KTlO: a metal shrouded 2D semiconductor with high carrier mobility and tunable magnetism
Two-dimensional materials with high carrier mobility and tunable magnetism are in high demand for nanoelectronic and spintronic applications. Herein, we predict a novel two-dimensional monolayer KTlO that possesses an indirect band gap of 2.25 eV (based on HSE06 calculations) and high carrier mobili...
Saved in:
Published in | Nanoscale Vol. 11; no. 3; pp. 1131 - 1139 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
17.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional materials with high carrier mobility and tunable magnetism are in high demand for nanoelectronic and spintronic applications. Herein, we predict a novel two-dimensional monolayer KTlO that possesses an indirect band gap of 2.25 eV (based on HSE06 calculations) and high carrier mobility (450 cm
2
V
−1
s
−1
for electrons and 160 cm
2
V
−1
s
−1
for holes) by means of
ab initio
calculations. The electron mobility can be increased up to 26 280 cm
2
V
−1
s
−1
and 54 150 cm
2
V
−1
s
−1
for bilayer and trilayer KTlO, respectively. The KTlO monolayer has a calculated cleavage energy of 0.56 J m
−2
, which suggests exfoliation of the bulk material as a viable means for the preparation of mono- and few-layer materials. Remarkably, the KTlO monolayer demonstrates tunable magnetism and half-metallicity with hole doping, which are attributed to the novel Mexican-hat-like bands and van Hove singularities in its electronic structure. Furthermore, monolayer KTlO exhibits moderate optical absorption over the visible light and ultraviolet regions. The band gap value and band characteristics of monolayer KTlO can be substantially manipulated by biaxial and uniaxial strains to meet the requirement of various applications. All these novel properties make monolayer KTlO a promising functional material for future nanoelectronic and spintronic applications. |
---|---|
AbstractList | Two-dimensional materials with high carrier mobility and tunable magnetism are in high demand for nanoelectronic and spintronic applications. Herein, we predict a novel two-dimensional monolayer KTlO that possesses an indirect band gap of 2.25 eV (based on HSE06 calculations) and high carrier mobility (450 cm
2
V
−1
s
−1
for electrons and 160 cm
2
V
−1
s
−1
for holes) by means of
ab initio
calculations. The electron mobility can be increased up to 26 280 cm
2
V
−1
s
−1
and 54 150 cm
2
V
−1
s
−1
for bilayer and trilayer KTlO, respectively. The KTlO monolayer has a calculated cleavage energy of 0.56 J m
−2
, which suggests exfoliation of the bulk material as a viable means for the preparation of mono- and few-layer materials. Remarkably, the KTlO monolayer demonstrates tunable magnetism and half-metallicity with hole doping, which are attributed to the novel Mexican-hat-like bands and van Hove singularities in its electronic structure. Furthermore, monolayer KTlO exhibits moderate optical absorption over the visible light and ultraviolet regions. The band gap value and band characteristics of monolayer KTlO can be substantially manipulated by biaxial and uniaxial strains to meet the requirement of various applications. All these novel properties make monolayer KTlO a promising functional material for future nanoelectronic and spintronic applications. Two-dimensional materials with high carrier mobility and tunable magnetism are in high demand for nanoelectronic and spintronic applications. Herein, we predict a novel two-dimensional monolayer KTlO that possesses an indirect band gap of 2.25 eV (based on HSE06 calculations) and high carrier mobility (450 cm2 V−1 s−1 for electrons and 160 cm2 V−1 s−1 for holes) by means of ab initio calculations. The electron mobility can be increased up to 26 280 cm2 V−1 s−1 and 54 150 cm2 V−1 s−1 for bilayer and trilayer KTlO, respectively. The KTlO monolayer has a calculated cleavage energy of 0.56 J m−2, which suggests exfoliation of the bulk material as a viable means for the preparation of mono- and few-layer materials. Remarkably, the KTlO monolayer demonstrates tunable magnetism and half-metallicity with hole doping, which are attributed to the novel Mexican-hat-like bands and van Hove singularities in its electronic structure. Furthermore, monolayer KTlO exhibits moderate optical absorption over the visible light and ultraviolet regions. The band gap value and band characteristics of monolayer KTlO can be substantially manipulated by biaxial and uniaxial strains to meet the requirement of various applications. All these novel properties make monolayer KTlO a promising functional material for future nanoelectronic and spintronic applications. Two-dimensional materials with high carrier mobility and tunable magnetism are in high demand for nanoelectronic and spintronic applications. Herein, we predict a novel two-dimensional monolayer KTlO that possesses an indirect band gap of 2.25 eV (based on HSE06 calculations) and high carrier mobility (450 cm2 V-1 s-1 for electrons and 160 cm2 V-1 s-1 for holes) by means of ab initio calculations. The electron mobility can be increased up to 26 280 cm2 V-1 s-1 and 54 150 cm2 V-1 s-1 for bilayer and trilayer KTlO, respectively. The KTlO monolayer has a calculated cleavage energy of 0.56 J m-2, which suggests exfoliation of the bulk material as a viable means for the preparation of mono- and few-layer materials. Remarkably, the KTlO monolayer demonstrates tunable magnetism and half-metallicity with hole doping, which are attributed to the novel Mexican-hat-like bands and van Hove singularities in its electronic structure. Furthermore, monolayer KTlO exhibits moderate optical absorption over the visible light and ultraviolet regions. The band gap value and band characteristics of monolayer KTlO can be substantially manipulated by biaxial and uniaxial strains to meet the requirement of various applications. All these novel properties make monolayer KTlO a promising functional material for future nanoelectronic and spintronic applications. Two-dimensional materials with high carrier mobility and tunable magnetism are in high demand for nanoelectronic and spintronic applications. Herein, we predict a novel two-dimensional monolayer KTlO that possesses an indirect band gap of 2.25 eV (based on HSE06 calculations) and high carrier mobility (450 cm2 V-1 s-1 for electrons and 160 cm2 V-1 s-1 for holes) by means of ab initio calculations. The electron mobility can be increased up to 26 280 cm2 V-1 s-1 and 54 150 cm2 V-1 s-1 for bilayer and trilayer KTlO, respectively. The KTlO monolayer has a calculated cleavage energy of 0.56 J m-2, which suggests exfoliation of the bulk material as a viable means for the preparation of mono- and few-layer materials. Remarkably, the KTlO monolayer demonstrates tunable magnetism and half-metallicity with hole doping, which are attributed to the novel Mexican-hat-like bands and van Hove singularities in its electronic structure. Furthermore, monolayer KTlO exhibits moderate optical absorption over the visible light and ultraviolet regions. The band gap value and band characteristics of monolayer KTlO can be substantially manipulated by biaxial and uniaxial strains to meet the requirement of various applications. All these novel properties make monolayer KTlO a promising functional material for future nanoelectronic and spintronic applications.Two-dimensional materials with high carrier mobility and tunable magnetism are in high demand for nanoelectronic and spintronic applications. Herein, we predict a novel two-dimensional monolayer KTlO that possesses an indirect band gap of 2.25 eV (based on HSE06 calculations) and high carrier mobility (450 cm2 V-1 s-1 for electrons and 160 cm2 V-1 s-1 for holes) by means of ab initio calculations. The electron mobility can be increased up to 26 280 cm2 V-1 s-1 and 54 150 cm2 V-1 s-1 for bilayer and trilayer KTlO, respectively. The KTlO monolayer has a calculated cleavage energy of 0.56 J m-2, which suggests exfoliation of the bulk material as a viable means for the preparation of mono- and few-layer materials. Remarkably, the KTlO monolayer demonstrates tunable magnetism and half-metallicity with hole doping, which are attributed to the novel Mexican-hat-like bands and van Hove singularities in its electronic structure. Furthermore, monolayer KTlO exhibits moderate optical absorption over the visible light and ultraviolet regions. The band gap value and band characteristics of monolayer KTlO can be substantially manipulated by biaxial and uniaxial strains to meet the requirement of various applications. All these novel properties make monolayer KTlO a promising functional material for future nanoelectronic and spintronic applications. |
Author | Xue, Kan-Hao Yuan, Jun-Hui Miao, Xiang-Shui Wang, Jia-Fu Li, Li-Heng Xu, Ming Song, Ya-Qian |
Author_xml | – sequence: 1 givenname: Ya-Qian surname: Song fullname: Song, Ya-Qian organization: Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 2 givenname: Jun-Hui surname: Yuan fullname: Yuan, Jun-Hui organization: Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 3 givenname: Li-Heng surname: Li fullname: Li, Li-Heng organization: Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 4 givenname: Ming orcidid: 0000-0002-2730-283X surname: Xu fullname: Xu, Ming organization: Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 5 givenname: Jia-Fu surname: Wang fullname: Wang, Jia-Fu organization: School of Science, Wuhan University of Technology, Wuhan 430070, China – sequence: 6 givenname: Kan-Hao orcidid: 0000-0002-2894-7912 surname: Xue fullname: Xue, Kan-Hao organization: Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 7 givenname: Xiang-Shui orcidid: 0000-0002-3999-7421 surname: Miao fullname: Miao, Xiang-Shui organization: Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30574970$$D View this record in MEDLINE/PubMed |
BookMark | eNptkV9LHDEUxUNR1N360g9QAn0RYfVOMpPJ9G1Za1uUCsWCb0Pm5q4bmUk0ySB--87in4L06d6H3znce86M7fjgibFPBZwUIJvTlf71GzSUavmBHQgoYSFlLXbedlXus1lKdwCqkUrusX0JVV02NRywm4vr_uorN3ygbHqeNjGMliwXZzzR4DB4O2IOkT-6vOEbd7vhaGJ0FPkQOte7_MSNtzyP3nQ98cHcesouDR_Z7tr0iQ5f5pz9Of92vfqxuLz6_nO1vFygLKq8MEgadYnY1UZVYi2lUWAJCUzX6LJALUulyNi1KLCsoFMKpUAlGqUtWiHn7OjZ9z6Gh5FSbgeXkPreeApjakVRNY2W29fn7Ms79C6M0U_XTZSqdaWhgon6_EKN3UC2vY9uMPGpfc1sAuAZwBhSirRu0WWTXfA5Gte3BbTbWtp_tUyS43eSV9f_wH8B4QmLrw |
CitedBy_id | crossref_primary_10_1007_s10853_019_03699_y crossref_primary_10_1016_j_mtcomm_2025_112049 crossref_primary_10_1016_j_apsusc_2022_154176 crossref_primary_10_1039_D0NA00110D crossref_primary_10_3390_ma15196700 crossref_primary_10_1016_j_vacuum_2023_112490 crossref_primary_10_1039_D1NR07054A crossref_primary_10_7498_aps_70_20211015 crossref_primary_10_1016_j_mtcomm_2023_105987 crossref_primary_10_1103_PhysRevApplied_21_054026 crossref_primary_10_1039_D0NR00092B crossref_primary_10_1088_1674_1056_ab9bff crossref_primary_10_1016_j_ijhydene_2019_06_068 crossref_primary_10_1039_D3CP05107B crossref_primary_10_1039_D4TC02958E crossref_primary_10_1016_j_flatc_2022_100416 crossref_primary_10_1021_acsami_1c03650 crossref_primary_10_1021_acs_jpclett_9b01611 crossref_primary_10_1039_D3CP02267F crossref_primary_10_1063_5_0099890 crossref_primary_10_1039_D0TC04024J crossref_primary_10_1016_j_apsusc_2022_154166 crossref_primary_10_1016_j_flatc_2023_100482 crossref_primary_10_1016_j_mtcomm_2023_106509 crossref_primary_10_1039_D4NR01292E crossref_primary_10_1016_j_apcata_2023_119518 crossref_primary_10_7498_aps_71_20212023 crossref_primary_10_1016_j_flatc_2023_100569 crossref_primary_10_1039_D2TC01902G crossref_primary_10_1063_5_0070846 crossref_primary_10_1007_s11664_019_07685_7 crossref_primary_10_1016_j_vacuum_2023_112725 crossref_primary_10_1002_smll_201902691 crossref_primary_10_1016_j_mtcomm_2024_111425 crossref_primary_10_1016_j_surfin_2025_106025 crossref_primary_10_7498_aps_69_20200631 crossref_primary_10_1016_j_apsusc_2022_154317 crossref_primary_10_1039_C9NR10114D crossref_primary_10_1039_D3CP03483F crossref_primary_10_1021_acsanm_4c00013 crossref_primary_10_1039_C9NR08071F crossref_primary_10_1039_C8TA12405A crossref_primary_10_1063_1_5142077 crossref_primary_10_1016_j_mtcomm_2023_107027 crossref_primary_10_1088_1361_648X_ada65f crossref_primary_10_1016_j_jpowsour_2025_236811 crossref_primary_10_1016_j_apsusc_2023_157817 crossref_primary_10_1016_j_ijhydene_2024_10_167 crossref_primary_10_1088_1361_648X_ac7d2e crossref_primary_10_7498_aps_71_20220407 crossref_primary_10_1016_j_mtphys_2023_101001 crossref_primary_10_1016_j_physb_2024_416296 crossref_primary_10_1021_acs_jpclett_0c03397 crossref_primary_10_1039_D1NR08459C crossref_primary_10_1039_D3NR01717F crossref_primary_10_1039_C9TC02030F crossref_primary_10_1016_j_ceramint_2023_05_085 |
Cites_doi | 10.1002/anie.201411246 10.1126/science.aad1080 10.1021/nl9039636 10.1093/nsr/nww026 10.3866/PKU.WHXB201505081 10.1016/j.commatsci.2005.04.010 10.1002/jcc.20575 10.1073/pnas.1416591112 10.1002/adma.201203346 10.1039/C8NR01028E 10.7498/aps.65.217101 10.1021/acs.jpclett.8b00595 10.1126/science.1102896 10.1103/PhysRevLett.114.236602 10.1021/acs.jpclett.8b02859 10.1063/1.3382344 10.1103/PhysRevB.13.5188 10.1103/PhysRevLett.105.256805 10.1103/PhysRevLett.108.155501 10.1093/nsr/nww069 10.1088/1367-2630/17/8/083014 10.1016/j.apmt.2016.09.012 10.1038/srep08989 10.1021/jacs.7b06296 10.1038/nnano.2008.215 10.1126/science.1251329 10.1126/science.1226419 10.1021/jz502006z 10.1021/acs.nanolett.6b03118 10.1038/nnano.2014.35 10.1039/C7CS00125H 10.1038/nature04233 10.1021/jacs.7b12976 10.1021/acs.nanolett.5b00085 10.1016/j.apsusc.2017.02.238 10.1002/anie.201703871 10.1103/PhysRevB.94.235306 10.1016/j.carbon.2009.12.031 10.1021/acs.nanolett.7b00297 10.1039/C7TA08665B 10.1002/zaac.19784380123 10.1103/PhysRevB.54.11169 10.1038/natrevmats.2017.33 10.1103/PhysRevB.78.134106 10.1103/PhysRev.80.72 10.1021/nl5032293 10.1038/nature22060 10.1103/PhysRevLett.116.206803 10.1038/nnano.2010.279 10.1126/science.aag2421 10.1039/C6TC04692D 10.1038/nnano.2012.193 10.1038/nchem.2491 10.1002/ange.201507568 10.1021/acsnano.5b00289 10.1016/j.jallcom.2016.12.351 10.1016/0927-0256(96)00008-0 10.1016/j.apsusc.2016.10.091 10.1038/natrevmats.2016.98 10.1038/s41467-017-02529-6 10.1038/natrevmats.2016.55 10.1103/PhysRevB.59.1758 10.1039/C7NH00197E 10.1038/ncomms5475 10.1038/ncomms4813 10.1103/PhysRevLett.77.3865 10.1039/C6TA04414J 10.1038/nnano.2012.224 10.1021/jacs.7b05133 10.1103/PhysRevB.91.155138 10.1016/j.apsusc.2018.11.041 10.1038/nature22391 10.1103/PhysRevB.50.17953 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/C8NR08046A |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 1139 |
ExternalDocumentID | 30574970 10_1039_C8NR08046A |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RSCEA RVUXY NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c315t-ace8c84ccb7a652f33a60dece0ab9841c83466eadf21c450b66c32c62968dcd23 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Thu Jul 10 18:53:55 EDT 2025 Mon Jun 30 05:40:43 EDT 2025 Mon Jul 21 05:58:52 EDT 2025 Tue Jul 01 01:13:32 EDT 2025 Thu Apr 24 23:08:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c315t-ace8c84ccb7a652f33a60dece0ab9841c83466eadf21c450b66c32c62968dcd23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3999-7421 0000-0002-2730-283X 0000-0002-2894-7912 |
PMID | 30574970 |
PQID | 2167858050 |
PQPubID | 2047485 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2159983069 proquest_journals_2167858050 pubmed_primary_30574970 crossref_citationtrail_10_1039_C8NR08046A crossref_primary_10_1039_C8NR08046A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Jan-17 |
PublicationDateYYYYMMDD | 2019-01-17 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-Jan-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Xia (C8NR08046A-(cit32)/*[position()=1]) 2010; 10 Novoselov (C8NR08046A-(cit3)/*[position()=1]) 2005; 438 Avsar (C8NR08046A-(cit64)/*[position()=1]) 2015; 9 Togo (C8NR08046A-(cit56)/*[position()=1]) 2008; 78 Zhang (C8NR08046A-(cit31)/*[position()=1]) 2017; 17 Qiao (C8NR08046A-(cit69)/*[position()=1]) 2014; 5 Wang (C8NR08046A-(cit19)/*[position()=1]) 2012; 7 Derivaz (C8NR08046A-(cit9)/*[position()=1]) 2015; 15 Shahzad (C8NR08046A-(cit15)/*[position()=1]) 2016; 353 Zhao (C8NR08046A-(cit24)/*[position()=1]) 2017; 56 Lang (C8NR08046A-(cit72)/*[position()=1]) 2016; 94 Mannix (C8NR08046A-(cit4)/*[position()=1]) 2015; 350 Si (C8NR08046A-(cit16)/*[position()=1]) 2016; 16 Sun (C8NR08046A-(cit22)/*[position()=1]) 2014; 5 Miao (C8NR08046A-(cit41)/*[position()=1]) 2017; 139 Li (C8NR08046A-(cit35)/*[position()=1]) 2016; 3 Kresse (C8NR08046A-(cit49)/*[position()=1]) 1996; 54 Zhang (C8NR08046A-(cit71)/*[position()=1]) 2016; 128 Kalantar-zadeh (C8NR08046A-(cit25)/*[position()=1]) 2016; 5 Efetov (C8NR08046A-(cit44)/*[position()=1]) 2010; 105 Cao (C8NR08046A-(cit42)/*[position()=1]) 2015; 114 Jun-Hui (C8NR08046A-(cit74)/*[position()=1]) 2015; 31 Blöchl (C8NR08046A-(cit52)/*[position()=1]) 1994; 50 Gong (C8NR08046A-(cit66)/*[position()=1]) 2017; 546 Guo (C8NR08046A-(cit17)/*[position()=1]) 2016; 4 Miao (C8NR08046A-(cit39)/*[position()=1]) 2018; 140 Ding (C8NR08046A-(cit14)/*[position()=1]) 2018; 9 Yuan (C8NR08046A-(cit27)/*[position()=1]) 2016; 65 Sabrowsky (C8NR08046A-(cit48)/*[position()=1]) 1978; 438 Seixas (C8NR08046A-(cit43)/*[position()=1]) 2016; 116 Zhou (C8NR08046A-(cit73)/*[position()=1]) 2017; 5 Seixas (C8NR08046A-(cit65)/*[position()=1]) 2015; 91 Huang (C8NR08046A-(cit38)/*[position()=1]) 2017; 546 Radisavljevic (C8NR08046A-(cit20)/*[position()=1]) 2011; 6 Anasori (C8NR08046A-(cit13)/*[position()=1]) 2017; 2 Manzeli (C8NR08046A-(cit18)/*[position()=1]) 2017; 2 Kim (C8NR08046A-(cit63)/*[position()=1]) 2015; 5 Grimme (C8NR08046A-(cit54)/*[position()=1]) 2010; 132 Monkhorst (C8NR08046A-(cit55)/*[position()=1]) 1976; 13 Xie (C8NR08046A-(cit70)/*[position()=1]) 2014; 5 Zhang (C8NR08046A-(cit11)/*[position()=1]) 2015; 54 Kamal (C8NR08046A-(cit6)/*[position()=1]) 2015; 17 Qian (C8NR08046A-(cit34)/*[position()=1]) 2014 Jiang (C8NR08046A-(cit40)/*[position()=1]) 2018; 3 Vogt (C8NR08046A-(cit8)/*[position()=1]) 2012; 108 Ma (C8NR08046A-(cit46)/*[position()=1]) 2017; 139 Yuan (C8NR08046A-(cit76)/*[position()=1]) 2019; 469 Zhang (C8NR08046A-(cit75)/*[position()=1]) 2015; 112 Yuan (C8NR08046A-(cit26)/*[position()=1]) 2017; 394 Zhou (C8NR08046A-(cit28)/*[position()=1]) 2010; 48 Wood (C8NR08046A-(cit62)/*[position()=1]) 2014; 14 Kresse (C8NR08046A-(cit50)/*[position()=1]) 1996; 6 Feng (C8NR08046A-(cit5)/*[position()=1]) 2016; 8 Perdew (C8NR08046A-(cit51)/*[position()=1]) 1996; 77 Bardeen (C8NR08046A-(cit68)/*[position()=1]) 1950; 80 Balendhran (C8NR08046A-(cit23)/*[position()=1]) 2013; 25 Tang (C8NR08046A-(cit59)/*[position()=1]) 2009; 21 Guo (C8NR08046A-(cit58)/*[position()=1]) 2018; 10 Hua (C8NR08046A-(cit47)/*[position()=1]) 2018 Hernandez (C8NR08046A-(cit2)/*[position()=1]) 2008; 3 Li (C8NR08046A-(cit36)/*[position()=1]) 2017; 7 Zhang (C8NR08046A-(cit45)/*[position()=1]) 2014; 344 Guo (C8NR08046A-(cit29)/*[position()=1]) 2017; 5 Miao (C8NR08046A-(cit30)/*[position()=1]) 2017; 699 Lu (C8NR08046A-(cit67)/*[position()=1]) 2018; 9 Novoselov (C8NR08046A-(cit1)/*[position()=1]) 2004; 306 Kresse (C8NR08046A-(cit53)/*[position()=1]) 1999; 59 Yuan (C8NR08046A-(cit7)/*[position()=1]) 2017; 409 Sanville (C8NR08046A-(cit61)/*[position()=1]) 2007; 28 Nicolosi (C8NR08046A-(cit57)/*[position()=1]) 2013; 340 Li (C8NR08046A-(cit10)/*[position()=1]) 2014; 9 Schaibley (C8NR08046A-(cit21)/*[position()=1]) 2016; 1 Georgiou (C8NR08046A-(cit33)/*[position()=1]) 2013; 8 Wang (C8NR08046A-(cit37)/*[position()=1]) 2017; 4 Henkelman (C8NR08046A-(cit60)/*[position()=1]) 2006; 36 Zhang (C8NR08046A-(cit12)/*[position()=1]) 2018; 47 |
References_xml | – volume: 54 start-page: 3112 year: 2015 ident: C8NR08046A-(cit11)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201411246 – volume: 350 start-page: 1513 year: 2015 ident: C8NR08046A-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.aad1080 – volume: 10 start-page: 715 year: 2010 ident: C8NR08046A-(cit32)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl9039636 – volume: 3 start-page: 365 year: 2016 ident: C8NR08046A-(cit35)/*[position()=1] publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nww026 – volume: 31 start-page: 1302 year: 2015 ident: C8NR08046A-(cit74)/*[position()=1] publication-title: Acta Phys.-Chim. Sin. doi: 10.3866/PKU.WHXB201505081 – volume: 36 start-page: 354 year: 2006 ident: C8NR08046A-(cit60)/*[position()=1] publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2005.04.010 – volume: 28 start-page: 899 year: 2007 ident: C8NR08046A-(cit61)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.20575 – volume: 112 start-page: 2372 year: 2015 ident: C8NR08046A-(cit75)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1416591112 – volume: 25 start-page: 109 year: 2013 ident: C8NR08046A-(cit23)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201203346 – volume: 10 start-page: 8397 year: 2018 ident: C8NR08046A-(cit58)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR01028E – volume: 65 start-page: 217101 year: 2016 ident: C8NR08046A-(cit27)/*[position()=1] publication-title: Acta Phys. Sin. doi: 10.7498/aps.65.217101 – volume: 9 start-page: 1728 year: 2018 ident: C8NR08046A-(cit67)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b00595 – volume: 306 start-page: 666 year: 2004 ident: C8NR08046A-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.1102896 – volume: 114 start-page: 236602 year: 2015 ident: C8NR08046A-(cit42)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.236602 – start-page: 6695 year: 2018 ident: C8NR08046A-(cit47)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b02859 – volume: 132 start-page: 154104 year: 2010 ident: C8NR08046A-(cit54)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 13 start-page: 5188 year: 1976 ident: C8NR08046A-(cit55)/*[position()=1] publication-title: Phys. Rev. B: Solid State doi: 10.1103/PhysRevB.13.5188 – volume: 105 start-page: 256805 year: 2010 ident: C8NR08046A-(cit44)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.256805 – volume: 108 start-page: 155501 year: 2012 ident: C8NR08046A-(cit8)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.155501 – start-page: 1256815 year: 2014 ident: C8NR08046A-(cit34)/*[position()=1] publication-title: Science – volume: 4 start-page: 252 year: 2017 ident: C8NR08046A-(cit37)/*[position()=1] publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nww069 – volume: 17 start-page: 83014 year: 2015 ident: C8NR08046A-(cit6)/*[position()=1] publication-title: New J. Phys. doi: 10.1088/1367-2630/17/8/083014 – volume: 5 start-page: 73 year: 2016 ident: C8NR08046A-(cit25)/*[position()=1] publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2016.09.012 – volume: 5 start-page: 8989 year: 2015 ident: C8NR08046A-(cit63)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep08989 – volume: 139 start-page: 11694 year: 2017 ident: C8NR08046A-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06296 – volume: 3 start-page: 563 year: 2008 ident: C8NR08046A-(cit2)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.215 – volume: 344 start-page: 725 year: 2014 ident: C8NR08046A-(cit45)/*[position()=1] publication-title: Science doi: 10.1126/science.1251329 – volume: 340 start-page: 1226419 year: 2013 ident: C8NR08046A-(cit57)/*[position()=1] publication-title: Science doi: 10.1126/science.1226419 – volume: 5 start-page: 4073 year: 2014 ident: C8NR08046A-(cit70)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502006z – volume: 16 start-page: 6584 year: 2016 ident: C8NR08046A-(cit16)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03118 – volume: 9 start-page: 372 year: 2014 ident: C8NR08046A-(cit10)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.35 – volume: 47 start-page: 982 year: 2018 ident: C8NR08046A-(cit12)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00125H – volume: 438 start-page: 197 year: 2005 ident: C8NR08046A-(cit3)/*[position()=1] publication-title: Nature doi: 10.1038/nature04233 – volume: 140 start-page: 2417 year: 2018 ident: C8NR08046A-(cit39)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12976 – volume: 15 start-page: 2510 year: 2015 ident: C8NR08046A-(cit9)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00085 – volume: 409 start-page: 85 year: 2017 ident: C8NR08046A-(cit7)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.02.238 – volume: 56 start-page: 8766 year: 2017 ident: C8NR08046A-(cit24)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201703871 – volume: 94 start-page: 235306 year: 2016 ident: C8NR08046A-(cit72)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.94.235306 – volume: 48 start-page: 1405 year: 2010 ident: C8NR08046A-(cit28)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2009.12.031 – volume: 17 start-page: 3434 year: 2017 ident: C8NR08046A-(cit31)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00297 – volume: 5 start-page: 23530 year: 2017 ident: C8NR08046A-(cit29)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08665B – volume: 7 start-page: e1314 year: 2017 ident: C8NR08046A-(cit36)/*[position()=1] publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 438 start-page: 213 year: 1978 ident: C8NR08046A-(cit48)/*[position()=1] publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.19784380123 – volume: 54 start-page: 11169 year: 1996 ident: C8NR08046A-(cit49)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.54.11169 – volume: 2 start-page: 17033 year: 2017 ident: C8NR08046A-(cit18)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.33 – volume: 78 start-page: 134106 year: 2008 ident: C8NR08046A-(cit56)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.78.134106 – volume: 80 start-page: 72 year: 1950 ident: C8NR08046A-(cit68)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.80.72 – volume: 14 start-page: 6964 year: 2014 ident: C8NR08046A-(cit62)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl5032293 – volume: 546 start-page: 265 year: 2017 ident: C8NR08046A-(cit66)/*[position()=1] publication-title: Nature doi: 10.1038/nature22060 – volume: 116 start-page: 206803 year: 2016 ident: C8NR08046A-(cit43)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.206803 – volume: 6 start-page: 147 year: 2011 ident: C8NR08046A-(cit20)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 – volume: 353 start-page: 1137 year: 2016 ident: C8NR08046A-(cit15)/*[position()=1] publication-title: Science doi: 10.1126/science.aag2421 – volume: 5 start-page: 1247 year: 2017 ident: C8NR08046A-(cit73)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC04692D – volume: 7 start-page: 699 year: 2012 ident: C8NR08046A-(cit19)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 8 start-page: 563 year: 2016 ident: C8NR08046A-(cit5)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2491 – volume: 128 start-page: 1698 year: 2016 ident: C8NR08046A-(cit71)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201507568 – volume: 9 start-page: 4138 year: 2015 ident: C8NR08046A-(cit64)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b00289 – volume: 699 start-page: 554 year: 2017 ident: C8NR08046A-(cit30)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.12.351 – volume: 6 start-page: 15 year: 1996 ident: C8NR08046A-(cit50)/*[position()=1] publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 394 start-page: 625 year: 2017 ident: C8NR08046A-(cit26)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.10.091 – volume: 2 start-page: 16098 year: 2017 ident: C8NR08046A-(cit13)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.98 – volume: 9 start-page: 155 year: 2018 ident: C8NR08046A-(cit14)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-02529-6 – volume: 1 start-page: 16055 year: 2016 ident: C8NR08046A-(cit21)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.55 – volume: 59 start-page: 1758 year: 1999 ident: C8NR08046A-(cit53)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.59.1758 – volume: 3 start-page: 335 year: 2018 ident: C8NR08046A-(cit40)/*[position()=1] publication-title: Nanoscale Horiz. doi: 10.1039/C7NH00197E – volume: 5 start-page: 4475 year: 2014 ident: C8NR08046A-(cit69)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5475 – volume: 5 start-page: 3813 year: 2014 ident: C8NR08046A-(cit22)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms4813 – volume: 77 start-page: 3865 year: 1996 ident: C8NR08046A-(cit51)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 4 start-page: 11446 year: 2016 ident: C8NR08046A-(cit17)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04414J – volume: 8 start-page: 100 year: 2013 ident: C8NR08046A-(cit33)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.224 – volume: 139 start-page: 11125 year: 2017 ident: C8NR08046A-(cit41)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05133 – volume: 91 start-page: 155138 year: 2015 ident: C8NR08046A-(cit65)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.91.155138 – volume: 469 start-page: 456 year: 2019 ident: C8NR08046A-(cit76)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.11.041 – volume: 546 start-page: 270 year: 2017 ident: C8NR08046A-(cit38)/*[position()=1] publication-title: Nature doi: 10.1038/nature22391 – volume: 50 start-page: 17953 year: 1994 ident: C8NR08046A-(cit52)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.50.17953 – volume: 21 start-page: 84204 year: 2009 ident: C8NR08046A-(cit59)/*[position()=1] publication-title: J. Phys.: Condens. Matter |
SSID | ssj0069363 |
Score | 2.5023355 |
Snippet | Two-dimensional materials with high carrier mobility and tunable magnetism are in high demand for nanoelectronic and spintronic applications. Herein, we... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1131 |
SubjectTerms | Banded structure Bilayers Carrier mobility Electron mobility Electronic structure Electrons Energy gap Magnetism Mathematical analysis Metallicity Monolayers Singularities |
Title | KTlO: a metal shrouded 2D semiconductor with high carrier mobility and tunable magnetism |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30574970 https://www.proquest.com/docview/2167858050 https://www.proquest.com/docview/2159983069 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZge4EHxG_KBjKCF4Q8EjtxbN7GBlRMDAGd6J4ix3HQpDWZ1uSFv55z7DgtFGnwErUXJ21yX-7Ozt13CL1QEKJmrKQkEZwR8LecKEsIALovBJdZmSm7oP_pmE9Pko_zdD4uZffVJW2xp39urCv5H62CDPRqq2T_QbPhpCCAz6Bf2IKGYXslHR_Nzj-7auWFsUWNS9t0p4QQkh6-Wtqs96a2dK7NpVtutdTEloq6b1K3aPq0WEe_1HauhGqhftSmHVgFfcwKBrhZgioDBL75NN5TRb6soOu0U77QoybT7iyk-rj66zMyNd5LgnDeuZx9L_HLDrbSKSauytJZJ2pTERlzFOR7ZlWWrZvXeAVGbMVWxrG3_2b4Kjfa9IhZStQDcfwVotuEB1bUkTj7N4cW0gz7F-xM5uOx19E2hfkEGMTt_aO3H74PTptL1jfdC1c1MNky-Xo8ej12-cuEpA9MZrfRLT-jwPsOHnfQNVPfRTdXeCbvobkFyhuscA8TPMAE00O8BhNsYYItTLCHCR5gggEm2MMEB5jcRyfv380OpsS31CCaxWlLlDZCi0TrIlM8pRVjikel0SZShRRJrAVLOAfrUtFYJ2lUcK4Z1ZxKLkpdUvYAbdVNbR4hnFXgGmnKeKEhEuJClAVPVCWNjmTB02qCXg43K9eeb962PTnP_1TLBD0PYy8cy8rGUbvDPc_9U7jMaQzhViqiNJqgZ2E32Ej74kvVpunsmFRKAZNjOUEPna7Cz4C_yxKZRY-v9Bd20I3xYdhFW-1lZ55AVNoWTz2ifgHOrokq |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KTlO%3A+a+metal+shrouded+2D+semiconductor+with+high+carrier+mobility+and+tunable+magnetism&rft.jtitle=Nanoscale&rft.au=Song%2C+Ya-Qian&rft.au=Yuan%2C+Jun-Hui&rft.au=Li%2C+Li-Heng&rft.au=Xu%2C+Ming&rft.date=2019-01-17&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=11&rft.issue=3&rft.spage=1131&rft.epage=1139&rft_id=info:doi/10.1039%2FC8NR08046A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8NR08046A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |