Gravitational waves from a universe filled with primordial black holes

Ultra-light primordial black holes, with masses m PBH < 10 9 g, evaporate before big-bang nucleosynthesis and can therefore not be directly constrained. They can however be so abundant that they dominate the universe content for a transient period (before reheating the universe via Hawking evapor...

Full description

Saved in:
Bibliographic Details
Published inJournal of cosmology and astroparticle physics Vol. 2021; no. 3; p. 53
Main Authors Papanikolaou, Theodoros, Vennin, Vincent, Langlois, David
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.03.2021
Institute of Physics (IOP)
Subjects
Online AccessGet full text
ISSN1475-7516
1475-7508
1475-7516
DOI10.1088/1475-7516/2021/03/053

Cover

Abstract Ultra-light primordial black holes, with masses m PBH < 10 9 g, evaporate before big-bang nucleosynthesis and can therefore not be directly constrained. They can however be so abundant that they dominate the universe content for a transient period (before reheating the universe via Hawking evaporation). If this happens, they support large cosmological fluctuations at small scales, which in turn induce the production of gravitational waves through second-order effects. Contrary to the primordial black holes, those gravitational waves survive after evaporation, and can therefore be used to constrain such scenarios. In this work, we show that for induced gravitational waves not to lead to a backreaction problem, the relative abundance of black holes at formation, denoted Ω PBH,f , should be such that Ω PBH,f < 10 -4 ( m PBH /10 9 g) -1/4 . In particular, scenarios where primordial black holes dominate right upon their formation time are all excluded (given that m PBH > 10 g for inflation to proceed at ρ 1/4 < 10 16 GeV). This sets the first constraints on ultra-light primordial black holes.
AbstractList Ultra-light primordial black holes, with masses m PBH < 109g, evaporate before big-bang nucleosynthesis and can therefore not be directly constrained. They can however be so abundant that they dominate the universe content for a transient period (before reheating the universe via Hawking evaporation). If this happens, they support large cosmological fluctuations at small scales, which in turn induce the production of gravitational waves through second-order effects. Contrary to the primordial black holes, those gravitational waves survive after evaporation, and can therefore be used to constrain such scenarios. In this work, we show that for induced gravitational waves not to lead to a backreaction problem, the relative abundance of black holes at formation, denoted ΩPBH,f, should be such that ΩPBH,f < 10-4(m PBH/109g)-1/4. In particular, scenarios where primordial black holes dominate right upon their formation time are all excluded (given that m PBH > 10 g for inflation to proceed at ρ1/4 < 1016 GeV). This sets the first constraints on ultra-light primordial black holes.
Ultra-light primordial black holes, with masses m PBH < 10 9 g, evaporate before big-bang nucleosynthesis and can therefore not be directly constrained. They can however be so abundant that they dominate the universe content for a transient period (before reheating the universe via Hawking evaporation). If this happens, they support large cosmological fluctuations at small scales, which in turn induce the production of gravitational waves through second-order effects. Contrary to the primordial black holes, those gravitational waves survive after evaporation, and can therefore be used to constrain such scenarios. In this work, we show that for induced gravitational waves not to lead to a backreaction problem, the relative abundance of black holes at formation, denoted Ω PBH,f , should be such that Ω PBH,f < 10 -4 ( m PBH /10 9 g) -1/4 . In particular, scenarios where primordial black holes dominate right upon their formation time are all excluded (given that m PBH > 10 g for inflation to proceed at ρ 1/4 < 10 16 GeV). This sets the first constraints on ultra-light primordial black holes.
Author Vennin, Vincent
Langlois, David
Papanikolaou, Theodoros
Author_xml – sequence: 1
  givenname: Theodoros
  surname: Papanikolaou
  fullname: Papanikolaou, Theodoros
– sequence: 2
  givenname: Vincent
  surname: Vennin
  fullname: Vennin, Vincent
– sequence: 3
  givenname: David
  surname: Langlois
  fullname: Langlois, David
BackLink https://hal.science/hal-02999527$$DView record in HAL
BookMark eNqFkF9LwzAUxYNMcJt-BKHgkw-1-ds0-DSG24SBL_oc0iRlmV0zk67Db2_LxhBffLqXwzmHe38TMGp8YwG4R_AJwaLIEOUs5QzlGYYYZZBkkJErML7oo1_7DZjEuIUQ54QUY7BYBtW5VrXON6pOjqqzMamC3yUqOTSusyHapHJ1bU1ydO0m2Qe388G43lzWSn8mG1_beAuuK1VHe3eeU_CxeHmfr9L12_J1PlunmiDWpqVhrKBWQMq5rorCkIpTbU0JKyNwwRAtKdbGGG4sq3hO84LniFtuiCZCcDIFj6fejarlcIoK39IrJ1eztRw0iIUQDPMO9d6Hk3cf_NfBxlZu_SH0X0aJGURUCIyGRnZy6eBjDLa61CIoB7xyQCcHdHLAKyGRPd4-9_wnp88Y26Bc_U_6B_NOgKk
CitedBy_id crossref_primary_10_1088_1475_7516_2023_02_038
crossref_primary_10_1140_epjc_s10052_023_11233_3
crossref_primary_10_3390_universe9050203
crossref_primary_10_1103_PhysRevD_105_123023
crossref_primary_10_1103_PhysRevD_105_023532
crossref_primary_10_1088_1475_7516_2024_09_020
crossref_primary_10_1088_1674_1137_acc649
crossref_primary_10_1088_1475_7516_2021_10_036
crossref_primary_10_1103_RevModPhys_97_015001
crossref_primary_10_1140_epjc_s10052_024_12383_8
crossref_primary_10_1007_s10714_022_03027_x
crossref_primary_10_1103_PhysRevD_110_115013
crossref_primary_10_1103_PhysRevD_103_123549
crossref_primary_10_1088_1475_7516_2022_08_068
crossref_primary_10_1088_1475_7516_2021_08_063
crossref_primary_10_1103_PhysRevD_108_023531
crossref_primary_10_1103_PhysRevLett_133_211003
crossref_primary_10_1103_PhysRevD_111_035020
crossref_primary_10_1016_j_physrep_2024_10_007
crossref_primary_10_1093_mnras_stad261
crossref_primary_10_1103_PhysRevD_107_103532
crossref_primary_10_1007_s41114_023_00045_2
crossref_primary_10_1088_1475_7516_2024_09_013
crossref_primary_10_1103_PhysRevD_108_015005
crossref_primary_10_1103_PhysRevD_108_043533
crossref_primary_10_1088_1475_7516_2023_12_036
crossref_primary_10_3390_universe10010039
crossref_primary_10_1088_1475_7516_2022_09_016
crossref_primary_10_1088_1475_7516_2023_10_041
crossref_primary_10_1088_1475_7516_2025_01_067
crossref_primary_10_1088_1475_7516_2024_11_065
crossref_primary_10_1103_PhysRevD_110_035014
crossref_primary_10_3390_galaxies10010031
crossref_primary_10_1088_1475_7516_2023_08_078
crossref_primary_10_1103_PhysRevResearch_6_L012060
crossref_primary_10_1088_1475_7516_2024_08_054
crossref_primary_10_1007_JHEP05_2023_169
crossref_primary_10_1088_1475_7516_2021_04_057
crossref_primary_10_1007_JHEP02_2025_095
crossref_primary_10_1103_PhysRevD_107_123537
crossref_primary_10_1103_PhysRevD_106_124012
crossref_primary_10_1088_1475_7516_2024_02_019
crossref_primary_10_1088_1475_7516_2025_01_094
crossref_primary_10_1103_PhysRevD_108_123002
crossref_primary_10_1103_PhysRevD_108_063532
crossref_primary_10_1088_1475_7516_2024_07_034
crossref_primary_10_1103_PhysRevD_107_063538
crossref_primary_10_3390_galaxies10060112
crossref_primary_10_1103_PhysRevD_111_063036
crossref_primary_10_1088_1475_7516_2021_12_027
crossref_primary_10_1103_PhysRevD_104_083545
crossref_primary_10_1093_mnras_stac2331
crossref_primary_10_1103_PhysRevD_108_123532
crossref_primary_10_1103_PhysRevD_104_103021
crossref_primary_10_1088_1475_7516_2024_10_006
crossref_primary_10_1103_PhysRevD_104_075007
crossref_primary_10_1088_1475_7516_2022_05_013
crossref_primary_10_3847_1538_4357_ada6b4
crossref_primary_10_1088_1475_7516_2023_03_048
crossref_primary_10_1103_PhysRevD_110_043528
crossref_primary_10_1088_1475_7516_2022_03_023
crossref_primary_10_1140_epjc_s10052_024_13271_x
crossref_primary_10_1103_PhysRevD_111_063543
crossref_primary_10_1103_PhysRevLett_130_181002
crossref_primary_10_1088_1475_7516_2025_02_040
crossref_primary_10_1103_PhysRevLett_130_051001
crossref_primary_10_1103_PhysRevD_108_123538
crossref_primary_10_1088_1475_7516_2024_02_020
crossref_primary_10_1103_PhysRevD_104_123536
crossref_primary_10_1103_PhysRevD_109_043508
crossref_primary_10_1088_1475_7516_2021_04_080
crossref_primary_10_1103_PhysRevD_111_063528
crossref_primary_10_1088_1475_7516_2024_07_059
crossref_primary_10_1103_PhysRevD_108_035040
crossref_primary_10_1088_1475_7516_2025_03_045
crossref_primary_10_1140_epjc_s10052_024_13644_2
crossref_primary_10_1088_1475_7516_2021_08_021
crossref_primary_10_1088_1475_7516_2022_03_031
crossref_primary_10_1016_j_ppnp_2023_104040
crossref_primary_10_1103_PhysRevD_109_L041303
crossref_primary_10_1103_PhysRevD_111_023509
crossref_primary_10_1134_S0202289321040101
crossref_primary_10_1103_PhysRevD_104_083523
crossref_primary_10_1007_JHEP07_2022_130
crossref_primary_10_1140_epjc_s10052_022_10742_x
crossref_primary_10_1088_1361_6382_ace493
crossref_primary_10_1088_1475_7516_2022_06_017
crossref_primary_10_1088_1475_7516_2023_10_001
crossref_primary_10_1103_PhysRevD_110_024055
crossref_primary_10_1088_1475_7516_2024_09_059
crossref_primary_10_1088_1475_7516_2024_06_021
crossref_primary_10_1103_PhysRevD_108_063523
crossref_primary_10_1103_PhysRevD_108_063005
crossref_primary_10_1088_1475_7516_2023_01_021
crossref_primary_10_1103_PhysRevD_105_103508
crossref_primary_10_1142_S0219887824502517
crossref_primary_10_1088_1475_7516_2024_10_065
crossref_primary_10_1103_PhysRevD_107_063508
crossref_primary_10_1140_epjc_s10052_024_12397_2
crossref_primary_10_1140_epjc_s10052_024_13460_8
crossref_primary_10_1007_JHEP08_2023_196
crossref_primary_10_1103_PhysRevD_109_063506
crossref_primary_10_1103_PhysRevD_108_095052
crossref_primary_10_1088_1475_7516_2021_06_004
crossref_primary_10_1088_1475_7516_2023_06_008
crossref_primary_10_1088_1475_7516_2021_06_001
crossref_primary_10_1088_1475_7516_2024_11_026
crossref_primary_10_1140_epjc_s10052_022_11157_4
crossref_primary_10_1140_epjc_s10052_024_13218_2
crossref_primary_10_1088_1475_7516_2023_02_062
crossref_primary_10_3390_universe7110398
crossref_primary_10_1088_1361_6382_ad74d4
crossref_primary_10_1103_PhysRevD_105_124055
crossref_primary_10_1007_s41114_024_00053_w
crossref_primary_10_1088_1475_7516_2021_11_019
crossref_primary_10_1088_1475_7516_2022_02_017
crossref_primary_10_1088_1674_1137_ad79d5
crossref_primary_10_1103_PhysRevD_108_043523
crossref_primary_10_1016_j_dark_2024_101506
crossref_primary_10_1088_1475_7516_2022_10_013
crossref_primary_10_1088_1475_7516_2021_04_062
crossref_primary_10_1103_PhysRevD_107_095002
crossref_primary_10_1007_s43673_023_00109_z
crossref_primary_10_1088_1361_6382_ad5488
crossref_primary_10_1088_1475_7516_2024_12_021
crossref_primary_10_1016_j_scib_2023_10_027
crossref_primary_10_3389_fspas_2024_1361399
crossref_primary_10_1007_JHEP10_2024_142
crossref_primary_10_1103_PhysRevD_107_124019
crossref_primary_10_1103_PhysRevD_109_123002
crossref_primary_10_1093_mnras_stae1098
crossref_primary_10_1088_1475_7516_2025_02_009
crossref_primary_10_1088_1475_7516_2022_10_089
crossref_primary_10_1142_S0218271824410141
crossref_primary_10_1007_s11433_022_2095_5
crossref_primary_10_1007_JHEP02_2024_113
crossref_primary_10_1088_1475_7516_2024_07_002
crossref_primary_10_1088_1361_6633_ac1e31
crossref_primary_10_1007_JHEP03_2023_127
crossref_primary_10_1088_1475_7516_2023_03_003
crossref_primary_10_1088_1475_7516_2022_06_007
crossref_primary_10_1088_1475_7516_2023_11_066
crossref_primary_10_1103_PhysRevD_106_035019
crossref_primary_10_1088_1361_6382_acd97d
crossref_primary_10_1088_1475_7516_2024_11_005
crossref_primary_10_1088_1475_7516_2024_12_039
crossref_primary_10_1088_1361_6382_ad210c
crossref_primary_10_1088_1475_7516_2023_02_043
crossref_primary_10_1088_1475_7516_2022_11_045
crossref_primary_10_1088_1475_7516_2023_06_027
crossref_primary_10_1103_PhysRevD_109_103001
crossref_primary_10_1088_1475_7516_2023_06_029
crossref_primary_10_1142_S0218271824500275
Cites_doi 10.1103/PhysRevD.101.123533
10.1093/mnras/104.5.273
10.1103/PhysRevD.76.084019
10.1103/PhysRevLett.122.201101
10.1088/1475-7516/2016/04/001
10.1088/1475-7516/2017/09/037
10.3847/1538-4357/aa74be
10.1103/PhysRevD.79.083511
10.1103/PhysRevD.94.043507
10.1103/PhysRevLett.122.141302
10.1088/1475-7516/2019/06/052
10.1016/j.dark.2018.08.004
10.1016/S0550-3213(03)00550-9
10.1103/PhysRevD.101.083529
10.1103/PhysRev.166.1272
10.1103/PhysRevD.101.125012
10.1103/PhysRevD.62.043527
10.1038/253251a0
10.1103/PhysRevD.101.023523
10.1051/0004-6361/201833887
10.1088/1475-7516/2020/04/052
https://doi.org/10.1093/mnras/206.2.315
10.1016/S0370-1573(99)00102-7
10.1088/1475-7516/2018/09/012
10.1086/310886
10.1143/PTP.117.17
10.1088/1475-7516/2020/03/014
10.1088/1742-6596/1051/1/012010
10.1103/PhysRevD.81.023517
10.1103/PhysRevLett.117.061101
10.1103/PhysRevD.100.083528
10.1038/248030a0
10.1103/PhysRevD.66.063505
10.1086/378763
10.1086/153853
10.22323/1.215.0037
10.1088/1475-7516/2016/10/034
10.1088/1475-7516/2019/10/071
10.1093/mnras/168.2.399
10.1103/PhysRevD.75.123518
10.1016/0550-3213(92)90008-Y
10.1007/JHEP08(2019)001
10.1088/1475-7516/2020/03/050
10.1016/0370-1573(92)90044-Z
10.1088/1475-7516/2020/01/024
10.1103/PhysRevD.101.123535
10.1103/PhysRevD.100.081301
10.1103/PhysRevLett.103.111303
10.1103/PhysRevX.9.031040
10.1103/PhysRevLett.121.081304
10.1103/PhysRevLett.102.161101
10.1103/PhysRevD.22.1882
10.1103/PhysRevD.97.123532
10.1103/PhysRevD.92.121304
10.1103/PhysRevD.98.123533
10.3847/2041-8213/aba493
10.1103/PhysRevD.58.063003
10.1103/PhysRevD.102.043505
10.1088/1475-7516/2019/11/001
10.1103/PhysRevD.101.063018
ContentType Journal Article
Copyright Copyright IOP Publishing Mar 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright IOP Publishing Mar 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1088/1475-7516/2021/03/053
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1475-7516
ExternalDocumentID oai_HAL_hal_02999527v1
10_1088_1475_7516_2021_03_053
GroupedDBID 1JI
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ADEQX
ADWVK
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
ER.
IHE
IJHAN
IOP
IZVLO
J9A
KOT
LAP
M45
MV1
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
VSI
W28
XPP
ZMT
02O
1WK
1XC
4.4
AALHV
ACARI
AERVB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
NT-
NT.
Q02
RNS
S3P
VOOES
ID FETCH-LOGICAL-c315t-bd5584e90477cf88d3f74cedb0fd928514b42cddd7de5f764687617e7d3c39973
ISSN 1475-7516
1475-7508
IngestDate Fri May 09 12:24:59 EDT 2025
Sun Jun 29 16:46:09 EDT 2025
Thu Apr 24 22:59:55 EDT 2025
Tue Jul 01 03:49:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords gravitational radiation: emission
power spectrum
gauge
reheating
energy: density
black hole: mass
gravitational radiation: induced
tensor: energy-momentum
black hole: formation
black hole: evaporation
space-time: fluctuation
gravitational waves / theory
inflation
perturbation: scalar
nucleosynthesis: big bang
formation: time
primordial black holes
back reaction
matter: power spectrum
physics of the early universe
evaporation
power spectrum: tensor
black hole: primordial
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-bd5584e90477cf88d3f74cedb0fd928514b42cddd7de5f764687617e7d3c39973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8851-4430
OpenAccessLink https://hal.science/hal-02999527
PQID 2501499217
PQPubID 2048024
ParticipantIDs hal_primary_oai_HAL_hal_02999527v1
proquest_journals_2501499217
crossref_primary_10_1088_1475_7516_2021_03_053
crossref_citationtrail_10_1088_1475_7516_2021_03_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of cosmology and astroparticle physics
PublicationYear 2021
Publisher IOP Publishing
Institute of Physics (IOP)
Publisher_xml – name: IOP Publishing
– name: Institute of Physics (IOP)
References Bondi (b49ecfb9c185ef3b3257566e68c96cfa4) 1944; 104
Tomikawa (becd5b2d41fa26e4b29e57755b3646552) 2020; 101
Meszaros (b24b45382efe967c4f80d9a996da0796a) 1974; 37
Carr (bd202f16a08d6bbb0f92fc0edd42e77ab) 1974; 168
Inomata (bcacffee13ee53be7cc36f086e2586fd3) 2019; 10
Inomata (b0aeda501d89f9952ea190492635cde83) 2020; 101
Germani (b812ca3a7b8b0e69ece5759a423d66758) 2019; 122
Wands (bf80eaead357a15dc44448138b5cf61be) 2000; 62
Carr (b3a5dc5f1846feade56c5d4383ea61b61) 1975; 201
Carr (b1820d9c065d27d1eba8f5b984d1b46d6) 2020
Hawking (b930ff03d0febe3ca2db8edb19c756421) 1974; 248
Janssen (bd632e0129a3c43b0f1b090db0819db20) 2015; AASKA14
ba24c53b4e34bf9312849b3f1394035ce
Ali-Haïmoud (be4d56b4a680b7670aab2bfd36a9e4403) 2018; 121
Moradinezhad Dizgah (b7876429c42a60ac61a101debc0378941) 2019; 11
Inomata (bb1fda8e6115fe56707885cff77182c1c) 2020; 101
Raidal (b76b06bc20edb69747768ea3b7c103a3b) 2017; 09
Hooper (b96faa23764fdff08d7577249e9e64562) 2019; 08
Akrami (b5ecb81b4a59e19ba5bafac3a97c5eacd) 2020; 641
Abbott (bb1fd2cd69ad856490f6a06c02b7c3552) 2019; 9
De Luca (ba481d8e24c809a9668648b1fb9598293) 2020; 03
Zagorac (b5a4923ad2129409ba2315695e7916d07) 2019; 06
Amaro-Seoane (bd0bb2874da3b15545007547eec9ff4f2) 2017
bf1737a2ad4672832b77080a5e42e21eb
Nakama (b9796bb1bcf97059abf47727e065a3318) 2016; 94
Yuan (bcffbf6e02c4399ac13651038bb63cc64) 2019; 100
Espinosa (beeb6c99055ee5f401c19e6d0687acb9b) 2018; 09
Kolb (b3cd8aa96120d25bb96a78051ef7af7ce) 1990
Hwang (bcd84300dbcdcdc4e74229901d181ac4f) 2017; 842
Isaacson (ba2ed62ab29e931631a298875e2dc6d60) 1968; 166
De Luca (b305300bb0b784af15aa0cbfc302b8561) 2020; 102
Nakamura (bd007d8ae8285692aaaa4c6231d433bc9) 1997; 487
Hooper (b74135b3508e9ef7a7463384a886a9787) 2020
Dong (b0238bfdda4459bb4122ad67c3da53af4) 2016; 10
Dai (bad30d7f85b675f37f6f75a92d77cc2a2) 2020; 101
bd5c965b7ba609f8d424e32996af10e01
Kapadia (b7a98b84e3bce8fb3dd5cacfc649605a3) 2020; 101
Mukhanov (bd6cb7b6234df9fb3d4cc55242ad1b3e3) 1992; 215
Martin (b3ea48e8e9f60f2f00619e9152faea8ac) 2020; 01
Maggiore (b62923c5730993eec83cd3d6042c9ca3f) 2020; 03
Clesse (b755be777b0663f99f69f9f7e775f1ef3) 2018; 22
Ananda (bba5b91d70bb43b2c4a31c23ce31dd8d1) 2007; 75
Acquaviva (b8795286f292f47c37b21f36c26db99b0) 2003; 667
Yuan (b36fde9f15635e47c25b10bad47cb11c6) 2020; 101
Bugaev (b1862fb8d1e1b5b5b868de76a2941f958) 2010; 81
Caprini (b58d3065d7e7691f1490617d504346b79) 2016; 04
Saito (b237dd89cbd4cbe27c9a9c99d5923bebc) 2009; 102
Afshordi (b0945f1d063a010c008f466d143fe9142) 2003; 594
Assadullahi (b0b8a43d4128c47e8494065d668d46d1b) 2009; 79
Nakama (bbf87ff6b8a4668c5d5c3315eb8d92931) 2015; 92
Meszaros (bc440130217fac730e064f3702307f390) 1975; 38
Coleman (b766eb343fdaebe5cb85ab8f175ba2ad9) 1992; 378
Baumann (b9c5fbcd48c210bd2f927c5f4f2049c8e) 2007; 76
Abbott (b08ad92247dea78277168d40a6e675405) 2020; 900
Bean (b5a04fc6a323ac2f236af31089508ad1a) 2002; 66
Sasaki (b8c7a4050e68376340a9d4903d3470cec) 2016; 117
De Luca (b7cdbd670968ba2da0f317b0c7a3685dc) 2020; 04
Maggiore (b3951b1203c46cc6a30cac2a36b030cb6) 2000; 331
Anantua (b0b63ff6d9846823ce08aa3aa9169c67b) 2009; 103
Eroshenko (b833a91ad81dfdf0b84172aa70c8fb90d) 2018; 1051
Kohri (bd29b9eb13ba14803a3ecd32e1146f35b) 2018; 97
Bardeen (b0e1268db5c4d35db9cf99d1f9f061aaf) 1980; 22
Nakamura (b5bac97223858e832582f31ee37dc2017) 2007; 117
Cai (b8736434039ab42445d5030cc2be097a3) 2019; 122
Desjacques (b5e0e9716fa4e74448b753ef5f0a54a86) 2018; 98
Inman (b490330faa573420d5db68f5a32c9d648) 2019; 100
Ioka (bb4b7055ee1f224297e5948935b0d1002) 1998; 58
Chapline (bb950427dbfcc33be27a2e97d42b39f31) 1975; 253
References_xml – volume: 101
  year: 2020
  ident: bb1fda8e6115fe56707885cff77182c1c
  article-title: Gravitational Wave Production right after a Primordial Black Hole Evaporation
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.123533
– volume: 104
  start-page: 273
  year: 1944
  ident: b49ecfb9c185ef3b3257566e68c96cfa4
  article-title: On the mechanism of accretion by stars
  publication-title: Mon. Not. Roy. Astron. Soc.
  doi: 10.1093/mnras/104.5.273
– volume: 76
  year: 2007
  ident: b9c5fbcd48c210bd2f927c5f4f2049c8e
  article-title: Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.76.084019
– volume: 37
  start-page: 225
  year: 1974
  ident: b24b45382efe967c4f80d9a996da0796a
  article-title: The behaviour of point masses in an expanding cosmological substratum
  publication-title: Astron. Astrophys.
– volume: 122
  year: 2019
  ident: b8736434039ab42445d5030cc2be097a3
  article-title: Gravitational Waves Induced by non-Gaussian Scalar Perturbations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.201101
– volume: 04
  year: 2016
  ident: b58d3065d7e7691f1490617d504346b79
  article-title: Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions
  publication-title: JCAP
  doi: 10.1088/1475-7516/2016/04/001
– volume: 09
  year: 2017
  ident: b76b06bc20edb69747768ea3b7c103a3b
  article-title: Gravitational Waves from Primordial Black Hole Mergers
  publication-title: JCAP
  doi: 10.1088/1475-7516/2017/09/037
– volume: 842
  start-page: 46
  year: 2017
  ident: bcd84300dbcdcdc4e74229901d181ac4f
  article-title: Gauge dependence of gravitational waves generated from scalar perturbations
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/aa74be
– volume: 79
  year: 2009
  ident: b0b8a43d4128c47e8494065d668d46d1b
  article-title: Gravitational waves from an early matter era
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.79.083511
– volume: 94
  year: 2016
  ident: b9796bb1bcf97059abf47727e065a3318
  article-title: Primordial black holes as a novel probe of primordial gravitational waves. II: Detailed analysis
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.043507
– volume: 122
  year: 2019
  ident: b812ca3a7b8b0e69ece5759a423d66758
  article-title: Abundance of Primordial Black Holes Depends on the Shape of the Inflationary Power Spectrum
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.141302
– volume: 06
  year: 2019
  ident: b5a4923ad2129409ba2315695e7916d07
  article-title: GUT-Scale Primordial Black Holes: Mergers and Gravitational Waves
  publication-title: JCAP
  doi: 10.1088/1475-7516/2019/06/052
– volume: 22
  start-page: 137
  year: 2018
  ident: b755be777b0663f99f69f9f7e775f1ef3
  article-title: Seven Hints for Primordial Black Hole Dark Matter
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2018.08.004
– volume: 667
  start-page: 119
  year: 2003
  ident: b8795286f292f47c37b21f36c26db99b0
  article-title: Second order cosmological perturbations from inflation
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(03)00550-9
– ident: bf1737a2ad4672832b77080a5e42e21eb
– volume: 101
  year: 2020
  ident: becd5b2d41fa26e4b29e57755b3646552
  article-title: Gauge dependence of gravitational waves generated at second order from scalar perturbations
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.083529
– volume: 166
  start-page: 1272
  year: 1968
  ident: ba2ed62ab29e931631a298875e2dc6d60
  article-title: Gravitational Radiation in the Limit of High Frequency. II. Nonlinear Terms and the Ef fective Stress Tensor
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.166.1272
– volume: 101
  year: 2020
  ident: bad30d7f85b675f37f6f75a92d77cc2a2
  article-title: Connecting the Higgs Potential and Primordial Black Holes
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.125012
– year: 2017
  ident: bd0bb2874da3b15545007547eec9ff4f2
  article-title: Laser Interferometer Space Antenna
– ident: bd5c965b7ba609f8d424e32996af10e01
– volume: 62
  year: 2000
  ident: bf80eaead357a15dc44448138b5cf61be
  article-title: A New approach to the evolution of cosmological perturbations on large scales
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.62.043527
– volume: 253
  start-page: 251
  year: 1975
  ident: bb950427dbfcc33be27a2e97d42b39f31
  article-title: Cosmological effects of primordial black holes
  publication-title: Nature
  doi: 10.1038/253251a0
– volume: 101
  year: 2020
  ident: b0aeda501d89f9952ea190492635cde83
  article-title: Gauge Independence of Induced Gravitational Waves
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.023523
– volume: 641
  start-page: A10
  year: 2020
  ident: b5ecb81b4a59e19ba5bafac3a97c5eacd
  article-title: Planck 2018 results. X. Constraints on inflation
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201833887
– volume: 04
  year: 2020
  ident: b7cdbd670968ba2da0f317b0c7a3685dc
  article-title: The evolution of primordial black holes and their final observable spins
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/04/052
– ident: ba24c53b4e34bf9312849b3f1394035ce
  doi: https://doi.org/10.1093/mnras/206.2.315
– volume: 331
  start-page: 283
  year: 2000
  ident: b3951b1203c46cc6a30cac2a36b030cb6
  article-title: Gravitational wave experiments and early universe cosmology
  publication-title: Phys. Rept.
  doi: 10.1016/S0370-1573(99)00102-7
– volume: 09
  year: 2018
  ident: beeb6c99055ee5f401c19e6d0687acb9b
  article-title: A Cosmological Signature of the SM Higgs Instability: Gravitational Waves
  publication-title: JCAP
  doi: 10.1088/1475-7516/2018/09/012
– volume: 487
  start-page: L139
  year: 1997
  ident: bd007d8ae8285692aaaa4c6231d433bc9
  article-title: Gravitational waves from coalescing black hole MACHO binaries
  publication-title: Astrophys. J. Lett.
  doi: 10.1086/310886
– volume: 117
  start-page: 17
  year: 2007
  ident: b5bac97223858e832582f31ee37dc2017
  article-title: Second-order gauge invariant cosmological perturbation theory: Einstein equations in terms of gauge invariant variables
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.117.17
– volume: 03
  year: 2020
  ident: ba481d8e24c809a9668648b1fb9598293
  article-title: On the Gauge Invariance of Cosmological Gravitational Waves
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/03/014
– volume: 1051
  year: 2018
  ident: b833a91ad81dfdf0b84172aa70c8fb90d
  article-title: Gravitational waves from primordial black holes collisions in binary systems
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1051/1/012010
– volume: 81
  year: 2010
  ident: b1862fb8d1e1b5b5b868de76a2941f958
  article-title: Induced gravitational wave background and primordial black holes
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.023517
– volume: 117
  year: 2016
  ident: b8c7a4050e68376340a9d4903d3470cec
  article-title: Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.061101
– volume: 100
  year: 2019
  ident: b490330faa573420d5db68f5a32c9d648
  article-title: Early structure formation in primordial black hole cosmologies
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.083528
– volume: 248
  start-page: 30
  year: 1974
  ident: b930ff03d0febe3ca2db8edb19c756421
  article-title: Black hole explosions
  publication-title: Nature
  doi: 10.1038/248030a0
– volume: 66
  year: 2002
  ident: b5a04fc6a323ac2f236af31089508ad1a
  article-title: Could supermassive black holes be quintessential primordial black holes?
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.66.063505
– volume: 594
  start-page: L71
  year: 2003
  ident: b0945f1d063a010c008f466d143fe9142
  article-title: Primordial black holes as dark matter: The Power spectrum and evaporation of early structures
  publication-title: Astrophys. J. Lett.
  doi: 10.1086/378763
– volume: 201
  start-page: 1
  year: 1975
  ident: b3a5dc5f1846feade56c5d4383ea61b61
  article-title: The Primordial black hole mass spectrum
  publication-title: Astrophys. J.
  doi: 10.1086/153853
– volume: AASKA14
  start-page: 037
  year: 2015
  ident: bd632e0129a3c43b0f1b090db0819db20
  article-title: Gravitational wave astronomy with the SKA
  publication-title: PoS
  doi: 10.22323/1.215.0037
– volume: 10
  year: 2016
  ident: b0238bfdda4459bb4122ad67c3da53af4
  article-title: Gravitational wave production by Hawking radiation from rotating primordial black holes
  publication-title: JCAP
  doi: 10.1088/1475-7516/2016/10/034
– volume: 10
  year: 2019
  ident: bcacffee13ee53be7cc36f086e2586fd3
  article-title: Gravitational Waves Induced by Scalar Perturbations during a Gradual Transition from an Early Matter Era to the Radiation Era
  publication-title: JCAP
  doi: 10.1088/1475-7516/2019/10/071
– volume: 168
  start-page: 399
  year: 1974
  ident: bd202f16a08d6bbb0f92fc0edd42e77ab
  article-title: Black holes in the early Universe
  publication-title: Mon. Not. Roy. Astron. Soc.
  doi: 10.1093/mnras/168.2.399
– volume: 38
  start-page: 5
  year: 1975
  ident: bc440130217fac730e064f3702307f390
  article-title: Primeval black holes and galaxy formation
  publication-title: Astron. Astrophys.
– volume: 75
  year: 2007
  ident: bba5b91d70bb43b2c4a31c23ce31dd8d1
  article-title: The Cosmological gravitational wave background from primordial density perturbations
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.75.123518
– year: 2020
  ident: b1820d9c065d27d1eba8f5b984d1b46d6
  article-title: Constraints on Primordial Black Holes
– volume: 378
  start-page: 175
  year: 1992
  ident: b766eb343fdaebe5cb85ab8f175ba2ad9
  article-title: Quantum hair on black holes
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(92)90008-Y
– volume: 08
  start-page: 001
  year: 2019
  ident: b96faa23764fdff08d7577249e9e64562
  article-title: Dark Radiation and Superheavy Dark Matter from Black Hole Domination
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)001
– volume: 03
  year: 2020
  ident: b62923c5730993eec83cd3d6042c9ca3f
  article-title: Science Case for the Einstein Telescope
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/03/050
– volume: 215
  start-page: 203
  year: 1992
  ident: bd6cb7b6234df9fb3d4cc55242ad1b3e3
  article-title: Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions
  publication-title: Phys. Rept.
  doi: 10.1016/0370-1573(92)90044-Z
– volume: 01
  year: 2020
  ident: b3ea48e8e9f60f2f00619e9152faea8ac
  article-title: Primordial black holes from the preheating instability in single-field inflation
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/01/024
– volume: 101
  year: 2020
  ident: b7a98b84e3bce8fb3dd5cacfc649605a3
  article-title: Prospects for probing ultralight primordial black holes using the stochastic gravitational-wave background induced by primordial curvature perturbations
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.123535
– volume: 100
  year: 2019
  ident: bcffbf6e02c4399ac13651038bb63cc64
  article-title: Probing primordial-black-hole dark matter with scalar induced gravitational waves
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.081301
– volume: 103
  year: 2009
  ident: b0b63ff6d9846823ce08aa3aa9169c67b
  article-title: GUT-Scale Primordial Black Holes: Consequences and Constraints
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.111303
– volume: 9
  year: 2019
  ident: bb1fd2cd69ad856490f6a06c02b7c3552
  article-title: GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.9.031040
– volume: 121
  year: 2018
  ident: be4d56b4a680b7670aab2bfd36a9e4403
  article-title: Correlation Function of High-Threshold Regions and Application to the Initial Small-Scale Clustering of Primordial Black Holes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.081304
– volume: 102
  year: 2009
  ident: b237dd89cbd4cbe27c9a9c99d5923bebc
  article-title: Gravitational wave background as a probe of the primordial black hole abundance
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.161101
– volume: 22
  start-page: 1882
  year: 1980
  ident: b0e1268db5c4d35db9cf99d1f9f061aaf
  article-title: Gauge Invariant Cosmological Perturbations
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.22.1882
– volume: 97
  year: 2018
  ident: bd29b9eb13ba14803a3ecd32e1146f35b
  article-title: Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.123532
– volume: 92
  year: 2015
  ident: bbf87ff6b8a4668c5d5c3315eb8d92931
  article-title: Primordial black holes as a novel probe of primordial gravitational waves
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.121304
– year: 2020
  ident: b74135b3508e9ef7a7463384a886a9787
  article-title: Hot Gravitons and Gravitational Waves From Kerr Black Holes in the Early Universe
– volume: 98
  year: 2018
  ident: b5e0e9716fa4e74448b753ef5f0a54a86
  article-title: Spatial clustering of primordial black holes
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.123533
– year: 1990
  ident: b3cd8aa96120d25bb96a78051ef7af7ce
– volume: 900
  start-page: L13
  year: 2020
  ident: b08ad92247dea78277168d40a6e675405
  article-title: Properties and Astrophysical Implications of the 150 M_⊙ Binary Black Hole Merger GW190521
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/aba493
– volume: 58
  year: 1998
  ident: bb4b7055ee1f224297e5948935b0d1002
  article-title: Black hole binary formation in the expanding universe: Three body problem approximation
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.58.063003
– volume: 102
  year: 2020
  ident: b305300bb0b784af15aa0cbfc302b8561
  article-title: Constraints on Primordial Black Holes: the Importance of Accretion
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.043505
– volume: 11
  year: 2019
  ident: b7876429c42a60ac61a101debc0378941
  article-title: Primordial Black Holes from Broad Spectra: Abundance and Clustering
  publication-title: JCAP
  doi: 10.1088/1475-7516/2019/11/001
– volume: 101
  year: 2020
  ident: b36fde9f15635e47c25b10bad47cb11c6
  article-title: Scalar induced gravitational waves in different gauges
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.063018
SSID ssj0026338
ssib002806714
ssib053834950
Score 2.6380162
Snippet Ultra-light primordial black holes, with masses m PBH < 10 9 g, evaporate before big-bang nucleosynthesis and can therefore not be directly constrained. They...
Ultra-light primordial black holes, with masses m PBH < 109g, evaporate before big-bang nucleosynthesis and can therefore not be directly constrained. They can...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 53
SubjectTerms Astrophysics
Big bang cosmology
Black holes
Constraints
Evaporation
General Relativity and Quantum Cosmology
Gravitational effects
Gravitational waves
Heating
High Energy Physics - Theory
Nuclear fusion
Nuclei (nuclear physics)
Physics
Relative abundance
Universe
Waves
Title Gravitational waves from a universe filled with primordial black holes
URI https://www.proquest.com/docview/2501499217
https://hal.science/hal-02999527
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYeOEF8akVBrIQ4mXKmg-nTh4rtFKhsu2hnfpmOf6AaSWd0nZI_PXcOU6aovL5EkVubKX3u9h357ufCXnLGOdWIQOAtTJgsAAGmcK0nZzhrpkOC4lxyE_ng_GMfZyn823amKsuWRen6vveupL_QRXaAFeskv0HZNtBoQHuAV-4AsJw_SuMP1TyznNsg6S_SWSQdfUi8mRTJ1wYJF5aNCnmtxUgU7lSkQIDdyd4OO7qF_apWq6-bgma5GpdgX9dv4OPh7Tm-CWsuOX1DXjJy02ddWTA24X1t3ngCnNo3Px2dV2qTq7NRJafF8ua52CbXu-jEHEnDav2TC8uO3GzznwKiAc8jTzb9Z42PwnjmB11S_bO7jAjOn4A3x-LWaAb7j8h-0RYsw7vcmqfX4jRbDIR07P59IDcjzl3m_nwvq1bPkjceeftsE2dV5b12zaMEUX9MOmHabJjwRx8wfzZn5ZxZ5tMH5GHHjQ6rNF5TO6Z8gk5GiJkWLJC31F371F7SkY7ikOd4lBUHCppozi0VhyKikO3ikOd4lCnOM_IbHQ2fT8O_IEagUqidB0UOgV70-QhfKDKZplOLGfK6CK0Oo_B9mYFi5XWmmuTWj5gA1grI264ThQYsjx5Tg7LZWmOCFXSDoxVMNvnETNZJJWVujA2jgrOYIQeYY2QhPJ_CA89WQiX9ZBlAmUrULYCZSvCRIBse-S07XZb0638qcMbQKB9FsnSx8OJwLYQLK08jfld1CPHDUDCf74rEeOOep6DS_7i9z-_JA-2Gn9MDtfVxrwCS3RdvHaK9AM0O4d1
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gravitational+waves+from+a+universe+filled+with+primordial+black+holes&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Papanikolaou%2C+Theodoros&rft.au=Vennin%2C+Vincent&rft.au=Langlois%2C+David&rft.date=2021-03-01&rft.pub=IOP+Publishing&rft.issn=1475-7516&rft.eissn=1475-7516&rft.volume=2021&rft.issue=3&rft_id=info:doi/10.1088%2F1475-7516%2F2021%2F03%2F053&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon