Development and Validation of an Evaporation Duct Model. Part II: Evaluation and Improvement of Stability Functions
This study aims to validate and improve the universal evaporation duct (UED) model through a further analysis of the stability function (ψ). A large number of hydrometeorological observations obtained from a tower platform near Xisha Island of the South China Sea are employed, together with the late...
Saved in:
Published in | Journal of Meteorological Research Vol. 29; no. 3; pp. 482 - 495 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Beijing
The Chinese Meteorological Society
01.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 2095-6037 2198-0934 |
DOI | 10.1007/s13351-015-3239-3 |
Cover
Abstract | This study aims to validate and improve the universal evaporation duct (UED) model through a further analysis of the stability function (ψ). A large number of hydrometeorological observations obtained from a tower platform near Xisha Island of the South China Sea are employed, together with the latest variations inψ function. Applicability of different ψ functions for specific sea areas and stratification conditions is investigated based on three objective criteria. The results show that, under unstable conditions, ψfunction of Fairall et al. (1996) (i.e., Fairal196, similar for abbreviations of other function names) in general offers the best performance. However, strictly speaking, this holds true only for the stability (represented by bulk Richardson number RiB) range -2.6 ≤ RiB 〈 -0.1; when conditions become weakly unstable (-0.1 ≤ RiB 〈 --0.01), Fairal196 offers the second best performance after Hu and Zhang (1992) (HYQ92). Conversely, for near-neutral but slightly unstable conditions (-0.01≤ RiB 〈 0.0), the effects of Edson04, Fairall03, Grachev00, and Fairal196 are similar, with Edson04 being the best function but offering only a weak advan- tage. Under stable conditions, HYQ92 is the optimal and offers a pronounced advantage, followed by the newly introduced SHEBA07 (by Grachev et al., 2007) function. Accordingly, the most favorable functions, i.e., Fairal196 and HYQ92, are incorporated into the UED model to obtain an improved version of the model. With the new functions, the mean root-mean-square (rms) errors of the modified refractivity (M), 0-5-m M slope, 5-40-m M slope, and the rms errors of evaporation duct height (EDH) are reduced by 21.65%, 9.12%, 38.79%, and 59.06%, respectively, compared to the classical Naval Postgraduate School model. |
---|---|
AbstractList | This study aims to validate and improve the universal evaporation duct (UED) model through a further analysis of the stability function (
ψ
). A large number of hydrometeorological observations obtained from a tower platform near Xisha Island of the South China Sea are employed, together with the latest variations in
ψ
function. Applicability of different
ψ
functions for specific sea areas and stratification conditions is investigated based on three objective criteria. The results show that, under unstable conditions,
ψ
function of Fairall et al. (1996) (i.e., Fairall96, similar for abbreviations of other function names) in general offers the best performance. However, strictly speaking, this holds true only for the stability (represented by bulk Richardson number
R
iB
) range −2.6 ⩽
R
iB
< −0.1; when conditions become weakly unstable (−0.1 ⩽
R
iB
< −0.01), Fairall96 offers the second best performance after Hu and Zhang (1992) (HYQ92). Conversely, for near-neutral but slightly unstable conditions (−0.01 ⩽
R
iB
< 0.0), the effects of Edson04, Fairall03, Grachev00, and Fairall96 are similar, with Edson04 being the best function but offering only a weak advantage. Under stable conditions, HYQ92 is the optimal and offers a pronounced advantage, followed by the newly introduced SHEBA07 (by Grachev et al., 2007) function. Accordingly, the most favorable functions, i.e., Fairall96 and HYQ92, are incorporated into the UED model to obtain an improved version of the model. With the new functions, the mean root-mean-square (rms) errors of the modified refractivity (
M
), 0–5-m
M
slope, 5–40-m
M
slope, and the rms errors of evaporation duct height (EDH) are reduced by 21.65%, 9.12%, 38.79%, and 59.06%, respectively, compared to the classical Naval Postgraduate School model. This study aims to validate and improve the universal evaporation duct (UED) model through a further analysis of the stability function (ψ). A large number of hydrometeorological observations obtained from a tower platform near Xisha Island of the South China Sea are employed, together with the latest variations inψ function. Applicability of different ψ functions for specific sea areas and stratification conditions is investigated based on three objective criteria. The results show that, under unstable conditions, ψfunction of Fairall et al. (1996) (i.e., Fairal196, similar for abbreviations of other function names) in general offers the best performance. However, strictly speaking, this holds true only for the stability (represented by bulk Richardson number RiB) range -2.6 ≤ RiB 〈 -0.1; when conditions become weakly unstable (-0.1 ≤ RiB 〈 --0.01), Fairal196 offers the second best performance after Hu and Zhang (1992) (HYQ92). Conversely, for near-neutral but slightly unstable conditions (-0.01≤ RiB 〈 0.0), the effects of Edson04, Fairall03, Grachev00, and Fairal196 are similar, with Edson04 being the best function but offering only a weak advan- tage. Under stable conditions, HYQ92 is the optimal and offers a pronounced advantage, followed by the newly introduced SHEBA07 (by Grachev et al., 2007) function. Accordingly, the most favorable functions, i.e., Fairal196 and HYQ92, are incorporated into the UED model to obtain an improved version of the model. With the new functions, the mean root-mean-square (rms) errors of the modified refractivity (M), 0-5-m M slope, 5-40-m M slope, and the rms errors of evaporation duct height (EDH) are reduced by 21.65%, 9.12%, 38.79%, and 59.06%, respectively, compared to the classical Naval Postgraduate School model. |
Author | 丁菊丽 费建芳 黄小刚 程小平 胡晓华 季亮 |
AuthorAffiliation | Institute of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101 Mailbox 5111, Beijing 100081 Institute of Philosophy, PLA University of Science and Technology, Nanjing 211101 |
Author_xml | – sequence: 1 fullname: 丁菊丽 费建芳 黄小刚 程小平 胡晓华 季亮 |
BookMark | eNp9kEtOwzAQhi1UJErpAdhF7FP8qON4ifqASEUg8dhGjuOUVKkdHKdSr8JZuBNXwGkqFiy6mtHo__6Z-S_BQButALhGcIIgZLcNIoSiECIaEkx4SM7AECMeh5CT6cD3kNMwgoRdgHHTbCCEmGPKMB6Cdq52qjL1VmkXCJ0H76Iqc-FKowNT-Emw2Ina2H4yb6ULHk2uqknwLKwLkuTn-6uTVG2v6CySbW3NTh0svceLE1lZlW4fLFstO1VzBc4LUTVqfKwj8LZcvM4ewtXTfTK7W4WSIOpCzkUskSSM8TieIigzgXNBMcvyuFAQFUxRhnAEMRYSCSJVFKkio5jGBYumORkB1PtKa5rGqiKtbbkVdp8imHbRpX10qY8u7aJLiWfYP0aW7vCcs6KsTpK4Jxu_Ra-VTTemtdo_eBK6Oa77MHr96bm_G6OIxoRHkJJfWR6SOg |
CitedBy_id | crossref_primary_10_1029_2019RS006882 crossref_primary_10_1007_s13351_015_4127_6 crossref_primary_10_1109_ACCESS_2025_3537160 crossref_primary_10_2112_SI99_039_1 crossref_primary_10_3390_atmos15060707 crossref_primary_10_1016_j_rinp_2020_103181 crossref_primary_10_1088_1742_6596_2203_1_012079 crossref_primary_10_3390_rs14194787 |
Cites_doi | 10.1109/JRPROC.1947.229648 10.1007/s10546-004-1425-4 10.1029/95JC03205 10.1029/91RS00835 10.1002/qj.49709640708 10.1175/1520-0450-39.10.1770 10.1175/1520-0450(1997)036<0193:ANMOTO>2.0.CO;2 10.1134/S0001433807010045 10.1007/978-94-010-2681-9_13 10.1007/BF00221826 10.1175/1520-0450(2002)041<0434:LBEDMC>2.0.CO;2 10.5194/npg-13-185-2006 10.1007/s13351-015-3238-4 10.1007/s10546-007-9177-6 10.1029/92RS00926 10.1029/RS020i004p00887 10.7498/aps.58.7339 10.21236/ADA156736 |
ContentType | Journal Article |
Copyright | The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2015 |
Copyright_xml | – notice: The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2015 |
DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION |
DOI | 10.1007/s13351-015-3239-3 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | Development and Validation of an Evaporation Duct Model. Part II: Evaluation and Improvement of Stability Functions |
EISSN | 2198-0934 |
EndPage | 495 |
ExternalDocumentID | 10_1007_s13351_015_3239_3 665839605 |
GroupedDBID | -01 -0A -EM -SA -S~ 06D 2KG 2KM 2RA 4.4 406 5VR 5XA 5XB 5XL 92L 92M 96X 9D9 9DA AAAVM AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AAYFA AAYIU AAYQN AAZMS ABDZT ABECU ABFGW ABFTV ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBMV ACBRV ACBYP ACGFS ACHSB ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACTTH ACVWB ACWMK ACZOJ ADHIR ADMDM ADOXG ADRFC ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFLOW AFNRJ AFUIB AFZKB AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW ANMIH AOCGG ARMRJ ASPBG AVWKF AXYYD BGNMA CAJEA CAJUS CCEZO CCVFK CHBEP CQIGP DDRTE DNIVK DPUIP EBLON EBS EDH EIOEI EJD ESBYG FA0 FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGRSB GJIRD IKXTQ IWAJR J-C JUIAU JZLTJ KOV L8X LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 Q-- Q-0 R-A RLLFE RSV RT1 SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T8Q TSG U1F U1G U5A U5K UG4 UOJIU UTJUX UZXMN VFIZW W48 W94 ZMTXR ~LG ~WA 0R~ AACDK AAJBT AASML AATVU AAUYE AAXDM AAYTO AAYZH ABAKF ABJNI ACDTI ACPIV ADINQ ADKNI AEFQL AEMSY AFBBN AFQWF AGAYW AGQEE AGRTI AHBYD AIGIU AMYLF GGCAI H13 IAO IEP IGS ITC OK1 ROL SJYHP AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c315t-99a8c1c377988410cba2da527bd8fe01f7e57126022ac1a3ce66efb5258f764d3 |
IEDL.DBID | AGYKE |
ISSN | 2095-6037 |
IngestDate | Thu Apr 24 22:51:22 EDT 2025 Tue Jul 01 01:00:56 EDT 2025 Fri Feb 21 02:40:30 EST 2025 Wed Feb 14 10:28:03 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | electromagnetic wave propagation evaporation duct height stability function |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c315t-99a8c1c377988410cba2da527bd8fe01f7e57126022ac1a3ce66efb5258f764d3 |
Notes | 11-2277/P DING Juli, FEI Jianfang, HUANG Xiaogang,CHENG Xiaoping,HU Xiaohua,JI Liang(1 Institute of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101 2 Mailbox 5111, Beijing 100081 3 Institute of Philosophy, PLA University of Science and Technology, Nanjing 211101) This study aims to validate and improve the universal evaporation duct (UED) model through a further analysis of the stability function (ψ). A large number of hydrometeorological observations obtained from a tower platform near Xisha Island of the South China Sea are employed, together with the latest variations inψ function. Applicability of different ψ functions for specific sea areas and stratification conditions is investigated based on three objective criteria. The results show that, under unstable conditions, ψfunction of Fairall et al. (1996) (i.e., Fairal196, similar for abbreviations of other function names) in general offers the best performance. However, strictly speaking, this holds true only for the stability (represented by bulk Richardson number RiB) range -2.6 ≤ RiB 〈 -0.1; when conditions become weakly unstable (-0.1 ≤ RiB 〈 --0.01), Fairal196 offers the second best performance after Hu and Zhang (1992) (HYQ92). Conversely, for near-neutral but slightly unstable conditions (-0.01≤ RiB 〈 0.0), the effects of Edson04, Fairall03, Grachev00, and Fairal196 are similar, with Edson04 being the best function but offering only a weak advan- tage. Under stable conditions, HYQ92 is the optimal and offers a pronounced advantage, followed by the newly introduced SHEBA07 (by Grachev et al., 2007) function. Accordingly, the most favorable functions, i.e., Fairal196 and HYQ92, are incorporated into the UED model to obtain an improved version of the model. With the new functions, the mean root-mean-square (rms) errors of the modified refractivity (M), 0-5-m M slope, 5-40-m M slope, and the rms errors of evaporation duct height (EDH) are reduced by 21.65%, 9.12%, 38.79%, and 59.06%, respectively, compared to the classical Naval Postgraduate School model. evaporation duct height, stability function, electromagnetic wave propagation |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1007_s13351_015_3239_3 crossref_citationtrail_10_1007_s13351_015_3239_3 springer_journals_10_1007_s13351_015_3239_3 chongqing_primary_665839605 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Journal of Meteorological Research |
PublicationTitleAbbrev | J Meteorol Res |
PublicationTitleAlternate | Acta Meteorologica Sinica |
PublicationYear | 2015 |
Publisher | The Chinese Meteorological Society |
Publisher_xml | – name: The Chinese Meteorological Society |
References | Li, Zhang, Tang (CR17) 2009; 20 Ding, Fei, Huang (CR6) 2009; 24 Musson-Genon, Gauthier, Bruth (CR21) 1992; 27 Liu (CR19) 2003 Zhang, Hu (CR31) 1995; 19 Gehman (CR11) 2000 Tian, Cha, Zhang (CR26) 2009; 24 Liu, Blanc (CR20) 1984 Pasricha, Prasad, Sarkar (CR23) 2002; 31 Webb (CR27) 1970; 96 Yagüe, Viana, Maqueda (CR29) 2006; 13 Yaglom (CR28) 1977; 11 Yang, Ma, Shi (CR30) 2009; 58 Katzin, Bauchman, Binnian (CR16) 1947; 35 Cook (CR4) 1991; 26 Ding, Fei, Huang (CR7) 2011; 27 Ivanov, Shalyapin, Levadnyi (CR14) 2007; 43 Jeske, Zancla (CR15) 1973 Grachev, Andreas, Fairall (CR12) 2007; 124 Hu, Zhang (CR13) 1992; 17 Babin, Dockery (CR2) 2002; 41 Stull (CR25) 1991 Frederickson, Davidson, Zeisse (CR10) 2000; 39 Zuo, Cha, Tian (CR32) 2009; 37 Ding, Fei, Huang (CR8) 2015; 29 Cheng, Brutsaert (CR3) 2005; 114 Babin, Young, Carton (CR1) 1997; 36 Dai, Li, Dong (CR5) 2002 Fairall, Bradley, Rogers (CR9) 1996; 101 Pan, Cui (CR22) 2007; 24 Paulus (CR24) 1985; 20 Liu, Huang, Jiang (CR18) 2001; 29 Y Pan (3239_CR22) 2007; 24 J Z Gehman (3239_CR11) 2000 A M Yaglom (3239_CR28) 1977; 11 K Yang (3239_CR30) 2009; 58 J Ding (3239_CR7) 2011; 27 C Liu (3239_CR18) 2001; 29 A A Grachev (3239_CR12) 2007; 124 Y G Cheng (3239_CR3) 2005; 114 V K Ivanov (3239_CR14) 2007; 43 Y Li (3239_CR17) 2009; 20 H Jeske (3239_CR15) 1973 M Katzin (3239_CR16) 1947; 35 W T Liu (3239_CR20) 1984 R A Paulus (3239_CR24) 1985; 20 S M Babin (3239_CR1) 1997; 36 Q Zhang (3239_CR31) 1995; 19 B Tian (3239_CR26) 2009; 24 C W Fairall (3239_CR9) 1996; 101 P A Frederickson (3239_CR10) 2000; 39 S M Babin (3239_CR2) 2002; 41 C Yagüe (3239_CR29) 2006; 13 R B Stull (3239_CR25) 1991 L Zuo (3239_CR32) 2009; 37 J Ding (3239_CR8) 2015; 29 J Ding (3239_CR6) 2009; 24 J Cook (3239_CR4) 1991; 26 Y Hu (3239_CR13) 1992; 17 L Musson-Genon (3239_CR21) 1992; 27 C Liu (3239_CR19) 2003 E K Webb (3239_CR27) 1970; 96 P K Pasricha (3239_CR23) 2002; 31 F Dai (3239_CR5) 2002 |
References_xml | – volume: 31 start-page: 155 year: 2002 end-page: 158 ident: CR23 article-title: Comparison of evaporation duct models to compute duct height over Arabian sea and Bay of Bengal publication-title: Indian J. Radio & Space Physics – volume: 19 start-page: 8 year: 1995 end-page: 19 ident: CR31 article-title: The flux-profile relationships under the condition of heat advection over moist surface publication-title: Scientia Atmospherics Sinica – year: 2003 ident: CR19 publication-title: Research on evaporation duct propagation and its applications – volume: 37 start-page: 1100 year: 2009 end-page: 1103 ident: CR32 article-title: An initial study on the applicability of Paulus-Jeske model of evaporation duct in Chinese sea areas publication-title: Acta Electron. Sinica – volume: 35 start-page: 891 year: 1947 end-page: 905 ident: CR16 article-title: 3- and 9-centimeter propagation in low ocean ducts publication-title: Proceedings of the IRE doi: 10.1109/JRPROC.1947.229648 – volume: 114 start-page: 519 year: 2005 end-page: 538 ident: CR3 article-title: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer publication-title: Bound.-Layer Meteor. doi: 10.1007/s10546-004-1425-4 – volume: 101 start-page: 3747 year: 1996 end-page: 3764 ident: CR9 article-title: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment publication-title: J. Geophys. Res. doi: 10.1029/95JC03205 – volume: 26 start-page: 731 year: 1991 end-page: 746 ident: CR4 article-title: A sensitivity study of weather data inaccuracies on evaporation duct height algorithms publication-title: Radio Sci. doi: 10.1029/91RS00835 – volume: 96 start-page: 67 year: 1970 end-page: 90 ident: CR27 article-title: Profile relationships: The log-linear range and extension to strong stability publication-title: Quart. J. Roy. Meteorol. Soc. doi: 10.1002/qj.49709640708 – volume: 24 start-page: 1018 year: 2009 end-page: 1023 ident: CR6 article-title: Contrast study on the occurrence of evaporation ducts in the South China Sea and East China Sea publication-title: Chinese J. Radio Sci. – volume: 39 start-page: 1770 year: 2000 end-page: 1783 ident: CR10 article-title: Estimating the refractive index structure parameter over the ocean using bulk methods publication-title: J. Appl. Meteor. doi: 10.1175/1520-0450-39.10.1770 – volume: 20 start-page: 628 year: 2009 end-page: 633 ident: CR17 article-title: Oceanic evaporation duct diagnosis model based on air-sea flux algorithm publication-title: J. Appl. Meteor. Sci. – volume: 36 start-page: 193 year: 1997 end-page: 204 ident: CR1 article-title: A new model of the oceanic evaporation duct publication-title: J. Appl. Meteor. doi: 10.1175/1520-0450(1997)036<0193:ANMOTO>2.0.CO;2 – volume: 43 start-page: 36 year: 2007 end-page: 44 ident: CR14 article-title: Determination of the evaporation duct height from standard meteorological data publication-title: Atmos. Ocean. Phys. doi: 10.1134/S0001433807010045 – start-page: 736 year: 1984 ident: CR20 publication-title: The Liu, Katsaros and Businger (1979) Bulk Atmospheric Flux Computational Iteration Program in FORTRAN and BASIC – start-page: 130 year: 1973 end-page: 148 ident: CR15 article-title: State and limits of prediction methods of radar wave propagation conditions over the sea publication-title: Modern Topics in Microwave Propagation and Air-Sea Interaction doi: 10.1007/978-94-010-2681-9_13 – start-page: 153 year: 2002 end-page: 243 ident: CR5 publication-title: Atmospheric Duct and Its Military Application – volume: 11 start-page: 89 year: 1977 end-page: 102 ident: CR28 article-title: Comments on wind and temperature flux-profile relationships publication-title: Bound.-Layer Meteor. doi: 10.1007/BF00221826 – volume: 41 start-page: 434 year: 2002 end-page: 446 ident: CR2 article-title: LKB-based evaporation duct model comparison with buoy data publication-title: J. Appl. Meteor. doi: 10.1175/1520-0450(2002)041<0434:LBEDMC>2.0.CO;2 – year: 2000 ident: CR11 publication-title: Importance of Evaporation Duct Stability in Propagation-Sensitive Studies – volume: 17 start-page: 10 year: 1992 end-page: 20 ident: CR13 article-title: Local similarity in the atmosphere boundary layer publication-title: Chinese J. Atmos. Sci. – volume: 13 start-page: 185 year: 2006 end-page: 203 ident: CR29 article-title: Influence of stability on the flux-profile relationships for wind speed, , and temperature, , for the stable atmospheric boundary layer publication-title: Nonlin. Processes Geophys. doi: 10.5194/npg-13-185-2006 – volume: 27 start-page: 410 year: 2011 end-page: 416 ident: CR7 article-title: Improvement to the evaporation duct model by introducing nonlinear similarity functions in stable conditions publication-title: J. Trop. Meteor. – volume: 24 start-page: 556 year: 2009 end-page: 561 ident: CR26 article-title: Study on the applicability of evaporation duct model A in Chinese sea areas publication-title: Chinese J. Radio Sci. – volume: 29 start-page: 467 year: 2015 end-page: 481 ident: CR8 article-title: Development and validation of an evaporation duct model. Part I: Model establishment and sensitivity experiments publication-title: J. Meteor. Res. doi: 10.1007/s13351-015-3238-4 – volume: 24 start-page: 86 year: 2007 end-page: 89 ident: CR22 article-title: Study on the application of PJ evaporation duct model in coastal region publication-title: Computer Simulation – volume: 58 start-page: 7339 year: 2009 end-page: 7350 ident: CR30 article-title: Spatiotemporal distributions of evaporation duct for the West Pacific Ocean publication-title: Acta Phys. Sinica – volume: 124 start-page: 315 year: 2007 end-page: 333 ident: CR12 article-title: SHEBA flux-profile relationships in the stable atmospheric boundary layer publication-title: Bound.-Layer Meteor. doi: 10.1007/s10546-007-9177-6 – volume: 29 start-page: 970 year: 2001 end-page: 972 ident: CR18 article-title: Modeling evaporation duct over sea with pseudo-refractivity and similarity theory publication-title: Acta Electron. Sinica – volume: 27 start-page: 635 year: 1992 end-page: 644 ident: CR21 article-title: A simple method to determine evaporation duct height in the sea surface boundary layer publication-title: Radio Sci. doi: 10.1029/92RS00926 – start-page: 40 year: 1991 end-page: 45 ident: CR25 publication-title: An Introduction to Boundary Layer Meteorology – volume: 20 start-page: 887 year: 1985 end-page: 896 ident: CR24 article-title: Practical application of an evaporation duct model publication-title: Radio Sci. doi: 10.1029/RS020i004p00887 – volume-title: Research on evaporation duct propagation and its applications year: 2003 ident: 3239_CR19 – volume: 58 start-page: 7339 year: 2009 ident: 3239_CR30 publication-title: Acta Phys. Sinica doi: 10.7498/aps.58.7339 – volume: 96 start-page: 67 year: 1970 ident: 3239_CR27 publication-title: Quart. J. Roy. Meteorol. Soc. doi: 10.1002/qj.49709640708 – start-page: 130 volume-title: Modern Topics in Microwave Propagation and Air-Sea Interaction year: 1973 ident: 3239_CR15 doi: 10.1007/978-94-010-2681-9_13 – start-page: 40 volume-title: An Introduction to Boundary Layer Meteorology year: 1991 ident: 3239_CR25 – volume: 11 start-page: 89 year: 1977 ident: 3239_CR28 publication-title: Bound.-Layer Meteor. doi: 10.1007/BF00221826 – volume: 27 start-page: 410 year: 2011 ident: 3239_CR7 publication-title: J. Trop. Meteor. – volume: 124 start-page: 315 year: 2007 ident: 3239_CR12 publication-title: Bound.-Layer Meteor. doi: 10.1007/s10546-007-9177-6 – volume: 19 start-page: 8 year: 1995 ident: 3239_CR31 publication-title: Scientia Atmospherics Sinica – volume: 17 start-page: 10 year: 1992 ident: 3239_CR13 publication-title: Chinese J. Atmos. Sci. – volume: 43 start-page: 36 year: 2007 ident: 3239_CR14 publication-title: Atmos. Ocean. Phys. doi: 10.1134/S0001433807010045 – volume: 35 start-page: 891 year: 1947 ident: 3239_CR16 publication-title: Proceedings of the IRE doi: 10.1109/JRPROC.1947.229648 – start-page: 736 volume-title: The Liu, Katsaros and Businger (1979) Bulk Atmospheric Flux Computational Iteration Program in FORTRAN and BASIC year: 1984 ident: 3239_CR20 doi: 10.21236/ADA156736 – volume: 36 start-page: 193 year: 1997 ident: 3239_CR1 publication-title: J. Appl. Meteor. doi: 10.1175/1520-0450(1997)036<0193:ANMOTO>2.0.CO;2 – volume: 13 start-page: 185 year: 2006 ident: 3239_CR29 publication-title: Nonlin. Processes Geophys. doi: 10.5194/npg-13-185-2006 – volume: 20 start-page: 628 year: 2009 ident: 3239_CR17 publication-title: J. Appl. Meteor. Sci. – volume: 37 start-page: 1100 year: 2009 ident: 3239_CR32 publication-title: Acta Electron. Sinica – volume: 24 start-page: 1018 year: 2009 ident: 3239_CR6 publication-title: Chinese J. Radio Sci. – volume: 29 start-page: 467 year: 2015 ident: 3239_CR8 publication-title: J. Meteor. Res. doi: 10.1007/s13351-015-3238-4 – volume: 27 start-page: 635 year: 1992 ident: 3239_CR21 publication-title: Radio Sci. doi: 10.1029/92RS00926 – volume: 20 start-page: 887 year: 1985 ident: 3239_CR24 publication-title: Radio Sci. doi: 10.1029/RS020i004p00887 – volume: 26 start-page: 731 year: 1991 ident: 3239_CR4 publication-title: Radio Sci. doi: 10.1029/91RS00835 – volume: 31 start-page: 155 year: 2002 ident: 3239_CR23 publication-title: Indian J. Radio & Space Physics – start-page: 153 volume-title: Atmospheric Duct and Its Military Application year: 2002 ident: 3239_CR5 – volume: 24 start-page: 556 year: 2009 ident: 3239_CR26 publication-title: Chinese J. Radio Sci. – volume: 114 start-page: 519 year: 2005 ident: 3239_CR3 publication-title: Bound.-Layer Meteor. doi: 10.1007/s10546-004-1425-4 – volume: 24 start-page: 86 year: 2007 ident: 3239_CR22 publication-title: Computer Simulation – volume-title: Importance of Evaporation Duct Stability in Propagation-Sensitive Studies year: 2000 ident: 3239_CR11 – volume: 41 start-page: 434 year: 2002 ident: 3239_CR2 publication-title: J. Appl. Meteor. doi: 10.1175/1520-0450(2002)041<0434:LBEDMC>2.0.CO;2 – volume: 29 start-page: 970 year: 2001 ident: 3239_CR18 publication-title: Acta Electron. Sinica – volume: 39 start-page: 1770 year: 2000 ident: 3239_CR10 publication-title: J. Appl. Meteor. doi: 10.1175/1520-0450-39.10.1770 – volume: 101 start-page: 3747 year: 1996 ident: 3239_CR9 publication-title: J. Geophys. Res. doi: 10.1029/95JC03205 |
SSID | ssj0002925722 |
Score | 2.0080492 |
Snippet | This study aims to validate and improve the universal evaporation duct (UED) model through a further analysis of the stability function (ψ). A large number of... This study aims to validate and improve the universal evaporation duct (UED) model through a further analysis of the stability function ( ψ ). A large number... |
SourceID | crossref springer chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 482 |
SubjectTerms | Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Earth and Environmental Science Earth Sciences Geophysics and Environmental Physics Meteorology 均方根误差 开发 波导模型 稳定性 稳定条件 蒸发管 评价 验证 |
Title | Development and Validation of an Evaporation Duct Model. Part II: Evaluation and Improvement of Stability Functions |
URI | http://lib.cqvip.com/qk/88418X/201503/665839605.html https://link.springer.com/article/10.1007/s13351-015-3239-3 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCw8BIjykgcmkKvYrh2HrULlKRADlcoUOY4DFSgtNCDBr-fsJC0gQOqSIXIuie9LfC9_h9A-B5uBWqFJlhrpWpglRGluiOuSFGhKU-ET7VfX8qzXvuiLfrWPe1xXu9cpSf-nnm5241w411cQuEFE-DxaEFRFqoEWOqd3l9PQCosAhz5_wMCAIDLgYZ3P_E2OY1V4GOb3z3DP76vT99SoX3FOltFt_axloclj67VIWubjB43jjC-zgpYqCxR3Ssisojmbr6Hxl-IhrPMUAwAHZbslPMzgDLZvelTBBTuOWOx76LTwDWAPn58f4e6EN9wLGPhohQ8-OglghPoy3HfsVlIP9nXUO-neHp-Rqh8DMZyKgkSRVoYaR1GoVJsGJtEs1YKFSaoyG9AstCKk4CAxpg0FjVspbZYIJlQWynbKN1AjH-Z2E2ErEhqqNMhkkLRpBgctoxBcZKaCKI1ME21PdBKPSt6NWIK1xMHjEk0U1FqKTUVl7jpqPMVTEmY3vzHMb-zmN-ZNdDC5pJb3z-DDWmtx9UmP_x69NdPobbTInNp9IGcHNYqXV7sLdk2R7FU4_gR2Sezn |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8a5QAXtolNK4zhw05MrvwRO8luCMHa8aEdigQny3EcqEAp0IIEf_2e3aQd05jEJYfIeUn8fonfl38P4KtEm4F7ZWlVOh1amBU0s9LR0CWJWc5LFRPtxye6f5r8PFNnzT7uSVvt3qYk4596sdlNShVcX0XxBjmVS7CcoAvOOrC8--P8cBFaETniMOYPBBoQVDOZtvnMf8kJrAqX4_riFu_5fHV6nhqNK87BWxi2zzorNLnq3U-Lnnv6i8bxlS_zDtYaC5TsziDzHt74eh0mfxQPEVuXBAE4mrVbIuMKzxD_YG8auJDAEUtiD50e-YXYI4PBd7I_5w2PAkYxWhGDj0ECGqGxDPeRhJU0gv0DnB7sD_f6tOnHQJ3kakrz3GaOu0BRmGUJZ66worRKpEWZVZ7xKvUq5eggCWEdR417rX1VKKGyKtVJKT9Cpx7X_hMQrwqeZiWrNCsSXuHB6jxFF1lkLC9z14XNuU7MzYx3w2i0liR6XKoLrNWScQ2VeeiocW0WJMxhfg3Orwnza2QXduaXtPL-M_hbqzXTfNKTl0dvvGr0Nqz0h8dH5mhwcrgJqyJAIAZ1PkNnenfvt9DGmRZfGkz_Bowg78Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTxQxGG9wSYwXkaBxxUcPnjRd-ph2ZrgRZWVFCQdJ8FQ7fQDBzK7uQIJ_vV87M7tgkMR4mcOk83Xa_pp-r_4-hF4L0BmYl4YEZ1UsYVaRwghLYpUkahhzMgXaPx-ovaPs47E87uqczvts9z4k2d5piCxNdbM1c2FrefFNCBnNYEmgs5KIe2g1o6D7D9Dqzoev-0s3Cy8BkymWwEGZIIqKvI9t3iYnMiycTuuTH9D_zZPqZpg0nT7jNfSt_-826eR8dNFUI_vrD0rH_xjYI_Sw00zxTguldbTi6w00v5ZUhE3tMADzrC3DhKcB3mB_aWYdjHDkjsWpts4IHwIm8WSyjXcXfOJJwFnyYiSnZJQAymlKz73C8YRNm-AxOhrvfnm3R7o6DcQKJhtSlqawzEbqwqLIGLWV4c5InleuCJ6ykHuZMzCcODeWARK8Uj5Ukssi5Cpz4gka1NPaP0XYy4rlhaNB0SpjAR5GlTmYzrygpSvtEG0u1kfPWj4OrUCLEmCJySGi_Ypp21Gcx0ob3_WSnDnOr4b51XF-tRiiN4tPenl3NH7br6Dutvr8762f_VPrV-j-4fux_jQ52N9ED3hEQPL1PEeD5ueFfwGqT1O97OD9G3nw-Kg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+validation+of+an+evaporation+duct+model.+Part+II%3A+Evaluation+and+improvement+of+stability+functions&rft.jtitle=Journal+of+Meteorological+Research&rft.au=Ding%2C+Juli&rft.au=Fei%2C+Jianfang&rft.au=Huang%2C+Xiaogang&rft.au=Cheng%2C+Xiaoping&rft.date=2015-06-01&rft.pub=The+Chinese+Meteorological+Society&rft.issn=2095-6037&rft.eissn=2198-0934&rft.volume=29&rft.issue=3&rft.spage=482&rft.epage=495&rft_id=info:doi/10.1007%2Fs13351-015-3239-3&rft.externalDocID=10_1007_s13351_015_3239_3 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F88418X%2F88418X.jpg |