Polymer design using genetic algorithm and machine learning

[Display omitted] •Genetic algorithm achieves new polymer designs with high bandgap and high glass transition temperature.•Machine learning prediction models assist rapid evaluation of fitness function.•Chemical fragments leading high performance of polymers are highlighted. Data driven or machine l...

Full description

Saved in:
Bibliographic Details
Published inComputational materials science Vol. 186; p. 110067
Main Authors Kim, Chiho, Batra, Rohit, Chen, Lihua, Tran, Huan, Ramprasad, Rampi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Genetic algorithm achieves new polymer designs with high bandgap and high glass transition temperature.•Machine learning prediction models assist rapid evaluation of fitness function.•Chemical fragments leading high performance of polymers are highlighted. Data driven or machine learning (ML) based methods have been recently used in materials science to provide quick material property predictions. Although powerful and robust, these predictive models are still limited in terms of their applicability towards the design of materials with target property or performance objectives. Here, we employ a nature-mimicking optimization method, the genetic algorithm, in tandem with ML-based predictive models to design polymers that meet practically useful, but extreme, property criteria (i.e., glass transition temperature, Tg>500 K and bandgap, Eg>6 eV). Analogous to nature, the characteristic properties of a polymer are assumed to be determined by the constituting types and sequence of chemical building blocks (or fragments) in the monomer unit. Evolution of polymers by natural operations of crossover, mutation, and selection over 100 generations leads to creation of 132 new (as compared to 4 already known cases) and chemically unique polymers with high Tg and Eg. Chemical guidelines on what fragments make up polymers with extreme thermal and electrical performance metrics have been selected and revealed by the algorithm. The approach presented here is general and can be extended to design polymers with different property objectives.
AbstractList [Display omitted] •Genetic algorithm achieves new polymer designs with high bandgap and high glass transition temperature.•Machine learning prediction models assist rapid evaluation of fitness function.•Chemical fragments leading high performance of polymers are highlighted. Data driven or machine learning (ML) based methods have been recently used in materials science to provide quick material property predictions. Although powerful and robust, these predictive models are still limited in terms of their applicability towards the design of materials with target property or performance objectives. Here, we employ a nature-mimicking optimization method, the genetic algorithm, in tandem with ML-based predictive models to design polymers that meet practically useful, but extreme, property criteria (i.e., glass transition temperature, Tg>500 K and bandgap, Eg>6 eV). Analogous to nature, the characteristic properties of a polymer are assumed to be determined by the constituting types and sequence of chemical building blocks (or fragments) in the monomer unit. Evolution of polymers by natural operations of crossover, mutation, and selection over 100 generations leads to creation of 132 new (as compared to 4 already known cases) and chemically unique polymers with high Tg and Eg. Chemical guidelines on what fragments make up polymers with extreme thermal and electrical performance metrics have been selected and revealed by the algorithm. The approach presented here is general and can be extended to design polymers with different property objectives.
ArticleNumber 110067
Author Chen, Lihua
Kim, Chiho
Batra, Rohit
Tran, Huan
Ramprasad, Rampi
Author_xml – sequence: 1
  givenname: Chiho
  orcidid: 0000-0002-1814-4980
  surname: Kim
  fullname: Kim, Chiho
– sequence: 2
  givenname: Rohit
  orcidid: 0000-0002-1098-7035
  surname: Batra
  fullname: Batra, Rohit
– sequence: 3
  givenname: Lihua
  orcidid: 0000-0002-9852-8211
  surname: Chen
  fullname: Chen, Lihua
– sequence: 4
  givenname: Huan
  orcidid: 0000-0002-8093-9426
  surname: Tran
  fullname: Tran, Huan
– sequence: 5
  givenname: Rampi
  surname: Ramprasad
  fullname: Ramprasad, Rampi
  email: rampi.ramprasad@mse.gatech.edu
BookMark eNqNkM1KxDAUhYMoODP6DPYFOt40bZIiLobBPxjQha5Dmtx2MrSpJFGYt7fDiAs3urpwON-B-83JqR89EnJFYUmB8uvd0ozDoFM0bllAMaUUgIsTMqNS1DlIoKdkBnUhcigqfk7mMe5gImtZzMjNy9jvBwyZxeg6n31E57usQ4_JmUz33Rhc2g6Z9jYbtNk6j1mPOvipdkHOWt1HvPy-C_J2f_e6fsw3zw9P69UmN4xWKTeVFpxWbcs5B1NhYQQTktmSscY0jErKgUEJpZW8rISsGwSt68aiLS3nki3I7XHXhDHGgK0yLunkRp-Cdr2ioA4m1E79mFAHE-poYuLFL_49uEGH_T_I1ZHE6b1Ph0FNDfQGrQtokrKj-3PjCxYuf8A
CitedBy_id crossref_primary_10_1016_j_progpolymsci_2025_101931
crossref_primary_10_1016_j_commatsci_2024_113489
crossref_primary_10_1038_s41598_022_14528_9
crossref_primary_10_3390_electronics13204042
crossref_primary_10_3390_polym16182680
crossref_primary_10_1016_j_eti_2022_102925
crossref_primary_10_1016_j_mser_2020_100595
crossref_primary_10_1063_5_0057162
crossref_primary_10_1155_2021_8784361
crossref_primary_10_1021_acs_macromol_3c02401
crossref_primary_10_1016_j_cej_2022_139540
crossref_primary_10_1016_j_commatsci_2021_110528
crossref_primary_10_1021_acsomega_1c02760
crossref_primary_10_1049_nde2_12029
crossref_primary_10_1039_D4CP00632A
crossref_primary_10_1155_2022_3106672
crossref_primary_10_1016_j_commatsci_2024_113651
crossref_primary_10_1088_2516_1083_ad7220
crossref_primary_10_1021_acs_chemmater_2c02991
crossref_primary_10_1021_acs_jcim_3c01572
crossref_primary_10_1039_D3PY00395G
crossref_primary_10_1039_D4DD00293H
crossref_primary_10_1016_j_optcom_2024_131304
crossref_primary_10_1155_2022_2056323
crossref_primary_10_3390_polym13162606
crossref_primary_10_1016_j_ces_2024_119952
crossref_primary_10_1021_acspolymersau_3c00025
crossref_primary_10_1007_s11426_024_2072_4
crossref_primary_10_1155_2021_4856265
crossref_primary_10_1021_acs_jpcc_2c07666
crossref_primary_10_53759_7669_jmc202404054
crossref_primary_10_1038_s41467_023_40459_8
crossref_primary_10_1063_5_0087392
crossref_primary_10_1038_s41467_024_50413_x
crossref_primary_10_1039_D1EE03224K
crossref_primary_10_1016_j_commatsci_2024_112811
crossref_primary_10_1021_acspolymersau_1c00015
crossref_primary_10_1039_D3ME00151B
crossref_primary_10_1063_5_0155012
crossref_primary_10_1016_j_pmatsci_2024_101282
crossref_primary_10_1021_acs_jcim_4c01530
crossref_primary_10_1155_je_5900477
crossref_primary_10_1557_s43580_023_00505_5
crossref_primary_10_1016_j_matdes_2025_113691
crossref_primary_10_1063_5_0044306
crossref_primary_10_1109_ACCESS_2022_3177735
crossref_primary_10_1021_acsabm_2c00346
crossref_primary_10_1021_acs_chemmater_4c01757
crossref_primary_10_1038_s41467_023_39868_6
crossref_primary_10_1021_acsenergylett_2c01836
crossref_primary_10_1063_5_0052962
crossref_primary_10_3390_ma15051811
crossref_primary_10_1016_j_rinma_2023_100376
crossref_primary_10_1007_s10853_021_06520_x
crossref_primary_10_1063_5_0216862
crossref_primary_10_1515_revce_2023_0021
crossref_primary_10_1038_s41524_024_01449_6
crossref_primary_10_1016_j_matdes_2022_110815
crossref_primary_10_1039_D2SM00452F
crossref_primary_10_1038_s41524_023_01066_9
crossref_primary_10_1109_ACCESS_2023_3272356
crossref_primary_10_1016_j_solener_2023_111853
crossref_primary_10_1021_acs_chemmater_0c03332
crossref_primary_10_1016_j_memlet_2023_100040
crossref_primary_10_1063_5_0023759
crossref_primary_10_1016_j_commatsci_2024_113206
crossref_primary_10_1039_D4SC02934H
crossref_primary_10_3390_su15043628
crossref_primary_10_1063_5_0177266
crossref_primary_10_1021_jacs_2c13467
crossref_primary_10_1038_s41524_024_01470_9
crossref_primary_10_1039_D3DD00078H
crossref_primary_10_1038_s41467_023_39396_3
crossref_primary_10_5902_2179460X87076
crossref_primary_10_1002_adfm_202309844
crossref_primary_10_1016_j_susmat_2021_e00370
crossref_primary_10_1063_5_0174034
crossref_primary_10_2478_amns_2023_2_00070
crossref_primary_10_1016_j_aichem_2023_100035
crossref_primary_10_1038_s41524_024_01304_8
crossref_primary_10_1039_D4PY00623B
crossref_primary_10_1080_17455030_2022_2094028
crossref_primary_10_1039_D1SM00725D
crossref_primary_10_1021_acs_chemmater_1c02061
crossref_primary_10_1371_journal_pone_0317277
crossref_primary_10_1142_S0218126621502534
crossref_primary_10_1039_D2TA09272G
crossref_primary_10_1073_pnas_2309062120
crossref_primary_10_1016_j_matt_2023_04_016
crossref_primary_10_1021_acsami_1c07545
crossref_primary_10_1016_j_coco_2023_101806
crossref_primary_10_1063_5_0080838
crossref_primary_10_1038_s43588_025_00768_y
crossref_primary_10_1016_j_dmpk_2021_100428
crossref_primary_10_1021_acsami_2c14290
crossref_primary_10_1016_j_memsci_2024_123256
crossref_primary_10_1002_oca_2824
crossref_primary_10_1016_j_apenergy_2024_125203
crossref_primary_10_15507_2658_4123_034_202404_597_614
crossref_primary_10_1021_acs_macromol_2c02249
crossref_primary_10_1063_5_0205433
crossref_primary_10_1016_j_aichem_2024_100049
crossref_primary_10_1016_j_future_2022_12_026
crossref_primary_10_3390_met11081164
crossref_primary_10_1016_j_scs_2024_105978
crossref_primary_10_3390_ijms231810712
crossref_primary_10_1002_macp_202400055
crossref_primary_10_1021_acs_chemmater_4c02920
crossref_primary_10_1038_s41578_020_00255_y
crossref_primary_10_32604_cmc_2024_049582
crossref_primary_10_1155_2023_8868540
crossref_primary_10_1016_j_mtphys_2024_101438
crossref_primary_10_1016_j_aichem_2024_100054
crossref_primary_10_3390_polym16081049
crossref_primary_10_1016_j_isatra_2024_12_048
crossref_primary_10_1007_s11831_024_10100_y
crossref_primary_10_1002_aisy_202200243
crossref_primary_10_1016_j_pmatsci_2022_101043
crossref_primary_10_3390_s23042242
crossref_primary_10_1007_s41660_021_00177_4
crossref_primary_10_1016_j_memsci_2024_123169
crossref_primary_10_1016_j_solener_2024_112417
crossref_primary_10_1021_acs_jctc_4c01347
crossref_primary_10_1002_pol_20240649
crossref_primary_10_2174_0113852728249020230921072236
crossref_primary_10_1002_aisy_202300085
crossref_primary_10_1016_j_matdes_2024_112685
crossref_primary_10_1360_TB_2024_0800
crossref_primary_10_1111_jfpe_14293
crossref_primary_10_3390_s24113573
crossref_primary_10_1002_ange_202415056
crossref_primary_10_1371_journal_pone_0273418
crossref_primary_10_1021_acs_macromol_1c00728
crossref_primary_10_1177_00368504211059050
crossref_primary_10_1038_s41578_024_00708_8
crossref_primary_10_1038_s41524_024_01492_3
crossref_primary_10_1002_asjc_3503
crossref_primary_10_1073_pnas_2220021120
crossref_primary_10_1021_acs_iecr_1c03661
crossref_primary_10_1002_anie_202415056
crossref_primary_10_3390_app13095584
Cites_doi 10.1103/PhysRevB.92.014106
10.1038/srep20952
10.1038/sdata.2016.12
10.1515/polyeng-2019-0329
10.1088/1361-651X/aaf8ca
10.1063/5.0008026
10.1007/s10853-015-9369-2
10.1557/mrc.2019.78
10.1002/adma.201600377
10.1002/cmdc.200800178
10.1021/acs.jcim.9b00656
10.1038/s41524-020-0333-6
10.1016/j.polymer.2018.10.017
10.1016/j.pmatsci.2016.05.001
10.1021/acscentsci.7b00572
10.1016/j.mattod.2017.11.021
10.1109/EIDWT.2011.13
10.1021/acs.chemmater.7b02027
10.1021/acs.jpcc.8b02913
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.commatsci.2020.110067
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0801
ExternalDocumentID 10_1016_j_commatsci_2020_110067
S0927025620305589
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c315t-c5a7615ff6660c5e2c73783d433bcb31816030404d8645789be0aa9bded4d6683
IEDL.DBID .~1
ISSN 0927-0256
IngestDate Tue Jul 01 02:01:07 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Fri Feb 23 02:45:47 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Polymer
Genetic algorithm
Glass transition temperature
Machine learning
Bandgap
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-c5a7615ff6660c5e2c73783d433bcb31816030404d8645789be0aa9bded4d6683
ORCID 0000-0002-1814-4980
0000-0002-8093-9426
0000-0002-1098-7035
0000-0002-9852-8211
ParticipantIDs crossref_citationtrail_10_1016_j_commatsci_2020_110067
crossref_primary_10_1016_j_commatsci_2020_110067
elsevier_sciencedirect_doi_10_1016_j_commatsci_2020_110067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Computational materials science
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Huan, Boggs, Teyssedre, Laurent, Cakmak, Kumar, Ramprasad (b0025) 2016; 83
H. Dai, Y. Tian, B. Dai, S. Skiena, L. Song, Syntax-directed variational autoencoder for structured data, arXiv:1802.08786. URL: https://arxiv.org/abs/1802.08786.
RDKit, open source toolkit for cheminformatics. URL
Mannodi-Kanakkithodi, Pilania, Huan, Lookman, Ramprasad (b0070) 2016; 6
S. Venkatram, C. Kim, A. Chandrasekaran, R. Ramprasad, Critical assessment of the hildebrand and hansen solubility parameters for polymers, J. Chem. Inf. Model. 59 (10) (2019) 4188–4194, pMID: 31545900. arXiv:https://doi.org/10.1021/acs.jcim.9b00656, doi:10.1021/acs.jcim.9b00656. URL: doi: 10.1021/acs.jcim.9b00656.
Mannodi-Kanakkithodi, Huan, Ramprasad (b0055) 2017; 29
Chen, Huan, Quintero, Ramprasad (b0045) 2016; 51
Lightstone, Chen, Kim, Batra, Ramprasad (b0035) 2020; 127
Q. Liu, M. Allamanis, M. Brockschmidt, A. Gaunt, Constrained graph variational autoencoders for molecule design, in: S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems 31, Curran Associates Inc, 2018, pp. 7795–7804. URL: http://papers.nips.cc/paper/8005-constrained-graph-variational-autoencoders-for-molecule-design.pdf.
Mannodi-Kanakkithodi, Treich, Huan, Ma, Tefferi, Cao, Sotzing, Ramprasad (b0020) 2016; 28
C. Kim, A. Chandrasekaran, T.D. Huan, D. Das, R. Ramprasad, Polymer genome: A data-powered polymer informatics platform for property predictions, J. Phys. Chem. C 122 (31) (2018) 17575–17585. arXiv:https://doi.org/10.1021/acs.jpcc.8b02913, doi:10.1021/acs.jpcc.8b02913. URL: doi: 10.1021/acs.jpcc.8b02913.
van Krevelen (b0005) 1997
C. Wu, A.A. Deshmukh, Z. Li, L. Chen, A. Alamri, Y. Wang, R. Ramprasad, G.A. Sotzing, Y. Cao, Flexible temperature-invariant polymer dielectrics with large bandgap, Adv. Mater. 2000499 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.202000499, doi:10.1002/adma.202000499. URL
Huan, Mannodi-Kanakkithodi, Ramprasad (b0075) 2015; 92
Kim, Chandrasekaran, Jha, Ramprasad (b0050) 2019; 9
Chen, Kim, Batra, Lightstone, Wu, Li, Deshmukh, Wang, Tran, Vashishta, Sotzing, Cao, Ramprasad (b0030) 2020; 6
M.J. Kusner, B. Paige, J.M. Hernández-Lobato, Grammar variational autoencoder, in: D. Precup, Y.W. Teh (Eds.), Proceedings of the 34th International Conference on Machine Learning, Vol. 70 of Proceedings of Machine Learning Research, PMLR, International Convention Centre, Sydney, Australia, 2017, pp. 1945–1954. URL
J. Degen, C. Wegscheid-Gerlach, A. Zaliani, M. Rarey, On the art of compiling and using ‘drug-like’ chemical fragment spaces, ChemMedChem 3 (10) (2008) 1503–1507. arXiv:https://chemistry-europe.onlinelibrary.wiley.com/doi/pdf/10.1002/cmdc.200800178, doi:10.1002/cmdc.200800178. URL
Holland (b0145) 1975
R. Gómez-Bombarelli, J.N. Wei, D. Duvenaud, J.M. Hernández-Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T.D. Hirzel, R.P. Adams, A. Aspuru-Guzik, Automatic chemical design using a data-driven continuous representation of molecules, ACS Cent. Sci. 4 (2) (2018) 268–276, pMID: 29532027. arXiv:https://doi.org/10.1021/acscentsci.7b00572, doi:10.1021/acscentsci.7b00572. URL: doi: 10.1021/acscentsci.7b00572.
S. Otsuka, I. Kuwajima, J. Hosoya, Y. Xu, M. Yamazaki, Polyinfo: Polymer database for polymeric materials design, in: 2011 International Conference on Emerging Intelligent Data and Web Technologies (EIDWT), IEEE, Tirana, 2011, pp. 22–29. doi:10.1109/EIDWT.2011.13.
.
Jha, Chandrasekaran, Kim, Ramprasad (b0150) 2019; 27
(b0155) 2006
J. You, B. Liu, R. Ying, V. Pande, J. Leskovec, Graph convolutional policy network for goal-directed molecular graph generation, in: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, Curran Associates Inc., Red Hook, NY, USA, 2018, p. 6412–6422.
Nasreen, Treich, Baczkowski, Mannodi-Kanakkithodi, Baldwin, Scheirey, Cao, Ramprasad, Sotzing (b0065) 2018; 159
N. De Cao, T. Kipf, Molgan: An implicit generative model for small molecular graphs, arxiv.org/abs/1805.11973. URL: https://arxiv.org/abs/1805.11973.
Huan, Mannodi-Kanakkithodi, Kim, Sharma, Pilania, Ramprasad (b0125) 2016; 3
Bicerano (b0130) 2002
Mannodi-Kanakkithodi, Chandrasekaran, Kim, Huan, Pilania, Botu, Ramprasad (b0010) 2018; 21
G. Lima Guimaraes, B. Sanchez-Lengeling, C. Outeiral, P. Luis Cunha Farias, A. Aspuru-Guzik, Objective-reinforced generative adversarial networks (organ) for sequence generation models, arXiv:1705.10843. URL: https://arxiv.org/abs/1705.10843.
Zhu, Kim, Chandrasekarn, Everett, Ramprasad, Lively (b0040) 2020; 40
W. Jin, R. Barzilay, T. Jaakkola, Syntax-directed variational autoencoder for structured data, arXiv:1802.04364. URL: https://arxiv.org/abs/1802.04364.
(b0135) 2009
10.1016/j.commatsci.2020.110067_b0105
Huan (10.1016/j.commatsci.2020.110067_b0125) 2016; 3
10.1016/j.commatsci.2020.110067_b0100
Bicerano (10.1016/j.commatsci.2020.110067_b0130) 2002
10.1016/j.commatsci.2020.110067_b0165
Chen (10.1016/j.commatsci.2020.110067_b0030) 2020; 6
10.1016/j.commatsci.2020.110067_b0120
Chen (10.1016/j.commatsci.2020.110067_b0045) 2016; 51
Mannodi-Kanakkithodi (10.1016/j.commatsci.2020.110067_b0010) 2018; 21
Lightstone (10.1016/j.commatsci.2020.110067_b0035) 2020; 127
10.1016/j.commatsci.2020.110067_b0090
10.1016/j.commatsci.2020.110067_b0095
Zhu (10.1016/j.commatsci.2020.110067_b0040) 2020; 40
Huan (10.1016/j.commatsci.2020.110067_b0025) 2016; 83
Mannodi-Kanakkithodi (10.1016/j.commatsci.2020.110067_b0070) 2016; 6
(10.1016/j.commatsci.2020.110067_b0155) 2006
van Krevelen (10.1016/j.commatsci.2020.110067_b0005) 1997
Mannodi-Kanakkithodi (10.1016/j.commatsci.2020.110067_b0055) 2017; 29
Mannodi-Kanakkithodi (10.1016/j.commatsci.2020.110067_b0020) 2016; 28
10.1016/j.commatsci.2020.110067_b0110
Jha (10.1016/j.commatsci.2020.110067_b0150) 2019; 27
(10.1016/j.commatsci.2020.110067_b0135) 2009
10.1016/j.commatsci.2020.110067_b0115
10.1016/j.commatsci.2020.110067_b0015
10.1016/j.commatsci.2020.110067_b0080
Huan (10.1016/j.commatsci.2020.110067_b0075) 2015; 92
10.1016/j.commatsci.2020.110067_b0085
10.1016/j.commatsci.2020.110067_b0140
10.1016/j.commatsci.2020.110067_b0160
10.1016/j.commatsci.2020.110067_b0060
Holland (10.1016/j.commatsci.2020.110067_b0145) 1975
Kim (10.1016/j.commatsci.2020.110067_b0050) 2019; 9
Nasreen (10.1016/j.commatsci.2020.110067_b0065) 2018; 159
References_xml – volume: 127
  year: 2020
  ident: b0035
  article-title: Refractive index prediction models for polymers using machine learning
  publication-title: J. Appl. Phys.
– reference: G. Lima Guimaraes, B. Sanchez-Lengeling, C. Outeiral, P. Luis Cunha Farias, A. Aspuru-Guzik, Objective-reinforced generative adversarial networks (organ) for sequence generation models, arXiv:1705.10843. URL: https://arxiv.org/abs/1705.10843.
– volume: 83
  start-page: 236
  year: 2016
  ident: b0025
  article-title: Advanced polymeric dielectrics for high energy density applications
  publication-title: Prog. Mater. Sci.
– reference: C. Wu, A.A. Deshmukh, Z. Li, L. Chen, A. Alamri, Y. Wang, R. Ramprasad, G.A. Sotzing, Y. Cao, Flexible temperature-invariant polymer dielectrics with large bandgap, Adv. Mater. 2000499 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.202000499, doi:10.1002/adma.202000499. URL:
– year: 2009
  ident: b0135
  publication-title: Polymer Data Handbook
– volume: 21
  start-page: 785
  year: 2018
  end-page: 796
  ident: b0010
  article-title: Scoping the polymer genome: a roadmap for rational polymer dielectrics design and beyond
  publication-title: Mater. Today
– reference: C. Kim, A. Chandrasekaran, T.D. Huan, D. Das, R. Ramprasad, Polymer genome: A data-powered polymer informatics platform for property predictions, J. Phys. Chem. C 122 (31) (2018) 17575–17585. arXiv:https://doi.org/10.1021/acs.jpcc.8b02913, doi:10.1021/acs.jpcc.8b02913. URL: doi: 10.1021/acs.jpcc.8b02913.
– volume: 92
  year: 2015
  ident: b0075
  article-title: Accelerated materials property predictions and design using motif-based fingerprints
  publication-title: Phys. Rev. B
– volume: 29
  start-page: 9001
  year: 2017
  end-page: 9010
  ident: b0055
  article-title: Mining materials design rules from data: the example of polymer dielectrics
  publication-title: Chem. Mater.
– reference: RDKit, open source toolkit for cheminformatics. URL:
– reference: R. Gómez-Bombarelli, J.N. Wei, D. Duvenaud, J.M. Hernández-Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T.D. Hirzel, R.P. Adams, A. Aspuru-Guzik, Automatic chemical design using a data-driven continuous representation of molecules, ACS Cent. Sci. 4 (2) (2018) 268–276, pMID: 29532027. arXiv:https://doi.org/10.1021/acscentsci.7b00572, doi:10.1021/acscentsci.7b00572. URL: doi: 10.1021/acscentsci.7b00572.
– year: 2006
  ident: b0155
  publication-title: Gaussian Processes for Machine Learning
– reference: S. Otsuka, I. Kuwajima, J. Hosoya, Y. Xu, M. Yamazaki, Polyinfo: Polymer database for polymeric materials design, in: 2011 International Conference on Emerging Intelligent Data and Web Technologies (EIDWT), IEEE, Tirana, 2011, pp. 22–29. doi:10.1109/EIDWT.2011.13.
– reference: N. De Cao, T. Kipf, Molgan: An implicit generative model for small molecular graphs, arxiv.org/abs/1805.11973. URL: https://arxiv.org/abs/1805.11973.
– volume: 3
  year: 2016
  ident: b0125
  article-title: A polymer dataset for accelerated property prediction and design
  publication-title: Sci. Data
– volume: 159
  start-page: 95
  year: 2018
  end-page: 105
  ident: b0065
  article-title: A material genome approach towards exploration of zn and cd coordination complex polyester as dielectrics: design, synthesis and characterization
  publication-title: Polymer
– volume: 6
  start-page: 20952
  year: 2016
  ident: b0070
  article-title: Machine learning strategy for the accelerated design of polymer dielectrics
  publication-title: Sci. Rep.
– year: 1975
  ident: b0145
  article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
– reference: J. Degen, C. Wegscheid-Gerlach, A. Zaliani, M. Rarey, On the art of compiling and using ‘drug-like’ chemical fragment spaces, ChemMedChem 3 (10) (2008) 1503–1507. arXiv:https://chemistry-europe.onlinelibrary.wiley.com/doi/pdf/10.1002/cmdc.200800178, doi:10.1002/cmdc.200800178. URL:
– volume: 28
  start-page: 6277
  year: 2016
  end-page: 6291
  ident: b0020
  article-title: Rational co-design of polymer dielectrics for energy storage
  publication-title: Adv. Mater.
– reference: M.J. Kusner, B. Paige, J.M. Hernández-Lobato, Grammar variational autoencoder, in: D. Precup, Y.W. Teh (Eds.), Proceedings of the 34th International Conference on Machine Learning, Vol. 70 of Proceedings of Machine Learning Research, PMLR, International Convention Centre, Sydney, Australia, 2017, pp. 1945–1954. URL:
– reference: .
– volume: 51
  start-page: 506
  year: 2016
  end-page: 512
  ident: b0045
  article-title: Charge injection barriers at metal/polyethylene interfaces
  publication-title: J. Mater. Sci.
– reference: J. You, B. Liu, R. Ying, V. Pande, J. Leskovec, Graph convolutional policy network for goal-directed molecular graph generation, in: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, Curran Associates Inc., Red Hook, NY, USA, 2018, p. 6412–6422.
– reference: Q. Liu, M. Allamanis, M. Brockschmidt, A. Gaunt, Constrained graph variational autoencoders for molecule design, in: S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems 31, Curran Associates Inc, 2018, pp. 7795–7804. URL: http://papers.nips.cc/paper/8005-constrained-graph-variational-autoencoders-for-molecule-design.pdf.
– reference: H. Dai, Y. Tian, B. Dai, S. Skiena, L. Song, Syntax-directed variational autoencoder for structured data, arXiv:1802.08786. URL: https://arxiv.org/abs/1802.08786.
– volume: 27
  start-page: 024002
  year: 2019
  ident: b0150
  publication-title: Model. Simul. Mater. Sci. Eng.
– reference: S. Venkatram, C. Kim, A. Chandrasekaran, R. Ramprasad, Critical assessment of the hildebrand and hansen solubility parameters for polymers, J. Chem. Inf. Model. 59 (10) (2019) 4188–4194, pMID: 31545900. arXiv:https://doi.org/10.1021/acs.jcim.9b00656, doi:10.1021/acs.jcim.9b00656. URL: doi: 10.1021/acs.jcim.9b00656.
– year: 2002
  ident: b0130
  article-title: Prediction of Polymer Properties
– volume: 9
  start-page: 860
  year: 2019
  end-page: 866
  ident: b0050
  article-title: Active-learning and materials design: the example of high glass transition temperature polymers
  publication-title: MRS Commun.
– reference: W. Jin, R. Barzilay, T. Jaakkola, Syntax-directed variational autoencoder for structured data, arXiv:1802.04364. URL: https://arxiv.org/abs/1802.04364.
– year: 1997
  ident: b0005
  article-title: Properties of Polymers: Their Correlation with Chemical Structure
– volume: 6
  start-page: 61
  year: 2020
  ident: b0030
  article-title: Frequency-dependent dielectric constant prediction of polymers using machine learning
  publication-title: Npj Comput. Mater.
– volume: 40
  start-page: 451
  year: 2020
  end-page: 457
  ident: b0040
  article-title: Polymer genome-based prediction of gas permeabilities in polymers
  publication-title: J. Polym. Eng.
– volume: 92
  year: 2015
  ident: 10.1016/j.commatsci.2020.110067_b0075
  article-title: Accelerated materials property predictions and design using motif-based fingerprints
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.014106
– volume: 6
  start-page: 20952
  year: 2016
  ident: 10.1016/j.commatsci.2020.110067_b0070
  article-title: Machine learning strategy for the accelerated design of polymer dielectrics
  publication-title: Sci. Rep.
  doi: 10.1038/srep20952
– ident: 10.1016/j.commatsci.2020.110067_b0120
– volume: 3
  year: 2016
  ident: 10.1016/j.commatsci.2020.110067_b0125
  article-title: A polymer dataset for accelerated property prediction and design
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.12
– year: 1997
  ident: 10.1016/j.commatsci.2020.110067_b0005
– volume: 40
  start-page: 451
  issue: 6
  year: 2020
  ident: 10.1016/j.commatsci.2020.110067_b0040
  article-title: Polymer genome-based prediction of gas permeabilities in polymers
  publication-title: J. Polym. Eng.
  doi: 10.1515/polyeng-2019-0329
– volume: 27
  start-page: 024002
  issue: 2
  year: 2019
  ident: 10.1016/j.commatsci.2020.110067_b0150
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/1361-651X/aaf8ca
– ident: 10.1016/j.commatsci.2020.110067_b0160
– year: 2006
  ident: 10.1016/j.commatsci.2020.110067_b0155
– volume: 127
  issue: 21
  year: 2020
  ident: 10.1016/j.commatsci.2020.110067_b0035
  article-title: Refractive index prediction models for polymers using machine learning
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0008026
– volume: 51
  start-page: 506
  issue: 1
  year: 2016
  ident: 10.1016/j.commatsci.2020.110067_b0045
  article-title: Charge injection barriers at metal/polyethylene interfaces
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-015-9369-2
– volume: 9
  start-page: 860
  year: 2019
  ident: 10.1016/j.commatsci.2020.110067_b0050
  article-title: Active-learning and materials design: the example of high glass transition temperature polymers
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2019.78
– ident: 10.1016/j.commatsci.2020.110067_b0095
– ident: 10.1016/j.commatsci.2020.110067_b0105
– ident: 10.1016/j.commatsci.2020.110067_b0110
– volume: 28
  start-page: 6277
  year: 2016
  ident: 10.1016/j.commatsci.2020.110067_b0020
  article-title: Rational co-design of polymer dielectrics for energy storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600377
– year: 2002
  ident: 10.1016/j.commatsci.2020.110067_b0130
– year: 2009
  ident: 10.1016/j.commatsci.2020.110067_b0135
– ident: 10.1016/j.commatsci.2020.110067_b0085
– ident: 10.1016/j.commatsci.2020.110067_b0165
  doi: 10.1002/cmdc.200800178
– ident: 10.1016/j.commatsci.2020.110067_b0100
– ident: 10.1016/j.commatsci.2020.110067_b0060
  doi: 10.1021/acs.jcim.9b00656
– volume: 6
  start-page: 61
  year: 2020
  ident: 10.1016/j.commatsci.2020.110067_b0030
  article-title: Frequency-dependent dielectric constant prediction of polymers using machine learning
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-020-0333-6
– ident: 10.1016/j.commatsci.2020.110067_b0115
– volume: 159
  start-page: 95
  year: 2018
  ident: 10.1016/j.commatsci.2020.110067_b0065
  article-title: A material genome approach towards exploration of zn and cd coordination complex polyester as dielectrics: design, synthesis and characterization
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.10.017
– volume: 83
  start-page: 236
  year: 2016
  ident: 10.1016/j.commatsci.2020.110067_b0025
  article-title: Advanced polymeric dielectrics for high energy density applications
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2016.05.001
– ident: 10.1016/j.commatsci.2020.110067_b0080
  doi: 10.1021/acscentsci.7b00572
– year: 1975
  ident: 10.1016/j.commatsci.2020.110067_b0145
– volume: 21
  start-page: 785
  issue: 7
  year: 2018
  ident: 10.1016/j.commatsci.2020.110067_b0010
  article-title: Scoping the polymer genome: a roadmap for rational polymer dielectrics design and beyond
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.11.021
– ident: 10.1016/j.commatsci.2020.110067_b0140
  doi: 10.1109/EIDWT.2011.13
– volume: 29
  start-page: 9001
  issue: 21
  year: 2017
  ident: 10.1016/j.commatsci.2020.110067_b0055
  article-title: Mining materials design rules from data: the example of polymer dielectrics
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02027
– ident: 10.1016/j.commatsci.2020.110067_b0090
– ident: 10.1016/j.commatsci.2020.110067_b0015
  doi: 10.1021/acs.jpcc.8b02913
SSID ssj0016982
Score 2.64524
Snippet [Display omitted] •Genetic algorithm achieves new polymer designs with high bandgap and high glass transition temperature.•Machine learning prediction models...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110067
SubjectTerms Bandgap
Genetic algorithm
Glass transition temperature
Machine learning
Polymer
Title Polymer design using genetic algorithm and machine learning
URI https://dx.doi.org/10.1016/j.commatsci.2020.110067
Volume 186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfOKz7MHr2jS7yW70VIqlKhZBC72FfaVW2rSUevDib3d2k5QWhB68hp0hTGZmZ8I38yF009JaByaLSJywhLCQUaLCSJDAcrd_zs1Kumnkl37cG7CnYTSsoU41C-NglWXuL3K6z9blk2ZpzeZ8PG6-BYmbpYL726-5Em6IjzHuvPz2ZwXzaMWJJ4xyh4k7vYHxAt1QF4J2aBRDD4kPPOH8HzfU2q3TPUD7ZbmI28UbHaKazY_Q3toSwWN0_zqbfE_tAhsPxsAOyT7C4BduPBHLyWgG_f_HFMvc4KmHTlpcckWMTtCg-_De6ZGSEoFo2oqWREeSQw2SZdB1BDqyoeaUC2oYpUoriE_HGg1xyYyIGQRjomwgZaKMNczEsaCnqJ7PcnuGcJZlEpotS63ImFKh5KBB2IhTwxPZEucorsyQ6nJfuKOtmKQVMOwzXdkvdfZLC_udo2AlOC9WZmwXuavsnG58_RQS-zbhi_8IX6Ld0KFU_E-VK1RfLr7sNZQZS9XwftRAO-3H517_F0ud0fc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB6sHtoeSp_UPvfQ62LMbl7tSaQS64NCFbyFZHdjLRpF0kP_fXc3G1EoeOg1ZDZhmGfyzXwAT03GmMVTB7sBDTC1KcGJ7fjYEp7aP6dmJdU08mDohmP6NnEmFWiXszAKVmlifxHTdbQ2VxpGm43VbNb4sAI1SyXzt15z5QcHUFPbqZwq1FrdXjjc_ExwA80Zpe7HSmAH5iWPl6WhfIDsFW2Nirc05_wfSWor8XRO4cRUjKhVvNQZVER2DsdbewQv4OV9Of9ZiDXiGo-BFJh9iqRpqAlFFM-ny_Us_1ygOONoodGTAhm6iOkljDuvo3aIDSsCZqTp5Jg5sSfLkDSVjYfFHGEzj3g-4ZSQhCXSRRVxtHRNyn2XSn8MEmHFcZBwwSl3XZ9cQTVbZuIaUJqmsey3BBF-SpPEjj15gi8cj3AviJt-HdxSDREzK8MVc8U8KrFhX9FGf5HSX1Torw7WRnBVbM3YL_Jc6jnaMYBIxvZ9wjf_EX6Ew3A06Ef97rB3C0e2Aq3obyx3UM3X3-JeVh158mCs6heLgNSo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymer+design+using+genetic+algorithm+and+machine+learning&rft.jtitle=Computational+materials+science&rft.au=Kim%2C+Chiho&rft.au=Batra%2C+Rohit&rft.au=Chen%2C+Lihua&rft.au=Tran%2C+Huan&rft.date=2021-01-01&rft.issn=0927-0256&rft.volume=186&rft.spage=110067&rft_id=info:doi/10.1016%2Fj.commatsci.2020.110067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_commatsci_2020_110067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon