Interactions among the composition changes in fungal communities and the main mycotoxins in simulated stored wheat grains

There are significant food safety risks associated with wheat spoilage due to fungal growth and mycotoxin contamination. Nevertheless, a few studies have examined how stored wheat grain microbial communities and mycotoxins vary in different storage conditions. In this study, changes in deoxynivaleno...

Full description

Saved in:
Bibliographic Details
Published inJournal of the science of food and agriculture Vol. 104; no. 1; pp. 373 - 382
Main Authors Wang, Ruihu, Li, Mengmeng, Jin, Rui, Liu, Yuanxiao, Guan, Erqi, Mohamed, Sherif Ramzy, Bian, Ke
Format Journal Article
LanguageEnglish
Published England John Wiley and Sons, Limited 15.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:There are significant food safety risks associated with wheat spoilage due to fungal growth and mycotoxin contamination. Nevertheless, a few studies have examined how stored wheat grain microbial communities and mycotoxins vary in different storage conditions. In this study, changes in deoxynivalenol (DON) and deoxynivalenol-3-glucoside (D3G) content were measured with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), and an amplicon sequence analysis of fungi was performed on stored wheat grains from different storage conditions using high-throughput sequencing. The detailed interactions among the composition changes in the fungal community and the DON content of simulated stored wheat grains were also analyzed. Alternaria, Fusarium, Mrakia, and Aspergillus were the core fungal taxa, and the fungal communities of samples stored under different conditions were observed to be different. Aspergillus relative abundances increased, whereas Fusarium decreased. This led to an increase in the content of DON. The content of DON increased about 67% with 12% moisture and at 25 °C after 2 months of storage, which was influenced by the stress response of Fusarium. Correlations in fungal and mycotoxins changes were observed. There may be potential value in these findings for developing control strategies to prevent mildew infestations and mycotoxins contamination during grain storage. In storage, the more the fungal community composition and the relative abundance of Fusarium change, the more mycotoxins will be produced. We should therefore reduce competition between fungal communities through pre-storage treatment and through measures during storage. © 2023 Society of Chemical Industry.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-5142
1097-0010
DOI:10.1002/jsfa.12928