Gravitational waves from a universe filled with primordial black holes
Ultra-light primordial black holes, with masses m PBH < 10 9 g, evaporate before big-bang nucleosynthesis and can therefore not be directly constrained. They can however be so abundant that they dominate the universe content for a transient period (before reheating the universe via Hawking evapor...
Saved in:
Published in | Journal of cosmology and astroparticle physics Vol. 2021; no. 3; p. 53 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.03.2021
Institute of Physics (IOP) |
Subjects | |
Online Access | Get full text |
ISSN | 1475-7516 1475-7508 1475-7516 |
DOI | 10.1088/1475-7516/2021/03/053 |
Cover
Abstract | Ultra-light primordial black holes, with masses
m
PBH
< 10
9
g, evaporate before big-bang nucleosynthesis
and can therefore not be directly constrained. They can however be
so abundant that they dominate the universe content for a transient
period (before reheating the universe via Hawking evaporation). If
this happens, they support large cosmological fluctuations at small
scales, which in turn induce the production of gravitational waves
through second-order effects. Contrary to the primordial black
holes, those gravitational waves survive after evaporation, and can
therefore be used to constrain such scenarios. In this work, we show
that for induced gravitational waves not to lead to a backreaction
problem, the relative abundance of black holes at formation, denoted Ω
PBH,f
, should be such that Ω
PBH,f
< 10
-4
(
m
PBH
/10
9
g)
-1/4
. In particular, scenarios
where primordial black holes dominate right upon their formation
time are all excluded (given that
m
PBH
> 10 g for
inflation to proceed at ρ
1/4
< 10
16
GeV). This sets
the first constraints on ultra-light primordial black holes. |
---|---|
AbstractList | Ultra-light primordial black holes, with masses m PBH < 109g, evaporate before big-bang nucleosynthesis and can therefore not be directly constrained. They can however be so abundant that they dominate the universe content for a transient period (before reheating the universe via Hawking evaporation). If this happens, they support large cosmological fluctuations at small scales, which in turn induce the production of gravitational waves through second-order effects. Contrary to the primordial black holes, those gravitational waves survive after evaporation, and can therefore be used to constrain such scenarios. In this work, we show that for induced gravitational waves not to lead to a backreaction problem, the relative abundance of black holes at formation, denoted ΩPBH,f, should be such that ΩPBH,f < 10-4(m PBH/109g)-1/4. In particular, scenarios where primordial black holes dominate right upon their formation time are all excluded (given that m PBH > 10 g for inflation to proceed at ρ1/4 < 1016 GeV). This sets the first constraints on ultra-light primordial black holes. Ultra-light primordial black holes, with masses m PBH < 10 9 g, evaporate before big-bang nucleosynthesis and can therefore not be directly constrained. They can however be so abundant that they dominate the universe content for a transient period (before reheating the universe via Hawking evaporation). If this happens, they support large cosmological fluctuations at small scales, which in turn induce the production of gravitational waves through second-order effects. Contrary to the primordial black holes, those gravitational waves survive after evaporation, and can therefore be used to constrain such scenarios. In this work, we show that for induced gravitational waves not to lead to a backreaction problem, the relative abundance of black holes at formation, denoted Ω PBH,f , should be such that Ω PBH,f < 10 -4 ( m PBH /10 9 g) -1/4 . In particular, scenarios where primordial black holes dominate right upon their formation time are all excluded (given that m PBH > 10 g for inflation to proceed at ρ 1/4 < 10 16 GeV). This sets the first constraints on ultra-light primordial black holes. |
Author | Vennin, Vincent Langlois, David Papanikolaou, Theodoros |
Author_xml | – sequence: 1 givenname: Theodoros surname: Papanikolaou fullname: Papanikolaou, Theodoros – sequence: 2 givenname: Vincent surname: Vennin fullname: Vennin, Vincent – sequence: 3 givenname: David surname: Langlois fullname: Langlois, David |
BackLink | https://hal.science/hal-02999527$$DView record in HAL |
BookMark | eNqFkF9LwzAUxYNMcJt-BKHgkw-1-ds0-DSG24SBL_oc0iRlmV0zk67Db2_LxhBffLqXwzmHe38TMGp8YwG4R_AJwaLIEOUs5QzlGYYYZZBkkJErML7oo1_7DZjEuIUQ54QUY7BYBtW5VrXON6pOjqqzMamC3yUqOTSusyHapHJ1bU1ydO0m2Qe388G43lzWSn8mG1_beAuuK1VHe3eeU_CxeHmfr9L12_J1PlunmiDWpqVhrKBWQMq5rorCkIpTbU0JKyNwwRAtKdbGGG4sq3hO84LniFtuiCZCcDIFj6fejarlcIoK39IrJ1eztRw0iIUQDPMO9d6Hk3cf_NfBxlZu_SH0X0aJGURUCIyGRnZy6eBjDLa61CIoB7xyQCcHdHLAKyGRPd4-9_wnp88Y26Bc_U_6B_NOgKk |
CitedBy_id | crossref_primary_10_1088_1475_7516_2023_02_038 crossref_primary_10_1140_epjc_s10052_023_11233_3 crossref_primary_10_3390_universe9050203 crossref_primary_10_1103_PhysRevD_105_123023 crossref_primary_10_1103_PhysRevD_105_023532 crossref_primary_10_1088_1475_7516_2024_09_020 crossref_primary_10_1088_1674_1137_acc649 crossref_primary_10_1088_1475_7516_2021_10_036 crossref_primary_10_1103_RevModPhys_97_015001 crossref_primary_10_1140_epjc_s10052_024_12383_8 crossref_primary_10_1007_s10714_022_03027_x crossref_primary_10_1103_PhysRevD_110_115013 crossref_primary_10_1103_PhysRevD_103_123549 crossref_primary_10_1088_1475_7516_2022_08_068 crossref_primary_10_1088_1475_7516_2021_08_063 crossref_primary_10_1103_PhysRevD_108_023531 crossref_primary_10_1103_PhysRevLett_133_211003 crossref_primary_10_1103_PhysRevD_111_035020 crossref_primary_10_1016_j_physrep_2024_10_007 crossref_primary_10_1093_mnras_stad261 crossref_primary_10_1103_PhysRevD_107_103532 crossref_primary_10_1007_s41114_023_00045_2 crossref_primary_10_1088_1475_7516_2024_09_013 crossref_primary_10_1103_PhysRevD_108_015005 crossref_primary_10_1103_PhysRevD_108_043533 crossref_primary_10_1088_1475_7516_2023_12_036 crossref_primary_10_3390_universe10010039 crossref_primary_10_1088_1475_7516_2022_09_016 crossref_primary_10_1088_1475_7516_2023_10_041 crossref_primary_10_1088_1475_7516_2025_01_067 crossref_primary_10_1088_1475_7516_2024_11_065 crossref_primary_10_1103_PhysRevD_110_035014 crossref_primary_10_3390_galaxies10010031 crossref_primary_10_1088_1475_7516_2023_08_078 crossref_primary_10_1103_PhysRevResearch_6_L012060 crossref_primary_10_1088_1475_7516_2024_08_054 crossref_primary_10_1007_JHEP05_2023_169 crossref_primary_10_1088_1475_7516_2021_04_057 crossref_primary_10_1007_JHEP02_2025_095 crossref_primary_10_1103_PhysRevD_107_123537 crossref_primary_10_1103_PhysRevD_106_124012 crossref_primary_10_1088_1475_7516_2024_02_019 crossref_primary_10_1088_1475_7516_2025_01_094 crossref_primary_10_1103_PhysRevD_108_123002 crossref_primary_10_1103_PhysRevD_108_063532 crossref_primary_10_1088_1475_7516_2024_07_034 crossref_primary_10_1103_PhysRevD_107_063538 crossref_primary_10_3390_galaxies10060112 crossref_primary_10_1103_PhysRevD_111_063036 crossref_primary_10_1088_1475_7516_2021_12_027 crossref_primary_10_1103_PhysRevD_104_083545 crossref_primary_10_1093_mnras_stac2331 crossref_primary_10_1103_PhysRevD_108_123532 crossref_primary_10_1103_PhysRevD_104_103021 crossref_primary_10_1088_1475_7516_2024_10_006 crossref_primary_10_1103_PhysRevD_104_075007 crossref_primary_10_1088_1475_7516_2022_05_013 crossref_primary_10_3847_1538_4357_ada6b4 crossref_primary_10_1088_1475_7516_2023_03_048 crossref_primary_10_1103_PhysRevD_110_043528 crossref_primary_10_1088_1475_7516_2022_03_023 crossref_primary_10_1140_epjc_s10052_024_13271_x crossref_primary_10_1103_PhysRevD_111_063543 crossref_primary_10_1103_PhysRevLett_130_181002 crossref_primary_10_1088_1475_7516_2025_02_040 crossref_primary_10_1103_PhysRevLett_130_051001 crossref_primary_10_1103_PhysRevD_108_123538 crossref_primary_10_1088_1475_7516_2024_02_020 crossref_primary_10_1103_PhysRevD_104_123536 crossref_primary_10_1103_PhysRevD_109_043508 crossref_primary_10_1088_1475_7516_2021_04_080 crossref_primary_10_1103_PhysRevD_111_063528 crossref_primary_10_1088_1475_7516_2024_07_059 crossref_primary_10_1103_PhysRevD_108_035040 crossref_primary_10_1088_1475_7516_2025_03_045 crossref_primary_10_1140_epjc_s10052_024_13644_2 crossref_primary_10_1088_1475_7516_2021_08_021 crossref_primary_10_1088_1475_7516_2022_03_031 crossref_primary_10_1016_j_ppnp_2023_104040 crossref_primary_10_1103_PhysRevD_109_L041303 crossref_primary_10_1103_PhysRevD_111_023509 crossref_primary_10_1134_S0202289321040101 crossref_primary_10_1103_PhysRevD_104_083523 crossref_primary_10_1007_JHEP07_2022_130 crossref_primary_10_1140_epjc_s10052_022_10742_x crossref_primary_10_1088_1361_6382_ace493 crossref_primary_10_1088_1475_7516_2022_06_017 crossref_primary_10_1088_1475_7516_2023_10_001 crossref_primary_10_1103_PhysRevD_110_024055 crossref_primary_10_1088_1475_7516_2024_09_059 crossref_primary_10_1088_1475_7516_2024_06_021 crossref_primary_10_1103_PhysRevD_108_063523 crossref_primary_10_1103_PhysRevD_108_063005 crossref_primary_10_1088_1475_7516_2023_01_021 crossref_primary_10_1103_PhysRevD_105_103508 crossref_primary_10_1142_S0219887824502517 crossref_primary_10_1088_1475_7516_2024_10_065 crossref_primary_10_1103_PhysRevD_107_063508 crossref_primary_10_1140_epjc_s10052_024_12397_2 crossref_primary_10_1140_epjc_s10052_024_13460_8 crossref_primary_10_1007_JHEP08_2023_196 crossref_primary_10_1103_PhysRevD_109_063506 crossref_primary_10_1103_PhysRevD_108_095052 crossref_primary_10_1088_1475_7516_2021_06_004 crossref_primary_10_1088_1475_7516_2023_06_008 crossref_primary_10_1088_1475_7516_2021_06_001 crossref_primary_10_1088_1475_7516_2024_11_026 crossref_primary_10_1140_epjc_s10052_022_11157_4 crossref_primary_10_1140_epjc_s10052_024_13218_2 crossref_primary_10_1088_1475_7516_2023_02_062 crossref_primary_10_3390_universe7110398 crossref_primary_10_1088_1361_6382_ad74d4 crossref_primary_10_1103_PhysRevD_105_124055 crossref_primary_10_1007_s41114_024_00053_w crossref_primary_10_1088_1475_7516_2021_11_019 crossref_primary_10_1088_1475_7516_2022_02_017 crossref_primary_10_1088_1674_1137_ad79d5 crossref_primary_10_1103_PhysRevD_108_043523 crossref_primary_10_1016_j_dark_2024_101506 crossref_primary_10_1088_1475_7516_2022_10_013 crossref_primary_10_1088_1475_7516_2021_04_062 crossref_primary_10_1103_PhysRevD_107_095002 crossref_primary_10_1007_s43673_023_00109_z crossref_primary_10_1088_1361_6382_ad5488 crossref_primary_10_1088_1475_7516_2024_12_021 crossref_primary_10_1016_j_scib_2023_10_027 crossref_primary_10_3389_fspas_2024_1361399 crossref_primary_10_1007_JHEP10_2024_142 crossref_primary_10_1103_PhysRevD_107_124019 crossref_primary_10_1103_PhysRevD_109_123002 crossref_primary_10_1093_mnras_stae1098 crossref_primary_10_1088_1475_7516_2025_02_009 crossref_primary_10_1088_1475_7516_2022_10_089 crossref_primary_10_1142_S0218271824410141 crossref_primary_10_1007_s11433_022_2095_5 crossref_primary_10_1007_JHEP02_2024_113 crossref_primary_10_1088_1475_7516_2024_07_002 crossref_primary_10_1088_1361_6633_ac1e31 crossref_primary_10_1007_JHEP03_2023_127 crossref_primary_10_1088_1475_7516_2023_03_003 crossref_primary_10_1088_1475_7516_2022_06_007 crossref_primary_10_1088_1475_7516_2023_11_066 crossref_primary_10_1103_PhysRevD_106_035019 crossref_primary_10_1088_1361_6382_acd97d crossref_primary_10_1088_1475_7516_2024_11_005 crossref_primary_10_1088_1475_7516_2024_12_039 crossref_primary_10_1088_1361_6382_ad210c crossref_primary_10_1088_1475_7516_2023_02_043 crossref_primary_10_1088_1475_7516_2022_11_045 crossref_primary_10_1088_1475_7516_2023_06_027 crossref_primary_10_1103_PhysRevD_109_103001 crossref_primary_10_1088_1475_7516_2023_06_029 crossref_primary_10_1142_S0218271824500275 |
Cites_doi | 10.1103/PhysRevD.101.123533 10.1093/mnras/104.5.273 10.1103/PhysRevD.76.084019 10.1103/PhysRevLett.122.201101 10.1088/1475-7516/2016/04/001 10.1088/1475-7516/2017/09/037 10.3847/1538-4357/aa74be 10.1103/PhysRevD.79.083511 10.1103/PhysRevD.94.043507 10.1103/PhysRevLett.122.141302 10.1088/1475-7516/2019/06/052 10.1016/j.dark.2018.08.004 10.1016/S0550-3213(03)00550-9 10.1103/PhysRevD.101.083529 10.1103/PhysRev.166.1272 10.1103/PhysRevD.101.125012 10.1103/PhysRevD.62.043527 10.1038/253251a0 10.1103/PhysRevD.101.023523 10.1051/0004-6361/201833887 10.1088/1475-7516/2020/04/052 https://doi.org/10.1093/mnras/206.2.315 10.1016/S0370-1573(99)00102-7 10.1088/1475-7516/2018/09/012 10.1086/310886 10.1143/PTP.117.17 10.1088/1475-7516/2020/03/014 10.1088/1742-6596/1051/1/012010 10.1103/PhysRevD.81.023517 10.1103/PhysRevLett.117.061101 10.1103/PhysRevD.100.083528 10.1038/248030a0 10.1103/PhysRevD.66.063505 10.1086/378763 10.1086/153853 10.22323/1.215.0037 10.1088/1475-7516/2016/10/034 10.1088/1475-7516/2019/10/071 10.1093/mnras/168.2.399 10.1103/PhysRevD.75.123518 10.1016/0550-3213(92)90008-Y 10.1007/JHEP08(2019)001 10.1088/1475-7516/2020/03/050 10.1016/0370-1573(92)90044-Z 10.1088/1475-7516/2020/01/024 10.1103/PhysRevD.101.123535 10.1103/PhysRevD.100.081301 10.1103/PhysRevLett.103.111303 10.1103/PhysRevX.9.031040 10.1103/PhysRevLett.121.081304 10.1103/PhysRevLett.102.161101 10.1103/PhysRevD.22.1882 10.1103/PhysRevD.97.123532 10.1103/PhysRevD.92.121304 10.1103/PhysRevD.98.123533 10.3847/2041-8213/aba493 10.1103/PhysRevD.58.063003 10.1103/PhysRevD.102.043505 10.1088/1475-7516/2019/11/001 10.1103/PhysRevD.101.063018 |
ContentType | Journal Article |
Copyright | Copyright IOP Publishing Mar 2021 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright IOP Publishing Mar 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1088/1475-7516/2021/03/053 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1475-7516 |
ExternalDocumentID | oai_HAL_hal_02999527v1 10_1088_1475_7516_2021_03_053 |
GroupedDBID | 1JI 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI AAYXX ABCXL ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP ADEQX ADWVK AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU DU5 EBS EDWGO EMSAF EPQRW EQZZN ER. IHE IJHAN IOP IZVLO J9A KOT LAP M45 MV1 N5L N9A P2P PJBAE RIN RO9 ROL RPA SY9 VSI W28 XPP ZMT 02O 1WK 1XC 4.4 AALHV ACARI AERVB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ NT- NT. Q02 RNS S3P VOOES |
ID | FETCH-LOGICAL-c315t-bd5584e90477cf88d3f74cedb0fd928514b42cddd7de5f764687617e7d3c39973 |
ISSN | 1475-7516 1475-7508 |
IngestDate | Fri May 09 12:24:59 EDT 2025 Sun Jun 29 16:46:09 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 Tue Jul 01 03:49:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | gravitational radiation: emission power spectrum gauge reheating energy: density black hole: mass gravitational radiation: induced tensor: energy-momentum black hole: formation black hole: evaporation space-time: fluctuation gravitational waves / theory inflation perturbation: scalar nucleosynthesis: big bang formation: time primordial black holes back reaction matter: power spectrum physics of the early universe evaporation power spectrum: tensor black hole: primordial |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c315t-bd5584e90477cf88d3f74cedb0fd928514b42cddd7de5f764687617e7d3c39973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8851-4430 |
OpenAccessLink | https://hal.science/hal-02999527 |
PQID | 2501499217 |
PQPubID | 2048024 |
ParticipantIDs | hal_primary_oai_HAL_hal_02999527v1 proquest_journals_2501499217 crossref_primary_10_1088_1475_7516_2021_03_053 crossref_citationtrail_10_1088_1475_7516_2021_03_053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of cosmology and astroparticle physics |
PublicationYear | 2021 |
Publisher | IOP Publishing Institute of Physics (IOP) |
Publisher_xml | – name: IOP Publishing – name: Institute of Physics (IOP) |
References | Bondi (b49ecfb9c185ef3b3257566e68c96cfa4) 1944; 104 Tomikawa (becd5b2d41fa26e4b29e57755b3646552) 2020; 101 Meszaros (b24b45382efe967c4f80d9a996da0796a) 1974; 37 Carr (bd202f16a08d6bbb0f92fc0edd42e77ab) 1974; 168 Inomata (bcacffee13ee53be7cc36f086e2586fd3) 2019; 10 Inomata (b0aeda501d89f9952ea190492635cde83) 2020; 101 Germani (b812ca3a7b8b0e69ece5759a423d66758) 2019; 122 Wands (bf80eaead357a15dc44448138b5cf61be) 2000; 62 Carr (b3a5dc5f1846feade56c5d4383ea61b61) 1975; 201 Carr (b1820d9c065d27d1eba8f5b984d1b46d6) 2020 Hawking (b930ff03d0febe3ca2db8edb19c756421) 1974; 248 Janssen (bd632e0129a3c43b0f1b090db0819db20) 2015; AASKA14 ba24c53b4e34bf9312849b3f1394035ce Ali-Haïmoud (be4d56b4a680b7670aab2bfd36a9e4403) 2018; 121 Moradinezhad Dizgah (b7876429c42a60ac61a101debc0378941) 2019; 11 Inomata (bb1fda8e6115fe56707885cff77182c1c) 2020; 101 Raidal (b76b06bc20edb69747768ea3b7c103a3b) 2017; 09 Hooper (b96faa23764fdff08d7577249e9e64562) 2019; 08 Akrami (b5ecb81b4a59e19ba5bafac3a97c5eacd) 2020; 641 Abbott (bb1fd2cd69ad856490f6a06c02b7c3552) 2019; 9 De Luca (ba481d8e24c809a9668648b1fb9598293) 2020; 03 Zagorac (b5a4923ad2129409ba2315695e7916d07) 2019; 06 Amaro-Seoane (bd0bb2874da3b15545007547eec9ff4f2) 2017 bf1737a2ad4672832b77080a5e42e21eb Nakama (b9796bb1bcf97059abf47727e065a3318) 2016; 94 Yuan (bcffbf6e02c4399ac13651038bb63cc64) 2019; 100 Espinosa (beeb6c99055ee5f401c19e6d0687acb9b) 2018; 09 Kolb (b3cd8aa96120d25bb96a78051ef7af7ce) 1990 Hwang (bcd84300dbcdcdc4e74229901d181ac4f) 2017; 842 Isaacson (ba2ed62ab29e931631a298875e2dc6d60) 1968; 166 De Luca (b305300bb0b784af15aa0cbfc302b8561) 2020; 102 Nakamura (bd007d8ae8285692aaaa4c6231d433bc9) 1997; 487 Hooper (b74135b3508e9ef7a7463384a886a9787) 2020 Dong (b0238bfdda4459bb4122ad67c3da53af4) 2016; 10 Dai (bad30d7f85b675f37f6f75a92d77cc2a2) 2020; 101 bd5c965b7ba609f8d424e32996af10e01 Kapadia (b7a98b84e3bce8fb3dd5cacfc649605a3) 2020; 101 Mukhanov (bd6cb7b6234df9fb3d4cc55242ad1b3e3) 1992; 215 Martin (b3ea48e8e9f60f2f00619e9152faea8ac) 2020; 01 Maggiore (b62923c5730993eec83cd3d6042c9ca3f) 2020; 03 Clesse (b755be777b0663f99f69f9f7e775f1ef3) 2018; 22 Ananda (bba5b91d70bb43b2c4a31c23ce31dd8d1) 2007; 75 Acquaviva (b8795286f292f47c37b21f36c26db99b0) 2003; 667 Yuan (b36fde9f15635e47c25b10bad47cb11c6) 2020; 101 Bugaev (b1862fb8d1e1b5b5b868de76a2941f958) 2010; 81 Caprini (b58d3065d7e7691f1490617d504346b79) 2016; 04 Saito (b237dd89cbd4cbe27c9a9c99d5923bebc) 2009; 102 Afshordi (b0945f1d063a010c008f466d143fe9142) 2003; 594 Assadullahi (b0b8a43d4128c47e8494065d668d46d1b) 2009; 79 Nakama (bbf87ff6b8a4668c5d5c3315eb8d92931) 2015; 92 Meszaros (bc440130217fac730e064f3702307f390) 1975; 38 Coleman (b766eb343fdaebe5cb85ab8f175ba2ad9) 1992; 378 Baumann (b9c5fbcd48c210bd2f927c5f4f2049c8e) 2007; 76 Abbott (b08ad92247dea78277168d40a6e675405) 2020; 900 Bean (b5a04fc6a323ac2f236af31089508ad1a) 2002; 66 Sasaki (b8c7a4050e68376340a9d4903d3470cec) 2016; 117 De Luca (b7cdbd670968ba2da0f317b0c7a3685dc) 2020; 04 Maggiore (b3951b1203c46cc6a30cac2a36b030cb6) 2000; 331 Anantua (b0b63ff6d9846823ce08aa3aa9169c67b) 2009; 103 Eroshenko (b833a91ad81dfdf0b84172aa70c8fb90d) 2018; 1051 Kohri (bd29b9eb13ba14803a3ecd32e1146f35b) 2018; 97 Bardeen (b0e1268db5c4d35db9cf99d1f9f061aaf) 1980; 22 Nakamura (b5bac97223858e832582f31ee37dc2017) 2007; 117 Cai (b8736434039ab42445d5030cc2be097a3) 2019; 122 Desjacques (b5e0e9716fa4e74448b753ef5f0a54a86) 2018; 98 Inman (b490330faa573420d5db68f5a32c9d648) 2019; 100 Ioka (bb4b7055ee1f224297e5948935b0d1002) 1998; 58 Chapline (bb950427dbfcc33be27a2e97d42b39f31) 1975; 253 |
References_xml | – volume: 101 year: 2020 ident: bb1fda8e6115fe56707885cff77182c1c article-title: Gravitational Wave Production right after a Primordial Black Hole Evaporation publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.123533 – volume: 104 start-page: 273 year: 1944 ident: b49ecfb9c185ef3b3257566e68c96cfa4 article-title: On the mechanism of accretion by stars publication-title: Mon. Not. Roy. Astron. Soc. doi: 10.1093/mnras/104.5.273 – volume: 76 year: 2007 ident: b9c5fbcd48c210bd2f927c5f4f2049c8e article-title: Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.76.084019 – volume: 37 start-page: 225 year: 1974 ident: b24b45382efe967c4f80d9a996da0796a article-title: The behaviour of point masses in an expanding cosmological substratum publication-title: Astron. Astrophys. – volume: 122 year: 2019 ident: b8736434039ab42445d5030cc2be097a3 article-title: Gravitational Waves Induced by non-Gaussian Scalar Perturbations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.201101 – volume: 04 year: 2016 ident: b58d3065d7e7691f1490617d504346b79 article-title: Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions publication-title: JCAP doi: 10.1088/1475-7516/2016/04/001 – volume: 09 year: 2017 ident: b76b06bc20edb69747768ea3b7c103a3b article-title: Gravitational Waves from Primordial Black Hole Mergers publication-title: JCAP doi: 10.1088/1475-7516/2017/09/037 – volume: 842 start-page: 46 year: 2017 ident: bcd84300dbcdcdc4e74229901d181ac4f article-title: Gauge dependence of gravitational waves generated from scalar perturbations publication-title: Astrophys. J. doi: 10.3847/1538-4357/aa74be – volume: 79 year: 2009 ident: b0b8a43d4128c47e8494065d668d46d1b article-title: Gravitational waves from an early matter era publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.79.083511 – volume: 94 year: 2016 ident: b9796bb1bcf97059abf47727e065a3318 article-title: Primordial black holes as a novel probe of primordial gravitational waves. II: Detailed analysis publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.043507 – volume: 122 year: 2019 ident: b812ca3a7b8b0e69ece5759a423d66758 article-title: Abundance of Primordial Black Holes Depends on the Shape of the Inflationary Power Spectrum publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.141302 – volume: 06 year: 2019 ident: b5a4923ad2129409ba2315695e7916d07 article-title: GUT-Scale Primordial Black Holes: Mergers and Gravitational Waves publication-title: JCAP doi: 10.1088/1475-7516/2019/06/052 – volume: 22 start-page: 137 year: 2018 ident: b755be777b0663f99f69f9f7e775f1ef3 article-title: Seven Hints for Primordial Black Hole Dark Matter publication-title: Phys. Dark Univ. doi: 10.1016/j.dark.2018.08.004 – volume: 667 start-page: 119 year: 2003 ident: b8795286f292f47c37b21f36c26db99b0 article-title: Second order cosmological perturbations from inflation publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(03)00550-9 – ident: bf1737a2ad4672832b77080a5e42e21eb – volume: 101 year: 2020 ident: becd5b2d41fa26e4b29e57755b3646552 article-title: Gauge dependence of gravitational waves generated at second order from scalar perturbations publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.083529 – volume: 166 start-page: 1272 year: 1968 ident: ba2ed62ab29e931631a298875e2dc6d60 article-title: Gravitational Radiation in the Limit of High Frequency. II. Nonlinear Terms and the Ef fective Stress Tensor publication-title: Phys. Rev. doi: 10.1103/PhysRev.166.1272 – volume: 101 year: 2020 ident: bad30d7f85b675f37f6f75a92d77cc2a2 article-title: Connecting the Higgs Potential and Primordial Black Holes publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.125012 – year: 2017 ident: bd0bb2874da3b15545007547eec9ff4f2 article-title: Laser Interferometer Space Antenna – ident: bd5c965b7ba609f8d424e32996af10e01 – volume: 62 year: 2000 ident: bf80eaead357a15dc44448138b5cf61be article-title: A New approach to the evolution of cosmological perturbations on large scales publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.62.043527 – volume: 253 start-page: 251 year: 1975 ident: bb950427dbfcc33be27a2e97d42b39f31 article-title: Cosmological effects of primordial black holes publication-title: Nature doi: 10.1038/253251a0 – volume: 101 year: 2020 ident: b0aeda501d89f9952ea190492635cde83 article-title: Gauge Independence of Induced Gravitational Waves publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.023523 – volume: 641 start-page: A10 year: 2020 ident: b5ecb81b4a59e19ba5bafac3a97c5eacd article-title: Planck 2018 results. X. Constraints on inflation publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201833887 – volume: 04 year: 2020 ident: b7cdbd670968ba2da0f317b0c7a3685dc article-title: The evolution of primordial black holes and their final observable spins publication-title: JCAP doi: 10.1088/1475-7516/2020/04/052 – ident: ba24c53b4e34bf9312849b3f1394035ce doi: https://doi.org/10.1093/mnras/206.2.315 – volume: 331 start-page: 283 year: 2000 ident: b3951b1203c46cc6a30cac2a36b030cb6 article-title: Gravitational wave experiments and early universe cosmology publication-title: Phys. Rept. doi: 10.1016/S0370-1573(99)00102-7 – volume: 09 year: 2018 ident: beeb6c99055ee5f401c19e6d0687acb9b article-title: A Cosmological Signature of the SM Higgs Instability: Gravitational Waves publication-title: JCAP doi: 10.1088/1475-7516/2018/09/012 – volume: 487 start-page: L139 year: 1997 ident: bd007d8ae8285692aaaa4c6231d433bc9 article-title: Gravitational waves from coalescing black hole MACHO binaries publication-title: Astrophys. J. Lett. doi: 10.1086/310886 – volume: 117 start-page: 17 year: 2007 ident: b5bac97223858e832582f31ee37dc2017 article-title: Second-order gauge invariant cosmological perturbation theory: Einstein equations in terms of gauge invariant variables publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.117.17 – volume: 03 year: 2020 ident: ba481d8e24c809a9668648b1fb9598293 article-title: On the Gauge Invariance of Cosmological Gravitational Waves publication-title: JCAP doi: 10.1088/1475-7516/2020/03/014 – volume: 1051 year: 2018 ident: b833a91ad81dfdf0b84172aa70c8fb90d article-title: Gravitational waves from primordial black holes collisions in binary systems publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1051/1/012010 – volume: 81 year: 2010 ident: b1862fb8d1e1b5b5b868de76a2941f958 article-title: Induced gravitational wave background and primordial black holes publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.81.023517 – volume: 117 year: 2016 ident: b8c7a4050e68376340a9d4903d3470cec article-title: Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.061101 – volume: 100 year: 2019 ident: b490330faa573420d5db68f5a32c9d648 article-title: Early structure formation in primordial black hole cosmologies publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.083528 – volume: 248 start-page: 30 year: 1974 ident: b930ff03d0febe3ca2db8edb19c756421 article-title: Black hole explosions publication-title: Nature doi: 10.1038/248030a0 – volume: 66 year: 2002 ident: b5a04fc6a323ac2f236af31089508ad1a article-title: Could supermassive black holes be quintessential primordial black holes? publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.66.063505 – volume: 594 start-page: L71 year: 2003 ident: b0945f1d063a010c008f466d143fe9142 article-title: Primordial black holes as dark matter: The Power spectrum and evaporation of early structures publication-title: Astrophys. J. Lett. doi: 10.1086/378763 – volume: 201 start-page: 1 year: 1975 ident: b3a5dc5f1846feade56c5d4383ea61b61 article-title: The Primordial black hole mass spectrum publication-title: Astrophys. J. doi: 10.1086/153853 – volume: AASKA14 start-page: 037 year: 2015 ident: bd632e0129a3c43b0f1b090db0819db20 article-title: Gravitational wave astronomy with the SKA publication-title: PoS doi: 10.22323/1.215.0037 – volume: 10 year: 2016 ident: b0238bfdda4459bb4122ad67c3da53af4 article-title: Gravitational wave production by Hawking radiation from rotating primordial black holes publication-title: JCAP doi: 10.1088/1475-7516/2016/10/034 – volume: 10 year: 2019 ident: bcacffee13ee53be7cc36f086e2586fd3 article-title: Gravitational Waves Induced by Scalar Perturbations during a Gradual Transition from an Early Matter Era to the Radiation Era publication-title: JCAP doi: 10.1088/1475-7516/2019/10/071 – volume: 168 start-page: 399 year: 1974 ident: bd202f16a08d6bbb0f92fc0edd42e77ab article-title: Black holes in the early Universe publication-title: Mon. Not. Roy. Astron. Soc. doi: 10.1093/mnras/168.2.399 – volume: 38 start-page: 5 year: 1975 ident: bc440130217fac730e064f3702307f390 article-title: Primeval black holes and galaxy formation publication-title: Astron. Astrophys. – volume: 75 year: 2007 ident: bba5b91d70bb43b2c4a31c23ce31dd8d1 article-title: The Cosmological gravitational wave background from primordial density perturbations publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.75.123518 – year: 2020 ident: b1820d9c065d27d1eba8f5b984d1b46d6 article-title: Constraints on Primordial Black Holes – volume: 378 start-page: 175 year: 1992 ident: b766eb343fdaebe5cb85ab8f175ba2ad9 article-title: Quantum hair on black holes publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(92)90008-Y – volume: 08 start-page: 001 year: 2019 ident: b96faa23764fdff08d7577249e9e64562 article-title: Dark Radiation and Superheavy Dark Matter from Black Hole Domination publication-title: JHEP doi: 10.1007/JHEP08(2019)001 – volume: 03 year: 2020 ident: b62923c5730993eec83cd3d6042c9ca3f article-title: Science Case for the Einstein Telescope publication-title: JCAP doi: 10.1088/1475-7516/2020/03/050 – volume: 215 start-page: 203 year: 1992 ident: bd6cb7b6234df9fb3d4cc55242ad1b3e3 article-title: Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions publication-title: Phys. Rept. doi: 10.1016/0370-1573(92)90044-Z – volume: 01 year: 2020 ident: b3ea48e8e9f60f2f00619e9152faea8ac article-title: Primordial black holes from the preheating instability in single-field inflation publication-title: JCAP doi: 10.1088/1475-7516/2020/01/024 – volume: 101 year: 2020 ident: b7a98b84e3bce8fb3dd5cacfc649605a3 article-title: Prospects for probing ultralight primordial black holes using the stochastic gravitational-wave background induced by primordial curvature perturbations publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.123535 – volume: 100 year: 2019 ident: bcffbf6e02c4399ac13651038bb63cc64 article-title: Probing primordial-black-hole dark matter with scalar induced gravitational waves publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.081301 – volume: 103 year: 2009 ident: b0b63ff6d9846823ce08aa3aa9169c67b article-title: GUT-Scale Primordial Black Holes: Consequences and Constraints publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.111303 – volume: 9 year: 2019 ident: bb1fd2cd69ad856490f6a06c02b7c3552 article-title: GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.9.031040 – volume: 121 year: 2018 ident: be4d56b4a680b7670aab2bfd36a9e4403 article-title: Correlation Function of High-Threshold Regions and Application to the Initial Small-Scale Clustering of Primordial Black Holes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.081304 – volume: 102 year: 2009 ident: b237dd89cbd4cbe27c9a9c99d5923bebc article-title: Gravitational wave background as a probe of the primordial black hole abundance publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.161101 – volume: 22 start-page: 1882 year: 1980 ident: b0e1268db5c4d35db9cf99d1f9f061aaf article-title: Gauge Invariant Cosmological Perturbations publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.22.1882 – volume: 97 year: 2018 ident: bd29b9eb13ba14803a3ecd32e1146f35b article-title: Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.123532 – volume: 92 year: 2015 ident: bbf87ff6b8a4668c5d5c3315eb8d92931 article-title: Primordial black holes as a novel probe of primordial gravitational waves publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.121304 – year: 2020 ident: b74135b3508e9ef7a7463384a886a9787 article-title: Hot Gravitons and Gravitational Waves From Kerr Black Holes in the Early Universe – volume: 98 year: 2018 ident: b5e0e9716fa4e74448b753ef5f0a54a86 article-title: Spatial clustering of primordial black holes publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.123533 – year: 1990 ident: b3cd8aa96120d25bb96a78051ef7af7ce – volume: 900 start-page: L13 year: 2020 ident: b08ad92247dea78277168d40a6e675405 article-title: Properties and Astrophysical Implications of the 150 M_⊙ Binary Black Hole Merger GW190521 publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/aba493 – volume: 58 year: 1998 ident: bb4b7055ee1f224297e5948935b0d1002 article-title: Black hole binary formation in the expanding universe: Three body problem approximation publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.58.063003 – volume: 102 year: 2020 ident: b305300bb0b784af15aa0cbfc302b8561 article-title: Constraints on Primordial Black Holes: the Importance of Accretion publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.043505 – volume: 11 year: 2019 ident: b7876429c42a60ac61a101debc0378941 article-title: Primordial Black Holes from Broad Spectra: Abundance and Clustering publication-title: JCAP doi: 10.1088/1475-7516/2019/11/001 – volume: 101 year: 2020 ident: b36fde9f15635e47c25b10bad47cb11c6 article-title: Scalar induced gravitational waves in different gauges publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.063018 |
SSID | ssj0026338 ssib002806714 ssib053834950 |
Score | 2.6380162 |
Snippet | Ultra-light primordial black holes, with masses
m
PBH
< 10
9
g, evaporate before big-bang nucleosynthesis
and can therefore not be directly constrained. They... Ultra-light primordial black holes, with masses m PBH < 109g, evaporate before big-bang nucleosynthesis and can therefore not be directly constrained. They can... |
SourceID | hal proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 53 |
SubjectTerms | Astrophysics Big bang cosmology Black holes Constraints Evaporation General Relativity and Quantum Cosmology Gravitational effects Gravitational waves Heating High Energy Physics - Theory Nuclear fusion Nuclei (nuclear physics) Physics Relative abundance Universe Waves |
Title | Gravitational waves from a universe filled with primordial black holes |
URI | https://www.proquest.com/docview/2501499217 https://hal.science/hal-02999527 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYeOEF8akVBrIQ4mXKmg-nTh4rtFKhsu2hnfpmOf6AaSWd0nZI_PXcOU6aovL5EkVubKX3u9h357ufCXnLGOdWIQOAtTJgsAAGmcK0nZzhrpkOC4lxyE_ng_GMfZyn823amKsuWRen6vveupL_QRXaAFeskv0HZNtBoQHuAV-4AsJw_SuMP1TyznNsg6S_SWSQdfUi8mRTJ1wYJF5aNCnmtxUgU7lSkQIDdyd4OO7qF_apWq6-bgma5GpdgX9dv4OPh7Tm-CWsuOX1DXjJy02ddWTA24X1t3ngCnNo3Px2dV2qTq7NRJafF8ua52CbXu-jEHEnDav2TC8uO3GzznwKiAc8jTzb9Z42PwnjmB11S_bO7jAjOn4A3x-LWaAb7j8h-0RYsw7vcmqfX4jRbDIR07P59IDcjzl3m_nwvq1bPkjceeftsE2dV5b12zaMEUX9MOmHabJjwRx8wfzZn5ZxZ5tMH5GHHjQ6rNF5TO6Z8gk5GiJkWLJC31F371F7SkY7ikOd4lBUHCppozi0VhyKikO3ikOd4lCnOM_IbHQ2fT8O_IEagUqidB0UOgV70-QhfKDKZplOLGfK6CK0Oo_B9mYFi5XWmmuTWj5gA1grI264ThQYsjx5Tg7LZWmOCFXSDoxVMNvnETNZJJWVujA2jgrOYIQeYY2QhPJ_CA89WQiX9ZBlAmUrULYCZSvCRIBse-S07XZb0638qcMbQKB9FsnSx8OJwLYQLK08jfld1CPHDUDCf74rEeOOep6DS_7i9z-_JA-2Gn9MDtfVxrwCS3RdvHaK9AM0O4d1 |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gravitational+waves+from+a+universe+filled+with+primordial+black+holes&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Papanikolaou%2C+Theodoros&rft.au=Vennin%2C+Vincent&rft.au=Langlois%2C+David&rft.date=2021-03-01&rft.pub=IOP+Publishing&rft.issn=1475-7516&rft.eissn=1475-7516&rft.volume=2021&rft.issue=3&rft_id=info:doi/10.1088%2F1475-7516%2F2021%2F03%2F053&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon |