Polymer design using genetic algorithm and machine learning
[Display omitted] •Genetic algorithm achieves new polymer designs with high bandgap and high glass transition temperature.•Machine learning prediction models assist rapid evaluation of fitness function.•Chemical fragments leading high performance of polymers are highlighted. Data driven or machine l...
Saved in:
Published in | Computational materials science Vol. 186; p. 110067 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Genetic algorithm achieves new polymer designs with high bandgap and high glass transition temperature.•Machine learning prediction models assist rapid evaluation of fitness function.•Chemical fragments leading high performance of polymers are highlighted.
Data driven or machine learning (ML) based methods have been recently used in materials science to provide quick material property predictions. Although powerful and robust, these predictive models are still limited in terms of their applicability towards the design of materials with target property or performance objectives. Here, we employ a nature-mimicking optimization method, the genetic algorithm, in tandem with ML-based predictive models to design polymers that meet practically useful, but extreme, property criteria (i.e., glass transition temperature, Tg>500 K and bandgap, Eg>6 eV). Analogous to nature, the characteristic properties of a polymer are assumed to be determined by the constituting types and sequence of chemical building blocks (or fragments) in the monomer unit. Evolution of polymers by natural operations of crossover, mutation, and selection over 100 generations leads to creation of 132 new (as compared to 4 already known cases) and chemically unique polymers with high Tg and Eg. Chemical guidelines on what fragments make up polymers with extreme thermal and electrical performance metrics have been selected and revealed by the algorithm. The approach presented here is general and can be extended to design polymers with different property objectives. |
---|---|
AbstractList | [Display omitted]
•Genetic algorithm achieves new polymer designs with high bandgap and high glass transition temperature.•Machine learning prediction models assist rapid evaluation of fitness function.•Chemical fragments leading high performance of polymers are highlighted.
Data driven or machine learning (ML) based methods have been recently used in materials science to provide quick material property predictions. Although powerful and robust, these predictive models are still limited in terms of their applicability towards the design of materials with target property or performance objectives. Here, we employ a nature-mimicking optimization method, the genetic algorithm, in tandem with ML-based predictive models to design polymers that meet practically useful, but extreme, property criteria (i.e., glass transition temperature, Tg>500 K and bandgap, Eg>6 eV). Analogous to nature, the characteristic properties of a polymer are assumed to be determined by the constituting types and sequence of chemical building blocks (or fragments) in the monomer unit. Evolution of polymers by natural operations of crossover, mutation, and selection over 100 generations leads to creation of 132 new (as compared to 4 already known cases) and chemically unique polymers with high Tg and Eg. Chemical guidelines on what fragments make up polymers with extreme thermal and electrical performance metrics have been selected and revealed by the algorithm. The approach presented here is general and can be extended to design polymers with different property objectives. |
ArticleNumber | 110067 |
Author | Chen, Lihua Kim, Chiho Batra, Rohit Tran, Huan Ramprasad, Rampi |
Author_xml | – sequence: 1 givenname: Chiho orcidid: 0000-0002-1814-4980 surname: Kim fullname: Kim, Chiho – sequence: 2 givenname: Rohit orcidid: 0000-0002-1098-7035 surname: Batra fullname: Batra, Rohit – sequence: 3 givenname: Lihua orcidid: 0000-0002-9852-8211 surname: Chen fullname: Chen, Lihua – sequence: 4 givenname: Huan orcidid: 0000-0002-8093-9426 surname: Tran fullname: Tran, Huan – sequence: 5 givenname: Rampi surname: Ramprasad fullname: Ramprasad, Rampi email: rampi.ramprasad@mse.gatech.edu |
BookMark | eNqNkM1KxDAUhYMoODP6DPYFOt40bZIiLobBPxjQha5Dmtx2MrSpJFGYt7fDiAs3urpwON-B-83JqR89EnJFYUmB8uvd0ozDoFM0bllAMaUUgIsTMqNS1DlIoKdkBnUhcigqfk7mMe5gImtZzMjNy9jvBwyZxeg6n31E57usQ4_JmUz33Rhc2g6Z9jYbtNk6j1mPOvipdkHOWt1HvPy-C_J2f_e6fsw3zw9P69UmN4xWKTeVFpxWbcs5B1NhYQQTktmSscY0jErKgUEJpZW8rISsGwSt68aiLS3nki3I7XHXhDHGgK0yLunkRp-Cdr2ioA4m1E79mFAHE-poYuLFL_49uEGH_T_I1ZHE6b1Ph0FNDfQGrQtokrKj-3PjCxYuf8A |
CitedBy_id | crossref_primary_10_1016_j_progpolymsci_2025_101931 crossref_primary_10_1016_j_commatsci_2024_113489 crossref_primary_10_1038_s41598_022_14528_9 crossref_primary_10_3390_electronics13204042 crossref_primary_10_3390_polym16182680 crossref_primary_10_1016_j_eti_2022_102925 crossref_primary_10_1016_j_mser_2020_100595 crossref_primary_10_1063_5_0057162 crossref_primary_10_1155_2021_8784361 crossref_primary_10_1021_acs_macromol_3c02401 crossref_primary_10_1016_j_cej_2022_139540 crossref_primary_10_1016_j_commatsci_2021_110528 crossref_primary_10_1021_acsomega_1c02760 crossref_primary_10_1049_nde2_12029 crossref_primary_10_1039_D4CP00632A crossref_primary_10_1155_2022_3106672 crossref_primary_10_1016_j_commatsci_2024_113651 crossref_primary_10_1088_2516_1083_ad7220 crossref_primary_10_1021_acs_chemmater_2c02991 crossref_primary_10_1021_acs_jcim_3c01572 crossref_primary_10_1039_D3PY00395G crossref_primary_10_1039_D4DD00293H crossref_primary_10_1016_j_optcom_2024_131304 crossref_primary_10_1155_2022_2056323 crossref_primary_10_3390_polym13162606 crossref_primary_10_1016_j_ces_2024_119952 crossref_primary_10_1021_acspolymersau_3c00025 crossref_primary_10_1007_s11426_024_2072_4 crossref_primary_10_1155_2021_4856265 crossref_primary_10_1021_acs_jpcc_2c07666 crossref_primary_10_53759_7669_jmc202404054 crossref_primary_10_1038_s41467_023_40459_8 crossref_primary_10_1063_5_0087392 crossref_primary_10_1038_s41467_024_50413_x crossref_primary_10_1039_D1EE03224K crossref_primary_10_1016_j_commatsci_2024_112811 crossref_primary_10_1021_acspolymersau_1c00015 crossref_primary_10_1039_D3ME00151B crossref_primary_10_1063_5_0155012 crossref_primary_10_1016_j_pmatsci_2024_101282 crossref_primary_10_1021_acs_jcim_4c01530 crossref_primary_10_1155_je_5900477 crossref_primary_10_1557_s43580_023_00505_5 crossref_primary_10_1016_j_matdes_2025_113691 crossref_primary_10_1063_5_0044306 crossref_primary_10_1109_ACCESS_2022_3177735 crossref_primary_10_1021_acsabm_2c00346 crossref_primary_10_1021_acs_chemmater_4c01757 crossref_primary_10_1038_s41467_023_39868_6 crossref_primary_10_1021_acsenergylett_2c01836 crossref_primary_10_1063_5_0052962 crossref_primary_10_3390_ma15051811 crossref_primary_10_1016_j_rinma_2023_100376 crossref_primary_10_1007_s10853_021_06520_x crossref_primary_10_1063_5_0216862 crossref_primary_10_1515_revce_2023_0021 crossref_primary_10_1038_s41524_024_01449_6 crossref_primary_10_1016_j_matdes_2022_110815 crossref_primary_10_1039_D2SM00452F crossref_primary_10_1038_s41524_023_01066_9 crossref_primary_10_1109_ACCESS_2023_3272356 crossref_primary_10_1016_j_solener_2023_111853 crossref_primary_10_1021_acs_chemmater_0c03332 crossref_primary_10_1016_j_memlet_2023_100040 crossref_primary_10_1063_5_0023759 crossref_primary_10_1016_j_commatsci_2024_113206 crossref_primary_10_1039_D4SC02934H crossref_primary_10_3390_su15043628 crossref_primary_10_1063_5_0177266 crossref_primary_10_1021_jacs_2c13467 crossref_primary_10_1038_s41524_024_01470_9 crossref_primary_10_1039_D3DD00078H crossref_primary_10_1038_s41467_023_39396_3 crossref_primary_10_5902_2179460X87076 crossref_primary_10_1002_adfm_202309844 crossref_primary_10_1016_j_susmat_2021_e00370 crossref_primary_10_1063_5_0174034 crossref_primary_10_2478_amns_2023_2_00070 crossref_primary_10_1016_j_aichem_2023_100035 crossref_primary_10_1038_s41524_024_01304_8 crossref_primary_10_1039_D4PY00623B crossref_primary_10_1080_17455030_2022_2094028 crossref_primary_10_1039_D1SM00725D crossref_primary_10_1021_acs_chemmater_1c02061 crossref_primary_10_1371_journal_pone_0317277 crossref_primary_10_1142_S0218126621502534 crossref_primary_10_1039_D2TA09272G crossref_primary_10_1073_pnas_2309062120 crossref_primary_10_1016_j_matt_2023_04_016 crossref_primary_10_1021_acsami_1c07545 crossref_primary_10_1016_j_coco_2023_101806 crossref_primary_10_1063_5_0080838 crossref_primary_10_1038_s43588_025_00768_y crossref_primary_10_1016_j_dmpk_2021_100428 crossref_primary_10_1021_acsami_2c14290 crossref_primary_10_1016_j_memsci_2024_123256 crossref_primary_10_1002_oca_2824 crossref_primary_10_1016_j_apenergy_2024_125203 crossref_primary_10_15507_2658_4123_034_202404_597_614 crossref_primary_10_1021_acs_macromol_2c02249 crossref_primary_10_1063_5_0205433 crossref_primary_10_1016_j_aichem_2024_100049 crossref_primary_10_1016_j_future_2022_12_026 crossref_primary_10_3390_met11081164 crossref_primary_10_1016_j_scs_2024_105978 crossref_primary_10_3390_ijms231810712 crossref_primary_10_1002_macp_202400055 crossref_primary_10_1021_acs_chemmater_4c02920 crossref_primary_10_1038_s41578_020_00255_y crossref_primary_10_32604_cmc_2024_049582 crossref_primary_10_1155_2023_8868540 crossref_primary_10_1016_j_mtphys_2024_101438 crossref_primary_10_1016_j_aichem_2024_100054 crossref_primary_10_3390_polym16081049 crossref_primary_10_1016_j_isatra_2024_12_048 crossref_primary_10_1007_s11831_024_10100_y crossref_primary_10_1002_aisy_202200243 crossref_primary_10_1016_j_pmatsci_2022_101043 crossref_primary_10_3390_s23042242 crossref_primary_10_1007_s41660_021_00177_4 crossref_primary_10_1016_j_memsci_2024_123169 crossref_primary_10_1016_j_solener_2024_112417 crossref_primary_10_1021_acs_jctc_4c01347 crossref_primary_10_1002_pol_20240649 crossref_primary_10_2174_0113852728249020230921072236 crossref_primary_10_1002_aisy_202300085 crossref_primary_10_1016_j_matdes_2024_112685 crossref_primary_10_1360_TB_2024_0800 crossref_primary_10_1111_jfpe_14293 crossref_primary_10_3390_s24113573 crossref_primary_10_1002_ange_202415056 crossref_primary_10_1371_journal_pone_0273418 crossref_primary_10_1021_acs_macromol_1c00728 crossref_primary_10_1177_00368504211059050 crossref_primary_10_1038_s41578_024_00708_8 crossref_primary_10_1038_s41524_024_01492_3 crossref_primary_10_1002_asjc_3503 crossref_primary_10_1073_pnas_2220021120 crossref_primary_10_1021_acs_iecr_1c03661 crossref_primary_10_1002_anie_202415056 crossref_primary_10_3390_app13095584 |
Cites_doi | 10.1103/PhysRevB.92.014106 10.1038/srep20952 10.1038/sdata.2016.12 10.1515/polyeng-2019-0329 10.1088/1361-651X/aaf8ca 10.1063/5.0008026 10.1007/s10853-015-9369-2 10.1557/mrc.2019.78 10.1002/adma.201600377 10.1002/cmdc.200800178 10.1021/acs.jcim.9b00656 10.1038/s41524-020-0333-6 10.1016/j.polymer.2018.10.017 10.1016/j.pmatsci.2016.05.001 10.1021/acscentsci.7b00572 10.1016/j.mattod.2017.11.021 10.1109/EIDWT.2011.13 10.1021/acs.chemmater.7b02027 10.1021/acs.jpcc.8b02913 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.commatsci.2020.110067 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0801 |
ExternalDocumentID | 10_1016_j_commatsci_2020_110067 S0927025620305589 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SMS SPC SPCBC SPD SSM SST SSZ T5K VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c315t-c5a7615ff6660c5e2c73783d433bcb31816030404d8645789be0aa9bded4d6683 |
IEDL.DBID | .~1 |
ISSN | 0927-0256 |
IngestDate | Tue Jul 01 02:01:07 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Fri Feb 23 02:45:47 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Polymer Genetic algorithm Glass transition temperature Machine learning Bandgap |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c315t-c5a7615ff6660c5e2c73783d433bcb31816030404d8645789be0aa9bded4d6683 |
ORCID | 0000-0002-1814-4980 0000-0002-8093-9426 0000-0002-1098-7035 0000-0002-9852-8211 |
ParticipantIDs | crossref_citationtrail_10_1016_j_commatsci_2020_110067 crossref_primary_10_1016_j_commatsci_2020_110067 elsevier_sciencedirect_doi_10_1016_j_commatsci_2020_110067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | Computational materials science |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Huan, Boggs, Teyssedre, Laurent, Cakmak, Kumar, Ramprasad (b0025) 2016; 83 H. Dai, Y. Tian, B. Dai, S. Skiena, L. Song, Syntax-directed variational autoencoder for structured data, arXiv:1802.08786. URL: https://arxiv.org/abs/1802.08786. RDKit, open source toolkit for cheminformatics. URL Mannodi-Kanakkithodi, Pilania, Huan, Lookman, Ramprasad (b0070) 2016; 6 S. Venkatram, C. Kim, A. Chandrasekaran, R. Ramprasad, Critical assessment of the hildebrand and hansen solubility parameters for polymers, J. Chem. Inf. Model. 59 (10) (2019) 4188–4194, pMID: 31545900. arXiv:https://doi.org/10.1021/acs.jcim.9b00656, doi:10.1021/acs.jcim.9b00656. URL: doi: 10.1021/acs.jcim.9b00656. Mannodi-Kanakkithodi, Huan, Ramprasad (b0055) 2017; 29 Chen, Huan, Quintero, Ramprasad (b0045) 2016; 51 Lightstone, Chen, Kim, Batra, Ramprasad (b0035) 2020; 127 Q. Liu, M. Allamanis, M. Brockschmidt, A. Gaunt, Constrained graph variational autoencoders for molecule design, in: S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems 31, Curran Associates Inc, 2018, pp. 7795–7804. URL: http://papers.nips.cc/paper/8005-constrained-graph-variational-autoencoders-for-molecule-design.pdf. Mannodi-Kanakkithodi, Treich, Huan, Ma, Tefferi, Cao, Sotzing, Ramprasad (b0020) 2016; 28 C. Kim, A. Chandrasekaran, T.D. Huan, D. Das, R. Ramprasad, Polymer genome: A data-powered polymer informatics platform for property predictions, J. Phys. Chem. C 122 (31) (2018) 17575–17585. arXiv:https://doi.org/10.1021/acs.jpcc.8b02913, doi:10.1021/acs.jpcc.8b02913. URL: doi: 10.1021/acs.jpcc.8b02913. van Krevelen (b0005) 1997 C. Wu, A.A. Deshmukh, Z. Li, L. Chen, A. Alamri, Y. Wang, R. Ramprasad, G.A. Sotzing, Y. Cao, Flexible temperature-invariant polymer dielectrics with large bandgap, Adv. Mater. 2000499 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.202000499, doi:10.1002/adma.202000499. URL Huan, Mannodi-Kanakkithodi, Ramprasad (b0075) 2015; 92 Kim, Chandrasekaran, Jha, Ramprasad (b0050) 2019; 9 Chen, Kim, Batra, Lightstone, Wu, Li, Deshmukh, Wang, Tran, Vashishta, Sotzing, Cao, Ramprasad (b0030) 2020; 6 M.J. Kusner, B. Paige, J.M. Hernández-Lobato, Grammar variational autoencoder, in: D. Precup, Y.W. Teh (Eds.), Proceedings of the 34th International Conference on Machine Learning, Vol. 70 of Proceedings of Machine Learning Research, PMLR, International Convention Centre, Sydney, Australia, 2017, pp. 1945–1954. URL J. Degen, C. Wegscheid-Gerlach, A. Zaliani, M. Rarey, On the art of compiling and using ‘drug-like’ chemical fragment spaces, ChemMedChem 3 (10) (2008) 1503–1507. arXiv:https://chemistry-europe.onlinelibrary.wiley.com/doi/pdf/10.1002/cmdc.200800178, doi:10.1002/cmdc.200800178. URL Holland (b0145) 1975 R. Gómez-Bombarelli, J.N. Wei, D. Duvenaud, J.M. Hernández-Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T.D. Hirzel, R.P. Adams, A. Aspuru-Guzik, Automatic chemical design using a data-driven continuous representation of molecules, ACS Cent. Sci. 4 (2) (2018) 268–276, pMID: 29532027. arXiv:https://doi.org/10.1021/acscentsci.7b00572, doi:10.1021/acscentsci.7b00572. URL: doi: 10.1021/acscentsci.7b00572. S. Otsuka, I. Kuwajima, J. Hosoya, Y. Xu, M. Yamazaki, Polyinfo: Polymer database for polymeric materials design, in: 2011 International Conference on Emerging Intelligent Data and Web Technologies (EIDWT), IEEE, Tirana, 2011, pp. 22–29. doi:10.1109/EIDWT.2011.13. . Jha, Chandrasekaran, Kim, Ramprasad (b0150) 2019; 27 (b0155) 2006 J. You, B. Liu, R. Ying, V. Pande, J. Leskovec, Graph convolutional policy network for goal-directed molecular graph generation, in: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, Curran Associates Inc., Red Hook, NY, USA, 2018, p. 6412–6422. Nasreen, Treich, Baczkowski, Mannodi-Kanakkithodi, Baldwin, Scheirey, Cao, Ramprasad, Sotzing (b0065) 2018; 159 N. De Cao, T. Kipf, Molgan: An implicit generative model for small molecular graphs, arxiv.org/abs/1805.11973. URL: https://arxiv.org/abs/1805.11973. Huan, Mannodi-Kanakkithodi, Kim, Sharma, Pilania, Ramprasad (b0125) 2016; 3 Bicerano (b0130) 2002 Mannodi-Kanakkithodi, Chandrasekaran, Kim, Huan, Pilania, Botu, Ramprasad (b0010) 2018; 21 G. Lima Guimaraes, B. Sanchez-Lengeling, C. Outeiral, P. Luis Cunha Farias, A. Aspuru-Guzik, Objective-reinforced generative adversarial networks (organ) for sequence generation models, arXiv:1705.10843. URL: https://arxiv.org/abs/1705.10843. Zhu, Kim, Chandrasekarn, Everett, Ramprasad, Lively (b0040) 2020; 40 W. Jin, R. Barzilay, T. Jaakkola, Syntax-directed variational autoencoder for structured data, arXiv:1802.04364. URL: https://arxiv.org/abs/1802.04364. (b0135) 2009 10.1016/j.commatsci.2020.110067_b0105 Huan (10.1016/j.commatsci.2020.110067_b0125) 2016; 3 10.1016/j.commatsci.2020.110067_b0100 Bicerano (10.1016/j.commatsci.2020.110067_b0130) 2002 10.1016/j.commatsci.2020.110067_b0165 Chen (10.1016/j.commatsci.2020.110067_b0030) 2020; 6 10.1016/j.commatsci.2020.110067_b0120 Chen (10.1016/j.commatsci.2020.110067_b0045) 2016; 51 Mannodi-Kanakkithodi (10.1016/j.commatsci.2020.110067_b0010) 2018; 21 Lightstone (10.1016/j.commatsci.2020.110067_b0035) 2020; 127 10.1016/j.commatsci.2020.110067_b0090 10.1016/j.commatsci.2020.110067_b0095 Zhu (10.1016/j.commatsci.2020.110067_b0040) 2020; 40 Huan (10.1016/j.commatsci.2020.110067_b0025) 2016; 83 Mannodi-Kanakkithodi (10.1016/j.commatsci.2020.110067_b0070) 2016; 6 (10.1016/j.commatsci.2020.110067_b0155) 2006 van Krevelen (10.1016/j.commatsci.2020.110067_b0005) 1997 Mannodi-Kanakkithodi (10.1016/j.commatsci.2020.110067_b0055) 2017; 29 Mannodi-Kanakkithodi (10.1016/j.commatsci.2020.110067_b0020) 2016; 28 10.1016/j.commatsci.2020.110067_b0110 Jha (10.1016/j.commatsci.2020.110067_b0150) 2019; 27 (10.1016/j.commatsci.2020.110067_b0135) 2009 10.1016/j.commatsci.2020.110067_b0115 10.1016/j.commatsci.2020.110067_b0015 10.1016/j.commatsci.2020.110067_b0080 Huan (10.1016/j.commatsci.2020.110067_b0075) 2015; 92 10.1016/j.commatsci.2020.110067_b0085 10.1016/j.commatsci.2020.110067_b0140 10.1016/j.commatsci.2020.110067_b0160 10.1016/j.commatsci.2020.110067_b0060 Holland (10.1016/j.commatsci.2020.110067_b0145) 1975 Kim (10.1016/j.commatsci.2020.110067_b0050) 2019; 9 Nasreen (10.1016/j.commatsci.2020.110067_b0065) 2018; 159 |
References_xml | – volume: 127 year: 2020 ident: b0035 article-title: Refractive index prediction models for polymers using machine learning publication-title: J. Appl. Phys. – reference: G. Lima Guimaraes, B. Sanchez-Lengeling, C. Outeiral, P. Luis Cunha Farias, A. Aspuru-Guzik, Objective-reinforced generative adversarial networks (organ) for sequence generation models, arXiv:1705.10843. URL: https://arxiv.org/abs/1705.10843. – volume: 83 start-page: 236 year: 2016 ident: b0025 article-title: Advanced polymeric dielectrics for high energy density applications publication-title: Prog. Mater. Sci. – reference: C. Wu, A.A. Deshmukh, Z. Li, L. Chen, A. Alamri, Y. Wang, R. Ramprasad, G.A. Sotzing, Y. Cao, Flexible temperature-invariant polymer dielectrics with large bandgap, Adv. Mater. 2000499 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.202000499, doi:10.1002/adma.202000499. URL: – year: 2009 ident: b0135 publication-title: Polymer Data Handbook – volume: 21 start-page: 785 year: 2018 end-page: 796 ident: b0010 article-title: Scoping the polymer genome: a roadmap for rational polymer dielectrics design and beyond publication-title: Mater. Today – reference: C. Kim, A. Chandrasekaran, T.D. Huan, D. Das, R. Ramprasad, Polymer genome: A data-powered polymer informatics platform for property predictions, J. Phys. Chem. C 122 (31) (2018) 17575–17585. arXiv:https://doi.org/10.1021/acs.jpcc.8b02913, doi:10.1021/acs.jpcc.8b02913. URL: doi: 10.1021/acs.jpcc.8b02913. – volume: 92 year: 2015 ident: b0075 article-title: Accelerated materials property predictions and design using motif-based fingerprints publication-title: Phys. Rev. B – volume: 29 start-page: 9001 year: 2017 end-page: 9010 ident: b0055 article-title: Mining materials design rules from data: the example of polymer dielectrics publication-title: Chem. Mater. – reference: RDKit, open source toolkit for cheminformatics. URL: – reference: R. Gómez-Bombarelli, J.N. Wei, D. Duvenaud, J.M. Hernández-Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T.D. Hirzel, R.P. Adams, A. Aspuru-Guzik, Automatic chemical design using a data-driven continuous representation of molecules, ACS Cent. Sci. 4 (2) (2018) 268–276, pMID: 29532027. arXiv:https://doi.org/10.1021/acscentsci.7b00572, doi:10.1021/acscentsci.7b00572. URL: doi: 10.1021/acscentsci.7b00572. – year: 2006 ident: b0155 publication-title: Gaussian Processes for Machine Learning – reference: S. Otsuka, I. Kuwajima, J. Hosoya, Y. Xu, M. Yamazaki, Polyinfo: Polymer database for polymeric materials design, in: 2011 International Conference on Emerging Intelligent Data and Web Technologies (EIDWT), IEEE, Tirana, 2011, pp. 22–29. doi:10.1109/EIDWT.2011.13. – reference: N. De Cao, T. Kipf, Molgan: An implicit generative model for small molecular graphs, arxiv.org/abs/1805.11973. URL: https://arxiv.org/abs/1805.11973. – volume: 3 year: 2016 ident: b0125 article-title: A polymer dataset for accelerated property prediction and design publication-title: Sci. Data – volume: 159 start-page: 95 year: 2018 end-page: 105 ident: b0065 article-title: A material genome approach towards exploration of zn and cd coordination complex polyester as dielectrics: design, synthesis and characterization publication-title: Polymer – volume: 6 start-page: 20952 year: 2016 ident: b0070 article-title: Machine learning strategy for the accelerated design of polymer dielectrics publication-title: Sci. Rep. – year: 1975 ident: b0145 article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence – reference: J. Degen, C. Wegscheid-Gerlach, A. Zaliani, M. Rarey, On the art of compiling and using ‘drug-like’ chemical fragment spaces, ChemMedChem 3 (10) (2008) 1503–1507. arXiv:https://chemistry-europe.onlinelibrary.wiley.com/doi/pdf/10.1002/cmdc.200800178, doi:10.1002/cmdc.200800178. URL: – volume: 28 start-page: 6277 year: 2016 end-page: 6291 ident: b0020 article-title: Rational co-design of polymer dielectrics for energy storage publication-title: Adv. Mater. – reference: M.J. Kusner, B. Paige, J.M. Hernández-Lobato, Grammar variational autoencoder, in: D. Precup, Y.W. Teh (Eds.), Proceedings of the 34th International Conference on Machine Learning, Vol. 70 of Proceedings of Machine Learning Research, PMLR, International Convention Centre, Sydney, Australia, 2017, pp. 1945–1954. URL: – reference: . – volume: 51 start-page: 506 year: 2016 end-page: 512 ident: b0045 article-title: Charge injection barriers at metal/polyethylene interfaces publication-title: J. Mater. Sci. – reference: J. You, B. Liu, R. Ying, V. Pande, J. Leskovec, Graph convolutional policy network for goal-directed molecular graph generation, in: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, Curran Associates Inc., Red Hook, NY, USA, 2018, p. 6412–6422. – reference: Q. Liu, M. Allamanis, M. Brockschmidt, A. Gaunt, Constrained graph variational autoencoders for molecule design, in: S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems 31, Curran Associates Inc, 2018, pp. 7795–7804. URL: http://papers.nips.cc/paper/8005-constrained-graph-variational-autoencoders-for-molecule-design.pdf. – reference: H. Dai, Y. Tian, B. Dai, S. Skiena, L. Song, Syntax-directed variational autoencoder for structured data, arXiv:1802.08786. URL: https://arxiv.org/abs/1802.08786. – volume: 27 start-page: 024002 year: 2019 ident: b0150 publication-title: Model. Simul. Mater. Sci. Eng. – reference: S. Venkatram, C. Kim, A. Chandrasekaran, R. Ramprasad, Critical assessment of the hildebrand and hansen solubility parameters for polymers, J. Chem. Inf. Model. 59 (10) (2019) 4188–4194, pMID: 31545900. arXiv:https://doi.org/10.1021/acs.jcim.9b00656, doi:10.1021/acs.jcim.9b00656. URL: doi: 10.1021/acs.jcim.9b00656. – year: 2002 ident: b0130 article-title: Prediction of Polymer Properties – volume: 9 start-page: 860 year: 2019 end-page: 866 ident: b0050 article-title: Active-learning and materials design: the example of high glass transition temperature polymers publication-title: MRS Commun. – reference: W. Jin, R. Barzilay, T. Jaakkola, Syntax-directed variational autoencoder for structured data, arXiv:1802.04364. URL: https://arxiv.org/abs/1802.04364. – year: 1997 ident: b0005 article-title: Properties of Polymers: Their Correlation with Chemical Structure – volume: 6 start-page: 61 year: 2020 ident: b0030 article-title: Frequency-dependent dielectric constant prediction of polymers using machine learning publication-title: Npj Comput. Mater. – volume: 40 start-page: 451 year: 2020 end-page: 457 ident: b0040 article-title: Polymer genome-based prediction of gas permeabilities in polymers publication-title: J. Polym. Eng. – volume: 92 year: 2015 ident: 10.1016/j.commatsci.2020.110067_b0075 article-title: Accelerated materials property predictions and design using motif-based fingerprints publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.014106 – volume: 6 start-page: 20952 year: 2016 ident: 10.1016/j.commatsci.2020.110067_b0070 article-title: Machine learning strategy for the accelerated design of polymer dielectrics publication-title: Sci. Rep. doi: 10.1038/srep20952 – ident: 10.1016/j.commatsci.2020.110067_b0120 – volume: 3 year: 2016 ident: 10.1016/j.commatsci.2020.110067_b0125 article-title: A polymer dataset for accelerated property prediction and design publication-title: Sci. Data doi: 10.1038/sdata.2016.12 – year: 1997 ident: 10.1016/j.commatsci.2020.110067_b0005 – volume: 40 start-page: 451 issue: 6 year: 2020 ident: 10.1016/j.commatsci.2020.110067_b0040 article-title: Polymer genome-based prediction of gas permeabilities in polymers publication-title: J. Polym. Eng. doi: 10.1515/polyeng-2019-0329 – volume: 27 start-page: 024002 issue: 2 year: 2019 ident: 10.1016/j.commatsci.2020.110067_b0150 publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/1361-651X/aaf8ca – ident: 10.1016/j.commatsci.2020.110067_b0160 – year: 2006 ident: 10.1016/j.commatsci.2020.110067_b0155 – volume: 127 issue: 21 year: 2020 ident: 10.1016/j.commatsci.2020.110067_b0035 article-title: Refractive index prediction models for polymers using machine learning publication-title: J. Appl. Phys. doi: 10.1063/5.0008026 – volume: 51 start-page: 506 issue: 1 year: 2016 ident: 10.1016/j.commatsci.2020.110067_b0045 article-title: Charge injection barriers at metal/polyethylene interfaces publication-title: J. Mater. Sci. doi: 10.1007/s10853-015-9369-2 – volume: 9 start-page: 860 year: 2019 ident: 10.1016/j.commatsci.2020.110067_b0050 article-title: Active-learning and materials design: the example of high glass transition temperature polymers publication-title: MRS Commun. doi: 10.1557/mrc.2019.78 – ident: 10.1016/j.commatsci.2020.110067_b0095 – ident: 10.1016/j.commatsci.2020.110067_b0105 – ident: 10.1016/j.commatsci.2020.110067_b0110 – volume: 28 start-page: 6277 year: 2016 ident: 10.1016/j.commatsci.2020.110067_b0020 article-title: Rational co-design of polymer dielectrics for energy storage publication-title: Adv. Mater. doi: 10.1002/adma.201600377 – year: 2002 ident: 10.1016/j.commatsci.2020.110067_b0130 – year: 2009 ident: 10.1016/j.commatsci.2020.110067_b0135 – ident: 10.1016/j.commatsci.2020.110067_b0085 – ident: 10.1016/j.commatsci.2020.110067_b0165 doi: 10.1002/cmdc.200800178 – ident: 10.1016/j.commatsci.2020.110067_b0100 – ident: 10.1016/j.commatsci.2020.110067_b0060 doi: 10.1021/acs.jcim.9b00656 – volume: 6 start-page: 61 year: 2020 ident: 10.1016/j.commatsci.2020.110067_b0030 article-title: Frequency-dependent dielectric constant prediction of polymers using machine learning publication-title: Npj Comput. Mater. doi: 10.1038/s41524-020-0333-6 – ident: 10.1016/j.commatsci.2020.110067_b0115 – volume: 159 start-page: 95 year: 2018 ident: 10.1016/j.commatsci.2020.110067_b0065 article-title: A material genome approach towards exploration of zn and cd coordination complex polyester as dielectrics: design, synthesis and characterization publication-title: Polymer doi: 10.1016/j.polymer.2018.10.017 – volume: 83 start-page: 236 year: 2016 ident: 10.1016/j.commatsci.2020.110067_b0025 article-title: Advanced polymeric dielectrics for high energy density applications publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2016.05.001 – ident: 10.1016/j.commatsci.2020.110067_b0080 doi: 10.1021/acscentsci.7b00572 – year: 1975 ident: 10.1016/j.commatsci.2020.110067_b0145 – volume: 21 start-page: 785 issue: 7 year: 2018 ident: 10.1016/j.commatsci.2020.110067_b0010 article-title: Scoping the polymer genome: a roadmap for rational polymer dielectrics design and beyond publication-title: Mater. Today doi: 10.1016/j.mattod.2017.11.021 – ident: 10.1016/j.commatsci.2020.110067_b0140 doi: 10.1109/EIDWT.2011.13 – volume: 29 start-page: 9001 issue: 21 year: 2017 ident: 10.1016/j.commatsci.2020.110067_b0055 article-title: Mining materials design rules from data: the example of polymer dielectrics publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02027 – ident: 10.1016/j.commatsci.2020.110067_b0090 – ident: 10.1016/j.commatsci.2020.110067_b0015 doi: 10.1021/acs.jpcc.8b02913 |
SSID | ssj0016982 |
Score | 2.64524 |
Snippet | [Display omitted]
•Genetic algorithm achieves new polymer designs with high bandgap and high glass transition temperature.•Machine learning prediction models... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110067 |
SubjectTerms | Bandgap Genetic algorithm Glass transition temperature Machine learning Polymer |
Title | Polymer design using genetic algorithm and machine learning |
URI | https://dx.doi.org/10.1016/j.commatsci.2020.110067 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfOKz7MHr2jS7yW70VIqlKhZBC72FfaVW2rSUevDib3d2k5QWhB68hp0hTGZmZ8I38yF009JaByaLSJywhLCQUaLCSJDAcrd_zs1Kumnkl37cG7CnYTSsoU41C-NglWXuL3K6z9blk2ZpzeZ8PG6-BYmbpYL726-5Em6IjzHuvPz2ZwXzaMWJJ4xyh4k7vYHxAt1QF4J2aBRDD4kPPOH8HzfU2q3TPUD7ZbmI28UbHaKazY_Q3toSwWN0_zqbfE_tAhsPxsAOyT7C4BduPBHLyWgG_f_HFMvc4KmHTlpcckWMTtCg-_De6ZGSEoFo2oqWREeSQw2SZdB1BDqyoeaUC2oYpUoriE_HGg1xyYyIGQRjomwgZaKMNczEsaCnqJ7PcnuGcJZlEpotS63ImFKh5KBB2IhTwxPZEucorsyQ6nJfuKOtmKQVMOwzXdkvdfZLC_udo2AlOC9WZmwXuavsnG58_RQS-zbhi_8IX6Ld0KFU_E-VK1RfLr7sNZQZS9XwftRAO-3H517_F0ud0fc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB6sHtoeSp_UPvfQ62LMbl7tSaQS64NCFbyFZHdjLRpF0kP_fXc3G1EoeOg1ZDZhmGfyzXwAT03GmMVTB7sBDTC1KcGJ7fjYEp7aP6dmJdU08mDohmP6NnEmFWiXszAKVmlifxHTdbQ2VxpGm43VbNb4sAI1SyXzt15z5QcHUFPbqZwq1FrdXjjc_ExwA80Zpe7HSmAH5iWPl6WhfIDsFW2Nirc05_wfSWor8XRO4cRUjKhVvNQZVER2DsdbewQv4OV9Of9ZiDXiGo-BFJh9iqRpqAlFFM-ny_Us_1ygOONoodGTAhm6iOkljDuvo3aIDSsCZqTp5Jg5sSfLkDSVjYfFHGEzj3g-4ZSQhCXSRRVxtHRNyn2XSn8MEmHFcZBwwSl3XZ9cQTVbZuIaUJqmsey3BBF-SpPEjj15gi8cj3AviJt-HdxSDREzK8MVc8U8KrFhX9FGf5HSX1Torw7WRnBVbM3YL_Jc6jnaMYBIxvZ9wjf_EX6Ew3A06Ef97rB3C0e2Aq3obyx3UM3X3-JeVh158mCs6heLgNSo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymer+design+using+genetic+algorithm+and+machine+learning&rft.jtitle=Computational+materials+science&rft.au=Kim%2C+Chiho&rft.au=Batra%2C+Rohit&rft.au=Chen%2C+Lihua&rft.au=Tran%2C+Huan&rft.date=2021-01-01&rft.issn=0927-0256&rft.volume=186&rft.spage=110067&rft_id=info:doi/10.1016%2Fj.commatsci.2020.110067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_commatsci_2020_110067 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon |