()=1]) 2012; 137
Martin (C8AN01384E-(cit24)/*[position()=1]) 2010; 5
Hands (C8AN01384E-(cit42)/*[position()=1]) 2016; 127
Bassan (C8AN01384E-(cit13)/*[position()=1]) 2009; 134
Byrne (C8AN01384E-(cit28)/*[position()=1]) 2016; 45
Scaglia (C8AN01384E-(cit39)/*[position()=1]) 2011; 401
Randolph (C8AN01384E-(cit47)/*[position()=1]) 2006; 2
Preisner (C8AN01384E-(cit29)/*[position()=1]) 2007; 387
Smith (C8AN01384E-(cit43)/*[position()=1]) 2016; 141
Ly (C8AN01384E-(cit30)/*[position()=1]) 2008; 133
Afseth (C8AN01384E-(cit11)/*[position()=1]) 2012; 117
Baker (C8AN01384E-(cit35)/*[position()=1]) 2014; 7
Heraud (C8AN01384E-(cit20)/*[position()=1]) 2006; 20
Lee (C8AN01384E-(cit44)/*[position()=1]) 2017; 163
Singh (C8AN01384E-(cit10)/*[position()=1]) 2012; 102
Lieber (C8AN01384E-(cit51)/*[position()=1]) 2003; 57
Ganganwar (C8AN01384E-(cit53)/*[position()=1]) 2012; 2
Vogt (C8AN01384E-(cit23)/*[position()=1]) 2001; 59
Engel (C8AN01384E-(cit16)/*[position()=1]) 2013; 50
Lasch (C8AN01384E-(cit2)/*[position()=1]) 2012; 117
Ollesch (C8AN01384E-(cit40)/*[position()=1]) 2014; 7
Smith (C8AN01384E-(cit45)/*[position()=1]) 2018; 172
References_xml – volume: 2
  start-page: 42
  issue: 4
  year: 2012
  ident: C8AN01384E-(cit53)/*[position()=1]
  publication-title: Int. J. Emerg. Technol. Adv. Eng.
– volume: 102
  start-page: 232
  issue: 2
  year: 2012
  ident: C8AN01384E-(cit10)/*[position()=1]
  publication-title: Curr. Sci.
– volume-title: IR and Raman spectroscopy: fundamental processing
  year: 2006
  ident: C8AN01384E-(cit48)/*[position()=1]
– volume: 88
  start-page: 3635
  issue: 5
  year: 2005
  ident: C8AN01384E-(cit12)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.057950
– volume: 57
  start-page: 1363
  issue: 11
  year: 2003
  ident: C8AN01384E-(cit51)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370203322554518
– volume: 114
  start-page: E7929
  issue: 38
  year: 2017
  ident: C8AN01384E-(cit36)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1701517114
– volume: 122
  start-page: 645
  issue: 7
  year: 1997
  ident: C8AN01384E-(cit46)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/a608255f
– volume: 117
  start-page: 100
  issue: Supplement C
  year: 2012
  ident: C8AN01384E-(cit2)/*[position()=1]
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2012.03.011
– volume: 138
  start-page: 4092
  issue: 14
  year: 2013
  ident: C8AN01384E-(cit22)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/c3an00337j
– volume-title: Infrared Spectroscopy. in Kirk-Othmer Encyclopedia of Chemical Technology
  year: 2000
  ident: C8AN01384E-(cit8)/*[position()=1]
  doi: 10.1002/0470011149
– volume: 20
  start-page: 193
  issue: 5
  year: 2006
  ident: C8AN01384E-(cit20)/*[position()=1]
  publication-title: J. Chemom.
  doi: 10.1002/cem.990
– volume: 45
  start-page: 1803
  issue: 7
  year: 2016
  ident: C8AN01384E-(cit17)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00585J
– volume: 391
  start-page: 1641
  issue: 5
  year: 2008
  ident: C8AN01384E-(cit4)/*[position()=1]
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-008-1989-9
– volume: 143
  start-page: 1735
  issue: 8
  year: 2018
  ident: C8AN01384E-(cit32)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/C7AN01871A
– volume: 11
  start-page: 664
  issue: 4
  year: 2016
  ident: C8AN01384E-(cit50)/*[position()=1]
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.036
– volume: 2
  start-page: 135
  issue: 3–4
  year: 2006
  ident: C8AN01384E-(cit47)/*[position()=1]
  publication-title: Cancer Biomarkers
  doi: 10.3233/CBM-2006-23-405
– volume: 7
  start-page: 4059
  issue: 10
  year: 2015
  ident: C8AN01384E-(cit21)/*[position()=1]
  publication-title: Anal. Methods
  doi: 10.1039/C5AY00377F
– volume: 45
  start-page: 1865
  issue: 7
  year: 2016
  ident: C8AN01384E-(cit28)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00440C
– volume: 117
  start-page: 92
  year: 2012
  ident: C8AN01384E-(cit11)/*[position()=1]
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2012.03.004
– volume: 134
  start-page: 1586
  issue: 8
  year: 2009
  ident: C8AN01384E-(cit13)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/b904808a
– volume: 7
  start-page: 151
  issue: 3–4
  year: 2014
  ident: C8AN01384E-(cit35)/*[position()=1]
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201400504
– volume: 187
  start-page: 575
  year: 2016
  ident: C8AN01384E-(cit37)/*[position()=1]
  publication-title: Faraday Discuss.
  doi: 10.1039/C6FD90014C
– volume: 59
  start-page: 1
  issue: 1
  year: 2001
  ident: C8AN01384E-(cit23)/*[position()=1]
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(01)00130-7
– volume: 401
  start-page: 2919
  issue: 9
  year: 2011
  ident: C8AN01384E-(cit39)/*[position()=1]
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-011-5402-8
– volume: 9
  start-page: 1771
  year: 2014
  ident: C8AN01384E-(cit3)/*[position()=1]
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.110
– volume: 137
  start-page: 3202
  issue: 14
  year: 2012
  ident: C8AN01384E-(cit5)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/C2AN16300D
– volume: 50
  start-page: 96
  year: 2013
  ident: C8AN01384E-(cit16)/*[position()=1]
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2013.04.015
– volume: 387
  start-page: 1801
  issue: 5
  year: 2007
  ident: C8AN01384E-(cit38)/*[position()=1]
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-006-1070-5
– volume: 138
  start-page: 3917
  issue: 14
  year: 2013
  ident: C8AN01384E-(cit6)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/c3an36654e
– volume: 7
  start-page: 180
  issue: 3
  year: 2014
  ident: C8AN01384E-(cit49)/*[position()=1]
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201300167
– volume: 2
  start-page: 312
  year: 2009
  ident: C8AN01384E-(cit1)/*[position()=1]
  publication-title: Biol. Biomed. Infrared Spectrosc.
– volume: 21
  start-page: 860
  issue: 7
  year: 2005
  ident: C8AN01384E-(cit27)/*[position()=1]
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti102
– volume: 148
  start-page: 124
  year: 2014
  ident: C8AN01384E-(cit52)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2013.10.020
– volume: 28
  start-page: 1201
  issue: 10
  year: 2009
  ident: C8AN01384E-(cit19)/*[position()=1]
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2009.07.007
– volume: 142
  start-page: 1285
  issue: 8
  year: 2017
  ident: C8AN01384E-(cit41)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/C6AN01888B
– volume: 87
  start-page: 12096
  issue: 24
  year: 2015
  ident: C8AN01384E-(cit15)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b02832
– volume: 172
  start-page: 33
  year: 2018
  ident: C8AN01384E-(cit45)/*[position()=1]
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.10.024
– ident: C8AN01384E-(cit25)/*[position()=1]
– volume: 704
  start-page: 47
  issue: 1
  year: 2011
  ident: C8AN01384E-(cit26)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2011.06.043
– volume: 8
  issue: 5
  year: 2018
  ident: C8AN01384E-(cit33)/*[position()=1]
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-017593
– volume: 47
  start-page: 1053
  issue: 4
  year: 1998
  ident: C8AN01384E-(cit18)/*[position()=1]
  publication-title: Talanta
  doi: 10.1016/S0039-9140(98)00126-X
– volume: 141
  start-page: 3668
  issue: 12
  year: 2016
  ident: C8AN01384E-(cit43)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/C5AN02452H
– volume: 133
  start-page: 197
  issue: 2
  year: 2008
  ident: C8AN01384E-(cit30)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/B715924B
– volume: 141
  start-page: 585
  issue: 2
  year: 2016
  ident: C8AN01384E-(cit7)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/C5AN00939A
– volume: 137
  start-page: 1370
  issue: 6
  year: 2012
  ident: C8AN01384E-(cit31)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/c2an16088a
– volume: 7
  start-page: 210
  issue: 3–4
  year: 2014
  ident: C8AN01384E-(cit40)/*[position()=1]
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201300163
– volume: 127
  start-page: 463
  issue: 3
  year: 2016
  ident: C8AN01384E-(cit42)/*[position()=1]
  publication-title: J. Neurooncol.
  doi: 10.1007/s11060-016-2060-x
– volume: 5
  start-page: 1748
  issue: 11
  year: 2010
  ident: C8AN01384E-(cit24)/*[position()=1]
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2010.133
– volume: 6
  start-page: 7124
  issue: 18
  year: 2014
  ident: C8AN01384E-(cit14)/*[position()=1]
  publication-title: Anal. Methods
  doi: 10.1039/C3AY42270D
– volume: 7
  start-page: 153
  issue: 3–4
  year: 2014
  ident: C8AN01384E-(cit34)/*[position()=1]
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201400018
– volume: 163
  start-page: 64
  issue: Supplement C
  year: 2017
  ident: C8AN01384E-(cit44)/*[position()=1]
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.02.008
– volume: 387
  start-page: 1739
  issue: 5
  year: 2007
  ident: C8AN01384E-(cit29)/*[position()=1]
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-006-0851-1
– volume: 43
  start-page: 134
  issue: 2
  year: 2008
  ident: C8AN01384E-(cit9)/*[position()=1]
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704920701829043
SSID ssj0001050
Score 2.478557
Snippet Pre-processing is an essential step in the analysis of spectral data. Mid-IR spectroscopy of biological samples is often subject to instrumental and sample...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 6121
SubjectTerms Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Biological properties
Blood Chemical Analysis - statistics & numerical data
Brain
Brain Neoplasms - blood
Brain Neoplasms - diagnosis
Classification
Datasets as Topic
Diagnostic systems
Female
Fourier transforms
Humans
Infrared spectroscopy
Machine Learning
Male
Middle Aged
Noise reduction
Parameter sensitivity
Permutations
Sensitivity analysis
Sensitivity and Specificity
Spectroscopy, Fourier Transform Infrared - methods
Spectrum analysis
Wavelet
Young Adult
Title Optimised spectral pre-processing for discrimination of biofluids via ATR-FTIR spectroscopy
URI https://www.ncbi.nlm.nih.gov/pubmed/30484797
https://www.proquest.com/docview/2148355155
https://www.proquest.com/docview/2138635478
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZGJ8FeEOO2wpiM4AVNgcR22uSxq1p1CAaqMmkSD5FvEUFbUrUpD_v1HMdxmqJOYrxEVezGkr8vJ-f43BB6TyjzdaTAyBkGsceo0B4PY-JlAfdjFWchJyYb-evFYHbJPl-FVxsPfp1dUomP8nZnXsn_oAr3AFeTJXsPZNuHwg34DfjCFRCG6z9h_A3ed8AJdMY6YdLk2puojoUN_ncxkibx1jbvctqhyMvsep2r1envnJ-Okrk3Tc7nzUNKk6iy5ey1hUuqbveP9vjgzAQU1ajPTNfqjpfJHdmc6eIXh9U3oYnTZV7drmwPqnkpRHuqP-fKRBnkq59N1-TvS5OPDF_Mons6EUR1pIeVWNpKVDpgXhg2GeBO5NrSTA23COtIUFPRbKdo96mpjCojXhjnKtPdSQDL4qYGmYJEYkMb8vtXIW039ADtE7ApSA_tjybJ-Zf2ww2qpu8q2NL402apA_TQ_XlbfbnDJql1k-QJetwYFXhkGXKI9nTxFD0au15-z9CPlinYMQVvMwUDU_A2U3CZ4ZYpGJiCHVNwlynP0eV0koxnXtNWw5M0CCtP-YwzBXqiJFQrIgZDzrJooIMsVESaOF1BlU-FiiOYFHMmhQArQgaSZcaEpi9QrygLfYRwGEqlqMwySWLmcyU0IbCzoJIay1OSPvrgdiuVTc150_rkOq1jH2icjqPRRb3Jkz56185d2EorO2cdu01PmzdxlRKw6UFvBtW4j962w7CrxvnFC12uzRwagXLNhlEfvbRgtcs4cF_dOfIaHWzYfYx61XKt34A2WomThkV_AG_7i_s
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimised+spectral+pre-processing+for+discrimination+of+biofluids+via+ATR-FTIR+spectroscopy&rft.jtitle=Analyst+%28London%29&rft.au=Butler%2C+Holly+J&rft.au=Smith%2C+Benjamin+R&rft.au=Fritzsch%2C+Robby&rft.au=Radhakrishnan%2C+Pretheepan&rft.date=2018-12-03&rft.eissn=1364-5528&rft.volume=143&rft.issue=24&rft.spage=6121&rft_id=info:doi/10.1039%2Fc8an01384e&rft_id=info%3Apmid%2F30484797&rft.externalDocID=30484797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon