KTlO: a metal shrouded 2D semiconductor with high carrier mobility and tunable magnetism

Two-dimensional materials with high carrier mobility and tunable magnetism are in high demand for nanoelectronic and spintronic applications. Herein, we predict a novel two-dimensional monolayer KTlO that possesses an indirect band gap of 2.25 eV (based on HSE06 calculations) and high carrier mobili...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 11; no. 3; pp. 1131 - 1139
Main Authors Song, Ya-Qian, Yuan, Jun-Hui, Li, Li-Heng, Xu, Ming, Wang, Jia-Fu, Xue, Kan-Hao, Miao, Xiang-Shui
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 17.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional materials with high carrier mobility and tunable magnetism are in high demand for nanoelectronic and spintronic applications. Herein, we predict a novel two-dimensional monolayer KTlO that possesses an indirect band gap of 2.25 eV (based on HSE06 calculations) and high carrier mobility (450 cm 2 V −1 s −1 for electrons and 160 cm 2 V −1 s −1 for holes) by means of ab initio calculations. The electron mobility can be increased up to 26 280 cm 2 V −1 s −1 and 54 150 cm 2 V −1 s −1 for bilayer and trilayer KTlO, respectively. The KTlO monolayer has a calculated cleavage energy of 0.56 J m −2 , which suggests exfoliation of the bulk material as a viable means for the preparation of mono- and few-layer materials. Remarkably, the KTlO monolayer demonstrates tunable magnetism and half-metallicity with hole doping, which are attributed to the novel Mexican-hat-like bands and van Hove singularities in its electronic structure. Furthermore, monolayer KTlO exhibits moderate optical absorption over the visible light and ultraviolet regions. The band gap value and band characteristics of monolayer KTlO can be substantially manipulated by biaxial and uniaxial strains to meet the requirement of various applications. All these novel properties make monolayer KTlO a promising functional material for future nanoelectronic and spintronic applications.
AbstractList Two-dimensional materials with high carrier mobility and tunable magnetism are in high demand for nanoelectronic and spintronic applications. Herein, we predict a novel two-dimensional monolayer KTlO that possesses an indirect band gap of 2.25 eV (based on HSE06 calculations) and high carrier mobility (450 cm 2 V −1 s −1 for electrons and 160 cm 2 V −1 s −1 for holes) by means of ab initio calculations. The electron mobility can be increased up to 26 280 cm 2 V −1 s −1 and 54 150 cm 2 V −1 s −1 for bilayer and trilayer KTlO, respectively. The KTlO monolayer has a calculated cleavage energy of 0.56 J m −2 , which suggests exfoliation of the bulk material as a viable means for the preparation of mono- and few-layer materials. Remarkably, the KTlO monolayer demonstrates tunable magnetism and half-metallicity with hole doping, which are attributed to the novel Mexican-hat-like bands and van Hove singularities in its electronic structure. Furthermore, monolayer KTlO exhibits moderate optical absorption over the visible light and ultraviolet regions. The band gap value and band characteristics of monolayer KTlO can be substantially manipulated by biaxial and uniaxial strains to meet the requirement of various applications. All these novel properties make monolayer KTlO a promising functional material for future nanoelectronic and spintronic applications.
Two-dimensional materials with high carrier mobility and tunable magnetism are in high demand for nanoelectronic and spintronic applications. Herein, we predict a novel two-dimensional monolayer KTlO that possesses an indirect band gap of 2.25 eV (based on HSE06 calculations) and high carrier mobility (450 cm2 V−1 s−1 for electrons and 160 cm2 V−1 s−1 for holes) by means of ab initio calculations. The electron mobility can be increased up to 26 280 cm2 V−1 s−1 and 54 150 cm2 V−1 s−1 for bilayer and trilayer KTlO, respectively. The KTlO monolayer has a calculated cleavage energy of 0.56 J m−2, which suggests exfoliation of the bulk material as a viable means for the preparation of mono- and few-layer materials. Remarkably, the KTlO monolayer demonstrates tunable magnetism and half-metallicity with hole doping, which are attributed to the novel Mexican-hat-like bands and van Hove singularities in its electronic structure. Furthermore, monolayer KTlO exhibits moderate optical absorption over the visible light and ultraviolet regions. The band gap value and band characteristics of monolayer KTlO can be substantially manipulated by biaxial and uniaxial strains to meet the requirement of various applications. All these novel properties make monolayer KTlO a promising functional material for future nanoelectronic and spintronic applications.
Two-dimensional materials with high carrier mobility and tunable magnetism are in high demand for nanoelectronic and spintronic applications. Herein, we predict a novel two-dimensional monolayer KTlO that possesses an indirect band gap of 2.25 eV (based on HSE06 calculations) and high carrier mobility (450 cm2 V-1 s-1 for electrons and 160 cm2 V-1 s-1 for holes) by means of ab initio calculations. The electron mobility can be increased up to 26 280 cm2 V-1 s-1 and 54 150 cm2 V-1 s-1 for bilayer and trilayer KTlO, respectively. The KTlO monolayer has a calculated cleavage energy of 0.56 J m-2, which suggests exfoliation of the bulk material as a viable means for the preparation of mono- and few-layer materials. Remarkably, the KTlO monolayer demonstrates tunable magnetism and half-metallicity with hole doping, which are attributed to the novel Mexican-hat-like bands and van Hove singularities in its electronic structure. Furthermore, monolayer KTlO exhibits moderate optical absorption over the visible light and ultraviolet regions. The band gap value and band characteristics of monolayer KTlO can be substantially manipulated by biaxial and uniaxial strains to meet the requirement of various applications. All these novel properties make monolayer KTlO a promising functional material for future nanoelectronic and spintronic applications.
Two-dimensional materials with high carrier mobility and tunable magnetism are in high demand for nanoelectronic and spintronic applications. Herein, we predict a novel two-dimensional monolayer KTlO that possesses an indirect band gap of 2.25 eV (based on HSE06 calculations) and high carrier mobility (450 cm2 V-1 s-1 for electrons and 160 cm2 V-1 s-1 for holes) by means of ab initio calculations. The electron mobility can be increased up to 26 280 cm2 V-1 s-1 and 54 150 cm2 V-1 s-1 for bilayer and trilayer KTlO, respectively. The KTlO monolayer has a calculated cleavage energy of 0.56 J m-2, which suggests exfoliation of the bulk material as a viable means for the preparation of mono- and few-layer materials. Remarkably, the KTlO monolayer demonstrates tunable magnetism and half-metallicity with hole doping, which are attributed to the novel Mexican-hat-like bands and van Hove singularities in its electronic structure. Furthermore, monolayer KTlO exhibits moderate optical absorption over the visible light and ultraviolet regions. The band gap value and band characteristics of monolayer KTlO can be substantially manipulated by biaxial and uniaxial strains to meet the requirement of various applications. All these novel properties make monolayer KTlO a promising functional material for future nanoelectronic and spintronic applications.Two-dimensional materials with high carrier mobility and tunable magnetism are in high demand for nanoelectronic and spintronic applications. Herein, we predict a novel two-dimensional monolayer KTlO that possesses an indirect band gap of 2.25 eV (based on HSE06 calculations) and high carrier mobility (450 cm2 V-1 s-1 for electrons and 160 cm2 V-1 s-1 for holes) by means of ab initio calculations. The electron mobility can be increased up to 26 280 cm2 V-1 s-1 and 54 150 cm2 V-1 s-1 for bilayer and trilayer KTlO, respectively. The KTlO monolayer has a calculated cleavage energy of 0.56 J m-2, which suggests exfoliation of the bulk material as a viable means for the preparation of mono- and few-layer materials. Remarkably, the KTlO monolayer demonstrates tunable magnetism and half-metallicity with hole doping, which are attributed to the novel Mexican-hat-like bands and van Hove singularities in its electronic structure. Furthermore, monolayer KTlO exhibits moderate optical absorption over the visible light and ultraviolet regions. The band gap value and band characteristics of monolayer KTlO can be substantially manipulated by biaxial and uniaxial strains to meet the requirement of various applications. All these novel properties make monolayer KTlO a promising functional material for future nanoelectronic and spintronic applications.
Author Xue, Kan-Hao
Yuan, Jun-Hui
Miao, Xiang-Shui
Wang, Jia-Fu
Li, Li-Heng
Xu, Ming
Song, Ya-Qian
Author_xml – sequence: 1
  givenname: Ya-Qian
  surname: Song
  fullname: Song, Ya-Qian
  organization: Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 2
  givenname: Jun-Hui
  surname: Yuan
  fullname: Yuan, Jun-Hui
  organization: Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 3
  givenname: Li-Heng
  surname: Li
  fullname: Li, Li-Heng
  organization: Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 4
  givenname: Ming
  orcidid: 0000-0002-2730-283X
  surname: Xu
  fullname: Xu, Ming
  organization: Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 5
  givenname: Jia-Fu
  surname: Wang
  fullname: Wang, Jia-Fu
  organization: School of Science, Wuhan University of Technology, Wuhan 430070, China
– sequence: 6
  givenname: Kan-Hao
  orcidid: 0000-0002-2894-7912
  surname: Xue
  fullname: Xue, Kan-Hao
  organization: Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 7
  givenname: Xiang-Shui
  orcidid: 0000-0002-3999-7421
  surname: Miao
  fullname: Miao, Xiang-Shui
  organization: Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30574970$$D View this record in MEDLINE/PubMed
BookMark eNptkV9LHDEUxUNR1N360g9QAn0RYfVOMpPJ9G1Za1uUCsWCb0Pm5q4bmUk0ySB--87in4L06d6H3znce86M7fjgibFPBZwUIJvTlf71GzSUavmBHQgoYSFlLXbedlXus1lKdwCqkUrusX0JVV02NRywm4vr_uorN3ygbHqeNjGMliwXZzzR4DB4O2IOkT-6vOEbd7vhaGJ0FPkQOte7_MSNtzyP3nQ98cHcesouDR_Z7tr0iQ5f5pz9Of92vfqxuLz6_nO1vFygLKq8MEgadYnY1UZVYi2lUWAJCUzX6LJALUulyNi1KLCsoFMKpUAlGqUtWiHn7OjZ9z6Gh5FSbgeXkPreeApjakVRNY2W29fn7Ms79C6M0U_XTZSqdaWhgon6_EKN3UC2vY9uMPGpfc1sAuAZwBhSirRu0WWTXfA5Gte3BbTbWtp_tUyS43eSV9f_wH8B4QmLrw
CitedBy_id crossref_primary_10_1007_s10853_019_03699_y
crossref_primary_10_1016_j_mtcomm_2025_112049
crossref_primary_10_1016_j_apsusc_2022_154176
crossref_primary_10_1039_D0NA00110D
crossref_primary_10_3390_ma15196700
crossref_primary_10_1016_j_vacuum_2023_112490
crossref_primary_10_1039_D1NR07054A
crossref_primary_10_7498_aps_70_20211015
crossref_primary_10_1016_j_mtcomm_2023_105987
crossref_primary_10_1103_PhysRevApplied_21_054026
crossref_primary_10_1039_D0NR00092B
crossref_primary_10_1088_1674_1056_ab9bff
crossref_primary_10_1016_j_ijhydene_2019_06_068
crossref_primary_10_1039_D3CP05107B
crossref_primary_10_1039_D4TC02958E
crossref_primary_10_1016_j_flatc_2022_100416
crossref_primary_10_1021_acsami_1c03650
crossref_primary_10_1021_acs_jpclett_9b01611
crossref_primary_10_1039_D3CP02267F
crossref_primary_10_1063_5_0099890
crossref_primary_10_1039_D0TC04024J
crossref_primary_10_1016_j_apsusc_2022_154166
crossref_primary_10_1016_j_flatc_2023_100482
crossref_primary_10_1016_j_mtcomm_2023_106509
crossref_primary_10_1039_D4NR01292E
crossref_primary_10_1016_j_apcata_2023_119518
crossref_primary_10_7498_aps_71_20212023
crossref_primary_10_1016_j_flatc_2023_100569
crossref_primary_10_1039_D2TC01902G
crossref_primary_10_1063_5_0070846
crossref_primary_10_1007_s11664_019_07685_7
crossref_primary_10_1016_j_vacuum_2023_112725
crossref_primary_10_1002_smll_201902691
crossref_primary_10_1016_j_mtcomm_2024_111425
crossref_primary_10_1016_j_surfin_2025_106025
crossref_primary_10_7498_aps_69_20200631
crossref_primary_10_1016_j_apsusc_2022_154317
crossref_primary_10_1039_C9NR10114D
crossref_primary_10_1039_D3CP03483F
crossref_primary_10_1021_acsanm_4c00013
crossref_primary_10_1039_C9NR08071F
crossref_primary_10_1039_C8TA12405A
crossref_primary_10_1063_1_5142077
crossref_primary_10_1016_j_mtcomm_2023_107027
crossref_primary_10_1088_1361_648X_ada65f
crossref_primary_10_1016_j_jpowsour_2025_236811
crossref_primary_10_1016_j_apsusc_2023_157817
crossref_primary_10_1016_j_ijhydene_2024_10_167
crossref_primary_10_1088_1361_648X_ac7d2e
crossref_primary_10_7498_aps_71_20220407
crossref_primary_10_1016_j_mtphys_2023_101001
crossref_primary_10_1016_j_physb_2024_416296
crossref_primary_10_1021_acs_jpclett_0c03397
crossref_primary_10_1039_D1NR08459C
crossref_primary_10_1039_D3NR01717F
crossref_primary_10_1039_C9TC02030F
crossref_primary_10_1016_j_ceramint_2023_05_085
Cites_doi 10.1002/anie.201411246
10.1126/science.aad1080
10.1021/nl9039636
10.1093/nsr/nww026
10.3866/PKU.WHXB201505081
10.1016/j.commatsci.2005.04.010
10.1002/jcc.20575
10.1073/pnas.1416591112
10.1002/adma.201203346
10.1039/C8NR01028E
10.7498/aps.65.217101
10.1021/acs.jpclett.8b00595
10.1126/science.1102896
10.1103/PhysRevLett.114.236602
10.1021/acs.jpclett.8b02859
10.1063/1.3382344
10.1103/PhysRevB.13.5188
10.1103/PhysRevLett.105.256805
10.1103/PhysRevLett.108.155501
10.1093/nsr/nww069
10.1088/1367-2630/17/8/083014
10.1016/j.apmt.2016.09.012
10.1038/srep08989
10.1021/jacs.7b06296
10.1038/nnano.2008.215
10.1126/science.1251329
10.1126/science.1226419
10.1021/jz502006z
10.1021/acs.nanolett.6b03118
10.1038/nnano.2014.35
10.1039/C7CS00125H
10.1038/nature04233
10.1021/jacs.7b12976
10.1021/acs.nanolett.5b00085
10.1016/j.apsusc.2017.02.238
10.1002/anie.201703871
10.1103/PhysRevB.94.235306
10.1016/j.carbon.2009.12.031
10.1021/acs.nanolett.7b00297
10.1039/C7TA08665B
10.1002/zaac.19784380123
10.1103/PhysRevB.54.11169
10.1038/natrevmats.2017.33
10.1103/PhysRevB.78.134106
10.1103/PhysRev.80.72
10.1021/nl5032293
10.1038/nature22060
10.1103/PhysRevLett.116.206803
10.1038/nnano.2010.279
10.1126/science.aag2421
10.1039/C6TC04692D
10.1038/nnano.2012.193
10.1038/nchem.2491
10.1002/ange.201507568
10.1021/acsnano.5b00289
10.1016/j.jallcom.2016.12.351
10.1016/0927-0256(96)00008-0
10.1016/j.apsusc.2016.10.091
10.1038/natrevmats.2016.98
10.1038/s41467-017-02529-6
10.1038/natrevmats.2016.55
10.1103/PhysRevB.59.1758
10.1039/C7NH00197E
10.1038/ncomms5475
10.1038/ncomms4813
10.1103/PhysRevLett.77.3865
10.1039/C6TA04414J
10.1038/nnano.2012.224
10.1021/jacs.7b05133
10.1103/PhysRevB.91.155138
10.1016/j.apsusc.2018.11.041
10.1038/nature22391
10.1103/PhysRevB.50.17953
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/C8NR08046A
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 1139
ExternalDocumentID 30574970
10_1039_C8NR08046A
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c315t-ace8c84ccb7a652f33a60dece0ab9841c83466eadf21c450b66c32c62968dcd23
ISSN 2040-3364
2040-3372
IngestDate Thu Jul 10 18:53:55 EDT 2025
Mon Jun 30 05:40:43 EDT 2025
Mon Jul 21 05:58:52 EDT 2025
Tue Jul 01 01:13:32 EDT 2025
Thu Apr 24 23:08:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-ace8c84ccb7a652f33a60dece0ab9841c83466eadf21c450b66c32c62968dcd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3999-7421
0000-0002-2730-283X
0000-0002-2894-7912
PMID 30574970
PQID 2167858050
PQPubID 2047485
PageCount 9
ParticipantIDs proquest_miscellaneous_2159983069
proquest_journals_2167858050
pubmed_primary_30574970
crossref_citationtrail_10_1039_C8NR08046A
crossref_primary_10_1039_C8NR08046A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Jan-17
PublicationDateYYYYMMDD 2019-01-17
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-Jan-17
  day: 17
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Xia (C8NR08046A-(cit32)/*[position()=1]) 2010; 10
Novoselov (C8NR08046A-(cit3)/*[position()=1]) 2005; 438
Avsar (C8NR08046A-(cit64)/*[position()=1]) 2015; 9
Togo (C8NR08046A-(cit56)/*[position()=1]) 2008; 78
Zhang (C8NR08046A-(cit31)/*[position()=1]) 2017; 17
Qiao (C8NR08046A-(cit69)/*[position()=1]) 2014; 5
Wang (C8NR08046A-(cit19)/*[position()=1]) 2012; 7
Derivaz (C8NR08046A-(cit9)/*[position()=1]) 2015; 15
Shahzad (C8NR08046A-(cit15)/*[position()=1]) 2016; 353
Zhao (C8NR08046A-(cit24)/*[position()=1]) 2017; 56
Lang (C8NR08046A-(cit72)/*[position()=1]) 2016; 94
Mannix (C8NR08046A-(cit4)/*[position()=1]) 2015; 350
Si (C8NR08046A-(cit16)/*[position()=1]) 2016; 16
Sun (C8NR08046A-(cit22)/*[position()=1]) 2014; 5
Miao (C8NR08046A-(cit41)/*[position()=1]) 2017; 139
Li (C8NR08046A-(cit35)/*[position()=1]) 2016; 3
Kresse (C8NR08046A-(cit49)/*[position()=1]) 1996; 54
Zhang (C8NR08046A-(cit71)/*[position()=1]) 2016; 128
Kalantar-zadeh (C8NR08046A-(cit25)/*[position()=1]) 2016; 5
Efetov (C8NR08046A-(cit44)/*[position()=1]) 2010; 105
Cao (C8NR08046A-(cit42)/*[position()=1]) 2015; 114
Jun-Hui (C8NR08046A-(cit74)/*[position()=1]) 2015; 31
Blöchl (C8NR08046A-(cit52)/*[position()=1]) 1994; 50
Gong (C8NR08046A-(cit66)/*[position()=1]) 2017; 546
Guo (C8NR08046A-(cit17)/*[position()=1]) 2016; 4
Miao (C8NR08046A-(cit39)/*[position()=1]) 2018; 140
Ding (C8NR08046A-(cit14)/*[position()=1]) 2018; 9
Yuan (C8NR08046A-(cit27)/*[position()=1]) 2016; 65
Sabrowsky (C8NR08046A-(cit48)/*[position()=1]) 1978; 438
Seixas (C8NR08046A-(cit43)/*[position()=1]) 2016; 116
Zhou (C8NR08046A-(cit73)/*[position()=1]) 2017; 5
Seixas (C8NR08046A-(cit65)/*[position()=1]) 2015; 91
Huang (C8NR08046A-(cit38)/*[position()=1]) 2017; 546
Radisavljevic (C8NR08046A-(cit20)/*[position()=1]) 2011; 6
Anasori (C8NR08046A-(cit13)/*[position()=1]) 2017; 2
Manzeli (C8NR08046A-(cit18)/*[position()=1]) 2017; 2
Kim (C8NR08046A-(cit63)/*[position()=1]) 2015; 5
Grimme (C8NR08046A-(cit54)/*[position()=1]) 2010; 132
Monkhorst (C8NR08046A-(cit55)/*[position()=1]) 1976; 13
Xie (C8NR08046A-(cit70)/*[position()=1]) 2014; 5
Zhang (C8NR08046A-(cit11)/*[position()=1]) 2015; 54
Kamal (C8NR08046A-(cit6)/*[position()=1]) 2015; 17
Qian (C8NR08046A-(cit34)/*[position()=1]) 2014
Jiang (C8NR08046A-(cit40)/*[position()=1]) 2018; 3
Vogt (C8NR08046A-(cit8)/*[position()=1]) 2012; 108
Ma (C8NR08046A-(cit46)/*[position()=1]) 2017; 139
Yuan (C8NR08046A-(cit76)/*[position()=1]) 2019; 469
Zhang (C8NR08046A-(cit75)/*[position()=1]) 2015; 112
Yuan (C8NR08046A-(cit26)/*[position()=1]) 2017; 394
Zhou (C8NR08046A-(cit28)/*[position()=1]) 2010; 48
Wood (C8NR08046A-(cit62)/*[position()=1]) 2014; 14
Kresse (C8NR08046A-(cit50)/*[position()=1]) 1996; 6
Feng (C8NR08046A-(cit5)/*[position()=1]) 2016; 8
Perdew (C8NR08046A-(cit51)/*[position()=1]) 1996; 77
Bardeen (C8NR08046A-(cit68)/*[position()=1]) 1950; 80
Balendhran (C8NR08046A-(cit23)/*[position()=1]) 2013; 25
Tang (C8NR08046A-(cit59)/*[position()=1]) 2009; 21
Guo (C8NR08046A-(cit58)/*[position()=1]) 2018; 10
Hua (C8NR08046A-(cit47)/*[position()=1]) 2018
Hernandez (C8NR08046A-(cit2)/*[position()=1]) 2008; 3
Li (C8NR08046A-(cit36)/*[position()=1]) 2017; 7
Zhang (C8NR08046A-(cit45)/*[position()=1]) 2014; 344
Guo (C8NR08046A-(cit29)/*[position()=1]) 2017; 5
Miao (C8NR08046A-(cit30)/*[position()=1]) 2017; 699
Lu (C8NR08046A-(cit67)/*[position()=1]) 2018; 9
Novoselov (C8NR08046A-(cit1)/*[position()=1]) 2004; 306
Kresse (C8NR08046A-(cit53)/*[position()=1]) 1999; 59
Yuan (C8NR08046A-(cit7)/*[position()=1]) 2017; 409
Sanville (C8NR08046A-(cit61)/*[position()=1]) 2007; 28
Nicolosi (C8NR08046A-(cit57)/*[position()=1]) 2013; 340
Li (C8NR08046A-(cit10)/*[position()=1]) 2014; 9
Schaibley (C8NR08046A-(cit21)/*[position()=1]) 2016; 1
Georgiou (C8NR08046A-(cit33)/*[position()=1]) 2013; 8
Wang (C8NR08046A-(cit37)/*[position()=1]) 2017; 4
Henkelman (C8NR08046A-(cit60)/*[position()=1]) 2006; 36
Zhang (C8NR08046A-(cit12)/*[position()=1]) 2018; 47
References_xml – volume: 54
  start-page: 3112
  year: 2015
  ident: C8NR08046A-(cit11)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201411246
– volume: 350
  start-page: 1513
  year: 2015
  ident: C8NR08046A-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aad1080
– volume: 10
  start-page: 715
  year: 2010
  ident: C8NR08046A-(cit32)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl9039636
– volume: 3
  start-page: 365
  year: 2016
  ident: C8NR08046A-(cit35)/*[position()=1]
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nww026
– volume: 31
  start-page: 1302
  year: 2015
  ident: C8NR08046A-(cit74)/*[position()=1]
  publication-title: Acta Phys.-Chim. Sin.
  doi: 10.3866/PKU.WHXB201505081
– volume: 36
  start-page: 354
  year: 2006
  ident: C8NR08046A-(cit60)/*[position()=1]
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.04.010
– volume: 28
  start-page: 899
  year: 2007
  ident: C8NR08046A-(cit61)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20575
– volume: 112
  start-page: 2372
  year: 2015
  ident: C8NR08046A-(cit75)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1416591112
– volume: 25
  start-page: 109
  year: 2013
  ident: C8NR08046A-(cit23)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201203346
– volume: 10
  start-page: 8397
  year: 2018
  ident: C8NR08046A-(cit58)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR01028E
– volume: 65
  start-page: 217101
  year: 2016
  ident: C8NR08046A-(cit27)/*[position()=1]
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.65.217101
– volume: 9
  start-page: 1728
  year: 2018
  ident: C8NR08046A-(cit67)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b00595
– volume: 306
  start-page: 666
  year: 2004
  ident: C8NR08046A-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 114
  start-page: 236602
  year: 2015
  ident: C8NR08046A-(cit42)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.236602
– start-page: 6695
  year: 2018
  ident: C8NR08046A-(cit47)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b02859
– volume: 132
  start-page: 154104
  year: 2010
  ident: C8NR08046A-(cit54)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 13
  start-page: 5188
  year: 1976
  ident: C8NR08046A-(cit55)/*[position()=1]
  publication-title: Phys. Rev. B: Solid State
  doi: 10.1103/PhysRevB.13.5188
– volume: 105
  start-page: 256805
  year: 2010
  ident: C8NR08046A-(cit44)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.256805
– volume: 108
  start-page: 155501
  year: 2012
  ident: C8NR08046A-(cit8)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.155501
– start-page: 1256815
  year: 2014
  ident: C8NR08046A-(cit34)/*[position()=1]
  publication-title: Science
– volume: 4
  start-page: 252
  year: 2017
  ident: C8NR08046A-(cit37)/*[position()=1]
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nww069
– volume: 17
  start-page: 83014
  year: 2015
  ident: C8NR08046A-(cit6)/*[position()=1]
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/8/083014
– volume: 5
  start-page: 73
  year: 2016
  ident: C8NR08046A-(cit25)/*[position()=1]
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2016.09.012
– volume: 5
  start-page: 8989
  year: 2015
  ident: C8NR08046A-(cit63)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep08989
– volume: 139
  start-page: 11694
  year: 2017
  ident: C8NR08046A-(cit46)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06296
– volume: 3
  start-page: 563
  year: 2008
  ident: C8NR08046A-(cit2)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.215
– volume: 344
  start-page: 725
  year: 2014
  ident: C8NR08046A-(cit45)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1251329
– volume: 340
  start-page: 1226419
  year: 2013
  ident: C8NR08046A-(cit57)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1226419
– volume: 5
  start-page: 4073
  year: 2014
  ident: C8NR08046A-(cit70)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz502006z
– volume: 16
  start-page: 6584
  year: 2016
  ident: C8NR08046A-(cit16)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03118
– volume: 9
  start-page: 372
  year: 2014
  ident: C8NR08046A-(cit10)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.35
– volume: 47
  start-page: 982
  year: 2018
  ident: C8NR08046A-(cit12)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00125H
– volume: 438
  start-page: 197
  year: 2005
  ident: C8NR08046A-(cit3)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 140
  start-page: 2417
  year: 2018
  ident: C8NR08046A-(cit39)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12976
– volume: 15
  start-page: 2510
  year: 2015
  ident: C8NR08046A-(cit9)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00085
– volume: 409
  start-page: 85
  year: 2017
  ident: C8NR08046A-(cit7)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.02.238
– volume: 56
  start-page: 8766
  year: 2017
  ident: C8NR08046A-(cit24)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201703871
– volume: 94
  start-page: 235306
  year: 2016
  ident: C8NR08046A-(cit72)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.94.235306
– volume: 48
  start-page: 1405
  year: 2010
  ident: C8NR08046A-(cit28)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.12.031
– volume: 17
  start-page: 3434
  year: 2017
  ident: C8NR08046A-(cit31)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00297
– volume: 5
  start-page: 23530
  year: 2017
  ident: C8NR08046A-(cit29)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08665B
– volume: 7
  start-page: e1314
  year: 2017
  ident: C8NR08046A-(cit36)/*[position()=1]
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 438
  start-page: 213
  year: 1978
  ident: C8NR08046A-(cit48)/*[position()=1]
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.19784380123
– volume: 54
  start-page: 11169
  year: 1996
  ident: C8NR08046A-(cit49)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.54.11169
– volume: 2
  start-page: 17033
  year: 2017
  ident: C8NR08046A-(cit18)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.33
– volume: 78
  start-page: 134106
  year: 2008
  ident: C8NR08046A-(cit56)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.78.134106
– volume: 80
  start-page: 72
  year: 1950
  ident: C8NR08046A-(cit68)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.80.72
– volume: 14
  start-page: 6964
  year: 2014
  ident: C8NR08046A-(cit62)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl5032293
– volume: 546
  start-page: 265
  year: 2017
  ident: C8NR08046A-(cit66)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature22060
– volume: 116
  start-page: 206803
  year: 2016
  ident: C8NR08046A-(cit43)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.206803
– volume: 6
  start-page: 147
  year: 2011
  ident: C8NR08046A-(cit20)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.279
– volume: 353
  start-page: 1137
  year: 2016
  ident: C8NR08046A-(cit15)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aag2421
– volume: 5
  start-page: 1247
  year: 2017
  ident: C8NR08046A-(cit73)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC04692D
– volume: 7
  start-page: 699
  year: 2012
  ident: C8NR08046A-(cit19)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 8
  start-page: 563
  year: 2016
  ident: C8NR08046A-(cit5)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2491
– volume: 128
  start-page: 1698
  year: 2016
  ident: C8NR08046A-(cit71)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201507568
– volume: 9
  start-page: 4138
  year: 2015
  ident: C8NR08046A-(cit64)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00289
– volume: 699
  start-page: 554
  year: 2017
  ident: C8NR08046A-(cit30)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.12.351
– volume: 6
  start-page: 15
  year: 1996
  ident: C8NR08046A-(cit50)/*[position()=1]
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 394
  start-page: 625
  year: 2017
  ident: C8NR08046A-(cit26)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.10.091
– volume: 2
  start-page: 16098
  year: 2017
  ident: C8NR08046A-(cit13)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.98
– volume: 9
  start-page: 155
  year: 2018
  ident: C8NR08046A-(cit14)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02529-6
– volume: 1
  start-page: 16055
  year: 2016
  ident: C8NR08046A-(cit21)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.55
– volume: 59
  start-page: 1758
  year: 1999
  ident: C8NR08046A-(cit53)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.59.1758
– volume: 3
  start-page: 335
  year: 2018
  ident: C8NR08046A-(cit40)/*[position()=1]
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C7NH00197E
– volume: 5
  start-page: 4475
  year: 2014
  ident: C8NR08046A-(cit69)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5475
– volume: 5
  start-page: 3813
  year: 2014
  ident: C8NR08046A-(cit22)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4813
– volume: 77
  start-page: 3865
  year: 1996
  ident: C8NR08046A-(cit51)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 4
  start-page: 11446
  year: 2016
  ident: C8NR08046A-(cit17)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04414J
– volume: 8
  start-page: 100
  year: 2013
  ident: C8NR08046A-(cit33)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.224
– volume: 139
  start-page: 11125
  year: 2017
  ident: C8NR08046A-(cit41)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05133
– volume: 91
  start-page: 155138
  year: 2015
  ident: C8NR08046A-(cit65)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.91.155138
– volume: 469
  start-page: 456
  year: 2019
  ident: C8NR08046A-(cit76)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.11.041
– volume: 546
  start-page: 270
  year: 2017
  ident: C8NR08046A-(cit38)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature22391
– volume: 50
  start-page: 17953
  year: 1994
  ident: C8NR08046A-(cit52)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.50.17953
– volume: 21
  start-page: 84204
  year: 2009
  ident: C8NR08046A-(cit59)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
SSID ssj0069363
Score 2.5023355
Snippet Two-dimensional materials with high carrier mobility and tunable magnetism are in high demand for nanoelectronic and spintronic applications. Herein, we...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1131
SubjectTerms Banded structure
Bilayers
Carrier mobility
Electron mobility
Electronic structure
Electrons
Energy gap
Magnetism
Mathematical analysis
Metallicity
Monolayers
Singularities
Title KTlO: a metal shrouded 2D semiconductor with high carrier mobility and tunable magnetism
URI https://www.ncbi.nlm.nih.gov/pubmed/30574970
https://www.proquest.com/docview/2167858050
https://www.proquest.com/docview/2159983069
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZge4EHxG_KBjKCF4Q8EjtxbN7GBlRMDAGd6J4ix3HQpDWZ1uSFv55z7DgtFGnwErUXJ21yX-7Ozt13CL1QEKJmrKQkEZwR8LecKEsIALovBJdZmSm7oP_pmE9Pko_zdD4uZffVJW2xp39urCv5H62CDPRqq2T_QbPhpCCAz6Bf2IKGYXslHR_Nzj-7auWFsUWNS9t0p4QQkh6-Wtqs96a2dK7NpVtutdTEloq6b1K3aPq0WEe_1HauhGqhftSmHVgFfcwKBrhZgioDBL75NN5TRb6soOu0U77QoybT7iyk-rj66zMyNd5LgnDeuZx9L_HLDrbSKSauytJZJ2pTERlzFOR7ZlWWrZvXeAVGbMVWxrG3_2b4Kjfa9IhZStQDcfwVotuEB1bUkTj7N4cW0gz7F-xM5uOx19E2hfkEGMTt_aO3H74PTptL1jfdC1c1MNky-Xo8ej12-cuEpA9MZrfRLT-jwPsOHnfQNVPfRTdXeCbvobkFyhuscA8TPMAE00O8BhNsYYItTLCHCR5gggEm2MMEB5jcRyfv380OpsS31CCaxWlLlDZCi0TrIlM8pRVjikel0SZShRRJrAVLOAfrUtFYJ2lUcK4Z1ZxKLkpdUvYAbdVNbR4hnFXgGmnKeKEhEuJClAVPVCWNjmTB02qCXg43K9eeb962PTnP_1TLBD0PYy8cy8rGUbvDPc_9U7jMaQzhViqiNJqgZ2E32Ej74kvVpunsmFRKAZNjOUEPna7Cz4C_yxKZRY-v9Bd20I3xYdhFW-1lZ55AVNoWTz2ifgHOrokq
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KTlO%3A+a+metal+shrouded+2D+semiconductor+with+high+carrier+mobility+and+tunable+magnetism&rft.jtitle=Nanoscale&rft.au=Song%2C+Ya-Qian&rft.au=Yuan%2C+Jun-Hui&rft.au=Li%2C+Li-Heng&rft.au=Xu%2C+Ming&rft.date=2019-01-17&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=11&rft.issue=3&rft.spage=1131&rft.epage=1139&rft_id=info:doi/10.1039%2FC8NR08046A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8NR08046A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon