Stabilizing a zinc anode via a tunable covalent organic framework-based solid electrolyte interphase

Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads to Zn corrosion and hydrogen evolution, along with the formation of dendrites on the Zn surface during repeated charge–discharge (CD) cycles....

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 15; no. 20; pp. 9003 - 9013
Main Authors Aupama, Vipada, Kao-ian, Wathanyu, Sangsawang, Jinnawat, Mohan, Gopalakrishnan, Wannapaiboon, Suttipong, Mohamad, Ahmad Azmin, Pattananuwat, Prasit, Sriprachuabwong, Chakrit, Liu, Wei-Ren, Kheawhom, Soorathep
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 25.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads to Zn corrosion and hydrogen evolution, along with the formation of dendrites on the Zn surface during repeated charge–discharge (CD) cycles. To protect the Zn anode and limit parasitic side reactions, an artificial solid electrolyte interphase (ASEI) protective layer is an effective strategy. Herein, an ASEI made of a covalent organic framework (COFs: HqTp and BpTp) was fabricated on the surface of a Zn anode via Schiff base reactions of aldehyde and amine linkers. It is seen that COFs can regulate the Zn-ion flux, resulting in dendritic-free Zn. COFs can also mitigate the formation of an irreversible passive layer and the hydrogen evolution reaction (HER). Zn plating/stripping tests using a symmetrical cell suggest that HqTpCOF@Zn shows superior stability and greater coulombic efficiency (CE) compared to bare Zn. The full cell having COFs@Zn also displays much improved cyclability. As a result, the COF proves to be a promising ASEI material to enhance the stability of the Zn anode in aqueous media.
AbstractList Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads to Zn corrosion and hydrogen evolution, along with the formation of dendrites on the Zn surface during repeated charge-discharge (CD) cycles. To protect the Zn anode and limit parasitic side reactions, an artificial solid electrolyte interphase (ASEI) protective layer is an effective strategy. Herein, an ASEI made of a covalent organic framework (COFs: HqTp and BpTp) was fabricated on the surface of a Zn anode via Schiff base reactions of aldehyde and amine linkers. It is seen that COFs can regulate the Zn-ion flux, resulting in dendritic-free Zn. COFs can also mitigate the formation of an irreversible passive layer and the hydrogen evolution reaction (HER). Zn plating/stripping tests using a symmetrical cell suggest that HqTpCOF@Zn shows superior stability and greater coulombic efficiency (CE) compared to bare Zn. The full cell having COFs@Zn also displays much improved cyclability. As a result, the COF proves to be a promising ASEI material to enhance the stability of the Zn anode in aqueous media.Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads to Zn corrosion and hydrogen evolution, along with the formation of dendrites on the Zn surface during repeated charge-discharge (CD) cycles. To protect the Zn anode and limit parasitic side reactions, an artificial solid electrolyte interphase (ASEI) protective layer is an effective strategy. Herein, an ASEI made of a covalent organic framework (COFs: HqTp and BpTp) was fabricated on the surface of a Zn anode via Schiff base reactions of aldehyde and amine linkers. It is seen that COFs can regulate the Zn-ion flux, resulting in dendritic-free Zn. COFs can also mitigate the formation of an irreversible passive layer and the hydrogen evolution reaction (HER). Zn plating/stripping tests using a symmetrical cell suggest that HqTpCOF@Zn shows superior stability and greater coulombic efficiency (CE) compared to bare Zn. The full cell having COFs@Zn also displays much improved cyclability. As a result, the COF proves to be a promising ASEI material to enhance the stability of the Zn anode in aqueous media.
Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads to Zn corrosion and hydrogen evolution, along with the formation of dendrites on the Zn surface during repeated charge–discharge (CD) cycles. To protect the Zn anode and limit parasitic side reactions, an artificial solid electrolyte interphase (ASEI) protective layer is an effective strategy. Herein, an ASEI made of a covalent organic framework (COFs: HqTp and BpTp) was fabricated on the surface of a Zn anode via Schiff base reactions of aldehyde and amine linkers. It is seen that COFs can regulate the Zn-ion flux, resulting in dendritic-free Zn. COFs can also mitigate the formation of an irreversible passive layer and the hydrogen evolution reaction (HER). Zn plating/stripping tests using a symmetrical cell suggest that HqTpCOF@Zn shows superior stability and greater coulombic efficiency (CE) compared to bare Zn. The full cell having COFs@Zn also displays much improved cyclability. As a result, the COF proves to be a promising ASEI material to enhance the stability of the Zn anode in aqueous media.
Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads to Zn corrosion and hydrogen evolution, along with the formation of dendrites on the Zn surface during repeated charge–discharge (CD) cycles. To protect the Zn anode and limit parasitic side reactions, an artificial solid electrolyte interphase (ASEI) protective layer is an effective strategy. Herein, an ASEI made of a covalent organic framework (COFs: HqTp and BpTp) was fabricated on the surface of a Zn anode via Schiff base reactions of aldehyde and amine linkers. It is seen that COFs can regulate the Zn-ion flux, resulting in dendritic-free Zn. COFs can also mitigate the formation of an irreversible passive layer and the hydrogen evolution reaction (HER). Zn plating/stripping tests using a symmetrical cell suggest that HqTpCOF@Zn shows superior stability and greater coulombic efficiency (CE) compared to bare Zn. The full cell having COFs@Zn also displays much improved cyclability. As a result, the COF proves to be a promising ASEI material to enhance the stability of the Zn anode in aqueous media.
Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads to Zn corrosion and hydrogen evolution, along with the formation of dendrites on the Zn surface during repeated charge-discharge (CD) cycles. To protect the Zn anode and limit parasitic side reactions, an artificial solid electrolyte interphase (ASEI) protective layer is an effective strategy. Herein, an ASEI made of a covalent organic framework (COFs: HqTp and BpTp) was fabricated on the surface of a Zn anode Schiff base reactions of aldehyde and amine linkers. It is seen that COFs can regulate the Zn-ion flux, resulting in dendritic-free Zn. COFs can also mitigate the formation of an irreversible passive layer and the hydrogen evolution reaction (HER). Zn plating/stripping tests using a symmetrical cell suggest that HqTpCOF@Zn shows superior stability and greater coulombic efficiency (CE) compared to bare Zn. The full cell having COFs@Zn also displays much improved cyclability. As a result, the COF proves to be a promising ASEI material to enhance the stability of the Zn anode in aqueous media.
Author Aupama, Vipada
Pattananuwat, Prasit
Mohan, Gopalakrishnan
Liu, Wei-Ren
Sangsawang, Jinnawat
Mohamad, Ahmad Azmin
Sriprachuabwong, Chakrit
Kao-ian, Wathanyu
Kheawhom, Soorathep
Wannapaiboon, Suttipong
Author_xml – sequence: 1
  givenname: Vipada
  orcidid: 0009-0004-1103-4182
  surname: Aupama
  fullname: Aupama, Vipada
  organization: Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
– sequence: 2
  givenname: Wathanyu
  orcidid: 0000-0001-8261-5989
  surname: Kao-ian
  fullname: Kao-ian, Wathanyu
  organization: Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
– sequence: 3
  givenname: Jinnawat
  orcidid: 0009-0002-1386-9197
  surname: Sangsawang
  fullname: Sangsawang, Jinnawat
  organization: Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
– sequence: 4
  givenname: Gopalakrishnan
  orcidid: 0000-0003-4537-7170
  surname: Mohan
  fullname: Mohan, Gopalakrishnan
  organization: Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
– sequence: 5
  givenname: Suttipong
  orcidid: 0000-0002-6765-9809
  surname: Wannapaiboon
  fullname: Wannapaiboon, Suttipong
  organization: Synchrotron Light Research Institute, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
– sequence: 6
  givenname: Ahmad Azmin
  orcidid: 0000-0001-5525-7100
  surname: Mohamad
  fullname: Mohamad, Ahmad Azmin
  organization: School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia
– sequence: 7
  givenname: Prasit
  orcidid: 0000-0002-3728-046X
  surname: Pattananuwat
  fullname: Pattananuwat, Prasit
  organization: Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, Center of Excellence on Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok 10330, Thailand
– sequence: 8
  givenname: Chakrit
  orcidid: 0000-0002-2925-9898
  surname: Sriprachuabwong
  fullname: Sriprachuabwong, Chakrit
  organization: National Science and Technology Development Agency, Pathum Thani 12120, Thailand
– sequence: 9
  givenname: Wei-Ren
  orcidid: 0000-0003-0468-895X
  surname: Liu
  fullname: Liu, Wei-Ren
  organization: Department of Chemical Engineering, Research Center for Circular Economy, Chung Yuan Christian University, Chung Li, Taiwan, Republic of China
– sequence: 10
  givenname: Soorathep
  orcidid: 0000-0002-3129-2750
  surname: Kheawhom
  fullname: Kheawhom, Soorathep
  organization: Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand, Center of Excellence on Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok 10330, Thailand, Bio-Circular-Green-Economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37128979$$D View this record in MEDLINE/PubMed
BookMark eNptkV1rFDEUhoNU3G71xh8gAW-kMJpMdjLJpay2FYqCH9fDmcxJzZpN1iRTWX-9WbZVKF6dr-d9OZyzJCchBiTkOWevORP6zTvx8TNjSqv1I3LashVrhOjbk7-5XC3IMucNY1ILKZ6Qheh5q3SvT8n0pcDovPvtwg0FWoOhEOKE9NZBbZQ5wOiRmngLHkOhMd1AcIbaBFv8FdOPZoSME83Ru4miR1NS9PuC1IWCafe9Tp-SxxZ8xmd38Yx8u3j_dX3VXH-6_LB-e90YwbvSGNmpjjOcatnqTop-YsIKZcBKrrsRayGZFQCjsgKnvkUtQa8sN9aOKyPOyKuj7y7FnzPmMmxdNug9BIxzHlrFVKd5x7qKvnyAbuKcQt2uUlxJrbg8UC_uqHnc4jTskttC2g_396sAOwImxZwT2sG4AsXFUBI4P3A2HF40_HtRlZw_kNy7_gf-A_-MkTQ
CitedBy_id crossref_primary_10_1039_D5TA00860C
crossref_primary_10_1016_j_cej_2024_149624
crossref_primary_10_1039_D4CC03597F
crossref_primary_10_1016_j_diamond_2024_111292
crossref_primary_10_1016_j_est_2024_111822
crossref_primary_10_1002_adfm_202417189
crossref_primary_10_1021_acsenergylett_4c00967
crossref_primary_10_1002_ange_202409322
crossref_primary_10_1002_sus2_184
crossref_primary_10_1007_s12209_023_00373_y
crossref_primary_10_1021_acsenergylett_4c00628
crossref_primary_10_1002_cssc_202300632
crossref_primary_10_1002_cssc_202301942
crossref_primary_10_1002_smll_202408138
crossref_primary_10_1002_ange_202424184
crossref_primary_10_1039_D3TA07497H
crossref_primary_10_1002_advs_202308087
crossref_primary_10_1016_j_corsci_2023_111544
crossref_primary_10_1039_D4CS00343H
crossref_primary_10_1016_j_electacta_2024_145059
crossref_primary_10_1021_acs_nanolett_4c05278
crossref_primary_10_1016_j_ccr_2024_215910
crossref_primary_10_1002_adma_202309726
crossref_primary_10_1002_smtd_202300965
crossref_primary_10_1016_j_isci_2025_111751
crossref_primary_10_1002_smll_202403724
crossref_primary_10_1016_j_cej_2024_149813
crossref_primary_10_1039_D3QI01222K
crossref_primary_10_1002_adfm_202420446
crossref_primary_10_1002_anie_202409322
crossref_primary_10_1002_chem_202302502
crossref_primary_10_1016_j_elecom_2025_107882
crossref_primary_10_1039_D4SU00343H
crossref_primary_10_1002_adma_202313152
crossref_primary_10_1016_j_colsurfa_2024_135272
crossref_primary_10_1016_j_est_2024_113139
crossref_primary_10_1016_j_cclet_2023_108865
crossref_primary_10_1002_anie_202424184
crossref_primary_10_1016_j_cej_2025_161327
crossref_primary_10_1016_j_materresbull_2025_113443
crossref_primary_10_1021_acsenergylett_4c02235
crossref_primary_10_1016_j_cej_2024_153865
crossref_primary_10_1002_adma_202403214
crossref_primary_10_1016_j_jallcom_2025_178521
crossref_primary_10_1016_j_jechem_2024_11_019
Cites_doi 10.1016/j.ijleo.2022.168594
10.1021/jacs.9b03467
10.1021/acsenergylett.8b01552
10.1016/j.cej.2023.141334
10.1002/anie.202008634
10.1039/C8EE00378E
10.1016/j.ensm.2020.06.005
10.1016/S1872-5805(21)60001-X
10.1016/j.porgcoat.2014.10.013
10.1016/j.enchem.2022.100076
10.1039/D0CC04324A
10.1021/acssuschemeng.8b05568
10.1002/advs.202205874
10.1016/j.ensm.2022.02.054
10.1007/s40820-021-00782-5
10.1039/D0TA02486D
10.1002/cssc.201901409
10.1021/jacs.9b00543
10.1002/batt.202100361
10.1016/j.cej.2022.136480
10.1021/jp202967d
10.1016/j.cej.2021.132331
10.1002/chem.200390024
10.1038/s41467-021-26947-9
10.1002/adma.202101726
10.20964/2017.04.47
10.1016/j.cej.2022.137796
10.1016/j.electacta.2022.141365
10.1016/j.apmate.2021.09.007
10.1039/C5TA05507E
10.1016/j.nanoen.2020.104523
10.1021/acsenergylett.8b01426
10.1021/jacs.7b02648
10.1016/j.mtener.2021.100738
10.1002/anie.202200598
10.1016/j.ensm.2021.10.020
10.1039/D2SC04945G
10.1021/ja308278w
10.1126/science.1120411
10.1016/j.cej.2021.132839
10.1039/C9SC03052B
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/D3NR00898C
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 9013
ExternalDocumentID 37128979
10_1039_D3NR00898C
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c315t-c658510edc31295637d03f38caf6195be3f360f3aab8f3ed72e96a94f1cffb4c3
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 07:16:15 EDT 2025
Mon Jun 30 03:54:00 EDT 2025
Thu Apr 03 07:08:41 EDT 2025
Tue Jul 01 00:42:07 EDT 2025
Thu Apr 24 22:59:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-c658510edc31295637d03f38caf6195be3f360f3aab8f3ed72e96a94f1cffb4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3728-046X
0000-0002-6765-9809
0000-0003-4537-7170
0000-0002-2925-9898
0009-0004-1103-4182
0000-0001-5525-7100
0000-0002-3129-2750
0000-0001-8261-5989
0009-0002-1386-9197
0000-0003-0468-895X
PMID 37128979
PQID 2818698165
PQPubID 2047485
PageCount 11
ParticipantIDs proquest_miscellaneous_2808591505
proquest_journals_2818698165
pubmed_primary_37128979
crossref_citationtrail_10_1039_D3NR00898C
crossref_primary_10_1039_D3NR00898C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-25
PublicationDateYYYYMMDD 2023-05-25
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-25
  day: 25
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wang (D3NR00898C/cit23/1) 2017; 139
Okumura (D3NR00898C/cit34/1) 2011; 115
Yang (D3NR00898C/cit3/1) 2022; 14
Li (D3NR00898C/cit8/1) 2022; 44
Zhao (D3NR00898C/cit15/1) 2022; 48
Park (D3NR00898C/cit19/1) 2021; 33
Liu (D3NR00898C/cit31/1) 2015; 3
Wang (D3NR00898C/cit30/1) 2003; 9
Abbasi (D3NR00898C/cit28/1) 2022; 435
Min (D3NR00898C/cit26/1) 2022; 443
Kandambeth (D3NR00898C/cit29/1) 2012; 134
Konarov (D3NR00898C/cit2/1) 2018; 3
Li (D3NR00898C/cit33/1) 2020; 31
Yuan (D3NR00898C/cit12/1) 2019; 12
Xiong (D3NR00898C/cit41/1) 2022; 4
Kao-ian (D3NR00898C/cit6/1) 2022; 5
Zhang (D3NR00898C/cit10/1) 2022; 13
Ruan (D3NR00898C/cit4/1) 2022; 61
Liu (D3NR00898C/cit32/1) 2022; 253
Jeong (D3NR00898C/cit24/1) 2019; 141
Zhao (D3NR00898C/cit35/1) 2021; 12
Kundu (D3NR00898C/cit37/1) 2018; 11
Côté (D3NR00898C/cit21/1) 2005; 310
Gu (D3NR00898C/cit22/1) 2019; 141
Song (D3NR00898C/cit16/1) 2022; 429
Kao-ian (D3NR00898C/cit9/1) 2021; 21
Kang (D3NR00898C/cit11/1) 2019; 7
Gopalakrishnan (D3NR00898C/cit17/1) 2023; 457
Cao (D3NR00898C/cit13/1) 2020; 8
Mu (D3NR00898C/cit7/1) 2022; 430
Khayum (D3NR00898C/cit25/1) 2019; 10
Grgur (D3NR00898C/cit39/1) 2015; 79
Zhou (D3NR00898C/cit36/1) 2023; 10
Sheng (D3NR00898C/cit27/1) 2020; 56
Khezri (D3NR00898C/cit5/1) 2022; 449
Zeng (D3NR00898C/cit20/1) 2021; 36
Cao (D3NR00898C/cit38/1) 2022; 1
Fang (D3NR00898C/cit1/1) 2018; 3
Jia (D3NR00898C/cit14/1) 2020; 70
Chen (D3NR00898C/cit40/1) 2017; 12
Cao (D3NR00898C/cit18/1) 2020; 59
References_xml – volume: 253
  start-page: 168594
  year: 2022
  ident: D3NR00898C/cit32/1
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.168594
– volume: 141
  start-page: 9623
  year: 2019
  ident: D3NR00898C/cit22/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03467
– volume: 3
  start-page: 2620
  year: 2018
  ident: D3NR00898C/cit2/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01552
– volume: 457
  start-page: 141334
  year: 2023
  ident: D3NR00898C/cit17/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141334
– volume: 59
  start-page: 19292
  year: 2020
  ident: D3NR00898C/cit18/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202008634
– volume: 11
  start-page: 881
  year: 2018
  ident: D3NR00898C/cit37/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00378E
– volume: 31
  start-page: 115
  year: 2020
  ident: D3NR00898C/cit33/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.06.005
– volume: 36
  start-page: 1
  year: 2021
  ident: D3NR00898C/cit20/1
  publication-title: New Carbon Mater.
  doi: 10.1016/S1872-5805(21)60001-X
– volume: 79
  start-page: 17
  year: 2015
  ident: D3NR00898C/cit39/1
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2014.10.013
– volume: 4
  start-page: 100076
  year: 2022
  ident: D3NR00898C/cit41/1
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2022.100076
– volume: 56
  start-page: 10465
  year: 2020
  ident: D3NR00898C/cit27/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC04324A
– volume: 7
  start-page: 3364
  year: 2019
  ident: D3NR00898C/cit11/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05568
– volume: 10
  start-page: 2205874
  year: 2023
  ident: D3NR00898C/cit36/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202205874
– volume: 48
  start-page: 82
  year: 2022
  ident: D3NR00898C/cit15/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.02.054
– volume: 14
  start-page: 42
  year: 2022
  ident: D3NR00898C/cit3/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00782-5
– volume: 8
  start-page: 9331
  year: 2020
  ident: D3NR00898C/cit13/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02486D
– volume: 12
  start-page: 4889
  year: 2019
  ident: D3NR00898C/cit12/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201901409
– volume: 141
  start-page: 5880
  year: 2019
  ident: D3NR00898C/cit24/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b00543
– volume: 5
  start-page: e202100361
  year: 2022
  ident: D3NR00898C/cit6/1
  publication-title: Batteries Supercaps
  doi: 10.1002/batt.202100361
– volume: 443
  start-page: 136480
  year: 2022
  ident: D3NR00898C/cit26/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136480
– volume: 115
  start-page: 12990
  year: 2011
  ident: D3NR00898C/cit34/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp202967d
– volume: 429
  start-page: 132331
  year: 2022
  ident: D3NR00898C/cit16/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132331
– volume: 9
  start-page: 300
  year: 2003
  ident: D3NR00898C/cit30/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.200390024
– volume: 12
  start-page: 6606
  year: 2021
  ident: D3NR00898C/cit35/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26947-9
– volume: 33
  start-page: 2101726
  year: 2021
  ident: D3NR00898C/cit19/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101726
– volume: 12
  start-page: 3417
  year: 2017
  ident: D3NR00898C/cit40/1
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.20964/2017.04.47
– volume: 449
  start-page: 137796
  year: 2022
  ident: D3NR00898C/cit5/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137796
– volume: 435
  start-page: 141365
  year: 2022
  ident: D3NR00898C/cit28/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.141365
– volume: 1
  start-page: 100007
  year: 2022
  ident: D3NR00898C/cit38/1
  publication-title: Adv. Powder Mater.
  doi: 10.1016/j.apmate.2021.09.007
– volume: 3
  start-page: 19000
  year: 2015
  ident: D3NR00898C/cit31/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA05507E
– volume: 70
  start-page: 104523
  year: 2020
  ident: D3NR00898C/cit14/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104523
– volume: 3
  start-page: 2480
  year: 2018
  ident: D3NR00898C/cit1/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01426
– volume: 139
  start-page: 4258
  year: 2017
  ident: D3NR00898C/cit23/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02648
– volume: 21
  start-page: 100738
  year: 2021
  ident: D3NR00898C/cit9/1
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2021.100738
– volume: 61
  start-page: e202200598
  year: 2022
  ident: D3NR00898C/cit4/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202200598
– volume: 44
  start-page: 104
  year: 2022
  ident: D3NR00898C/cit8/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.10.020
– volume: 13
  start-page: 14246
  year: 2022
  ident: D3NR00898C/cit10/1
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC04945G
– volume: 134
  start-page: 19524
  year: 2012
  ident: D3NR00898C/cit29/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308278w
– volume: 310
  start-page: 1166
  year: 2005
  ident: D3NR00898C/cit21/1
  publication-title: Science
  doi: 10.1126/science.1120411
– volume: 430
  start-page: 132839
  year: 2022
  ident: D3NR00898C/cit7/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132839
– volume: 10
  start-page: 8889
  year: 2019
  ident: D3NR00898C/cit25/1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC03052B
SSID ssj0069363
Score 2.5840013
Snippet Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 9003
SubjectTerms Aldehydes
Anodic protection
Aqueous solutions
Electrolytes
Hydrogen evolution reactions
Imines
Ion flux
Rechargeable batteries
Solid electrolytes
Stability
Zinc
Title Stabilizing a zinc anode via a tunable covalent organic framework-based solid electrolyte interphase
URI https://www.ncbi.nlm.nih.gov/pubmed/37128979
https://www.proquest.com/docview/2818698165
https://www.proquest.com/docview/2808591505
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4ED4pvCQEZwQVFGYidOfBwDNm1iB7Sx3SLHsVlFSSqagLb_gf-ZZ8f52CjS4JLWrt20eT-_L7_3jNArCiIkSgPhgzgp_Ihq6nOdJD5oJiwMcybj3EZbHLK942j_ND6dTH6NopaaOt-SF2vzSv6HqtAHdDVZsv9A2f5LoQPeA33hChSG67VoDJqiiW29sImGHryY2qtVobwfJtXKq5s2MUpWcFO7528TL6Wnu4gs3wgx4zhfzAvPnYizOK-VrSIBFOi2bpz2Cqy4WgFRB5g0S_HNqp-f50sxGPcHovLnrWv1xDrnz5velSPKLyvx07mp9-dlCY0-9uZjddZO2wVjfiG-Ags6Kx2AnW-C2EjANo-5ZWHExCtS2tYp31LjvuQyD45HWCPBiKMaT-tIOoP6Qtdy_oCawqnv6OEn0Gp4ujPIt25P_4rY64MR7TY85dkw9wbaIGB1kCna2D54u3vSiXbGqT2ar_9bXb1byt8Msy9rOH8xW6z6cnQH3XZ2B95uQXQXTVR5D90aVaO8j4oRnLDABk7YwgkDnKDDwQl3cMIOTvgKnLCFEx7BCQ9weoCOP7w_2tnz3SEcvqRhXPuSmY3jQBXQJGBM06QIYEWnUmiwveNcQYMFmgqRp5qqIiGKM8EjHUqt80jSh2haVqV6jHAcKZUznXBijPA0T3NFCpgqC6K1FnSGXncPLpOuQr05KGWR_UmiGXrZj122dVnWjtrsnn_m1u0qM_XPGE9DFs_Qi_5j4Kpmq0yUqmrMGFP4D4wlGPOopVt_G5qATscT_uRaP-EpujmsjE00rb836hnosXX-3KHrN8reoCo
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stabilizing+a+zinc+anode+via+a+tunable+covalent+organic+framework-based+solid+electrolyte+interphase&rft.jtitle=Nanoscale&rft.au=Aupama%2C+Vipada&rft.au=Kao-ian%2C+Wathanyu&rft.au=Sangsawang%2C+Jinnawat&rft.au=Mohan%2C+Gopalakrishnan&rft.date=2023-05-25&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=15&rft.issue=20&rft.spage=9003&rft.epage=9013&rft_id=info:doi/10.1039%2FD3NR00898C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3NR00898C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon