A data-driven statistical model for predicting the critical temperature of a superconductor

We estimate a statistical model to predict the superconducting critical temperature based on the features extracted from the superconductor’s chemical formula. The statistical model gives reasonable out-of-sample predictions: ±9.5 K based on root-mean-squared-error. Features extracted based on therm...

Full description

Saved in:
Bibliographic Details
Published inComputational materials science Vol. 154; pp. 346 - 354
Main Author Hamidieh, Kam
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We estimate a statistical model to predict the superconducting critical temperature based on the features extracted from the superconductor’s chemical formula. The statistical model gives reasonable out-of-sample predictions: ±9.5 K based on root-mean-squared-error. Features extracted based on thermal conductivity, atomic radius, valence, electron affinity, and atomic mass contribute the most to the model’s predictive accuracy. It is crucial to note that our model does not predict whether a material is a superconductor or not; it only gives predictions for superconductors.
AbstractList We estimate a statistical model to predict the superconducting critical temperature based on the features extracted from the superconductor’s chemical formula. The statistical model gives reasonable out-of-sample predictions: ±9.5 K based on root-mean-squared-error. Features extracted based on thermal conductivity, atomic radius, valence, electron affinity, and atomic mass contribute the most to the model’s predictive accuracy. It is crucial to note that our model does not predict whether a material is a superconductor or not; it only gives predictions for superconductors.
Author Hamidieh, Kam
Author_xml – sequence: 1
  givenname: Kam
  orcidid: 0000-0003-3606-2775
  surname: Hamidieh
  fullname: Hamidieh, Kam
  email: hkam@wharton.upenn.edu
  organization: Statistics Department, The Wharton School, University of Pennsylvania, 400 Jon M. Huntsman Hall, 3730 Walnut Street, Philadelphia, PA 19104-6340, United States
BookMark eNqNkE1LAzEQhoNUsK3-BvMHdk2ybrJ78FCKX1DwoicPIU4mmtLdlCQt-O9NqXjwoqdh4H1eZp4ZmYxhREIuOas54_JqXUMYBpMT-Fow3tVM1awVJ2TKO9VXrGN8QqasF6piopVnZJbSmhWy78SUvC6oNdlUNvo9jjRlk33KHsyGDsHihroQ6Tai9ZD9-E7zB1KI_pjIOGwxmryLSIOjhqZd2SGMdgc5xHNy6swm4cX3nJOXu9vn5UO1erp_XC5WFTS8zRW0QkhoOmh6We6XHC04JtWb6owFsK5DroRV140QwNreoLXSWeN6I3tum2ZObo69EENKEZ0Gf_gjjDkav9Gc6YMpvdY_pvTBlGZKF1OFV7_4bfSDiZ__IBdHEst7e49RlwSOUHRFhKxt8H92fAHuM43G
CitedBy_id crossref_primary_10_1007_s12206_021_0904_6
crossref_primary_10_1007_s00521_021_06304_z
crossref_primary_10_1016_j_neucom_2024_129191
crossref_primary_10_1515_jisys_2022_0224
crossref_primary_10_1007_s10489_022_03316_7
crossref_primary_10_1109_TPAMI_2021_3129809
crossref_primary_10_1093_jigpal_jzae062
crossref_primary_10_1038_s41524_019_0223_y
crossref_primary_10_1103_PhysRevMaterials_7_054805
crossref_primary_10_1016_j_jechem_2022_11_047
crossref_primary_10_1364_JOSAB_448047
crossref_primary_10_1080_27660400_2021_2024101
crossref_primary_10_1016_j_ymssp_2024_111895
crossref_primary_10_1615_Int_J_UncertaintyQuantification_2023038552
crossref_primary_10_1063_5_0189714
crossref_primary_10_1088_1742_5468_ac9829
crossref_primary_10_1080_00401706_2020_1791254
crossref_primary_10_1016_j_commatsci_2024_113018
crossref_primary_10_1007_s40042_024_01103_w
crossref_primary_10_1016_j_patter_2022_100609
crossref_primary_10_1080_10618600_2024_2402896
crossref_primary_10_1016_j_cor_2024_106945
crossref_primary_10_1007_s11704_023_2662_3
crossref_primary_10_1016_j_ijsolstr_2021_111095
crossref_primary_10_1109_TNNLS_2023_3310499
crossref_primary_10_1109_TETC_2022_3215986
crossref_primary_10_1007_s11081_021_09676_2
crossref_primary_10_1088_1361_6668_ac80d8
crossref_primary_10_1016_j_neunet_2023_09_008
crossref_primary_10_7567_1882_0786_ab2922
crossref_primary_10_1038_s41467_020_19448_8
crossref_primary_10_1080_10618600_2020_1778483
crossref_primary_10_1038_s41524_024_01475_4
crossref_primary_10_1007_s42452_020_03260_6
crossref_primary_10_1140_epjp_s13360_024_05947_w
crossref_primary_10_1016_j_envint_2023_107937
crossref_primary_10_1007_s10618_022_00819_2
crossref_primary_10_1021_acs_chemmater_4c01757
crossref_primary_10_1145_3530898
crossref_primary_10_3390_a16080382
crossref_primary_10_1007_s40304_022_00291_w
crossref_primary_10_1214_25_EJS2361
crossref_primary_10_1186_s40537_023_00862_w
crossref_primary_10_1093_imaiai_iaad025
crossref_primary_10_1016_j_neucom_2020_03_114
crossref_primary_10_1007_s41060_021_00251_7
crossref_primary_10_1007_s11590_023_02003_x
crossref_primary_10_1007_s00339_022_06162_z
crossref_primary_10_1109_TBDATA_2020_2992755
crossref_primary_10_3389_fmats_2021_714752
crossref_primary_10_1038_s43246_021_00209_z
crossref_primary_10_1007_s10489_022_04065_3
crossref_primary_10_1080_09720510_2019_1609729
crossref_primary_10_1007_s40314_024_02997_9
crossref_primary_10_1016_j_commatsci_2021_110392
crossref_primary_10_1109_TCYB_2022_3185588
crossref_primary_10_1007_s41870_024_01869_z
crossref_primary_10_1016_j_aej_2023_11_034
crossref_primary_10_1016_j_commatsci_2020_109583
crossref_primary_10_1016_j_neunet_2023_02_043
crossref_primary_10_3390_technologies13020085
crossref_primary_10_1021_acsami_2c02698
crossref_primary_10_1038_s41597_023_02721_y
crossref_primary_10_1007_s42484_024_00165_0
crossref_primary_10_1007_s10994_024_06692_y
crossref_primary_10_1016_j_csda_2022_107436
crossref_primary_10_1016_j_physc_2022_1354031
crossref_primary_10_1111_rssb_12537
crossref_primary_10_1038_s41598_024_54440_y
crossref_primary_10_1016_j_jmsy_2022_02_004
crossref_primary_10_1016_j_scitotenv_2019_134574
crossref_primary_10_1021_acsomega_3c08036
crossref_primary_10_1371_journal_pone_0255823
crossref_primary_10_3390_app13148438
crossref_primary_10_1088_1674_1056_abc0e3
crossref_primary_10_1016_j_mtcomm_2022_104743
crossref_primary_10_1109_ACCESS_2021_3136458
crossref_primary_10_1016_j_physc_2023_1354209
crossref_primary_10_1016_j_psep_2024_10_037
crossref_primary_10_1214_23_EJS2188
crossref_primary_10_1007_s10489_020_01960_5
crossref_primary_10_37920_sasj_2020_54_1_6
crossref_primary_10_1093_jrsssb_qkae117
crossref_primary_10_1109_OJSP_2021_3106197
crossref_primary_10_1021_acs_chemmater_0c01907
crossref_primary_10_1088_1742_6596_1298_1_012020
crossref_primary_10_1038_s41598_021_03198_8
crossref_primary_10_1007_s00521_024_09432_4
crossref_primary_10_1109_ACCESS_2020_2981874
crossref_primary_10_1016_j_chemolab_2021_104437
crossref_primary_10_1002_sta4_315
crossref_primary_10_1109_ACCESS_2020_3006526
crossref_primary_10_1016_j_engappai_2021_104449
crossref_primary_10_1109_TASC_2020_2971456
crossref_primary_10_1007_s42452_020_03266_0
crossref_primary_10_1021_acscentsci_0c00691
crossref_primary_10_3390_e23010088
crossref_primary_10_1007_s42979_022_01664_2
crossref_primary_10_1038_s41467_020_18037_z
crossref_primary_10_1021_acs_jpclett_3c01260
crossref_primary_10_1109_TNNLS_2023_3296895
crossref_primary_10_1007_s11063_021_10474_1
crossref_primary_10_1007_s11222_024_10449_x
crossref_primary_10_1016_j_simpat_2025_103092
crossref_primary_10_3390_ma17174176
crossref_primary_10_1007_s12065_024_00973_0
crossref_primary_10_1021_acsomega_3c03722
crossref_primary_10_1016_j_chemolab_2021_104325
crossref_primary_10_1021_acs_jpclett_1c01442
crossref_primary_10_1016_j_neucom_2020_02_073
crossref_primary_10_1088_1367_2630_abc6e6
crossref_primary_10_1007_s10260_020_00509_7
crossref_primary_10_1007_s10909_020_02545_9
crossref_primary_10_1021_acsomega_2c06324
crossref_primary_10_3390_sym12020262
crossref_primary_10_1016_j_physc_2020_1353689
crossref_primary_10_1109_TNNLS_2021_3105146
crossref_primary_10_1007_s10994_024_06582_3
crossref_primary_10_3390_molecules26010008
crossref_primary_10_1016_j_matpr_2022_03_515
crossref_primary_10_1093_biomet_asaa047
crossref_primary_10_1016_j_chemolab_2024_105084
Cites_doi 10.1021/acs.jcim.6b00591
10.1006/inco.1995.1136
10.1109/39.841342
10.1103/PhysRev.97.74
10.1088/0953-2048/29/8/080502
10.1007/BF00116037
10.7566/JPSJ.86.123701
10.1007/s10948-014-2891-7
10.1214/aos/1013203451
10.1145/2939672.2939785
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.commatsci.2018.07.052
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0801
EndPage 354
ExternalDocumentID 10_1016_j_commatsci_2018_07_052
S0927025618304877
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c315t-c5226c38c39601861edcf067b78adccdf8e172d74322c059aedd6fdaf9a691d33
IEDL.DBID .~1
ISSN 0927-0256
IngestDate Tue Jul 01 02:00:57 EDT 2025
Thu Apr 24 23:06:37 EDT 2025
Fri Feb 23 02:47:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Superconductor
Critical temperature
Data mining
Statistical learning
Superconductivity
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-c5226c38c39601861edcf067b78adccdf8e172d74322c059aedd6fdaf9a691d33
ORCID 0000-0003-3606-2775
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_commatsci_2018_07_052
crossref_primary_10_1016_j_commatsci_2018_07_052
elsevier_sciencedirect_doi_10_1016_j_commatsci_2018_07_052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2018
2018-11-00
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationTitle Computational materials science
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hassenzahl (b0045) 2000; 20
Chen, Huang, Xie, Zhao (b0015) 2018; 9
Goto, Yamada, Matsuda, Aoki, Mizuguchi (b0040) 2017; 86
Izenman (b0055) 2008
Dick (b0025) 2008; 9
Wolfram and Research, Mathematica, version 11.2, 2017.
Schapire (b0085) 1990; 5
.
Hastie, Tibshirani, Friedman (b0050) 2009
T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, xgboost: Extreme Gradient Boosting. R package version 0.6.4.1, 2018.
Conder (b0020) 2016; 29
R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2017.
Owolabi, Akande, Olatunji (b0070) 2015; 28
T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, 2016
S. Valentin, C. Oses, A.G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, I. Takeuchi, Machine learning modeling of superconducting critical temperature, 2017.
Matthias (b0060) 1955; 97
Sheridan, Wang, Liaw, Ma, Gifford (b0090) 2016; 56
Friedman (b0035) 2001; 29
Freund (b0030) 1995; 121
Nishiyama, Fujita, Hoshi, Miao, Terao, Yang, Miyazaki, Goto, Kagayama, Shimizu, Yamaoka, Ishii, Liao, Kubozono (b0065) 2017; 7
T. Owolabi, A. Akande, S. Olatunji, Prediction of superconducting transition temperatures for fe-based superconductors using support vector machine. 35 (2014) 12–26.
Dick (10.1016/j.commatsci.2018.07.052_b0025) 2008; 9
10.1016/j.commatsci.2018.07.052_b0080
Conder (10.1016/j.commatsci.2018.07.052_b0020) 2016; 29
Goto (10.1016/j.commatsci.2018.07.052_b0040) 2017; 86
Friedman (10.1016/j.commatsci.2018.07.052_b0035) 2001; 29
10.1016/j.commatsci.2018.07.052_b0010
10.1016/j.commatsci.2018.07.052_b0075
10.1016/j.commatsci.2018.07.052_b0100
Sheridan (10.1016/j.commatsci.2018.07.052_b0090) 2016; 56
Chen (10.1016/j.commatsci.2018.07.052_b0015) 2018; 9
10.1016/j.commatsci.2018.07.052_b0095
Izenman (10.1016/j.commatsci.2018.07.052_b0055) 2008
10.1016/j.commatsci.2018.07.052_b0005
Owolabi (10.1016/j.commatsci.2018.07.052_b0070) 2015; 28
Hassenzahl (10.1016/j.commatsci.2018.07.052_b0045) 2000; 20
Schapire (10.1016/j.commatsci.2018.07.052_b0085) 1990; 5
Nishiyama (10.1016/j.commatsci.2018.07.052_b0065) 2017; 7
Hastie (10.1016/j.commatsci.2018.07.052_b0050) 2009
Freund (10.1016/j.commatsci.2018.07.052_b0030) 1995; 121
Matthias (10.1016/j.commatsci.2018.07.052_b0060) 1955; 97
References_xml – volume: 5
  start-page: 197
  year: 1990
  end-page: 227
  ident: b0085
  article-title: The strength of weak learnability
  publication-title: Mach. Learn.
– reference: T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, xgboost: Extreme Gradient Boosting. R package version 0.6.4.1, 2018.
– volume: 121
  start-page: 256
  year: 1995
  end-page: 285
  ident: b0030
  article-title: Boosting a weak learning algorithm by majority
  publication-title: Inf. Comput.
– volume: 9
  year: 2018
  ident: b0015
  article-title: Egbmmda: Extreme gradient boosting machine for mirna-disease association prediction
  publication-title: Cell Death Dis.
– volume: 7
  year: 2017
  ident: b0065
  article-title: Preparation and characterization of a new graphite superconductor:
  publication-title: Sci. Rep.
– reference: S. Valentin, C. Oses, A.G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, I. Takeuchi, Machine learning modeling of superconducting critical temperature, 2017.
– year: 2008
  ident: b0055
  article-title: Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning
– volume: 28
  start-page: 75
  year: 2015
  end-page: 81
  ident: b0070
  article-title: Estimation of superconducting transition temperature tc for superconductors of the doped MgB
  publication-title: J. Supercond. Novel Magn.
– year: 2009
  ident: b0050
  article-title: The Elements of Statistical Learning, Data Mining, Interference, and Prediction
– reference: R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2017.
– volume: 9
  year: 2008
  ident: b0025
  article-title: Calculation of the relative metastabilities of proteins using the chnosz software package
  publication-title: Geochem. Trans.
– volume: 86
  start-page: 123701
  year: 2017
  ident: b0040
  article-title: Snas-based layered superconductor
  publication-title: J. Phys. Soc. Jpn.
– reference: .
– volume: 29
  year: 2016
  ident: b0020
  article-title: A second life of the matthias’s rules
  publication-title: Supercond. Sci. Technol.
– reference: T. Owolabi, A. Akande, S. Olatunji, Prediction of superconducting transition temperatures for fe-based superconductors using support vector machine. 35 (2014) 12–26.
– volume: 20
  start-page: 4
  year: 2000
  end-page: 7
  ident: b0045
  article-title: Applications of superconductivity to electric power systems
  publication-title: IEEE Power Eng. Rev.
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: b0035
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Statist.
– volume: 56
  start-page: 2353
  year: 2016
  end-page: 2360
  ident: b0090
  article-title: Extreme gradient boosting as a method for quantitative structure-activity relationships
  publication-title: J. Chem. Inf. Model.
– reference: Wolfram and Research, Mathematica, version 11.2, 2017.
– volume: 97
  start-page: 74
  year: 1955
  end-page: 76
  ident: b0060
  article-title: Empirical relation between superconductivity and the number of electrons per atom
  publication-title: Phys. Rev.
– reference: T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, 2016,
– volume: 9
  issue: 3
  year: 2018
  ident: 10.1016/j.commatsci.2018.07.052_b0015
  article-title: Egbmmda: Extreme gradient boosting machine for mirna-disease association prediction
  publication-title: Cell Death Dis.
– volume: 56
  start-page: 2353
  issue: 12
  year: 2016
  ident: 10.1016/j.commatsci.2018.07.052_b0090
  article-title: Extreme gradient boosting as a method for quantitative structure-activity relationships
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00591
– volume: 121
  start-page: 256
  issue: 2
  year: 1995
  ident: 10.1016/j.commatsci.2018.07.052_b0030
  article-title: Boosting a weak learning algorithm by majority
  publication-title: Inf. Comput.
  doi: 10.1006/inco.1995.1136
– volume: 20
  start-page: 4
  issue: 5
  year: 2000
  ident: 10.1016/j.commatsci.2018.07.052_b0045
  article-title: Applications of superconductivity to electric power systems
  publication-title: IEEE Power Eng. Rev.
  doi: 10.1109/39.841342
– volume: 97
  start-page: 74
  year: 1955
  ident: 10.1016/j.commatsci.2018.07.052_b0060
  article-title: Empirical relation between superconductivity and the number of electrons per atom
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.97.74
– ident: 10.1016/j.commatsci.2018.07.052_b0100
– ident: 10.1016/j.commatsci.2018.07.052_b0095
– volume: 29
  issue: 8
  year: 2016
  ident: 10.1016/j.commatsci.2018.07.052_b0020
  article-title: A second life of the matthias’s rules
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/29/8/080502
– volume: 9
  issue: 10
  year: 2008
  ident: 10.1016/j.commatsci.2018.07.052_b0025
  article-title: Calculation of the relative metastabilities of proteins using the chnosz software package
  publication-title: Geochem. Trans.
– volume: 5
  start-page: 197
  issue: 2
  year: 1990
  ident: 10.1016/j.commatsci.2018.07.052_b0085
  article-title: The strength of weak learnability
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116037
– ident: 10.1016/j.commatsci.2018.07.052_b0010
– volume: 86
  start-page: 123701
  issue: 12
  year: 2017
  ident: 10.1016/j.commatsci.2018.07.052_b0040
  article-title: Snas-based layered superconductor NaSn2As2
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.86.123701
– ident: 10.1016/j.commatsci.2018.07.052_b0080
– year: 2008
  ident: 10.1016/j.commatsci.2018.07.052_b0055
– volume: 28
  start-page: 75
  year: 2015
  ident: 10.1016/j.commatsci.2018.07.052_b0070
  article-title: Estimation of superconducting transition temperature tc for superconductors of the doped MgB2 system from the crystal lattice parameters using support vector regression
  publication-title: J. Supercond. Novel Magn.
  doi: 10.1007/s10948-014-2891-7
– ident: 10.1016/j.commatsci.2018.07.052_b0075
– volume: 7
  issue: 7436
  year: 2017
  ident: 10.1016/j.commatsci.2018.07.052_b0065
  article-title: Preparation and characterization of a new graphite superconductor: Ca0.5Sr0.5C6
  publication-title: Sci. Rep.
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.commatsci.2018.07.052_b0035
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1013203451
– year: 2009
  ident: 10.1016/j.commatsci.2018.07.052_b0050
– ident: 10.1016/j.commatsci.2018.07.052_b0005
  doi: 10.1145/2939672.2939785
SSID ssj0016982
Score 2.6156282
Snippet We estimate a statistical model to predict the superconducting critical temperature based on the features extracted from the superconductor’s chemical formula....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 346
SubjectTerms Critical temperature
Data mining
Machine learning
Statistical learning
Superconductivity
Superconductor
Title A data-driven statistical model for predicting the critical temperature of a superconductor
URI https://dx.doi.org/10.1016/j.commatsci.2018.07.052
Volume 154
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1KvehB_MT6UfbgdW2S3Ww23kqxVMVetFDwEDa7G6hIW2J79bc7k2yKBaEHySlhZwmTZeYNefOGkNvcSC61iFmcupQJLQyDpFAwDaVzmJokD6r5KS9jOZqIp2k8bZFB0wuDtEof--uYXkVr_6Tnvdlbzma91yDFXirI_wr2VQl2lAuR4Cm_-97QPEKZVgOjcDHD1VscL9gbcCHsjhwvVat4Rn9nqF9ZZ3hEDj1cpP36jY5Jy81PyMEvEcFT8t6nSPNktsTARbFDqBJfBrNqzA0FWEqXJf6QQYozBcRHjR9wQFGZyssq00VBNf1awz3UyCgDuyjPyGT48DYYMT8ygRkexitmEE4ZrgyHyiRUMnTWFJCQ8kRpa4wtlAPEYgE2RJEBZKWdtbKwuki1TEPL-Tlpzxdzd0FoEUWOS-sK7qQIlYUrF7GRUPNokcdph8jGTZnxeuI41uIza4hjH9nGvxn6NwuSDPzbIcHGcFlLauw2uW--Q7Z1OjII_LuML_9jfEX28a7uPrwm7VW5djcAQ1Z5tzpnXbLXf3wejX8AvFvf1w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5qPagH8Yn1uQeva5Nsskm8lWKp2vZiCwUPy2Z3A4q0pbZXf7szyaa0IPQgOSXZGcJkM_MNmfmGkPtMCy5UGLEotSkLVagZBIWcKUid_VTHmVfMT-kPRHcUvoyjcY20q14YLKt0vr_06YW3dleazprN2cdH881LsZcK4n8CepM43iG7IXy-OMbg4WdV5-GLtJgYhasZLt8o8gLlAAxBPRZ5JSWNZ_B3iFoLO50jcujwIm2Vj3RManZyQg7WWARPyXuLYp0nM3P0XBRbhAr2ZRAr5txQwKV0Nsc_MljjTAHyUe0mHFCkpnK8ynSaU0W_l3AOSTLywE7nZ2TUeRq2u8zNTGCa-9GCacRTmieaQ2riJ8K3RucQkbI4UUZrkycWIIsB3BAEGqCVssaI3Kg8VSL1DefnpD6ZTuwFoXkQWC6MzbkVoZ8YOLIw0gKSHhVmUdogojKT1I5QHOdafMmqcuxTruwr0b7SiyXYt0G8leCs5NTYLvJYvQe5sT0keP5twpf_Eb4je91hvyd7z4PXK7KPd8pWxGtSX8yX9gYwySK7LfbcL_Ea4WU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+statistical+model+for+predicting+the+critical+temperature+of+a+superconductor&rft.jtitle=Computational+materials+science&rft.au=Hamidieh%2C+Kam&rft.date=2018-11-01&rft.issn=0927-0256&rft.volume=154&rft.spage=346&rft.epage=354&rft_id=info:doi/10.1016%2Fj.commatsci.2018.07.052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_commatsci_2018_07_052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon