Single-component supported lipid bilayers probed using broadband nonlinear optics

Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups. The SFG spectra obtained from bilayers formed from DOPC...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 20; no. 5; pp. 3063 - 3072
Main Authors Olenick, Laura L., Chase, Hilary M., Fu, Li, Zhang, Yun, McGeachy, Alicia C., Dogangun, Merve, Walter, Stephanie R., Wang, Hong-fei, Geiger, Franz M.
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 07.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups. The SFG spectra obtained from bilayers formed from DOPC, POPC, DLPC, DMPC, DPPC and DSPC show a common peak at ∼2980 cm −1 , which is subject to interference between the C–H and the O–H stretches from the aqueous phase, while membranes having transition temperatures above the laboratory temperature produce SFG spectra with at least two additional peaks, one at ∼2920 cm −1 and another at ∼2880 cm −1 . The results validate spectroscopic and structural data from SFG experiments utilizing asymmetric bilayers in which one leaflet differs from the other in the extent of deuteration. Differences in H 2 O–D 2 O exchange experiments reveal that the lineshapes of the broadband SFG spectra are significantly influenced by interference from OH oscillators in the aqueous phase, even when those oscillators are not probed by the incident infrared light in our broadband setup. In the absence of spectral interference from the OH stretches of the solvent, the alkyl chain terminal methyl group of the bilayer is found to be tilted at an angle of 15° to 35° from the surface normal.
AbstractList Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups. The SFG spectra obtained from bilayers formed from DOPC, POPC, DLPC, DMPC, DPPC and DSPC show a common peak at ∼2980 cm−1, which is subject to interference between the C–H and the O–H stretches from the aqueous phase, while membranes having transition temperatures above the laboratory temperature produce SFG spectra with at least two additional peaks, one at ∼2920 cm−1 and another at ∼2880 cm−1. The results validate spectroscopic and structural data from SFG experiments utilizing asymmetric bilayers in which one leaflet differs from the other in the extent of deuteration. Differences in H2O–D2O exchange experiments reveal that the lineshapes of the broadband SFG spectra are significantly influenced by interference from OH oscillators in the aqueous phase, even when those oscillators are not probed by the incident infrared light in our broadband setup. In the absence of spectral interference from the OH stretches of the solvent, the alkyl chain terminal methyl group of the bilayer is found to be tilted at an angle of 15° to 35° from the surface normal.
Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups. The SFG spectra obtained from bilayers formed from DOPC, POPC, DLPC, DMPC, DPPC and DSPC show a common peak at ∼2980 cm-1, which is subject to interference between the C-H and the O-H stretches from the aqueous phase, while membranes having transition temperatures above the laboratory temperature produce SFG spectra with at least two additional peaks, one at ∼2920 cm-1 and another at ∼2880 cm-1. The results validate spectroscopic and structural data from SFG experiments utilizing asymmetric bilayers in which one leaflet differs from the other in the extent of deuteration. Differences in H2O-D2O exchange experiments reveal that the lineshapes of the broadband SFG spectra are significantly influenced by interference from OH oscillators in the aqueous phase, even when those oscillators are not probed by the incident infrared light in our broadband setup. In the absence of spectral interference from the OH stretches of the solvent, the alkyl chain terminal methyl group of the bilayer is found to be tilted at an angle of 15° to 35° from the surface normal.Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups. The SFG spectra obtained from bilayers formed from DOPC, POPC, DLPC, DMPC, DPPC and DSPC show a common peak at ∼2980 cm-1, which is subject to interference between the C-H and the O-H stretches from the aqueous phase, while membranes having transition temperatures above the laboratory temperature produce SFG spectra with at least two additional peaks, one at ∼2920 cm-1 and another at ∼2880 cm-1. The results validate spectroscopic and structural data from SFG experiments utilizing asymmetric bilayers in which one leaflet differs from the other in the extent of deuteration. Differences in H2O-D2O exchange experiments reveal that the lineshapes of the broadband SFG spectra are significantly influenced by interference from OH oscillators in the aqueous phase, even when those oscillators are not probed by the incident infrared light in our broadband setup. In the absence of spectral interference from the OH stretches of the solvent, the alkyl chain terminal methyl group of the bilayer is found to be tilted at an angle of 15° to 35° from the surface normal.
Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups. The SFG spectra obtained from bilayers formed from DOPC, POPC, DLPC, DMPC, DPPC and DSPC show a common peak at ∼2980 cm , which is subject to interference between the C-H and the O-H stretches from the aqueous phase, while membranes having transition temperatures above the laboratory temperature produce SFG spectra with at least two additional peaks, one at ∼2920 cm and another at ∼2880 cm . The results validate spectroscopic and structural data from SFG experiments utilizing asymmetric bilayers in which one leaflet differs from the other in the extent of deuteration. Differences in H O-D O exchange experiments reveal that the lineshapes of the broadband SFG spectra are significantly influenced by interference from OH oscillators in the aqueous phase, even when those oscillators are not probed by the incident infrared light in our broadband setup. In the absence of spectral interference from the OH stretches of the solvent, the alkyl chain terminal methyl group of the bilayer is found to be tilted at an angle of 15° to 35° from the surface normal.
Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups. The SFG spectra obtained from bilayers formed from DOPC, POPC, DLPC, DMPC, DPPC and DSPC show a common peak at ∼2980 cm −1 , which is subject to interference between the C–H and the O–H stretches from the aqueous phase, while membranes having transition temperatures above the laboratory temperature produce SFG spectra with at least two additional peaks, one at ∼2920 cm −1 and another at ∼2880 cm −1 . The results validate spectroscopic and structural data from SFG experiments utilizing asymmetric bilayers in which one leaflet differs from the other in the extent of deuteration. Differences in H 2 O–D 2 O exchange experiments reveal that the lineshapes of the broadband SFG spectra are significantly influenced by interference from OH oscillators in the aqueous phase, even when those oscillators are not probed by the incident infrared light in our broadband setup. In the absence of spectral interference from the OH stretches of the solvent, the alkyl chain terminal methyl group of the bilayer is found to be tilted at an angle of 15° to 35° from the surface normal.
Author Dogangun, Merve
Walter, Stephanie R.
Olenick, Laura L.
Fu, Li
McGeachy, Alicia C.
Geiger, Franz M.
Chase, Hilary M.
Wang, Hong-fei
Zhang, Yun
Author_xml – sequence: 1
  givenname: Laura L.
  surname: Olenick
  fullname: Olenick, Laura L.
  organization: Department of Chemistry, Northwestern University, Evanston, USA
– sequence: 2
  givenname: Hilary M.
  surname: Chase
  fullname: Chase, Hilary M.
  organization: Department of Chemistry, Northwestern University, Evanston, USA
– sequence: 3
  givenname: Li
  surname: Fu
  fullname: Fu, Li
  organization: William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, USA, Sanofi-Genzyme
– sequence: 4
  givenname: Yun
  surname: Zhang
  fullname: Zhang, Yun
  organization: William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, USA, Institute of Optics and Electronics
– sequence: 5
  givenname: Alicia C.
  surname: McGeachy
  fullname: McGeachy, Alicia C.
  organization: Department of Chemistry, Northwestern University, Evanston, USA
– sequence: 6
  givenname: Merve
  surname: Dogangun
  fullname: Dogangun, Merve
  organization: Department of Chemistry, Northwestern University, Evanston, USA
– sequence: 7
  givenname: Stephanie R.
  surname: Walter
  fullname: Walter, Stephanie R.
  organization: Department of Chemistry, Northwestern University, Evanston, USA
– sequence: 8
  givenname: Hong-fei
  orcidid: 0000-0001-8238-1641
  surname: Wang
  fullname: Wang, Hong-fei
  organization: Department of Chemistry, Fudan University, Shanghai 200433, China
– sequence: 9
  givenname: Franz M.
  orcidid: 0000-0001-8569-4045
  surname: Geiger
  fullname: Geiger, Franz M.
  organization: Department of Chemistry, Northwestern University, Evanston, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28721414$$D View this record in MEDLINE/PubMed
BookMark eNptkUtLxDAUhYOMOA_d-AOk4EaEal59ZDkUXzCgoq5L0t5KhjapSbuYf29kxhEGV_dy-c7lcM4cTYw1gNA5wTcEM3FbZMULpgkXyyM0IzxlscA5n-z3LJ2iufdrjDFJCDtBU5pnlHDCZ-j1TZvPFuLKdn34aobIj31v3QB11Ope15HSrdyA81HvrArX0QdFpJyVtZKmjoKZVhuQLrL9oCt_io4b2Xo4280F-ri_ey8e49Xzw1OxXMUVI8kQS4qbuqY0yRnUVSMApFBU8gyLNE1BEIBGkbRhgkGVN4BVyrlkNEskwzxVbIGutn-Dr68R_FB22lfQttKAHX1JBA3hJCxEtECXB-jajs4EdyXFBOdJTrgI1MWOGlUHddk73Um3KX_DCsD1Fqic9d5Bs0cILn-aKP-aCDA-gCs9yEFbMzip2_8k3z9riio
CitedBy_id crossref_primary_10_1021_acsami_9b17431
crossref_primary_10_1016_j_chempr_2018_09_018
crossref_primary_10_1021_acs_jpcc_8b03680
crossref_primary_10_1039_C7CP07353D
crossref_primary_10_1021_acs_jpca_9b02255
crossref_primary_10_1021_acs_jpcb_9b09341
crossref_primary_10_1021_acs_jpcb_8b02138
crossref_primary_10_1039_D0CP01834A
crossref_primary_10_1021_acs_jpcb_9b02392
crossref_primary_10_1021_acs_jpcc_7b09187
crossref_primary_10_1021_acs_jpcb_8b00309
crossref_primary_10_1039_C8SC00804C
Cites_doi 10.1021/ja983683f
10.1021/jp806690z
10.1021/jp0216878
10.1016/S0006-3495(03)74722-5
10.3390/ma5122705
10.1021/ja067446l
10.1021/la700856a
10.1016/j.bbamem.2007.07.023
10.1021/jp001294d
10.1016/j.bbamem.2006.01.017
10.1021/jp067453w
10.1021/jacs.5b11776
10.1016/S1388-1981(02)00328-1
10.1021/acs.langmuir.6b02346
10.1529/biophysj.106.099739
10.1021/la9903043
10.1021/jp0010942
10.1021/la9913250
10.1021/ja066588c
10.1021/la5036932
10.1021/ja909546b
10.1021/cr0006876
10.1021/la0484220
10.1016/S0006-3495(00)76793-2
10.1021/acs.jpcb.5b10483
10.1557/mrs2006.137
10.1021/la0011634
10.1021/cr0403685
10.1016/S0006-3495(02)75338-1
10.1021/ja106508f
10.1021/ja072552o
10.1021/acs.jpcb.6b07085
10.1016/S0006-3495(85)83882-0
10.1038/nrm2330
10.1021/acs.est.5b01841
10.1038/srep11655
10.1021/acs.jpcc.6b07565
10.1073/pnas.96.15.8461
10.1021/es051537l
10.1016/0250-6874(83)85036-7
10.1021/acs.jpcb.6b10141
10.1103/PhysRevLett.90.128101
10.1021/ja980736k
10.1021/ja201177k
10.1016/S0022-2275(20)34276-0
10.1248/bpb.29.1547
10.1021/acs.jpcc.6b01786
10.1021/jp027479x
10.1529/biophysj.105.065672
10.1016/S0039-6028(01)01809-X
10.1021/la051500e
10.1021/acs.langmuir.5b02765
10.1021/jp048098h
10.1021/nn403367c
10.1016/j.cbpa.2007.09.020
10.1021/jp046564x
10.1021/jp512107z
10.1021/la103129z
10.1016/S0009-2614(98)00662-9
10.1038/nprot.2008.149
10.1016/0005-2736(92)90101-Q
10.3109/10409238.2012.735643
10.1016/j.chemphyslip.2003.09.002
10.1039/C5CP04960A
10.1038/nmat2442
10.1021/ja1048237
10.1021/jp810891v
10.1016/j.bios.2004.12.018
10.1140/epje/i2013-13140-x
10.1021/la049302v
10.1080/01442350500225894
10.5194/acp-14-2303-2014
10.1140/epje/i2008-10407-3
10.1016/j.bbalip.2012.08.009
10.1021/jp035362i
10.1529/biophysj.104.040444
10.1016/j.bbamem.2004.02.003
10.1529/biophysj.106.096057
10.1021/la4036453
10.1021/ja031570c
10.1021/ja2110784
10.1016/S0009-2614(00)00116-0
10.1021/acs.nanolett.5b02143
10.1021/acsnano.5b01440
10.1021/jp510700z
10.1063/1.1145396
10.1021/ja201575e
10.1021/jp205912h
10.1016/j.vibspec.2008.09.004
10.1021/cr9502211
10.1146/annurev.biochem.66.1.199
10.1039/a703137h
10.1152/physiol.00006.2010
10.1021/jp909134g
10.1021/la981662t
10.1021/bi901096j
10.1529/biophysj.106.093831
10.1146/annurev.bb.09.060180.002343
10.1021/jp047984p
10.1146/annurev.biophys.093008.131234
10.1016/S0022-1759(03)00193-5
10.1021/acs.jpcc.6b09229
10.1021/cr4006044
10.1021/jp4068747
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/C7CP02549A
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 3072
ExternalDocumentID 28721414
10_1039_C7CP02549A
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c315t-a20fdd22583edcf9eea9b2a4709666e91eefb16f393ec8fe0b644a3275a3046b3
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 01:04:26 EDT 2025
Sun Jun 29 13:33:39 EDT 2025
Thu Apr 03 07:06:32 EDT 2025
Thu Apr 24 22:58:42 EDT 2025
Tue Jul 01 01:55:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-a20fdd22583edcf9eea9b2a4709666e91eefb16f393ec8fe0b644a3275a3046b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8238-1641
0000-0001-8569-4045
PMID 28721414
PQID 2010858149
PQPubID 2047499
PageCount 10
ParticipantIDs proquest_miscellaneous_1920395310
proquest_journals_2010858149
pubmed_primary_28721414
crossref_primary_10_1039_C7CP02549A
crossref_citationtrail_10_1039_C7CP02549A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-07
PublicationDateYYYYMMDD 2018-02-07
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Livingston (C7CP02549A-(cit63)/*[position()=1]) 2016; 120
Simpson (C7CP02549A-(cit91)/*[position()=1]) 1999; 121
Troiano (C7CP02549A-(cit40)/*[position()=1]) 2016
Anderson (C7CP02549A-(cit52)/*[position()=1]) 2007; 129
Tamm (C7CP02549A-(cit95)/*[position()=1]) 1985; 47
Ridgway (C7CP02549A-(cit71)/*[position()=1]) 2013; 48
Zhu (C7CP02549A-(cit102)/*[position()=1]) 2016; 32
Salafsky (C7CP02549A-(cit34)/*[position()=1]) 2000; 319
Jacobson (C7CP02549A-(cit43)/*[position()=1]) 2015; 49
Korlach (C7CP02549A-(cit15)/*[position()=1]) 1999; 96
Richmond (C7CP02549A-(cit45)/*[position()=1]) 2002; 102
Plant (C7CP02549A-(cit2)/*[position()=1]) 1999; 15
Xu (C7CP02549A-(cit90)/*[position()=1]) 2006; 40
Troiano (C7CP02549A-(cit29)/*[position()=1]) 2014; 119
Nguyen (C7CP02549A-(cit26)/*[position()=1]) 2010; 132
Sung (C7CP02549A-(cit58)/*[position()=1]) 2010; 26
Liu (C7CP02549A-(cit108)/*[position()=1]) 2008; 112
Leventis (C7CP02549A-(cit72)/*[position()=1]) 2010; 39
Rodahl (C7CP02549A-(cit13)/*[position()=1]) 1995; 66
Ries (C7CP02549A-(cit37)/*[position()=1]) 2004; 41
Moad (C7CP02549A-(cit89)/*[position()=1]) 2004; 108
Kasemo (C7CP02549A-(cit3)/*[position()=1]) 2002; 500
Tristram-Nagle (C7CP02549A-(cit7)/*[position()=1]) 2004; 127
Chen (C7CP02549A-(cit98)/*[position()=1]) 2007; 1768
Chen (C7CP02549A-(cit54)/*[position()=1]) 2010; 132
Milhaud (C7CP02549A-(cit6)/*[position()=1]) 2004; 1663
Nel (C7CP02549A-(cit5)/*[position()=1]) 2009; 8
Roke (C7CP02549A-(cit56)/*[position()=1]) 2003; 90
Fu (C7CP02549A-(cit55)/*[position()=1]) 2011; 133
Eisenthal (C7CP02549A-(cit31)/*[position()=1]) 1996; 96
Yan (C7CP02549A-(cit46)/*[position()=1]) 2014; 114
Liu (C7CP02549A-(cit27)/*[position()=1]) 2009; 50
Dogangun (C7CP02549A-(cit42)/*[position()=1]) 2015; 9
Wurpel (C7CP02549A-(cit38)/*[position()=1]) 2007; 129
Andrecka (C7CP02549A-(cit16)/*[position()=1]) 2013; 7
Esenturk (C7CP02549A-(cit83)/*[position()=1]) 2004; 108
Brown (C7CP02549A-(cit49)/*[position()=1]) 2011; 133
Scomparin (C7CP02549A-(cit94)/*[position()=1]) 2009; 28
Petralli-Mallow (C7CP02549A-(cit107)/*[position()=1]) 2000; 16
Liu (C7CP02549A-(cit92)/*[position()=1]) 2005; 21
Van Meer (C7CP02549A-(cit68)/*[position()=1]) 2008; 9
Ratto (C7CP02549A-(cit96)/*[position()=1]) 2002; 83
Xiaoyun Chen (C7CP02549A-(cit24)/*[position()=1]) 2007; 93
Hu (C7CP02549A-(cit86)/*[position()=1]) 2016; 120
Dowhan (C7CP02549A-(cit105)/*[position()=1]) 1997; 66
Chen (C7CP02549A-(cit22)/*[position()=1]) 2006; 1758
Allgeyer (C7CP02549A-(cit60)/*[position()=1]) 2015; 31
Ide (C7CP02549A-(cit12)/*[position()=1]) 2005; 21
Groves (C7CP02549A-(cit4)/*[position()=1]) 2003; 278
Wu (C7CP02549A-(cit21)/*[position()=1]) 2016; 18
Ye (C7CP02549A-(cit25)/*[position()=1]) 2012; 134
Wang (C7CP02549A-(cit82)/*[position()=1]) 2005; 24
Smolentsev (C7CP02549A-(cit51)/*[position()=1]) 2016; 138
Marrapu (C7CP02549A-(cit47)/*[position()=1])
Trandum (C7CP02549A-(cit106)/*[position()=1]) 2000; 78
Harb (C7CP02549A-(cit100)/*[position()=1]) 2013; 36
Doyle (C7CP02549A-(cit53)/*[position()=1]) 2004; 20
Geiger (C7CP02549A-(cit74)/*[position()=1]) 2013; 1831
Watry (C7CP02549A-(cit65)/*[position()=1]) 2002; 107
Brown (C7CP02549A-(cit66)/*[position()=1]) 2000; 104
Reviakine (C7CP02549A-(cit8)/*[position()=1]) 2000; 16
Schönherr (C7CP02549A-(cit9)/*[position()=1]) 2004; 20
Perez-Gil (C7CP02549A-(cit70)/*[position()=1]) 2010; 25
Liedberg (C7CP02549A-(cit17)/*[position()=1]) 1983; 4
Anglin (C7CP02549A-(cit19)/*[position()=1]) 2009; 48
Liu (C7CP02549A-(cit48)/*[position()=1]) 2005; 21
Liu (C7CP02549A-(cit67)/*[position()=1]) 2013; 29
Salafsky (C7CP02549A-(cit35)/*[position()=1]) 2000; 104
Liu (C7CP02549A-(cit85)/*[position()=1]) 2005; 89
Boyd (C7CP02549A-(cit44)/*[position()=1]) 2008
Madrid (C7CP02549A-(cit103)/*[position()=1]) 2015; 31
Anglin (C7CP02549A-(cit109)/*[position()=1]) 2007; 92
Szoka (C7CP02549A-(cit75)/*[position()=1]) 1980; 9
Blumenthal (C7CP02549A-(cit84)/*[position()=1]) 2015; 5
Voges (C7CP02549A-(cit81)/*[position()=1]) 2004; 108
Fu (C7CP02549A-(cit36)/*[position()=1]) 2010; 132
Smits (C7CP02549A-(cit57)/*[position()=1]) 2007; 111
Buchbinder (C7CP02549A-(cit87)/*[position()=1]) 2011; 115
Almeida (C7CP02549A-(cit97)/*[position()=1]) 1995
Eisenthal (C7CP02549A-(cit32)/*[position()=1]) 2006; 106
Kalb (C7CP02549A-(cit76)/*[position()=1]) 1992; 1103
Casper (C7CP02549A-(cit64)/*[position()=1]) 2016; 120
Zhang (C7CP02549A-(cit101)/*[position()=1]) 2011; 31
Lu (C7CP02549A-(cit79)/*[position()=1]) 2013; 117
Cui (C7CP02549A-(cit73)/*[position()=1]) 2002; 1585
Chen (C7CP02549A-(cit23)/*[position()=1]) 2007; 129
Anglin (C7CP02549A-(cit20)/*[position()=1]) 2010; 114
Hayes (C7CP02549A-(cit80)/*[position()=1]) 2009; 113
Hamai (C7CP02549A-(cit77)/*[position()=1]) 2007; 92
Richter (C7CP02549A-(cit93)/*[position()=1]) 2003; 85
Chan (C7CP02549A-(cit1)/*[position()=1]) 2007; 11
Liu (C7CP02549A-(cit28)/*[position()=1]) 2004; 126
Chen (C7CP02549A-(cit50)/*[position()=1]) 2015; 15
McGeachy (C7CP02549A-(cit41)/*[position()=1]) 2017; 121
Pavinatto (C7CP02549A-(cit39)/*[position()=1]) 2007; 23
Rodahl (C7CP02549A-(cit14)/*[position()=1]) 1997; 107
Kim (C7CP02549A-(cit61)/*[position()=1]) 2003; 107
Bartsch (C7CP02549A-(cit11)/*[position()=1]) 2012; 5
Walker (C7CP02549A-(cit59)/*[position()=1]) 1998; 120
Ebben (C7CP02549A-(cit88)/*[position()=1]) 2014; 14
Srivastava (C7CP02549A-(cit33)/*[position()=1]) 1998; 292
Hac (C7CP02549A-(cit99)/*[position()=1]) 2005; 88
Yamaji-Hasegawa (C7CP02549A-(cit104)/*[position()=1]) 2006; 29
Mingeot-Leclercq (C7CP02549A-(cit10)/*[position()=1]) 2008; 3
Nojima (C7CP02549A-(cit62)/*[position()=1]) 2017; 121
Mifflin (C7CP02549A-(cit78)/*[position()=1]) 2015; 119
Liu (C7CP02549A-(cit18)/*[position()=1]) 2005; 89
Liu (C7CP02549A-(cit30)/*[position()=1]) 2001; 17
Spector (C7CP02549A-(cit69)/*[position()=1]) 1985; 26
References_xml – volume: 121
  start-page: 2635
  year: 1999
  ident: C7CP02549A-(cit91)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja983683f
– volume: 112
  start-page: 15263
  year: 2008
  ident: C7CP02549A-(cit108)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp806690z
– volume: 107
  start-page: 512
  year: 2002
  ident: C7CP02549A-(cit65)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0216878
– volume: 85
  start-page: 3035
  year: 2003
  ident: C7CP02549A-(cit93)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(03)74722-5
– volume: 5
  start-page: 2705
  year: 2012
  ident: C7CP02549A-(cit11)/*[position()=1]
  publication-title: Materials
  doi: 10.3390/ma5122705
– volume: 129
  start-page: 1420
  year: 2007
  ident: C7CP02549A-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja067446l
– volume: 23
  start-page: 7666
  year: 2007
  ident: C7CP02549A-(cit39)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la700856a
– volume: 1768
  start-page: 2873
  year: 2007
  ident: C7CP02549A-(cit98)/*[position()=1]
  publication-title: Biochim. Biophys. Acta, Biomembr.
  doi: 10.1016/j.bbamem.2007.07.023
– volume: 104
  start-page: 7752
  year: 2000
  ident: C7CP02549A-(cit35)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp001294d
– volume: 1758
  start-page: 1257
  year: 2006
  ident: C7CP02549A-(cit22)/*[position()=1]
  publication-title: Biochim. Biophys. Acta, Biomembr.
  doi: 10.1016/j.bbamem.2006.01.017
– volume: 111
  start-page: 8878
  year: 2007
  ident: C7CP02549A-(cit57)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp067453w
– volume: 138
  start-page: 4053
  year: 2016
  ident: C7CP02549A-(cit51)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11776
– volume: 1585
  start-page: 87
  year: 2002
  ident: C7CP02549A-(cit73)/*[position()=1]
  publication-title: Biochim. Biophys. Acta, Mol. Cell Biol. Lipids
  doi: 10.1016/S1388-1981(02)00328-1
– volume: 32
  start-page: 11021
  year: 2016
  ident: C7CP02549A-(cit102)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b02346
– volume: 93
  start-page: 866
  year: 2007
  ident: C7CP02549A-(cit24)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.099739
– volume: 16
  start-page: 1806
  year: 2000
  ident: C7CP02549A-(cit8)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la9903043
– volume: 104
  start-page: 10220
  year: 2000
  ident: C7CP02549A-(cit66)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0010942
– volume: 16
  start-page: 5960
  year: 2000
  ident: C7CP02549A-(cit107)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la9913250
– volume: 129
  start-page: 2094
  year: 2007
  ident: C7CP02549A-(cit52)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja066588c
– volume: 31
  start-page: 987
  year: 2015
  ident: C7CP02549A-(cit60)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la5036932
– volume: 132
  start-page: 5405
  year: 2010
  ident: C7CP02549A-(cit36)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909546b
– volume: 102
  start-page: 2693
  year: 2002
  ident: C7CP02549A-(cit45)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr0006876
– volume: 20
  start-page: 8961
  year: 2004
  ident: C7CP02549A-(cit53)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la0484220
– volume: 78
  start-page: 2486
  year: 2000
  ident: C7CP02549A-(cit106)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76793-2
– volume: 120
  start-page: 2043
  year: 2016
  ident: C7CP02549A-(cit64)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b10483
– volume: 31
  start-page: 527
  year: 2011
  ident: C7CP02549A-(cit101)/*[position()=1]
  publication-title: MRS Bull.
  doi: 10.1557/mrs2006.137
– volume: 17
  start-page: 2063
  year: 2001
  ident: C7CP02549A-(cit30)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la0011634
– volume: 106
  start-page: 1462
  year: 2006
  ident: C7CP02549A-(cit32)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr0403685
– volume: 83
  start-page: 3380
  year: 2002
  ident: C7CP02549A-(cit96)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(02)75338-1
– volume: 132
  start-page: 15112
  year: 2010
  ident: C7CP02549A-(cit26)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106508f
– volume: 129
  start-page: 8420
  year: 2007
  ident: C7CP02549A-(cit38)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja072552o
– volume: 120
  start-page: 10069
  year: 2016
  ident: C7CP02549A-(cit63)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b07085
– volume: 47
  start-page: 105
  year: 1985
  ident: C7CP02549A-(cit95)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(85)83882-0
– volume: 9
  start-page: 112
  year: 2008
  ident: C7CP02549A-(cit68)/*[position()=1]
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2330
– volume: 49
  start-page: 10642
  year: 2015
  ident: C7CP02549A-(cit43)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b01841
– volume: 5
  start-page: 11655
  year: 2015
  ident: C7CP02549A-(cit84)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep11655
– volume: 120
  start-page: 22718
  year: 2016
  ident: C7CP02549A-(cit86)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b07565
– volume: 96
  start-page: 8461
  year: 1999
  ident: C7CP02549A-(cit15)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.15.8461
– volume: 40
  start-page: 1566
  year: 2006
  ident: C7CP02549A-(cit90)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es051537l
– volume: 4
  start-page: 299
  year: 1983
  ident: C7CP02549A-(cit17)/*[position()=1]
  publication-title: Sens. Actuators
  doi: 10.1016/0250-6874(83)85036-7
– volume: 121
  start-page: 1321
  year: 2017
  ident: C7CP02549A-(cit41)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b10141
– volume: 90
  start-page: 128101
  year: 2003
  ident: C7CP02549A-(cit56)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.128101
– volume: 120
  start-page: 6991
  year: 1998
  ident: C7CP02549A-(cit59)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja980736k
– volume: 133
  start-page: 8794
  year: 2011
  ident: C7CP02549A-(cit49)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201177k
– volume: 26
  start-page: 1015
  year: 1985
  ident: C7CP02549A-(cit69)/*[position()=1]
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)34276-0
– volume: 29
  start-page: 1547
  year: 2006
  ident: C7CP02549A-(cit104)/*[position()=1]
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.29.1547
– start-page: 20659
  year: 2016
  ident: C7CP02549A-(cit40)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b01786
– volume: 107
  start-page: 1403
  year: 2003
  ident: C7CP02549A-(cit61)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp027479x
– volume: 89
  start-page: 2522
  year: 2005
  ident: C7CP02549A-(cit85)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.065672
– volume: 500
  start-page: 656
  year: 2002
  ident: C7CP02549A-(cit3)/*[position()=1]
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/S0039-6028(01)01809-X
– volume: 21
  start-page: 9091
  year: 2005
  ident: C7CP02549A-(cit92)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la051500e
– volume: 31
  start-page: 12544
  year: 2015
  ident: C7CP02549A-(cit103)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b02765
– volume: 41
  start-page: 16040
  year: 2004
  ident: C7CP02549A-(cit37)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp048098h
– volume: 7
  start-page: 10662
  year: 2013
  ident: C7CP02549A-(cit16)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn403367c
– volume: 11
  start-page: 581
  year: 2007
  ident: C7CP02549A-(cit1)/*[position()=1]
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2007.09.020
– volume: 108
  start-page: 18675
  year: 2004
  ident: C7CP02549A-(cit81)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp046564x
– volume: 119
  start-page: 534
  year: 2014
  ident: C7CP02549A-(cit29)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp512107z
– volume: 26
  start-page: 18266
  year: 2010
  ident: C7CP02549A-(cit58)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la103129z
– volume: 292
  start-page: 345
  year: 1998
  ident: C7CP02549A-(cit33)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(98)00662-9
– volume: 3
  start-page: 1654
  year: 2008
  ident: C7CP02549A-(cit10)/*[position()=1]
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.149
– volume: 1103
  start-page: 307
  year: 1992
  ident: C7CP02549A-(cit76)/*[position()=1]
  publication-title: Biochim. Biophys. Acta, Biomembr.
  doi: 10.1016/0005-2736(92)90101-Q
– volume-title: Handbook of biological physics
  year: 1995
  ident: C7CP02549A-(cit97)/*[position()=1]
– volume: 48
  start-page: 20
  year: 2013
  ident: C7CP02549A-(cit71)/*[position()=1]
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409238.2012.735643
– volume: 127
  start-page: 3
  year: 2004
  ident: C7CP02549A-(cit7)/*[position()=1]
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2003.09.002
– volume: 18
  start-page: 1411
  year: 2016
  ident: C7CP02549A-(cit21)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP04960A
– volume: 8
  start-page: 543
  year: 2009
  ident: C7CP02549A-(cit5)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2442
– volume: 132
  start-page: 11336
  year: 2010
  ident: C7CP02549A-(cit54)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1048237
– volume: 113
  start-page: 4269
  year: 2009
  ident: C7CP02549A-(cit80)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp810891v
– volume: 21
  start-page: 672
  year: 2005
  ident: C7CP02549A-(cit12)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2004.12.018
– volume: 36
  start-page: 140
  year: 2013
  ident: C7CP02549A-(cit100)/*[position()=1]
  publication-title: Eur. Phys. J. E: Soft Matter Biol. Phys.
  doi: 10.1140/epje/i2013-13140-x
– volume: 20
  start-page: 11600
  year: 2004
  ident: C7CP02549A-(cit9)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la049302v
– volume: 24
  start-page: 191
  year: 2005
  ident: C7CP02549A-(cit82)/*[position()=1]
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/01442350500225894
– volume: 14
  start-page: 2303
  year: 2014
  ident: C7CP02549A-(cit88)/*[position()=1]
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-2303-2014
– ident: C7CP02549A-(cit47)/*[position()=1]
– volume: 28
  start-page: 211
  year: 2009
  ident: C7CP02549A-(cit94)/*[position()=1]
  publication-title: Eur. Phys. J. E: Soft Matter Biol. Phys.
  doi: 10.1140/epje/i2008-10407-3
– volume: 1831
  start-page: 503
  year: 2013
  ident: C7CP02549A-(cit74)/*[position()=1]
  publication-title: Biochim. Biophys. Acta, Mol. Cell Biol. Lipids
  doi: 10.1016/j.bbalip.2012.08.009
– volume: 108
  start-page: 3548
  year: 2004
  ident: C7CP02549A-(cit89)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp035362i
– volume: 88
  start-page: 317
  year: 2005
  ident: C7CP02549A-(cit99)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.040444
– volume: 1663
  start-page: 19
  year: 2004
  ident: C7CP02549A-(cit6)/*[position()=1]
  publication-title: Biochim. Biophys. Acta, Biomembr.
  doi: 10.1016/j.bbamem.2004.02.003
– volume-title: Nonlinear Optics
  year: 2008
  ident: C7CP02549A-(cit44)/*[position()=1]
– volume: 92
  start-page: L1
  year: 2007
  ident: C7CP02549A-(cit109)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.096057
– volume: 29
  start-page: 15022
  year: 2013
  ident: C7CP02549A-(cit67)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la4036453
– volume: 126
  start-page: 8894
  year: 2004
  ident: C7CP02549A-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja031570c
– volume: 134
  start-page: 6237
  year: 2012
  ident: C7CP02549A-(cit25)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2110784
– volume: 319
  start-page: 435
  year: 2000
  ident: C7CP02549A-(cit34)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)00116-0
– volume: 89
  start-page: 2522
  year: 2005
  ident: C7CP02549A-(cit18)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.065672
– volume: 15
  start-page: 5558
  year: 2015
  ident: C7CP02549A-(cit50)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02143
– volume: 9
  start-page: 8755
  year: 2015
  ident: C7CP02549A-(cit42)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01440
– volume: 119
  start-page: 1292
  year: 2015
  ident: C7CP02549A-(cit78)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp510700z
– volume: 66
  start-page: 3924
  year: 1995
  ident: C7CP02549A-(cit13)/*[position()=1]
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1145396
– volume: 133
  start-page: 8094
  year: 2011
  ident: C7CP02549A-(cit55)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201575e
– volume: 115
  start-page: 18284
  year: 2011
  ident: C7CP02549A-(cit87)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp205912h
– volume: 50
  start-page: 106
  year: 2009
  ident: C7CP02549A-(cit27)/*[position()=1]
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2008.09.004
– volume: 96
  start-page: 1343
  year: 1996
  ident: C7CP02549A-(cit31)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr9502211
– volume: 66
  start-page: 199
  year: 1997
  ident: C7CP02549A-(cit105)/*[position()=1]
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.66.1.199
– volume: 107
  start-page: 229
  year: 1997
  ident: C7CP02549A-(cit14)/*[position()=1]
  publication-title: Faraday Discuss.
  doi: 10.1039/a703137h
– volume: 25
  start-page: 132
  year: 2010
  ident: C7CP02549A-(cit70)/*[position()=1]
  publication-title: Physiology
  doi: 10.1152/physiol.00006.2010
– volume: 114
  start-page: 1903
  year: 2010
  ident: C7CP02549A-(cit20)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp909134g
– volume: 15
  start-page: 5128
  year: 1999
  ident: C7CP02549A-(cit2)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la981662t
– volume: 48
  start-page: 10220
  year: 2009
  ident: C7CP02549A-(cit19)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi901096j
– volume: 92
  start-page: 1988
  year: 2007
  ident: C7CP02549A-(cit77)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.093831
– volume: 9
  start-page: 467
  year: 1980
  ident: C7CP02549A-(cit75)/*[position()=1]
  publication-title: Annu. Rev. Biophys. Bioeng.
  doi: 10.1146/annurev.bb.09.060180.002343
– volume: 108
  start-page: 10631
  year: 2004
  ident: C7CP02549A-(cit83)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047984p
– volume: 39
  start-page: 407
  year: 2010
  ident: C7CP02549A-(cit72)/*[position()=1]
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev.biophys.093008.131234
– volume: 278
  start-page: 19
  year: 2003
  ident: C7CP02549A-(cit4)/*[position()=1]
  publication-title: J. Immunol. Methods
  doi: 10.1016/S0022-1759(03)00193-5
– volume: 121
  start-page: 2173
  year: 2017
  ident: C7CP02549A-(cit62)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b09229
– volume: 114
  start-page: 8471
  year: 2014
  ident: C7CP02549A-(cit46)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr4006044
– volume: 117
  start-page: 24329
  year: 2013
  ident: C7CP02549A-(cit79)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4068747
– volume: 21
  start-page: 9091
  year: 2005
  ident: C7CP02549A-(cit48)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la051500e
SSID ssj0001513
Score 2.318916
Snippet Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 3063
SubjectTerms Broadband
Deuteration
Infrared radiation
Interference
Lipids
Nonlinear optics
Oscillators
Phase transitions
Spectra
Spectrum analysis
Title Single-component supported lipid bilayers probed using broadband nonlinear optics
URI https://www.ncbi.nlm.nih.gov/pubmed/28721414
https://www.proquest.com/docview/2010858149
https://www.proquest.com/docview/1920395310
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wAXxJvCgoLggqpAYjsPH6uoVUHVbhGtVE6RnTjaSlUatcmFX7A_e8dx7A1QEHDJw4kmlueL5-HxDELvuEoTJlju8pBkYKAEnstBa3UjKkQow0zAWUVbXITzNf28CTaDwXUvaqmpxYfs-8l9Jf_DVWgDvqpdsv_AWUsUGuAa-AtH4DAc_4rHX0Hu7KSrwsL3pVrUPzZVm6g8H--21RZ0y-2OK51ahWEJaG1az4A47HkulMe81Iky-GG8r2oT996pqkvDwczUhNNXqkn7Q46tP2GZJHaP2CXIMFOanTcHPrau5eSK6xKOc-gSkLIOn1mjXQO_eLC_NWXfJeHHbRRzZEGkHR8m6rSNKun62ZtoaUhcMMy7NNj9Nl0yzszO2OuhMOhNtWDrkJ7YhrkKnxQJHlEZVbMoq9TGf9YTfGax_-Iyna0Xi3Q13azuoDMMBgceorPJdPVpYaU6aEZE71TT_Tapbgn7eEv7R-XmNxZLq7msHqD7ncnhTDR-HqKBLB-hu3a0HqMvP-PIsThyWhw5BkeOxpHT4sixOHIsjhyNoydoPZuukrnbldpwM-IHtcuxV-Q5zO0xkXlWMCk5E5jTCCzcMJTMl7IQflgQRmQWF9IToEdzgqOAq6V1QZ6iIXxKPkeORykLcyARRISqGyxzGomcxliqagEj9N6MUZp1eehVOZRd2sZDEJYmUbJsx3MyQm_tu5XOvnLyrXMz1Gn3dx5TFeURB7FP2Qi9sY9hYNWCGC_lvjmmYN0AJZBC0KlnmkX2MziOsE99-uLPxF-ie7d_wDka1odGvgI1tRavOwTdACOnlmY
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-component+supported+lipid+bilayers+probed+using+broadband+nonlinear+optics&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Olenick%2C+Laura+L&rft.au=Chase%2C+Hilary+M&rft.au=Fu%2C+Li&rft.au=Zhang%2C+Yun&rft.date=2018-02-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=20&rft.issue=5&rft.spage=3063&rft.epage=3072&rft_id=info:doi/10.1039%2Fc7cp02549a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon