A data-driven statistical model for predicting the critical temperature of a superconductor
We estimate a statistical model to predict the superconducting critical temperature based on the features extracted from the superconductor’s chemical formula. The statistical model gives reasonable out-of-sample predictions: ±9.5 K based on root-mean-squared-error. Features extracted based on therm...
Saved in:
Published in | Computational materials science Vol. 154; pp. 346 - 354 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We estimate a statistical model to predict the superconducting critical temperature based on the features extracted from the superconductor’s chemical formula. The statistical model gives reasonable out-of-sample predictions: ±9.5 K based on root-mean-squared-error. Features extracted based on thermal conductivity, atomic radius, valence, electron affinity, and atomic mass contribute the most to the model’s predictive accuracy. It is crucial to note that our model does not predict whether a material is a superconductor or not; it only gives predictions for superconductors. |
---|---|
AbstractList | We estimate a statistical model to predict the superconducting critical temperature based on the features extracted from the superconductor’s chemical formula. The statistical model gives reasonable out-of-sample predictions: ±9.5 K based on root-mean-squared-error. Features extracted based on thermal conductivity, atomic radius, valence, electron affinity, and atomic mass contribute the most to the model’s predictive accuracy. It is crucial to note that our model does not predict whether a material is a superconductor or not; it only gives predictions for superconductors. |
Author | Hamidieh, Kam |
Author_xml | – sequence: 1 givenname: Kam orcidid: 0000-0003-3606-2775 surname: Hamidieh fullname: Hamidieh, Kam email: hkam@wharton.upenn.edu organization: Statistics Department, The Wharton School, University of Pennsylvania, 400 Jon M. Huntsman Hall, 3730 Walnut Street, Philadelphia, PA 19104-6340, United States |
BookMark | eNqNkE1LAzEQhoNUsK3-BvMHdk2ybrJ78FCKX1DwoicPIU4mmtLdlCQt-O9NqXjwoqdh4H1eZp4ZmYxhREIuOas54_JqXUMYBpMT-Fow3tVM1awVJ2TKO9VXrGN8QqasF6piopVnZJbSmhWy78SUvC6oNdlUNvo9jjRlk33KHsyGDsHihroQ6Tai9ZD9-E7zB1KI_pjIOGwxmryLSIOjhqZd2SGMdgc5xHNy6swm4cX3nJOXu9vn5UO1erp_XC5WFTS8zRW0QkhoOmh6We6XHC04JtWb6owFsK5DroRV140QwNreoLXSWeN6I3tum2ZObo69EENKEZ0Gf_gjjDkav9Gc6YMpvdY_pvTBlGZKF1OFV7_4bfSDiZ__IBdHEst7e49RlwSOUHRFhKxt8H92fAHuM43G |
CitedBy_id | crossref_primary_10_1007_s12206_021_0904_6 crossref_primary_10_1007_s00521_021_06304_z crossref_primary_10_1016_j_neucom_2024_129191 crossref_primary_10_1515_jisys_2022_0224 crossref_primary_10_1007_s10489_022_03316_7 crossref_primary_10_1109_TPAMI_2021_3129809 crossref_primary_10_1093_jigpal_jzae062 crossref_primary_10_1038_s41524_019_0223_y crossref_primary_10_1103_PhysRevMaterials_7_054805 crossref_primary_10_1016_j_jechem_2022_11_047 crossref_primary_10_1364_JOSAB_448047 crossref_primary_10_1080_27660400_2021_2024101 crossref_primary_10_1016_j_ymssp_2024_111895 crossref_primary_10_1615_Int_J_UncertaintyQuantification_2023038552 crossref_primary_10_1063_5_0189714 crossref_primary_10_1088_1742_5468_ac9829 crossref_primary_10_1080_00401706_2020_1791254 crossref_primary_10_1016_j_commatsci_2024_113018 crossref_primary_10_1007_s40042_024_01103_w crossref_primary_10_1016_j_patter_2022_100609 crossref_primary_10_1080_10618600_2024_2402896 crossref_primary_10_1016_j_cor_2024_106945 crossref_primary_10_1007_s11704_023_2662_3 crossref_primary_10_1016_j_ijsolstr_2021_111095 crossref_primary_10_1109_TNNLS_2023_3310499 crossref_primary_10_1109_TETC_2022_3215986 crossref_primary_10_1007_s11081_021_09676_2 crossref_primary_10_1088_1361_6668_ac80d8 crossref_primary_10_1016_j_neunet_2023_09_008 crossref_primary_10_7567_1882_0786_ab2922 crossref_primary_10_1038_s41467_020_19448_8 crossref_primary_10_1080_10618600_2020_1778483 crossref_primary_10_1038_s41524_024_01475_4 crossref_primary_10_1007_s42452_020_03260_6 crossref_primary_10_1140_epjp_s13360_024_05947_w crossref_primary_10_1016_j_envint_2023_107937 crossref_primary_10_1007_s10618_022_00819_2 crossref_primary_10_1021_acs_chemmater_4c01757 crossref_primary_10_1145_3530898 crossref_primary_10_3390_a16080382 crossref_primary_10_1007_s40304_022_00291_w crossref_primary_10_1214_25_EJS2361 crossref_primary_10_1186_s40537_023_00862_w crossref_primary_10_1093_imaiai_iaad025 crossref_primary_10_1016_j_neucom_2020_03_114 crossref_primary_10_1007_s41060_021_00251_7 crossref_primary_10_1007_s11590_023_02003_x crossref_primary_10_1007_s00339_022_06162_z crossref_primary_10_1109_TBDATA_2020_2992755 crossref_primary_10_3389_fmats_2021_714752 crossref_primary_10_1038_s43246_021_00209_z crossref_primary_10_1007_s10489_022_04065_3 crossref_primary_10_1080_09720510_2019_1609729 crossref_primary_10_1007_s40314_024_02997_9 crossref_primary_10_1016_j_commatsci_2021_110392 crossref_primary_10_1109_TCYB_2022_3185588 crossref_primary_10_1007_s41870_024_01869_z crossref_primary_10_1016_j_aej_2023_11_034 crossref_primary_10_1016_j_commatsci_2020_109583 crossref_primary_10_1016_j_neunet_2023_02_043 crossref_primary_10_3390_technologies13020085 crossref_primary_10_1021_acsami_2c02698 crossref_primary_10_1038_s41597_023_02721_y crossref_primary_10_1007_s42484_024_00165_0 crossref_primary_10_1007_s10994_024_06692_y crossref_primary_10_1016_j_csda_2022_107436 crossref_primary_10_1016_j_physc_2022_1354031 crossref_primary_10_1111_rssb_12537 crossref_primary_10_1038_s41598_024_54440_y crossref_primary_10_1016_j_jmsy_2022_02_004 crossref_primary_10_1016_j_scitotenv_2019_134574 crossref_primary_10_1021_acsomega_3c08036 crossref_primary_10_1371_journal_pone_0255823 crossref_primary_10_3390_app13148438 crossref_primary_10_1088_1674_1056_abc0e3 crossref_primary_10_1016_j_mtcomm_2022_104743 crossref_primary_10_1109_ACCESS_2021_3136458 crossref_primary_10_1016_j_physc_2023_1354209 crossref_primary_10_1016_j_psep_2024_10_037 crossref_primary_10_1214_23_EJS2188 crossref_primary_10_1007_s10489_020_01960_5 crossref_primary_10_37920_sasj_2020_54_1_6 crossref_primary_10_1093_jrsssb_qkae117 crossref_primary_10_1109_OJSP_2021_3106197 crossref_primary_10_1021_acs_chemmater_0c01907 crossref_primary_10_1088_1742_6596_1298_1_012020 crossref_primary_10_1038_s41598_021_03198_8 crossref_primary_10_1007_s00521_024_09432_4 crossref_primary_10_1109_ACCESS_2020_2981874 crossref_primary_10_1016_j_chemolab_2021_104437 crossref_primary_10_1002_sta4_315 crossref_primary_10_1109_ACCESS_2020_3006526 crossref_primary_10_1016_j_engappai_2021_104449 crossref_primary_10_1109_TASC_2020_2971456 crossref_primary_10_1007_s42452_020_03266_0 crossref_primary_10_1021_acscentsci_0c00691 crossref_primary_10_3390_e23010088 crossref_primary_10_1007_s42979_022_01664_2 crossref_primary_10_1038_s41467_020_18037_z crossref_primary_10_1021_acs_jpclett_3c01260 crossref_primary_10_1109_TNNLS_2023_3296895 crossref_primary_10_1007_s11063_021_10474_1 crossref_primary_10_1007_s11222_024_10449_x crossref_primary_10_1016_j_simpat_2025_103092 crossref_primary_10_3390_ma17174176 crossref_primary_10_1007_s12065_024_00973_0 crossref_primary_10_1021_acsomega_3c03722 crossref_primary_10_1016_j_chemolab_2021_104325 crossref_primary_10_1021_acs_jpclett_1c01442 crossref_primary_10_1016_j_neucom_2020_02_073 crossref_primary_10_1088_1367_2630_abc6e6 crossref_primary_10_1007_s10260_020_00509_7 crossref_primary_10_1007_s10909_020_02545_9 crossref_primary_10_1021_acsomega_2c06324 crossref_primary_10_3390_sym12020262 crossref_primary_10_1016_j_physc_2020_1353689 crossref_primary_10_1109_TNNLS_2021_3105146 crossref_primary_10_1007_s10994_024_06582_3 crossref_primary_10_3390_molecules26010008 crossref_primary_10_1016_j_matpr_2022_03_515 crossref_primary_10_1093_biomet_asaa047 crossref_primary_10_1016_j_chemolab_2024_105084 |
Cites_doi | 10.1021/acs.jcim.6b00591 10.1006/inco.1995.1136 10.1109/39.841342 10.1103/PhysRev.97.74 10.1088/0953-2048/29/8/080502 10.1007/BF00116037 10.7566/JPSJ.86.123701 10.1007/s10948-014-2891-7 10.1214/aos/1013203451 10.1145/2939672.2939785 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.commatsci.2018.07.052 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0801 |
EndPage | 354 |
ExternalDocumentID | 10_1016_j_commatsci_2018_07_052 S0927025618304877 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SMS SPC SPCBC SPD SSM SST SSZ T5K VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c315t-c5226c38c39601861edcf067b78adccdf8e172d74322c059aedd6fdaf9a691d33 |
IEDL.DBID | .~1 |
ISSN | 0927-0256 |
IngestDate | Tue Jul 01 02:00:57 EDT 2025 Thu Apr 24 23:06:37 EDT 2025 Fri Feb 23 02:47:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Superconductor Critical temperature Data mining Statistical learning Superconductivity Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c315t-c5226c38c39601861edcf067b78adccdf8e172d74322c059aedd6fdaf9a691d33 |
ORCID | 0000-0003-3606-2775 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_commatsci_2018_07_052 crossref_primary_10_1016_j_commatsci_2018_07_052 elsevier_sciencedirect_doi_10_1016_j_commatsci_2018_07_052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2018 2018-11-00 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationTitle | Computational materials science |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hassenzahl (b0045) 2000; 20 Chen, Huang, Xie, Zhao (b0015) 2018; 9 Goto, Yamada, Matsuda, Aoki, Mizuguchi (b0040) 2017; 86 Izenman (b0055) 2008 Dick (b0025) 2008; 9 Wolfram and Research, Mathematica, version 11.2, 2017. Schapire (b0085) 1990; 5 . Hastie, Tibshirani, Friedman (b0050) 2009 T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, xgboost: Extreme Gradient Boosting. R package version 0.6.4.1, 2018. Conder (b0020) 2016; 29 R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2017. Owolabi, Akande, Olatunji (b0070) 2015; 28 T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, 2016 S. Valentin, C. Oses, A.G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, I. Takeuchi, Machine learning modeling of superconducting critical temperature, 2017. Matthias (b0060) 1955; 97 Sheridan, Wang, Liaw, Ma, Gifford (b0090) 2016; 56 Friedman (b0035) 2001; 29 Freund (b0030) 1995; 121 Nishiyama, Fujita, Hoshi, Miao, Terao, Yang, Miyazaki, Goto, Kagayama, Shimizu, Yamaoka, Ishii, Liao, Kubozono (b0065) 2017; 7 T. Owolabi, A. Akande, S. Olatunji, Prediction of superconducting transition temperatures for fe-based superconductors using support vector machine. 35 (2014) 12–26. Dick (10.1016/j.commatsci.2018.07.052_b0025) 2008; 9 10.1016/j.commatsci.2018.07.052_b0080 Conder (10.1016/j.commatsci.2018.07.052_b0020) 2016; 29 Goto (10.1016/j.commatsci.2018.07.052_b0040) 2017; 86 Friedman (10.1016/j.commatsci.2018.07.052_b0035) 2001; 29 10.1016/j.commatsci.2018.07.052_b0010 10.1016/j.commatsci.2018.07.052_b0075 10.1016/j.commatsci.2018.07.052_b0100 Sheridan (10.1016/j.commatsci.2018.07.052_b0090) 2016; 56 Chen (10.1016/j.commatsci.2018.07.052_b0015) 2018; 9 10.1016/j.commatsci.2018.07.052_b0095 Izenman (10.1016/j.commatsci.2018.07.052_b0055) 2008 10.1016/j.commatsci.2018.07.052_b0005 Owolabi (10.1016/j.commatsci.2018.07.052_b0070) 2015; 28 Hassenzahl (10.1016/j.commatsci.2018.07.052_b0045) 2000; 20 Schapire (10.1016/j.commatsci.2018.07.052_b0085) 1990; 5 Nishiyama (10.1016/j.commatsci.2018.07.052_b0065) 2017; 7 Hastie (10.1016/j.commatsci.2018.07.052_b0050) 2009 Freund (10.1016/j.commatsci.2018.07.052_b0030) 1995; 121 Matthias (10.1016/j.commatsci.2018.07.052_b0060) 1955; 97 |
References_xml | – volume: 5 start-page: 197 year: 1990 end-page: 227 ident: b0085 article-title: The strength of weak learnability publication-title: Mach. Learn. – reference: T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, xgboost: Extreme Gradient Boosting. R package version 0.6.4.1, 2018. – volume: 121 start-page: 256 year: 1995 end-page: 285 ident: b0030 article-title: Boosting a weak learning algorithm by majority publication-title: Inf. Comput. – volume: 9 year: 2018 ident: b0015 article-title: Egbmmda: Extreme gradient boosting machine for mirna-disease association prediction publication-title: Cell Death Dis. – volume: 7 year: 2017 ident: b0065 article-title: Preparation and characterization of a new graphite superconductor: publication-title: Sci. Rep. – reference: S. Valentin, C. Oses, A.G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, I. Takeuchi, Machine learning modeling of superconducting critical temperature, 2017. – year: 2008 ident: b0055 article-title: Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning – volume: 28 start-page: 75 year: 2015 end-page: 81 ident: b0070 article-title: Estimation of superconducting transition temperature tc for superconductors of the doped MgB publication-title: J. Supercond. Novel Magn. – year: 2009 ident: b0050 article-title: The Elements of Statistical Learning, Data Mining, Interference, and Prediction – reference: R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2017. – volume: 9 year: 2008 ident: b0025 article-title: Calculation of the relative metastabilities of proteins using the chnosz software package publication-title: Geochem. Trans. – volume: 86 start-page: 123701 year: 2017 ident: b0040 article-title: Snas-based layered superconductor publication-title: J. Phys. Soc. Jpn. – reference: . – volume: 29 year: 2016 ident: b0020 article-title: A second life of the matthias’s rules publication-title: Supercond. Sci. Technol. – reference: T. Owolabi, A. Akande, S. Olatunji, Prediction of superconducting transition temperatures for fe-based superconductors using support vector machine. 35 (2014) 12–26. – volume: 20 start-page: 4 year: 2000 end-page: 7 ident: b0045 article-title: Applications of superconductivity to electric power systems publication-title: IEEE Power Eng. Rev. – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: b0035 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Statist. – volume: 56 start-page: 2353 year: 2016 end-page: 2360 ident: b0090 article-title: Extreme gradient boosting as a method for quantitative structure-activity relationships publication-title: J. Chem. Inf. Model. – reference: Wolfram and Research, Mathematica, version 11.2, 2017. – volume: 97 start-page: 74 year: 1955 end-page: 76 ident: b0060 article-title: Empirical relation between superconductivity and the number of electrons per atom publication-title: Phys. Rev. – reference: T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, 2016, – volume: 9 issue: 3 year: 2018 ident: 10.1016/j.commatsci.2018.07.052_b0015 article-title: Egbmmda: Extreme gradient boosting machine for mirna-disease association prediction publication-title: Cell Death Dis. – volume: 56 start-page: 2353 issue: 12 year: 2016 ident: 10.1016/j.commatsci.2018.07.052_b0090 article-title: Extreme gradient boosting as a method for quantitative structure-activity relationships publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00591 – volume: 121 start-page: 256 issue: 2 year: 1995 ident: 10.1016/j.commatsci.2018.07.052_b0030 article-title: Boosting a weak learning algorithm by majority publication-title: Inf. Comput. doi: 10.1006/inco.1995.1136 – volume: 20 start-page: 4 issue: 5 year: 2000 ident: 10.1016/j.commatsci.2018.07.052_b0045 article-title: Applications of superconductivity to electric power systems publication-title: IEEE Power Eng. Rev. doi: 10.1109/39.841342 – volume: 97 start-page: 74 year: 1955 ident: 10.1016/j.commatsci.2018.07.052_b0060 article-title: Empirical relation between superconductivity and the number of electrons per atom publication-title: Phys. Rev. doi: 10.1103/PhysRev.97.74 – ident: 10.1016/j.commatsci.2018.07.052_b0100 – ident: 10.1016/j.commatsci.2018.07.052_b0095 – volume: 29 issue: 8 year: 2016 ident: 10.1016/j.commatsci.2018.07.052_b0020 article-title: A second life of the matthias’s rules publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/29/8/080502 – volume: 9 issue: 10 year: 2008 ident: 10.1016/j.commatsci.2018.07.052_b0025 article-title: Calculation of the relative metastabilities of proteins using the chnosz software package publication-title: Geochem. Trans. – volume: 5 start-page: 197 issue: 2 year: 1990 ident: 10.1016/j.commatsci.2018.07.052_b0085 article-title: The strength of weak learnability publication-title: Mach. Learn. doi: 10.1007/BF00116037 – ident: 10.1016/j.commatsci.2018.07.052_b0010 – volume: 86 start-page: 123701 issue: 12 year: 2017 ident: 10.1016/j.commatsci.2018.07.052_b0040 article-title: Snas-based layered superconductor NaSn2As2 publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.86.123701 – ident: 10.1016/j.commatsci.2018.07.052_b0080 – year: 2008 ident: 10.1016/j.commatsci.2018.07.052_b0055 – volume: 28 start-page: 75 year: 2015 ident: 10.1016/j.commatsci.2018.07.052_b0070 article-title: Estimation of superconducting transition temperature tc for superconductors of the doped MgB2 system from the crystal lattice parameters using support vector regression publication-title: J. Supercond. Novel Magn. doi: 10.1007/s10948-014-2891-7 – ident: 10.1016/j.commatsci.2018.07.052_b0075 – volume: 7 issue: 7436 year: 2017 ident: 10.1016/j.commatsci.2018.07.052_b0065 article-title: Preparation and characterization of a new graphite superconductor: Ca0.5Sr0.5C6 publication-title: Sci. Rep. – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 10.1016/j.commatsci.2018.07.052_b0035 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Statist. doi: 10.1214/aos/1013203451 – year: 2009 ident: 10.1016/j.commatsci.2018.07.052_b0050 – ident: 10.1016/j.commatsci.2018.07.052_b0005 doi: 10.1145/2939672.2939785 |
SSID | ssj0016982 |
Score | 2.6156282 |
Snippet | We estimate a statistical model to predict the superconducting critical temperature based on the features extracted from the superconductor’s chemical formula.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 346 |
SubjectTerms | Critical temperature Data mining Machine learning Statistical learning Superconductivity Superconductor |
Title | A data-driven statistical model for predicting the critical temperature of a superconductor |
URI | https://dx.doi.org/10.1016/j.commatsci.2018.07.052 |
Volume | 154 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1KvehB_MT6UfbgdW2S3Ww23kqxVMVetFDwEDa7G6hIW2J79bc7k2yKBaEHySlhZwmTZeYNefOGkNvcSC61iFmcupQJLQyDpFAwDaVzmJokD6r5KS9jOZqIp2k8bZFB0wuDtEof--uYXkVr_6Tnvdlbzma91yDFXirI_wr2VQl2lAuR4Cm_-97QPEKZVgOjcDHD1VscL9gbcCHsjhwvVat4Rn9nqF9ZZ3hEDj1cpP36jY5Jy81PyMEvEcFT8t6nSPNktsTARbFDqBJfBrNqzA0FWEqXJf6QQYozBcRHjR9wQFGZyssq00VBNf1awz3UyCgDuyjPyGT48DYYMT8ygRkexitmEE4ZrgyHyiRUMnTWFJCQ8kRpa4wtlAPEYgE2RJEBZKWdtbKwuki1TEPL-Tlpzxdzd0FoEUWOS-sK7qQIlYUrF7GRUPNokcdph8jGTZnxeuI41uIza4hjH9nGvxn6NwuSDPzbIcHGcFlLauw2uW--Q7Z1OjII_LuML_9jfEX28a7uPrwm7VW5djcAQ1Z5tzpnXbLXf3wejX8AvFvf1w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5qPagH8Yn1uQeva5Nsskm8lWKp2vZiCwUPy2Z3A4q0pbZXf7szyaa0IPQgOSXZGcJkM_MNmfmGkPtMCy5UGLEotSkLVagZBIWcKUid_VTHmVfMT-kPRHcUvoyjcY20q14YLKt0vr_06YW3dleazprN2cdH881LsZcK4n8CepM43iG7IXy-OMbg4WdV5-GLtJgYhasZLt8o8gLlAAxBPRZ5JSWNZ_B3iFoLO50jcujwIm2Vj3RManZyQg7WWARPyXuLYp0nM3P0XBRbhAr2ZRAr5txQwKV0Nsc_MljjTAHyUe0mHFCkpnK8ynSaU0W_l3AOSTLywE7nZ2TUeRq2u8zNTGCa-9GCacRTmieaQ2riJ8K3RucQkbI4UUZrkycWIIsB3BAEGqCVssaI3Kg8VSL1DefnpD6ZTuwFoXkQWC6MzbkVoZ8YOLIw0gKSHhVmUdogojKT1I5QHOdafMmqcuxTruwr0b7SiyXYt0G8leCs5NTYLvJYvQe5sT0keP5twpf_Eb4je91hvyd7z4PXK7KPd8pWxGtSX8yX9gYwySK7LfbcL_Ea4WU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+statistical+model+for+predicting+the+critical+temperature+of+a+superconductor&rft.jtitle=Computational+materials+science&rft.au=Hamidieh%2C+Kam&rft.date=2018-11-01&rft.issn=0927-0256&rft.volume=154&rft.spage=346&rft.epage=354&rft_id=info:doi/10.1016%2Fj.commatsci.2018.07.052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_commatsci_2018_07_052 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon |