Stabilizing a zinc anode via a tunable covalent organic framework-based solid electrolyte interphase
Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads to Zn corrosion and hydrogen evolution, along with the formation of dendrites on the Zn surface during repeated charge–discharge (CD) cycles....
Saved in:
Published in | Nanoscale Vol. 15; no. 20; pp. 9003 - 9013 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
25.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads to Zn corrosion and hydrogen evolution, along with the formation of dendrites on the Zn surface during repeated charge–discharge (CD) cycles. To protect the Zn anode and limit parasitic side reactions, an artificial solid electrolyte interphase (ASEI) protective layer is an effective strategy. Herein, an ASEI made of a covalent organic framework (COFs: HqTp and BpTp) was fabricated on the surface of a Zn anode
via
Schiff base reactions of aldehyde and amine linkers. It is seen that COFs can regulate the Zn-ion flux, resulting in dendritic-free Zn. COFs can also mitigate the formation of an irreversible passive layer and the hydrogen evolution reaction (HER). Zn plating/stripping tests using a symmetrical cell suggest that HqTpCOF@Zn shows superior stability and greater coulombic efficiency (CE) compared to bare Zn. The full cell having COFs@Zn also displays much improved cyclability. As a result, the COF proves to be a promising ASEI material to enhance the stability of the Zn anode in aqueous media. |
---|---|
AbstractList | Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads to Zn corrosion and hydrogen evolution, along with the formation of dendrites on the Zn surface during repeated charge-discharge (CD) cycles. To protect the Zn anode and limit parasitic side reactions, an artificial solid electrolyte interphase (ASEI) protective layer is an effective strategy. Herein, an ASEI made of a covalent organic framework (COFs: HqTp and BpTp) was fabricated on the surface of a Zn anode via Schiff base reactions of aldehyde and amine linkers. It is seen that COFs can regulate the Zn-ion flux, resulting in dendritic-free Zn. COFs can also mitigate the formation of an irreversible passive layer and the hydrogen evolution reaction (HER). Zn plating/stripping tests using a symmetrical cell suggest that HqTpCOF@Zn shows superior stability and greater coulombic efficiency (CE) compared to bare Zn. The full cell having COFs@Zn also displays much improved cyclability. As a result, the COF proves to be a promising ASEI material to enhance the stability of the Zn anode in aqueous media.Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads to Zn corrosion and hydrogen evolution, along with the formation of dendrites on the Zn surface during repeated charge-discharge (CD) cycles. To protect the Zn anode and limit parasitic side reactions, an artificial solid electrolyte interphase (ASEI) protective layer is an effective strategy. Herein, an ASEI made of a covalent organic framework (COFs: HqTp and BpTp) was fabricated on the surface of a Zn anode via Schiff base reactions of aldehyde and amine linkers. It is seen that COFs can regulate the Zn-ion flux, resulting in dendritic-free Zn. COFs can also mitigate the formation of an irreversible passive layer and the hydrogen evolution reaction (HER). Zn plating/stripping tests using a symmetrical cell suggest that HqTpCOF@Zn shows superior stability and greater coulombic efficiency (CE) compared to bare Zn. The full cell having COFs@Zn also displays much improved cyclability. As a result, the COF proves to be a promising ASEI material to enhance the stability of the Zn anode in aqueous media. Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads to Zn corrosion and hydrogen evolution, along with the formation of dendrites on the Zn surface during repeated charge–discharge (CD) cycles. To protect the Zn anode and limit parasitic side reactions, an artificial solid electrolyte interphase (ASEI) protective layer is an effective strategy. Herein, an ASEI made of a covalent organic framework (COFs: HqTp and BpTp) was fabricated on the surface of a Zn anode via Schiff base reactions of aldehyde and amine linkers. It is seen that COFs can regulate the Zn-ion flux, resulting in dendritic-free Zn. COFs can also mitigate the formation of an irreversible passive layer and the hydrogen evolution reaction (HER). Zn plating/stripping tests using a symmetrical cell suggest that HqTpCOF@Zn shows superior stability and greater coulombic efficiency (CE) compared to bare Zn. The full cell having COFs@Zn also displays much improved cyclability. As a result, the COF proves to be a promising ASEI material to enhance the stability of the Zn anode in aqueous media. Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads to Zn corrosion and hydrogen evolution, along with the formation of dendrites on the Zn surface during repeated charge–discharge (CD) cycles. To protect the Zn anode and limit parasitic side reactions, an artificial solid electrolyte interphase (ASEI) protective layer is an effective strategy. Herein, an ASEI made of a covalent organic framework (COFs: HqTp and BpTp) was fabricated on the surface of a Zn anode via Schiff base reactions of aldehyde and amine linkers. It is seen that COFs can regulate the Zn-ion flux, resulting in dendritic-free Zn. COFs can also mitigate the formation of an irreversible passive layer and the hydrogen evolution reaction (HER). Zn plating/stripping tests using a symmetrical cell suggest that HqTpCOF@Zn shows superior stability and greater coulombic efficiency (CE) compared to bare Zn. The full cell having COFs@Zn also displays much improved cyclability. As a result, the COF proves to be a promising ASEI material to enhance the stability of the Zn anode in aqueous media. Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads to Zn corrosion and hydrogen evolution, along with the formation of dendrites on the Zn surface during repeated charge-discharge (CD) cycles. To protect the Zn anode and limit parasitic side reactions, an artificial solid electrolyte interphase (ASEI) protective layer is an effective strategy. Herein, an ASEI made of a covalent organic framework (COFs: HqTp and BpTp) was fabricated on the surface of a Zn anode Schiff base reactions of aldehyde and amine linkers. It is seen that COFs can regulate the Zn-ion flux, resulting in dendritic-free Zn. COFs can also mitigate the formation of an irreversible passive layer and the hydrogen evolution reaction (HER). Zn plating/stripping tests using a symmetrical cell suggest that HqTpCOF@Zn shows superior stability and greater coulombic efficiency (CE) compared to bare Zn. The full cell having COFs@Zn also displays much improved cyclability. As a result, the COF proves to be a promising ASEI material to enhance the stability of the Zn anode in aqueous media. |
Author | Aupama, Vipada Pattananuwat, Prasit Mohan, Gopalakrishnan Liu, Wei-Ren Sangsawang, Jinnawat Mohamad, Ahmad Azmin Sriprachuabwong, Chakrit Kao-ian, Wathanyu Kheawhom, Soorathep Wannapaiboon, Suttipong |
Author_xml | – sequence: 1 givenname: Vipada orcidid: 0009-0004-1103-4182 surname: Aupama fullname: Aupama, Vipada organization: Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand – sequence: 2 givenname: Wathanyu orcidid: 0000-0001-8261-5989 surname: Kao-ian fullname: Kao-ian, Wathanyu organization: Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand – sequence: 3 givenname: Jinnawat orcidid: 0009-0002-1386-9197 surname: Sangsawang fullname: Sangsawang, Jinnawat organization: Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand – sequence: 4 givenname: Gopalakrishnan orcidid: 0000-0003-4537-7170 surname: Mohan fullname: Mohan, Gopalakrishnan organization: Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand – sequence: 5 givenname: Suttipong orcidid: 0000-0002-6765-9809 surname: Wannapaiboon fullname: Wannapaiboon, Suttipong organization: Synchrotron Light Research Institute, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand – sequence: 6 givenname: Ahmad Azmin orcidid: 0000-0001-5525-7100 surname: Mohamad fullname: Mohamad, Ahmad Azmin organization: School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia – sequence: 7 givenname: Prasit orcidid: 0000-0002-3728-046X surname: Pattananuwat fullname: Pattananuwat, Prasit organization: Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, Center of Excellence on Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok 10330, Thailand – sequence: 8 givenname: Chakrit orcidid: 0000-0002-2925-9898 surname: Sriprachuabwong fullname: Sriprachuabwong, Chakrit organization: National Science and Technology Development Agency, Pathum Thani 12120, Thailand – sequence: 9 givenname: Wei-Ren orcidid: 0000-0003-0468-895X surname: Liu fullname: Liu, Wei-Ren organization: Department of Chemical Engineering, Research Center for Circular Economy, Chung Yuan Christian University, Chung Li, Taiwan, Republic of China – sequence: 10 givenname: Soorathep orcidid: 0000-0002-3129-2750 surname: Kheawhom fullname: Kheawhom, Soorathep organization: Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand, Center of Excellence on Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok 10330, Thailand, Bio-Circular-Green-Economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37128979$$D View this record in MEDLINE/PubMed |
BookMark | eNptkV1rFDEUhoNU3G71xh8gAW-kMJpMdjLJpay2FYqCH9fDmcxJzZpN1iRTWX-9WbZVKF6dr-d9OZyzJCchBiTkOWevORP6zTvx8TNjSqv1I3LashVrhOjbk7-5XC3IMucNY1ILKZ6Qheh5q3SvT8n0pcDovPvtwg0FWoOhEOKE9NZBbZQ5wOiRmngLHkOhMd1AcIbaBFv8FdOPZoSME83Ru4miR1NS9PuC1IWCafe9Tp-SxxZ8xmd38Yx8u3j_dX3VXH-6_LB-e90YwbvSGNmpjjOcatnqTop-YsIKZcBKrrsRayGZFQCjsgKnvkUtQa8sN9aOKyPOyKuj7y7FnzPmMmxdNug9BIxzHlrFVKd5x7qKvnyAbuKcQt2uUlxJrbg8UC_uqHnc4jTskttC2g_396sAOwImxZwT2sG4AsXFUBI4P3A2HF40_HtRlZw_kNy7_gf-A_-MkTQ |
CitedBy_id | crossref_primary_10_1039_D5TA00860C crossref_primary_10_1016_j_cej_2024_149624 crossref_primary_10_1039_D4CC03597F crossref_primary_10_1016_j_diamond_2024_111292 crossref_primary_10_1016_j_est_2024_111822 crossref_primary_10_1002_adfm_202417189 crossref_primary_10_1021_acsenergylett_4c00967 crossref_primary_10_1002_ange_202409322 crossref_primary_10_1002_sus2_184 crossref_primary_10_1007_s12209_023_00373_y crossref_primary_10_1021_acsenergylett_4c00628 crossref_primary_10_1002_cssc_202300632 crossref_primary_10_1002_cssc_202301942 crossref_primary_10_1002_smll_202408138 crossref_primary_10_1002_ange_202424184 crossref_primary_10_1039_D3TA07497H crossref_primary_10_1002_advs_202308087 crossref_primary_10_1016_j_corsci_2023_111544 crossref_primary_10_1039_D4CS00343H crossref_primary_10_1016_j_electacta_2024_145059 crossref_primary_10_1021_acs_nanolett_4c05278 crossref_primary_10_1016_j_ccr_2024_215910 crossref_primary_10_1002_adma_202309726 crossref_primary_10_1002_smtd_202300965 crossref_primary_10_1016_j_isci_2025_111751 crossref_primary_10_1002_smll_202403724 crossref_primary_10_1016_j_cej_2024_149813 crossref_primary_10_1039_D3QI01222K crossref_primary_10_1002_adfm_202420446 crossref_primary_10_1002_anie_202409322 crossref_primary_10_1002_chem_202302502 crossref_primary_10_1016_j_elecom_2025_107882 crossref_primary_10_1039_D4SU00343H crossref_primary_10_1002_adma_202313152 crossref_primary_10_1016_j_colsurfa_2024_135272 crossref_primary_10_1016_j_est_2024_113139 crossref_primary_10_1016_j_cclet_2023_108865 crossref_primary_10_1002_anie_202424184 crossref_primary_10_1016_j_cej_2025_161327 crossref_primary_10_1016_j_materresbull_2025_113443 crossref_primary_10_1021_acsenergylett_4c02235 crossref_primary_10_1016_j_cej_2024_153865 crossref_primary_10_1002_adma_202403214 crossref_primary_10_1016_j_jallcom_2025_178521 crossref_primary_10_1016_j_jechem_2024_11_019 |
Cites_doi | 10.1016/j.ijleo.2022.168594 10.1021/jacs.9b03467 10.1021/acsenergylett.8b01552 10.1016/j.cej.2023.141334 10.1002/anie.202008634 10.1039/C8EE00378E 10.1016/j.ensm.2020.06.005 10.1016/S1872-5805(21)60001-X 10.1016/j.porgcoat.2014.10.013 10.1016/j.enchem.2022.100076 10.1039/D0CC04324A 10.1021/acssuschemeng.8b05568 10.1002/advs.202205874 10.1016/j.ensm.2022.02.054 10.1007/s40820-021-00782-5 10.1039/D0TA02486D 10.1002/cssc.201901409 10.1021/jacs.9b00543 10.1002/batt.202100361 10.1016/j.cej.2022.136480 10.1021/jp202967d 10.1016/j.cej.2021.132331 10.1002/chem.200390024 10.1038/s41467-021-26947-9 10.1002/adma.202101726 10.20964/2017.04.47 10.1016/j.cej.2022.137796 10.1016/j.electacta.2022.141365 10.1016/j.apmate.2021.09.007 10.1039/C5TA05507E 10.1016/j.nanoen.2020.104523 10.1021/acsenergylett.8b01426 10.1021/jacs.7b02648 10.1016/j.mtener.2021.100738 10.1002/anie.202200598 10.1016/j.ensm.2021.10.020 10.1039/D2SC04945G 10.1021/ja308278w 10.1126/science.1120411 10.1016/j.cej.2021.132839 10.1039/C9SC03052B |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/D3NR00898C |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 9013 |
ExternalDocumentID | 37128979 10_1039_D3NR00898C |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION DU5 EBS ECGLT EE0 EF- F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RSCEA RVUXY NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c315t-c658510edc31295637d03f38caf6195be3f360f3aab8f3ed72e96a94f1cffb4c3 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 07:16:15 EDT 2025 Mon Jun 30 03:54:00 EDT 2025 Thu Apr 03 07:08:41 EDT 2025 Tue Jul 01 00:42:07 EDT 2025 Thu Apr 24 22:59:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c315t-c658510edc31295637d03f38caf6195be3f360f3aab8f3ed72e96a94f1cffb4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3728-046X 0000-0002-6765-9809 0000-0003-4537-7170 0000-0002-2925-9898 0009-0004-1103-4182 0000-0001-5525-7100 0000-0002-3129-2750 0000-0001-8261-5989 0009-0002-1386-9197 0000-0003-0468-895X |
PMID | 37128979 |
PQID | 2818698165 |
PQPubID | 2047485 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2808591505 proquest_journals_2818698165 pubmed_primary_37128979 crossref_citationtrail_10_1039_D3NR00898C crossref_primary_10_1039_D3NR00898C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-25 |
PublicationDateYYYYMMDD | 2023-05-25 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wang (D3NR00898C/cit23/1) 2017; 139 Okumura (D3NR00898C/cit34/1) 2011; 115 Yang (D3NR00898C/cit3/1) 2022; 14 Li (D3NR00898C/cit8/1) 2022; 44 Zhao (D3NR00898C/cit15/1) 2022; 48 Park (D3NR00898C/cit19/1) 2021; 33 Liu (D3NR00898C/cit31/1) 2015; 3 Wang (D3NR00898C/cit30/1) 2003; 9 Abbasi (D3NR00898C/cit28/1) 2022; 435 Min (D3NR00898C/cit26/1) 2022; 443 Kandambeth (D3NR00898C/cit29/1) 2012; 134 Konarov (D3NR00898C/cit2/1) 2018; 3 Li (D3NR00898C/cit33/1) 2020; 31 Yuan (D3NR00898C/cit12/1) 2019; 12 Xiong (D3NR00898C/cit41/1) 2022; 4 Kao-ian (D3NR00898C/cit6/1) 2022; 5 Zhang (D3NR00898C/cit10/1) 2022; 13 Ruan (D3NR00898C/cit4/1) 2022; 61 Liu (D3NR00898C/cit32/1) 2022; 253 Jeong (D3NR00898C/cit24/1) 2019; 141 Zhao (D3NR00898C/cit35/1) 2021; 12 Kundu (D3NR00898C/cit37/1) 2018; 11 Côté (D3NR00898C/cit21/1) 2005; 310 Gu (D3NR00898C/cit22/1) 2019; 141 Song (D3NR00898C/cit16/1) 2022; 429 Kao-ian (D3NR00898C/cit9/1) 2021; 21 Kang (D3NR00898C/cit11/1) 2019; 7 Gopalakrishnan (D3NR00898C/cit17/1) 2023; 457 Cao (D3NR00898C/cit13/1) 2020; 8 Mu (D3NR00898C/cit7/1) 2022; 430 Khayum (D3NR00898C/cit25/1) 2019; 10 Grgur (D3NR00898C/cit39/1) 2015; 79 Zhou (D3NR00898C/cit36/1) 2023; 10 Sheng (D3NR00898C/cit27/1) 2020; 56 Khezri (D3NR00898C/cit5/1) 2022; 449 Zeng (D3NR00898C/cit20/1) 2021; 36 Cao (D3NR00898C/cit38/1) 2022; 1 Fang (D3NR00898C/cit1/1) 2018; 3 Jia (D3NR00898C/cit14/1) 2020; 70 Chen (D3NR00898C/cit40/1) 2017; 12 Cao (D3NR00898C/cit18/1) 2020; 59 |
References_xml | – volume: 253 start-page: 168594 year: 2022 ident: D3NR00898C/cit32/1 publication-title: Optik doi: 10.1016/j.ijleo.2022.168594 – volume: 141 start-page: 9623 year: 2019 ident: D3NR00898C/cit22/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03467 – volume: 3 start-page: 2620 year: 2018 ident: D3NR00898C/cit2/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01552 – volume: 457 start-page: 141334 year: 2023 ident: D3NR00898C/cit17/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.141334 – volume: 59 start-page: 19292 year: 2020 ident: D3NR00898C/cit18/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202008634 – volume: 11 start-page: 881 year: 2018 ident: D3NR00898C/cit37/1 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00378E – volume: 31 start-page: 115 year: 2020 ident: D3NR00898C/cit33/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.06.005 – volume: 36 start-page: 1 year: 2021 ident: D3NR00898C/cit20/1 publication-title: New Carbon Mater. doi: 10.1016/S1872-5805(21)60001-X – volume: 79 start-page: 17 year: 2015 ident: D3NR00898C/cit39/1 publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2014.10.013 – volume: 4 start-page: 100076 year: 2022 ident: D3NR00898C/cit41/1 publication-title: EnergyChem doi: 10.1016/j.enchem.2022.100076 – volume: 56 start-page: 10465 year: 2020 ident: D3NR00898C/cit27/1 publication-title: Chem. Commun. doi: 10.1039/D0CC04324A – volume: 7 start-page: 3364 year: 2019 ident: D3NR00898C/cit11/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b05568 – volume: 10 start-page: 2205874 year: 2023 ident: D3NR00898C/cit36/1 publication-title: Adv. Sci. doi: 10.1002/advs.202205874 – volume: 48 start-page: 82 year: 2022 ident: D3NR00898C/cit15/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.02.054 – volume: 14 start-page: 42 year: 2022 ident: D3NR00898C/cit3/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00782-5 – volume: 8 start-page: 9331 year: 2020 ident: D3NR00898C/cit13/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02486D – volume: 12 start-page: 4889 year: 2019 ident: D3NR00898C/cit12/1 publication-title: ChemSusChem doi: 10.1002/cssc.201901409 – volume: 141 start-page: 5880 year: 2019 ident: D3NR00898C/cit24/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b00543 – volume: 5 start-page: e202100361 year: 2022 ident: D3NR00898C/cit6/1 publication-title: Batteries Supercaps doi: 10.1002/batt.202100361 – volume: 443 start-page: 136480 year: 2022 ident: D3NR00898C/cit26/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136480 – volume: 115 start-page: 12990 year: 2011 ident: D3NR00898C/cit34/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp202967d – volume: 429 start-page: 132331 year: 2022 ident: D3NR00898C/cit16/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132331 – volume: 9 start-page: 300 year: 2003 ident: D3NR00898C/cit30/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.200390024 – volume: 12 start-page: 6606 year: 2021 ident: D3NR00898C/cit35/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26947-9 – volume: 33 start-page: 2101726 year: 2021 ident: D3NR00898C/cit19/1 publication-title: Adv. Mater. doi: 10.1002/adma.202101726 – volume: 12 start-page: 3417 year: 2017 ident: D3NR00898C/cit40/1 publication-title: Int. J. Electrochem. Sci. doi: 10.20964/2017.04.47 – volume: 449 start-page: 137796 year: 2022 ident: D3NR00898C/cit5/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137796 – volume: 435 start-page: 141365 year: 2022 ident: D3NR00898C/cit28/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.141365 – volume: 1 start-page: 100007 year: 2022 ident: D3NR00898C/cit38/1 publication-title: Adv. Powder Mater. doi: 10.1016/j.apmate.2021.09.007 – volume: 3 start-page: 19000 year: 2015 ident: D3NR00898C/cit31/1 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA05507E – volume: 70 start-page: 104523 year: 2020 ident: D3NR00898C/cit14/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104523 – volume: 3 start-page: 2480 year: 2018 ident: D3NR00898C/cit1/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01426 – volume: 139 start-page: 4258 year: 2017 ident: D3NR00898C/cit23/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02648 – volume: 21 start-page: 100738 year: 2021 ident: D3NR00898C/cit9/1 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2021.100738 – volume: 61 start-page: e202200598 year: 2022 ident: D3NR00898C/cit4/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202200598 – volume: 44 start-page: 104 year: 2022 ident: D3NR00898C/cit8/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.10.020 – volume: 13 start-page: 14246 year: 2022 ident: D3NR00898C/cit10/1 publication-title: Chem. Sci. doi: 10.1039/D2SC04945G – volume: 134 start-page: 19524 year: 2012 ident: D3NR00898C/cit29/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308278w – volume: 310 start-page: 1166 year: 2005 ident: D3NR00898C/cit21/1 publication-title: Science doi: 10.1126/science.1120411 – volume: 430 start-page: 132839 year: 2022 ident: D3NR00898C/cit7/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132839 – volume: 10 start-page: 8889 year: 2019 ident: D3NR00898C/cit25/1 publication-title: Chem. Sci. doi: 10.1039/C9SC03052B |
SSID | ssj0069363 |
Score | 2.5840013 |
Snippet | Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 9003 |
SubjectTerms | Aldehydes Anodic protection Aqueous solutions Electrolytes Hydrogen evolution reactions Imines Ion flux Rechargeable batteries Solid electrolytes Stability Zinc |
Title | Stabilizing a zinc anode via a tunable covalent organic framework-based solid electrolyte interphase |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37128979 https://www.proquest.com/docview/2818698165 https://www.proquest.com/docview/2808591505 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4ED4pvCQEZwQVFGYidOfBwDNm1iB7Sx3SLHsVlFSSqagLb_gf-ZZ8f52CjS4JLWrt20eT-_L7_3jNArCiIkSgPhgzgp_Ihq6nOdJD5oJiwMcybj3EZbHLK942j_ND6dTH6NopaaOt-SF2vzSv6HqtAHdDVZsv9A2f5LoQPeA33hChSG67VoDJqiiW29sImGHryY2qtVobwfJtXKq5s2MUpWcFO7528TL6Wnu4gs3wgx4zhfzAvPnYizOK-VrSIBFOi2bpz2Cqy4WgFRB5g0S_HNqp-f50sxGPcHovLnrWv1xDrnz5velSPKLyvx07mp9-dlCY0-9uZjddZO2wVjfiG-Ags6Kx2AnW-C2EjANo-5ZWHExCtS2tYp31LjvuQyD45HWCPBiKMaT-tIOoP6Qtdy_oCawqnv6OEn0Gp4ujPIt25P_4rY64MR7TY85dkw9wbaIGB1kCna2D54u3vSiXbGqT2ar_9bXb1byt8Msy9rOH8xW6z6cnQH3XZ2B95uQXQXTVR5D90aVaO8j4oRnLDABk7YwgkDnKDDwQl3cMIOTvgKnLCFEx7BCQ9weoCOP7w_2tnz3SEcvqRhXPuSmY3jQBXQJGBM06QIYEWnUmiwveNcQYMFmgqRp5qqIiGKM8EjHUqt80jSh2haVqV6jHAcKZUznXBijPA0T3NFCpgqC6K1FnSGXncPLpOuQr05KGWR_UmiGXrZj122dVnWjtrsnn_m1u0qM_XPGE9DFs_Qi_5j4Kpmq0yUqmrMGFP4D4wlGPOopVt_G5qATscT_uRaP-EpujmsjE00rb836hnosXX-3KHrN8reoCo |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stabilizing+a+zinc+anode+via+a+tunable+covalent+organic+framework-based+solid+electrolyte+interphase&rft.jtitle=Nanoscale&rft.au=Aupama%2C+Vipada&rft.au=Kao-ian%2C+Wathanyu&rft.au=Sangsawang%2C+Jinnawat&rft.au=Mohan%2C+Gopalakrishnan&rft.date=2023-05-25&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=15&rft.issue=20&rft.spage=9003&rft.epage=9013&rft_id=info:doi/10.1039%2FD3NR00898C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3NR00898C |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |