Development and Validation of an Evaporation Duct Model. Part II: Evaluation and Improvement of Stability Functions

This study aims to validate and improve the universal evaporation duct (UED) model through a further analysis of the stability function (ψ). A large number of hydrometeorological observations obtained from a tower platform near Xisha Island of the South China Sea are employed, together with the late...

Full description

Saved in:
Bibliographic Details
Published inJournal of Meteorological Research Vol. 29; no. 3; pp. 482 - 495
Main Author 丁菊丽 费建芳 黄小刚 程小平 胡晓华 季亮
Format Journal Article
LanguageEnglish
Published Beijing The Chinese Meteorological Society 01.06.2015
Subjects
Online AccessGet full text
ISSN2095-6037
2198-0934
DOI10.1007/s13351-015-3239-3

Cover

Abstract This study aims to validate and improve the universal evaporation duct (UED) model through a further analysis of the stability function (ψ). A large number of hydrometeorological observations obtained from a tower platform near Xisha Island of the South China Sea are employed, together with the latest variations inψ function. Applicability of different ψ functions for specific sea areas and stratification conditions is investigated based on three objective criteria. The results show that, under unstable conditions, ψfunction of Fairall et al. (1996) (i.e., Fairal196, similar for abbreviations of other function names) in general offers the best performance. However, strictly speaking, this holds true only for the stability (represented by bulk Richardson number RiB) range -2.6 ≤ RiB 〈 -0.1; when conditions become weakly unstable (-0.1 ≤ RiB 〈 --0.01), Fairal196 offers the second best performance after Hu and Zhang (1992) (HYQ92). Conversely, for near-neutral but slightly unstable conditions (-0.01≤ RiB 〈 0.0), the effects of Edson04, Fairall03, Grachev00, and Fairal196 are similar, with Edson04 being the best function but offering only a weak advan- tage. Under stable conditions, HYQ92 is the optimal and offers a pronounced advantage, followed by the newly introduced SHEBA07 (by Grachev et al., 2007) function. Accordingly, the most favorable functions, i.e., Fairal196 and HYQ92, are incorporated into the UED model to obtain an improved version of the model. With the new functions, the mean root-mean-square (rms) errors of the modified refractivity (M), 0-5-m M slope, 5-40-m M slope, and the rms errors of evaporation duct height (EDH) are reduced by 21.65%, 9.12%, 38.79%, and 59.06%, respectively, compared to the classical Naval Postgraduate School model.
AbstractList This study aims to validate and improve the universal evaporation duct (UED) model through a further analysis of the stability function ( ψ ). A large number of hydrometeorological observations obtained from a tower platform near Xisha Island of the South China Sea are employed, together with the latest variations in ψ function. Applicability of different ψ functions for specific sea areas and stratification conditions is investigated based on three objective criteria. The results show that, under unstable conditions, ψ function of Fairall et al. (1996) (i.e., Fairall96, similar for abbreviations of other function names) in general offers the best performance. However, strictly speaking, this holds true only for the stability (represented by bulk Richardson number R iB ) range −2.6 ⩽ R iB < −0.1; when conditions become weakly unstable (−0.1 ⩽ R iB < −0.01), Fairall96 offers the second best performance after Hu and Zhang (1992) (HYQ92). Conversely, for near-neutral but slightly unstable conditions (−0.01 ⩽ R iB < 0.0), the effects of Edson04, Fairall03, Grachev00, and Fairall96 are similar, with Edson04 being the best function but offering only a weak advantage. Under stable conditions, HYQ92 is the optimal and offers a pronounced advantage, followed by the newly introduced SHEBA07 (by Grachev et al., 2007) function. Accordingly, the most favorable functions, i.e., Fairall96 and HYQ92, are incorporated into the UED model to obtain an improved version of the model. With the new functions, the mean root-mean-square (rms) errors of the modified refractivity ( M ), 0–5-m M slope, 5–40-m M slope, and the rms errors of evaporation duct height (EDH) are reduced by 21.65%, 9.12%, 38.79%, and 59.06%, respectively, compared to the classical Naval Postgraduate School model.
This study aims to validate and improve the universal evaporation duct (UED) model through a further analysis of the stability function (ψ). A large number of hydrometeorological observations obtained from a tower platform near Xisha Island of the South China Sea are employed, together with the latest variations inψ function. Applicability of different ψ functions for specific sea areas and stratification conditions is investigated based on three objective criteria. The results show that, under unstable conditions, ψfunction of Fairall et al. (1996) (i.e., Fairal196, similar for abbreviations of other function names) in general offers the best performance. However, strictly speaking, this holds true only for the stability (represented by bulk Richardson number RiB) range -2.6 ≤ RiB 〈 -0.1; when conditions become weakly unstable (-0.1 ≤ RiB 〈 --0.01), Fairal196 offers the second best performance after Hu and Zhang (1992) (HYQ92). Conversely, for near-neutral but slightly unstable conditions (-0.01≤ RiB 〈 0.0), the effects of Edson04, Fairall03, Grachev00, and Fairal196 are similar, with Edson04 being the best function but offering only a weak advan- tage. Under stable conditions, HYQ92 is the optimal and offers a pronounced advantage, followed by the newly introduced SHEBA07 (by Grachev et al., 2007) function. Accordingly, the most favorable functions, i.e., Fairal196 and HYQ92, are incorporated into the UED model to obtain an improved version of the model. With the new functions, the mean root-mean-square (rms) errors of the modified refractivity (M), 0-5-m M slope, 5-40-m M slope, and the rms errors of evaporation duct height (EDH) are reduced by 21.65%, 9.12%, 38.79%, and 59.06%, respectively, compared to the classical Naval Postgraduate School model.
Author 丁菊丽 费建芳 黄小刚 程小平 胡晓华 季亮
AuthorAffiliation Institute of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101 Mailbox 5111, Beijing 100081 Institute of Philosophy, PLA University of Science and Technology, Nanjing 211101
Author_xml – sequence: 1
  fullname: 丁菊丽 费建芳 黄小刚 程小平 胡晓华 季亮
BookMark eNp9kEtOwzAQhi1UJErpAdhF7FP8qON4ifqASEUg8dhGjuOUVKkdHKdSr8JZuBNXwGkqFiy6mtHo__6Z-S_BQButALhGcIIgZLcNIoSiECIaEkx4SM7AECMeh5CT6cD3kNMwgoRdgHHTbCCEmGPKMB6Cdq52qjL1VmkXCJ0H76Iqc-FKowNT-Emw2Ina2H4yb6ULHk2uqknwLKwLkuTn-6uTVG2v6CySbW3NTh0svceLE1lZlW4fLFstO1VzBc4LUTVqfKwj8LZcvM4ewtXTfTK7W4WSIOpCzkUskSSM8TieIigzgXNBMcvyuFAQFUxRhnAEMRYSCSJVFKkio5jGBYumORkB1PtKa5rGqiKtbbkVdp8imHbRpX10qY8u7aJLiWfYP0aW7vCcs6KsTpK4Jxu_Ra-VTTemtdo_eBK6Oa77MHr96bm_G6OIxoRHkJJfWR6SOg
CitedBy_id crossref_primary_10_1029_2019RS006882
crossref_primary_10_1007_s13351_015_4127_6
crossref_primary_10_1109_ACCESS_2025_3537160
crossref_primary_10_2112_SI99_039_1
crossref_primary_10_3390_atmos15060707
crossref_primary_10_1016_j_rinp_2020_103181
crossref_primary_10_1088_1742_6596_2203_1_012079
crossref_primary_10_3390_rs14194787
Cites_doi 10.1109/JRPROC.1947.229648
10.1007/s10546-004-1425-4
10.1029/95JC03205
10.1029/91RS00835
10.1002/qj.49709640708
10.1175/1520-0450-39.10.1770
10.1175/1520-0450(1997)036<0193:ANMOTO>2.0.CO;2
10.1134/S0001433807010045
10.1007/978-94-010-2681-9_13
10.1007/BF00221826
10.1175/1520-0450(2002)041<0434:LBEDMC>2.0.CO;2
10.5194/npg-13-185-2006
10.1007/s13351-015-3238-4
10.1007/s10546-007-9177-6
10.1029/92RS00926
10.1029/RS020i004p00887
10.7498/aps.58.7339
10.21236/ADA156736
ContentType Journal Article
Copyright The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2015
Copyright_xml – notice: The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2015
DBID 2RA
92L
CQIGP
W94
~WA
AAYXX
CITATION
DOI 10.1007/s13351-015-3239-3
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Development and Validation of an Evaporation Duct Model. Part II: Evaluation and Improvement of Stability Functions
EISSN 2198-0934
EndPage 495
ExternalDocumentID 10_1007_s13351_015_3239_3
665839605
GroupedDBID -01
-0A
-EM
-SA
-S~
06D
2KG
2KM
2RA
4.4
406
5VR
5XA
5XB
5XL
92L
92M
96X
9D9
9DA
AAAVM
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AAYFA
AAYIU
AAYQN
AAZMS
ABDZT
ABECU
ABFGW
ABFTV
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADMDM
ADOXG
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFUIB
AFZKB
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
ANMIH
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
BGNMA
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
FA0
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGRSB
GJIRD
IKXTQ
IWAJR
J-C
JUIAU
JZLTJ
KOV
L8X
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
Q--
Q-0
R-A
RLLFE
RSV
RT1
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T8Q
TSG
U1F
U1G
U5A
U5K
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
W94
ZMTXR
~LG
~WA
0R~
AACDK
AAJBT
AASML
AATVU
AAUYE
AAXDM
AAYTO
AAYZH
ABAKF
ABJNI
ACDTI
ACPIV
ADINQ
ADKNI
AEFQL
AEMSY
AFBBN
AFQWF
AGAYW
AGQEE
AGRTI
AHBYD
AIGIU
AMYLF
GGCAI
H13
IAO
IEP
IGS
ITC
OK1
ROL
SJYHP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c315t-99a8c1c377988410cba2da527bd8fe01f7e57126022ac1a3ce66efb5258f764d3
IEDL.DBID AGYKE
ISSN 2095-6037
IngestDate Thu Apr 24 22:51:22 EDT 2025
Tue Jul 01 01:00:56 EDT 2025
Fri Feb 21 02:40:30 EST 2025
Wed Feb 14 10:28:03 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords electromagnetic wave propagation
evaporation duct height
stability function
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-99a8c1c377988410cba2da527bd8fe01f7e57126022ac1a3ce66efb5258f764d3
Notes 11-2277/P
DING Juli, FEI Jianfang, HUANG Xiaogang,CHENG Xiaoping,HU Xiaohua,JI Liang(1 Institute of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101 2 Mailbox 5111, Beijing 100081 3 Institute of Philosophy, PLA University of Science and Technology, Nanjing 211101)
This study aims to validate and improve the universal evaporation duct (UED) model through a further analysis of the stability function (ψ). A large number of hydrometeorological observations obtained from a tower platform near Xisha Island of the South China Sea are employed, together with the latest variations inψ function. Applicability of different ψ functions for specific sea areas and stratification conditions is investigated based on three objective criteria. The results show that, under unstable conditions, ψfunction of Fairall et al. (1996) (i.e., Fairal196, similar for abbreviations of other function names) in general offers the best performance. However, strictly speaking, this holds true only for the stability (represented by bulk Richardson number RiB) range -2.6 ≤ RiB 〈 -0.1; when conditions become weakly unstable (-0.1 ≤ RiB 〈 --0.01), Fairal196 offers the second best performance after Hu and Zhang (1992) (HYQ92). Conversely, for near-neutral but slightly unstable conditions (-0.01≤ RiB 〈 0.0), the effects of Edson04, Fairall03, Grachev00, and Fairal196 are similar, with Edson04 being the best function but offering only a weak advan- tage. Under stable conditions, HYQ92 is the optimal and offers a pronounced advantage, followed by the newly introduced SHEBA07 (by Grachev et al., 2007) function. Accordingly, the most favorable functions, i.e., Fairal196 and HYQ92, are incorporated into the UED model to obtain an improved version of the model. With the new functions, the mean root-mean-square (rms) errors of the modified refractivity (M), 0-5-m M slope, 5-40-m M slope, and the rms errors of evaporation duct height (EDH) are reduced by 21.65%, 9.12%, 38.79%, and 59.06%, respectively, compared to the classical Naval Postgraduate School model.
evaporation duct height, stability function, electromagnetic wave propagation
PageCount 14
ParticipantIDs crossref_primary_10_1007_s13351_015_3239_3
crossref_citationtrail_10_1007_s13351_015_3239_3
springer_journals_10_1007_s13351_015_3239_3
chongqing_primary_665839605
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Journal of Meteorological Research
PublicationTitleAbbrev J Meteorol Res
PublicationTitleAlternate Acta Meteorologica Sinica
PublicationYear 2015
Publisher The Chinese Meteorological Society
Publisher_xml – name: The Chinese Meteorological Society
References Li, Zhang, Tang (CR17) 2009; 20
Ding, Fei, Huang (CR6) 2009; 24
Musson-Genon, Gauthier, Bruth (CR21) 1992; 27
Liu (CR19) 2003
Zhang, Hu (CR31) 1995; 19
Gehman (CR11) 2000
Tian, Cha, Zhang (CR26) 2009; 24
Liu, Blanc (CR20) 1984
Pasricha, Prasad, Sarkar (CR23) 2002; 31
Webb (CR27) 1970; 96
Yagüe, Viana, Maqueda (CR29) 2006; 13
Yaglom (CR28) 1977; 11
Yang, Ma, Shi (CR30) 2009; 58
Katzin, Bauchman, Binnian (CR16) 1947; 35
Cook (CR4) 1991; 26
Ding, Fei, Huang (CR7) 2011; 27
Ivanov, Shalyapin, Levadnyi (CR14) 2007; 43
Jeske, Zancla (CR15) 1973
Grachev, Andreas, Fairall (CR12) 2007; 124
Hu, Zhang (CR13) 1992; 17
Babin, Dockery (CR2) 2002; 41
Stull (CR25) 1991
Frederickson, Davidson, Zeisse (CR10) 2000; 39
Zuo, Cha, Tian (CR32) 2009; 37
Ding, Fei, Huang (CR8) 2015; 29
Cheng, Brutsaert (CR3) 2005; 114
Babin, Young, Carton (CR1) 1997; 36
Dai, Li, Dong (CR5) 2002
Fairall, Bradley, Rogers (CR9) 1996; 101
Pan, Cui (CR22) 2007; 24
Paulus (CR24) 1985; 20
Liu, Huang, Jiang (CR18) 2001; 29
Y Pan (3239_CR22) 2007; 24
J Z Gehman (3239_CR11) 2000
A M Yaglom (3239_CR28) 1977; 11
K Yang (3239_CR30) 2009; 58
J Ding (3239_CR7) 2011; 27
C Liu (3239_CR18) 2001; 29
A A Grachev (3239_CR12) 2007; 124
Y G Cheng (3239_CR3) 2005; 114
V K Ivanov (3239_CR14) 2007; 43
Y Li (3239_CR17) 2009; 20
H Jeske (3239_CR15) 1973
M Katzin (3239_CR16) 1947; 35
W T Liu (3239_CR20) 1984
R A Paulus (3239_CR24) 1985; 20
S M Babin (3239_CR1) 1997; 36
Q Zhang (3239_CR31) 1995; 19
B Tian (3239_CR26) 2009; 24
C W Fairall (3239_CR9) 1996; 101
P A Frederickson (3239_CR10) 2000; 39
S M Babin (3239_CR2) 2002; 41
C Yagüe (3239_CR29) 2006; 13
R B Stull (3239_CR25) 1991
L Zuo (3239_CR32) 2009; 37
J Ding (3239_CR8) 2015; 29
J Ding (3239_CR6) 2009; 24
J Cook (3239_CR4) 1991; 26
Y Hu (3239_CR13) 1992; 17
L Musson-Genon (3239_CR21) 1992; 27
C Liu (3239_CR19) 2003
E K Webb (3239_CR27) 1970; 96
P K Pasricha (3239_CR23) 2002; 31
F Dai (3239_CR5) 2002
References_xml – volume: 31
  start-page: 155
  year: 2002
  end-page: 158
  ident: CR23
  article-title: Comparison of evaporation duct models to compute duct height over Arabian sea and Bay of Bengal
  publication-title: Indian J. Radio & Space Physics
– volume: 19
  start-page: 8
  year: 1995
  end-page: 19
  ident: CR31
  article-title: The flux-profile relationships under the condition of heat advection over moist surface
  publication-title: Scientia Atmospherics Sinica
– year: 2003
  ident: CR19
  publication-title: Research on evaporation duct propagation and its applications
– volume: 37
  start-page: 1100
  year: 2009
  end-page: 1103
  ident: CR32
  article-title: An initial study on the applicability of Paulus-Jeske model of evaporation duct in Chinese sea areas
  publication-title: Acta Electron. Sinica
– volume: 35
  start-page: 891
  year: 1947
  end-page: 905
  ident: CR16
  article-title: 3- and 9-centimeter propagation in low ocean ducts
  publication-title: Proceedings of the IRE
  doi: 10.1109/JRPROC.1947.229648
– volume: 114
  start-page: 519
  year: 2005
  end-page: 538
  ident: CR3
  article-title: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer
  publication-title: Bound.-Layer Meteor.
  doi: 10.1007/s10546-004-1425-4
– volume: 101
  start-page: 3747
  year: 1996
  end-page: 3764
  ident: CR9
  article-title: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment
  publication-title: J. Geophys. Res.
  doi: 10.1029/95JC03205
– volume: 26
  start-page: 731
  year: 1991
  end-page: 746
  ident: CR4
  article-title: A sensitivity study of weather data inaccuracies on evaporation duct height algorithms
  publication-title: Radio Sci.
  doi: 10.1029/91RS00835
– volume: 96
  start-page: 67
  year: 1970
  end-page: 90
  ident: CR27
  article-title: Profile relationships: The log-linear range and extension to strong stability
  publication-title: Quart. J. Roy. Meteorol. Soc.
  doi: 10.1002/qj.49709640708
– volume: 24
  start-page: 1018
  year: 2009
  end-page: 1023
  ident: CR6
  article-title: Contrast study on the occurrence of evaporation ducts in the South China Sea and East China Sea
  publication-title: Chinese J. Radio Sci.
– volume: 39
  start-page: 1770
  year: 2000
  end-page: 1783
  ident: CR10
  article-title: Estimating the refractive index structure parameter over the ocean using bulk methods
  publication-title: J. Appl. Meteor.
  doi: 10.1175/1520-0450-39.10.1770
– volume: 20
  start-page: 628
  year: 2009
  end-page: 633
  ident: CR17
  article-title: Oceanic evaporation duct diagnosis model based on air-sea flux algorithm
  publication-title: J. Appl. Meteor. Sci.
– volume: 36
  start-page: 193
  year: 1997
  end-page: 204
  ident: CR1
  article-title: A new model of the oceanic evaporation duct
  publication-title: J. Appl. Meteor.
  doi: 10.1175/1520-0450(1997)036<0193:ANMOTO>2.0.CO;2
– volume: 43
  start-page: 36
  year: 2007
  end-page: 44
  ident: CR14
  article-title: Determination of the evaporation duct height from standard meteorological data
  publication-title: Atmos. Ocean. Phys.
  doi: 10.1134/S0001433807010045
– start-page: 736
  year: 1984
  ident: CR20
  publication-title: The Liu, Katsaros and Businger (1979) Bulk Atmospheric Flux Computational Iteration Program in FORTRAN and BASIC
– start-page: 130
  year: 1973
  end-page: 148
  ident: CR15
  article-title: State and limits of prediction methods of radar wave propagation conditions over the sea
  publication-title: Modern Topics in Microwave Propagation and Air-Sea Interaction
  doi: 10.1007/978-94-010-2681-9_13
– start-page: 153
  year: 2002
  end-page: 243
  ident: CR5
  publication-title: Atmospheric Duct and Its Military Application
– volume: 11
  start-page: 89
  year: 1977
  end-page: 102
  ident: CR28
  article-title: Comments on wind and temperature flux-profile relationships
  publication-title: Bound.-Layer Meteor.
  doi: 10.1007/BF00221826
– volume: 41
  start-page: 434
  year: 2002
  end-page: 446
  ident: CR2
  article-title: LKB-based evaporation duct model comparison with buoy data
  publication-title: J. Appl. Meteor.
  doi: 10.1175/1520-0450(2002)041<0434:LBEDMC>2.0.CO;2
– year: 2000
  ident: CR11
  publication-title: Importance of Evaporation Duct Stability in Propagation-Sensitive Studies
– volume: 17
  start-page: 10
  year: 1992
  end-page: 20
  ident: CR13
  article-title: Local similarity in the atmosphere boundary layer
  publication-title: Chinese J. Atmos. Sci.
– volume: 13
  start-page: 185
  year: 2006
  end-page: 203
  ident: CR29
  article-title: Influence of stability on the flux-profile relationships for wind speed, , and temperature, , for the stable atmospheric boundary layer
  publication-title: Nonlin. Processes Geophys.
  doi: 10.5194/npg-13-185-2006
– volume: 27
  start-page: 410
  year: 2011
  end-page: 416
  ident: CR7
  article-title: Improvement to the evaporation duct model by introducing nonlinear similarity functions in stable conditions
  publication-title: J. Trop. Meteor.
– volume: 24
  start-page: 556
  year: 2009
  end-page: 561
  ident: CR26
  article-title: Study on the applicability of evaporation duct model A in Chinese sea areas
  publication-title: Chinese J. Radio Sci.
– volume: 29
  start-page: 467
  year: 2015
  end-page: 481
  ident: CR8
  article-title: Development and validation of an evaporation duct model. Part I: Model establishment and sensitivity experiments
  publication-title: J. Meteor. Res.
  doi: 10.1007/s13351-015-3238-4
– volume: 24
  start-page: 86
  year: 2007
  end-page: 89
  ident: CR22
  article-title: Study on the application of PJ evaporation duct model in coastal region
  publication-title: Computer Simulation
– volume: 58
  start-page: 7339
  year: 2009
  end-page: 7350
  ident: CR30
  article-title: Spatiotemporal distributions of evaporation duct for the West Pacific Ocean
  publication-title: Acta Phys. Sinica
– volume: 124
  start-page: 315
  year: 2007
  end-page: 333
  ident: CR12
  article-title: SHEBA flux-profile relationships in the stable atmospheric boundary layer
  publication-title: Bound.-Layer Meteor.
  doi: 10.1007/s10546-007-9177-6
– volume: 29
  start-page: 970
  year: 2001
  end-page: 972
  ident: CR18
  article-title: Modeling evaporation duct over sea with pseudo-refractivity and similarity theory
  publication-title: Acta Electron. Sinica
– volume: 27
  start-page: 635
  year: 1992
  end-page: 644
  ident: CR21
  article-title: A simple method to determine evaporation duct height in the sea surface boundary layer
  publication-title: Radio Sci.
  doi: 10.1029/92RS00926
– start-page: 40
  year: 1991
  end-page: 45
  ident: CR25
  publication-title: An Introduction to Boundary Layer Meteorology
– volume: 20
  start-page: 887
  year: 1985
  end-page: 896
  ident: CR24
  article-title: Practical application of an evaporation duct model
  publication-title: Radio Sci.
  doi: 10.1029/RS020i004p00887
– volume-title: Research on evaporation duct propagation and its applications
  year: 2003
  ident: 3239_CR19
– volume: 58
  start-page: 7339
  year: 2009
  ident: 3239_CR30
  publication-title: Acta Phys. Sinica
  doi: 10.7498/aps.58.7339
– volume: 96
  start-page: 67
  year: 1970
  ident: 3239_CR27
  publication-title: Quart. J. Roy. Meteorol. Soc.
  doi: 10.1002/qj.49709640708
– start-page: 130
  volume-title: Modern Topics in Microwave Propagation and Air-Sea Interaction
  year: 1973
  ident: 3239_CR15
  doi: 10.1007/978-94-010-2681-9_13
– start-page: 40
  volume-title: An Introduction to Boundary Layer Meteorology
  year: 1991
  ident: 3239_CR25
– volume: 11
  start-page: 89
  year: 1977
  ident: 3239_CR28
  publication-title: Bound.-Layer Meteor.
  doi: 10.1007/BF00221826
– volume: 27
  start-page: 410
  year: 2011
  ident: 3239_CR7
  publication-title: J. Trop. Meteor.
– volume: 124
  start-page: 315
  year: 2007
  ident: 3239_CR12
  publication-title: Bound.-Layer Meteor.
  doi: 10.1007/s10546-007-9177-6
– volume: 19
  start-page: 8
  year: 1995
  ident: 3239_CR31
  publication-title: Scientia Atmospherics Sinica
– volume: 17
  start-page: 10
  year: 1992
  ident: 3239_CR13
  publication-title: Chinese J. Atmos. Sci.
– volume: 43
  start-page: 36
  year: 2007
  ident: 3239_CR14
  publication-title: Atmos. Ocean. Phys.
  doi: 10.1134/S0001433807010045
– volume: 35
  start-page: 891
  year: 1947
  ident: 3239_CR16
  publication-title: Proceedings of the IRE
  doi: 10.1109/JRPROC.1947.229648
– start-page: 736
  volume-title: The Liu, Katsaros and Businger (1979) Bulk Atmospheric Flux Computational Iteration Program in FORTRAN and BASIC
  year: 1984
  ident: 3239_CR20
  doi: 10.21236/ADA156736
– volume: 36
  start-page: 193
  year: 1997
  ident: 3239_CR1
  publication-title: J. Appl. Meteor.
  doi: 10.1175/1520-0450(1997)036<0193:ANMOTO>2.0.CO;2
– volume: 13
  start-page: 185
  year: 2006
  ident: 3239_CR29
  publication-title: Nonlin. Processes Geophys.
  doi: 10.5194/npg-13-185-2006
– volume: 20
  start-page: 628
  year: 2009
  ident: 3239_CR17
  publication-title: J. Appl. Meteor. Sci.
– volume: 37
  start-page: 1100
  year: 2009
  ident: 3239_CR32
  publication-title: Acta Electron. Sinica
– volume: 24
  start-page: 1018
  year: 2009
  ident: 3239_CR6
  publication-title: Chinese J. Radio Sci.
– volume: 29
  start-page: 467
  year: 2015
  ident: 3239_CR8
  publication-title: J. Meteor. Res.
  doi: 10.1007/s13351-015-3238-4
– volume: 27
  start-page: 635
  year: 1992
  ident: 3239_CR21
  publication-title: Radio Sci.
  doi: 10.1029/92RS00926
– volume: 20
  start-page: 887
  year: 1985
  ident: 3239_CR24
  publication-title: Radio Sci.
  doi: 10.1029/RS020i004p00887
– volume: 26
  start-page: 731
  year: 1991
  ident: 3239_CR4
  publication-title: Radio Sci.
  doi: 10.1029/91RS00835
– volume: 31
  start-page: 155
  year: 2002
  ident: 3239_CR23
  publication-title: Indian J. Radio & Space Physics
– start-page: 153
  volume-title: Atmospheric Duct and Its Military Application
  year: 2002
  ident: 3239_CR5
– volume: 24
  start-page: 556
  year: 2009
  ident: 3239_CR26
  publication-title: Chinese J. Radio Sci.
– volume: 114
  start-page: 519
  year: 2005
  ident: 3239_CR3
  publication-title: Bound.-Layer Meteor.
  doi: 10.1007/s10546-004-1425-4
– volume: 24
  start-page: 86
  year: 2007
  ident: 3239_CR22
  publication-title: Computer Simulation
– volume-title: Importance of Evaporation Duct Stability in Propagation-Sensitive Studies
  year: 2000
  ident: 3239_CR11
– volume: 41
  start-page: 434
  year: 2002
  ident: 3239_CR2
  publication-title: J. Appl. Meteor.
  doi: 10.1175/1520-0450(2002)041<0434:LBEDMC>2.0.CO;2
– volume: 29
  start-page: 970
  year: 2001
  ident: 3239_CR18
  publication-title: Acta Electron. Sinica
– volume: 39
  start-page: 1770
  year: 2000
  ident: 3239_CR10
  publication-title: J. Appl. Meteor.
  doi: 10.1175/1520-0450-39.10.1770
– volume: 101
  start-page: 3747
  year: 1996
  ident: 3239_CR9
  publication-title: J. Geophys. Res.
  doi: 10.1029/95JC03205
SSID ssj0002925722
Score 2.0080492
Snippet This study aims to validate and improve the universal evaporation duct (UED) model through a further analysis of the stability function (ψ). A large number of...
This study aims to validate and improve the universal evaporation duct (UED) model through a further analysis of the stability function ( ψ ). A large number...
SourceID crossref
springer
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 482
SubjectTerms Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Earth and Environmental Science
Earth Sciences
Geophysics and Environmental Physics
Meteorology
均方根误差
开发
波导模型
稳定性
稳定条件
蒸发管
评价
验证
Title Development and Validation of an Evaporation Duct Model. Part II: Evaluation and Improvement of Stability Functions
URI http://lib.cqvip.com/qk/88418X/201503/665839605.html
https://link.springer.com/article/10.1007/s13351-015-3239-3
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCw8BIjykgcmkKvYrh2HrULlKRADlcoUOY4DFSgtNCDBr-fsJC0gQOqSIXIuie9LfC9_h9A-B5uBWqFJlhrpWpglRGluiOuSFGhKU-ET7VfX8qzXvuiLfrWPe1xXu9cpSf-nnm5241w411cQuEFE-DxaEFRFqoEWOqd3l9PQCosAhz5_wMCAIDLgYZ3P_E2OY1V4GOb3z3DP76vT99SoX3FOltFt_axloclj67VIWubjB43jjC-zgpYqCxR3Ssisojmbr6Hxl-IhrPMUAwAHZbslPMzgDLZvelTBBTuOWOx76LTwDWAPn58f4e6EN9wLGPhohQ8-OglghPoy3HfsVlIP9nXUO-neHp-Rqh8DMZyKgkSRVoYaR1GoVJsGJtEs1YKFSaoyG9AstCKk4CAxpg0FjVspbZYIJlQWynbKN1AjH-Z2E2ErEhqqNMhkkLRpBgctoxBcZKaCKI1ME21PdBKPSt6NWIK1xMHjEk0U1FqKTUVl7jpqPMVTEmY3vzHMb-zmN-ZNdDC5pJb3z-DDWmtx9UmP_x69NdPobbTInNp9IGcHNYqXV7sLdk2R7FU4_gR2Sezn
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8a5QAXtolNK4zhw05MrvwRO8luCMHa8aEdigQny3EcqEAp0IIEf_2e3aQd05jEJYfIeUn8fonfl38P4KtEm4F7ZWlVOh1amBU0s9LR0CWJWc5LFRPtxye6f5r8PFNnzT7uSVvt3qYk4596sdlNShVcX0XxBjmVS7CcoAvOOrC8--P8cBFaETniMOYPBBoQVDOZtvnMf8kJrAqX4_riFu_5fHV6nhqNK87BWxi2zzorNLnq3U-Lnnv6i8bxlS_zDtYaC5TsziDzHt74eh0mfxQPEVuXBAE4mrVbIuMKzxD_YG8auJDAEUtiD50e-YXYI4PBd7I_5w2PAkYxWhGDj0ECGqGxDPeRhJU0gv0DnB7sD_f6tOnHQJ3kakrz3GaOu0BRmGUJZ66worRKpEWZVZ7xKvUq5eggCWEdR417rX1VKKGyKtVJKT9Cpx7X_hMQrwqeZiWrNCsSXuHB6jxFF1lkLC9z14XNuU7MzYx3w2i0liR6XKoLrNWScQ2VeeiocW0WJMxhfg3Orwnza2QXduaXtPL-M_hbqzXTfNKTl0dvvGr0Nqz0h8dH5mhwcrgJqyJAIAZ1PkNnenfvt9DGmRZfGkz_Bowg78Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTxQxGG9wSYwXkaBxxUcPnjRd-ph2ZrgRZWVFCQdJ8FQ7fQDBzK7uQIJ_vV87M7tgkMR4mcOk83Xa_pp-r_4-hF4L0BmYl4YEZ1UsYVaRwghLYpUkahhzMgXaPx-ovaPs47E87uqczvts9z4k2d5piCxNdbM1c2FrefFNCBnNYEmgs5KIe2g1o6D7D9Dqzoev-0s3Cy8BkymWwEGZIIqKvI9t3iYnMiycTuuTH9D_zZPqZpg0nT7jNfSt_-826eR8dNFUI_vrD0rH_xjYI_Sw00zxTguldbTi6w00v5ZUhE3tMADzrC3DhKcB3mB_aWYdjHDkjsWpts4IHwIm8WSyjXcXfOJJwFnyYiSnZJQAymlKz73C8YRNm-AxOhrvfnm3R7o6DcQKJhtSlqawzEbqwqLIGLWV4c5InleuCJ6ykHuZMzCcODeWARK8Uj5Ukssi5Cpz4gka1NPaP0XYy4rlhaNB0SpjAR5GlTmYzrygpSvtEG0u1kfPWj4OrUCLEmCJySGi_Ypp21Gcx0ob3_WSnDnOr4b51XF-tRiiN4tPenl3NH7br6Dutvr8762f_VPrV-j-4fux_jQ52N9ED3hEQPL1PEeD5ueFfwGqT1O97OD9G3nw-Kg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+validation+of+an+evaporation+duct+model.+Part+II%3A+Evaluation+and+improvement+of+stability+functions&rft.jtitle=Journal+of+Meteorological+Research&rft.au=Ding%2C+Juli&rft.au=Fei%2C+Jianfang&rft.au=Huang%2C+Xiaogang&rft.au=Cheng%2C+Xiaoping&rft.date=2015-06-01&rft.pub=The+Chinese+Meteorological+Society&rft.issn=2095-6037&rft.eissn=2198-0934&rft.volume=29&rft.issue=3&rft.spage=482&rft.epage=495&rft_id=info:doi/10.1007%2Fs13351-015-3239-3&rft.externalDocID=10_1007_s13351_015_3239_3
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F88418X%2F88418X.jpg