Towards high-quality simultaneous EEG-fMRI at 7 T: Detection and reduction of EEG artifacts due to head motion
The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 120; pp. 143 - 153 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.10.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2015.07.020 |
Cover
Loading…
Abstract | The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7 T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field. |
---|---|
AbstractList | The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7 T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field. The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7 T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field.The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7 T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field. |
Author | Grouiller, Frédéric van der Zwaag, Wietske Jorge, João Figueiredo, Patrícia Gruetter, Rolf |
Author_xml | – sequence: 1 givenname: João surname: Jorge fullname: Jorge, João – sequence: 2 givenname: Frédéric surname: Grouiller fullname: Grouiller, Frédéric – sequence: 3 givenname: Rolf surname: Gruetter fullname: Gruetter, Rolf – sequence: 4 givenname: Wietske surname: van der Zwaag fullname: van der Zwaag, Wietske – sequence: 5 givenname: Patrícia surname: Figueiredo fullname: Figueiredo, Patrícia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26169325$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLxDAUhYMovv-CZOmmNWmbR10IouMDFEHGdcgkt06GttEkRebf2zI-wI2rey9858A95wBt974HhDAlOSWUn63yHobgXadfIS8IZTkROSnIFtqnpGZZzUSxPe2szCSl9R46iHFFCKlpJXfRXsEpr8uC7aN-7j90sBEv3esyex9069IaR9cNbdI9-CHi2ew2ax6f77FOWOD5Ob6GBCY532PdWxzADpvLNxOLdUiu0SZFbAfAyeMlaIs7PzFHaKfRbYTjr3mIXm5m86u77OHp9v7q8iEzJWUpqzljpjDCmqqStVwAkaaAhWBGUlJqWVDDdQVUMi6rsuJNaWRjLWOlFYwteHmITje-b8G_DxCT6lw00LabnxQVVBLBhWAjevKFDosOrHoLY6xhrb4zGgG5AUzwMQZofhBK1FSHWqnfOtRUhyJCjXWM0os_UuOSnoJIQbv2f4NPTZ-VVg |
CitedBy_id | crossref_primary_10_1212_WNL_0000000000011413 crossref_primary_10_1088_1741_2552_ac1037 crossref_primary_10_3390_s22062262 crossref_primary_10_1016_j_neuroimage_2023_120353 crossref_primary_10_1002_mrm_29298 crossref_primary_10_1007_s10548_020_00805_1 crossref_primary_10_1146_annurev_neuro_100220_093239 crossref_primary_10_1093_schbul_sbad014 crossref_primary_10_3389_fnhum_2017_00193 crossref_primary_10_1002_mrm_29251 crossref_primary_10_1016_j_neuroimage_2023_120092 crossref_primary_10_3389_fneur_2021_622719 crossref_primary_10_3389_fnins_2018_01009 crossref_primary_10_1016_j_crhy_2018_02_002 crossref_primary_10_1016_j_neuroimage_2018_04_026 crossref_primary_10_3389_fnhum_2023_976036 crossref_primary_10_1007_s10548_017_0606_7 crossref_primary_10_1016_j_neuroimage_2018_02_034 crossref_primary_10_1016_j_neuroimage_2021_117864 crossref_primary_10_1007_s10548_021_00870_0 crossref_primary_10_3389_fnins_2017_00140 crossref_primary_10_1109_TBME_2016_2602038 crossref_primary_10_1109_TRPMS_2018_2886525 crossref_primary_10_1007_s10334_016_0536_5 crossref_primary_10_1016_j_jcp_2023_112374 crossref_primary_10_1002_hbm_24396 crossref_primary_10_1016_j_neuroimage_2016_03_031 crossref_primary_10_1016_j_neuroimage_2016_03_034 crossref_primary_10_7554_eLife_49562 crossref_primary_10_1109_TBME_2016_2593726 crossref_primary_10_3390_s23073539 crossref_primary_10_1109_ACCESS_2019_2892766 crossref_primary_10_1088_1741_2552_14_2_026003 crossref_primary_10_1016_j_jneumeth_2016_09_012 crossref_primary_10_1038_s41598_018_27187_6 crossref_primary_10_1016_j_neuroimage_2016_07_014 crossref_primary_10_1016_j_dib_2018_08_030 crossref_primary_10_1162_imag_a_00272 crossref_primary_10_3389_fnhum_2018_00029 crossref_primary_10_1007_s42979_023_01959_y crossref_primary_10_1016_j_clinph_2017_12_038 crossref_primary_10_1016_j_eplepsyres_2018_12_008 crossref_primary_10_1016_j_neuroimage_2019_02_021 crossref_primary_10_1088_1741_2552_aad7d7 |
Cites_doi | 10.1093/biomet/89.1.111 10.1111/j.1528-1167.2011.03151.x 10.1002/jmri.1088 10.1371/journal.pone.0062915 10.1016/j.clinph.2009.04.025 10.3389/fnins.2014.00226 10.1109/89.861382 10.1016/j.ijpsycho.2007.05.015 10.1212/WNL.45.10.1942-a 10.1002/bem.2250040102 10.1016/j.neuroimage.2014.09.049 10.1016/j.neuroimage.2009.05.015 10.1016/j.ijpsycho.2007.06.008 10.1093/biomet/85.4.809 10.1002/mrm.23299 10.1523/JNEUROSCI.2000-11.2011 10.1016/j.jneumeth.2014.06.021 10.1162/089976699300016719 10.1016/j.mri.2008.02.014 10.1002/hbm.20891 10.1016/j.mri.2004.10.007 10.1016/j.neuroimage.2006.09.031 10.1016/j.neubiorev.2006.06.007 10.1006/nimg.1998.0361 10.1111/1467-9469.00218 10.1002/jmri.22843 10.1016/j.neuroimage.2014.10.055 10.1002/mrm.1910380614 10.1016/j.neuroimage.2007.02.060 10.1016/j.mri.2012.07.001 10.1016/j.neuroimage.2009.01.029 10.1371/journal.pone.0048088 10.1016/j.neuroimage.2012.12.070 10.1016/j.neuroimage.2013.05.114 10.1006/nimg.2000.0599 10.1016/j.neuroimage.2013.02.016 10.1073/pnas.0505508102 10.1016/j.neuroimage.2013.06.048 10.1016/j.neuroimage.2005.06.067 10.1016/j.neuroimage.2011.06.094 10.1016/j.jneumeth.2014.08.002 10.1073/pnas.0804110105 10.1007/978-1-61737-992-5_15 10.1016/j.tics.2006.09.010 10.1002/hbm.20723 10.1006/nimg.2002.1125 10.1016/j.neuroimage.2013.08.039 |
ContentType | Journal Article |
Copyright | Copyright © 2015 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: Copyright © 2015 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.neuroimage.2015.07.020 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 153 |
ExternalDocumentID | 26169325 10_1016_j_neuroimage_2015_07_020 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO AAYXX ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALIPV ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU CITATION COF CS3 DM4 DU5 DWQXO EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PQQKQ PROAC PSQYO PSYQQ Q38 R2- RIG ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 0SF 3V. AACTN AFKWA AJOXV AMFUW C45 CGR CUY CVF ECM EIF NPM 7X8 PPXIY PQGLB |
ID | FETCH-LOGICAL-c315t-9655c2c7dc44898be08c2eb75c8103a821c6a4e185684346f3c8fdd553d755b63 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Jul 11 03:05:36 EDT 2025 Wed Feb 19 01:58:40 EST 2025 Tue Jul 01 03:01:43 EDT 2025 Thu Apr 24 22:57:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ultra-high field Adaptive filtering Visual evoked potential Simultaneous EEG-fMRI Head motion |
Language | English |
License | Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c315t-9655c2c7dc44898be08c2eb75c8103a821c6a4e185684346f3c8fdd553d755b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26169325 |
PQID | 1718076775 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1718076775 pubmed_primary_26169325 crossref_primary_10_1016_j_neuroimage_2015_07_020 crossref_citationtrail_10_1016_j_neuroimage_2015_07_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-15 |
PublicationDateYYYYMMDD | 2015-10-15 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2015 |
References | Debener (10.1016/j.neuroimage.2015.07.020_bb0055) 2007; 34 Mullinger (10.1016/j.neuroimage.2015.07.020_bb0185) 2014; 8 Kim (10.1016/j.neuroimage.2015.07.020_bb0125) 2015; 104 Maclaren (10.1016/j.neuroimage.2015.07.020_bb0150) 2012; 7 Debener (10.1016/j.neuroimage.2015.07.020_bb0050) 2008; 67 Allen (10.1016/j.neuroimage.2015.07.020_bb0010) 2000; 12 Lemieux (10.1016/j.neuroimage.2015.07.020_bb0135) 1997; 38 Neuner (10.1016/j.neuroimage.2015.07.020_bb0195) 2014; 102 Marques (10.1016/j.neuroimage.2015.07.020_bb0160) 2009; 30 Lee (10.1016/j.neuroimage.2015.07.020_bb0130) 1999; 11 van der Zwaag (10.1016/j.neuroimage.2015.07.020_bb0230) 2009; 47 Allen (10.1016/j.neuroimage.2015.07.020_bb0015) 1998; 8 Chowdhury (10.1016/j.neuroimage.2015.07.020_bb0040) 2014; 84 Jorge (10.1016/j.neuroimage.2015.07.020_bb0115) 2015; 105 Hoover (10.1016/j.neuroimage.2015.07.020_bb0095) 1998; 85 Masterton (10.1016/j.neuroimage.2015.07.020_bb0165) 2007; 37 Makeig (10.1016/j.neuroimage.2015.07.020_bb0155) 1996; 8 Widmann (10.1016/j.neuroimage.2015.07.020_bb0235) 2015; 250 Fan (10.1016/j.neuroimage.2015.07.020_bb0075) 2000; 27 Dempsey (10.1016/j.neuroimage.2015.07.020_bb0065) 2001; 13 Gotman (10.1016/j.neuroimage.2015.07.020_bb0085) 2011; 52 Luo (10.1016/j.neuroimage.2015.07.020_bb0145) 2014; 233 Jorge (10.1016/j.neuroimage.2015.07.020_bb0110) 2013; 31 Jansen (10.1016/j.neuroimage.2015.07.020_bb0105) 2012; 59 Yacoub (10.1016/j.neuroimage.2015.07.020_bb0240) 2008; 105 Jorge (10.1016/j.neuroimage.2015.07.020_bb0120) 2014; 102 Yan (10.1016/j.neuroimage.2015.07.020_bb0250) 2010; 31 Debener (10.1016/j.neuroimage.2015.07.020_bb0060) 2006; 10 Noth (10.1016/j.neuroimage.2015.07.020_bb0210) 2012; 35 Bonmassar (10.1016/j.neuroimage.2015.07.020_bb0030) 2002; 16 Yan (10.1016/j.neuroimage.2015.07.020_bb0245) 2009; 46 Luo (10.1016/j.neuroimage.2015.07.020_bb0140) 2012; 68 Abbott (10.1016/j.neuroimage.2015.07.020_bb0005) 2014; 5 Tenforde (10.1016/j.neuroimage.2015.07.020_bb0225) 1983; 4 Rothlubbers (10.1016/j.neuroimage.2015.07.020_bb0220) 2013; 2013 Mullinger (10.1016/j.neuroimage.2015.07.020_bb0170) 2011; 711 Mullinger (10.1016/j.neuroimage.2015.07.020_bb0180) 2008; 67 Arrubla (10.1016/j.neuroimage.2015.07.020_bb0020) 2013; 8 Flanagan (10.1016/j.neuroimage.2015.07.020_bb0080) 2009; 120 Da Costa (10.1016/j.neuroimage.2015.07.020_bb0045) 2011; 31 Mullinger (10.1016/j.neuroimage.2015.07.020_bb0175) 2008; 26 Bouchard (10.1016/j.neuroimage.2015.07.020_bb0035) 2000; 8 Huang (10.1016/j.neuroimage.2015.07.020_bb0100) 2002; 89 Mullinger (10.1016/j.neuroimage.2015.07.020_bb0190) 2013; 71 Onton (10.1016/j.neuroimage.2015.07.020_bb0215) 2006; 30 Niazy (10.1016/j.neuroimage.2015.07.020_bb0200) 2005; 28 Hill (10.1016/j.neuroimage.2015.07.020_bb0090) 1995; 45 Babiloni (10.1016/j.neuroimage.2015.07.020_bb0025) 2004; 22 Nierhaus (10.1016/j.neuroimage.2015.07.020_bb0205) 2013; 74 Eichele (10.1016/j.neuroimage.2015.07.020_bb0070) 2005; 102 |
References_xml | – volume: 89 start-page: 111 year: 2002 ident: 10.1016/j.neuroimage.2015.07.020_bb0100 article-title: Varying-coefficient models and basis function approximations for the analysis of repeated measurements publication-title: Biometrika doi: 10.1093/biomet/89.1.111 – volume: 52 start-page: 38 issue: Suppl. 4 year: 2011 ident: 10.1016/j.neuroimage.2015.07.020_bb0085 article-title: Combining EEG and fMRI in the study of epileptic discharges publication-title: Epilepsia doi: 10.1111/j.1528-1167.2011.03151.x – volume: 13 start-page: 627 year: 2001 ident: 10.1016/j.neuroimage.2015.07.020_bb0065 article-title: Investigation of the factors responsible for burns during MRI publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.1088 – volume: 8 start-page: 145 issue: 8 year: 1996 ident: 10.1016/j.neuroimage.2015.07.020_bb0155 article-title: Independent component analysis of electroencephalographic data publication-title: Adv. Neural Inf. Process. Syst. – volume: 8 start-page: e62915 year: 2013 ident: 10.1016/j.neuroimage.2015.07.020_bb0020 article-title: Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field publication-title: PLoS One doi: 10.1371/journal.pone.0062915 – volume: 120 start-page: 1637 year: 2009 ident: 10.1016/j.neuroimage.2015.07.020_bb0080 article-title: How wrong can we be? The effect of inaccurate mark-up of EEG/fMRI studies in epilepsy publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2009.04.025 – volume: 8 start-page: 226 year: 2014 ident: 10.1016/j.neuroimage.2015.07.020_bb0185 article-title: Investigating the effect of modifying the EEG cap lead configuration on the gradient artifact in simultaneous EEG-fMRI publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00226 – volume: 8 start-page: 606 year: 2000 ident: 10.1016/j.neuroimage.2015.07.020_bb0035 article-title: Multichannel recursive-least-square algorithms and fast-transversal-filter algorithms for active noise control and sound reproduction systems publication-title: IEEE Trans. Speech Audio Process. doi: 10.1109/89.861382 – volume: 67 start-page: 189 year: 2008 ident: 10.1016/j.neuroimage.2015.07.020_bb0050 article-title: Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7T static magnetic field strength publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2007.05.015 – volume: 45 start-page: 1942 year: 1995 ident: 10.1016/j.neuroimage.2015.07.020_bb0090 article-title: EEG during MR imaging: differentiation of movement artifact from paroxysmal cortical activity publication-title: Neurology doi: 10.1212/WNL.45.10.1942-a – volume: 4 start-page: 1 year: 1983 ident: 10.1016/j.neuroimage.2015.07.020_bb0225 article-title: Cardiovascular alterations in Macaca monkeys exposed to stationary magnetic fields: experimental observations and theoretical analysis publication-title: Bioelectromagnetics doi: 10.1002/bem.2250040102 – volume: 104 start-page: 437 year: 2015 ident: 10.1016/j.neuroimage.2015.07.020_bb0125 article-title: Recursive approach of EEG-segment-based principal component analysis substantially reduces cryogenic pump artifacts in simultaneous EEG-fMRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.09.049 – volume: 47 start-page: 1425 year: 2009 ident: 10.1016/j.neuroimage.2015.07.020_bb0230 article-title: fMRI at 1.5, 3 and 7T: characterising BOLD signal changes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.015 – volume: 67 start-page: 178 year: 2008 ident: 10.1016/j.neuroimage.2015.07.020_bb0180 article-title: Effects of simultaneous EEG recording on MRI data quality at 1.5, 3 and 7Tesla publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2007.06.008 – volume: 85 start-page: 809 year: 1998 ident: 10.1016/j.neuroimage.2015.07.020_bb0095 article-title: Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data publication-title: Biometrika doi: 10.1093/biomet/85.4.809 – volume: 68 start-page: 807 year: 2012 ident: 10.1016/j.neuroimage.2015.07.020_bb0140 article-title: Influence of dense-array EEG cap on fMRI signal publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23299 – volume: 31 start-page: 14067 year: 2011 ident: 10.1016/j.neuroimage.2015.07.020_bb0045 article-title: Human primary auditory cortex follows the shape of Heschl's gyrus publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2000-11.2011 – volume: 233 start-page: 137 year: 2014 ident: 10.1016/j.neuroimage.2015.07.020_bb0145 article-title: Ballistocardiogram artifact removal with a reference layer and standard EEG cap publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.06.021 – volume: 11 start-page: 417 year: 1999 ident: 10.1016/j.neuroimage.2015.07.020_bb0130 article-title: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources publication-title: Neural Comput. doi: 10.1162/089976699300016719 – volume: 26 start-page: 968 year: 2008 ident: 10.1016/j.neuroimage.2015.07.020_bb0175 article-title: Exploring the feasibility of simultaneous electroencephalography/functional magnetic resonance imaging at 7T publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2008.02.014 – volume: 31 start-page: 604 year: 2010 ident: 10.1016/j.neuroimage.2015.07.020_bb0250 article-title: Physical modeling of pulse artefact sources in simultaneous EEG/fMRI publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20891 – volume: 22 start-page: 1471 year: 2004 ident: 10.1016/j.neuroimage.2015.07.020_bb0025 article-title: Multimodal integration of EEG, MEG and fMRI data for the solution of the neuroimage puzzle publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2004.10.007 – volume: 34 start-page: 587 year: 2007 ident: 10.1016/j.neuroimage.2015.07.020_bb0055 article-title: Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: removal of the ballistocardiogram artefact publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.09.031 – volume: 30 start-page: 808 year: 2006 ident: 10.1016/j.neuroimage.2015.07.020_bb0215 article-title: Imaging human EEG dynamics using independent component analysis publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2006.06.007 – volume: 8 start-page: 229 year: 1998 ident: 10.1016/j.neuroimage.2015.07.020_bb0015 article-title: Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction publication-title: Neuroimage doi: 10.1006/nimg.1998.0361 – volume: 27 start-page: 715 year: 2000 ident: 10.1016/j.neuroimage.2015.07.020_bb0075 article-title: Simultaneous confidence bands and hypothesis testing in varying-coefficient models publication-title: Scand. J. Stat. doi: 10.1111/1467-9469.00218 – volume: 35 start-page: 561 year: 2012 ident: 10.1016/j.neuroimage.2015.07.020_bb0210 article-title: Simultaneous electroencephalography-functional MRI at 3T: an analysis of safety risks imposed by performing anatomical reference scans with the EEG equipment in place publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.22843 – volume: 105 start-page: 132 year: 2015 ident: 10.1016/j.neuroimage.2015.07.020_bb0115 article-title: Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.055 – volume: 38 start-page: 943 year: 1997 ident: 10.1016/j.neuroimage.2015.07.020_bb0135 article-title: Recording of EEG during fMRI experiments: patient safety publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910380614 – volume: 37 start-page: 202 year: 2007 ident: 10.1016/j.neuroimage.2015.07.020_bb0165 article-title: Measurement and reduction of motion and ballistocardiogram artefacts from simultaneous EEG and fMRI recordings publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.060 – volume: 31 start-page: 212 year: 2013 ident: 10.1016/j.neuroimage.2015.07.020_bb0110 article-title: Signal fluctuations in fMRI data acquired with 2D-EPI and 3D-EPI at 7Tesla publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2012.07.001 – volume: 46 start-page: 459 year: 2009 ident: 10.1016/j.neuroimage.2015.07.020_bb0245 article-title: Understanding gradient artefacts in simultaneous EEG/fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.01.029 – volume: 7 start-page: e48088 year: 2012 ident: 10.1016/j.neuroimage.2015.07.020_bb0150 article-title: Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain publication-title: PLoS One doi: 10.1371/journal.pone.0048088 – volume: 71 start-page: 75 year: 2013 ident: 10.1016/j.neuroimage.2015.07.020_bb0190 article-title: Identifying the sources of the pulse artefact in EEG recordings made inside an MR scanner publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.12.070 – volume: 102 start-page: 24 issue: Pt 1 year: 2014 ident: 10.1016/j.neuroimage.2015.07.020_bb0120 article-title: EEG-fMRI integration for the study of human brain function publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.114 – volume: 12 start-page: 230 year: 2000 ident: 10.1016/j.neuroimage.2015.07.020_bb0010 article-title: A method for removing imaging artifact from continuous EEG recorded during functional MRI publication-title: Neuroimage doi: 10.1006/nimg.2000.0599 – volume: 74 start-page: 70 year: 2013 ident: 10.1016/j.neuroimage.2015.07.020_bb0205 article-title: Internal ventilation system of MR scanners induces specific EEG artifact during simultaneous EEG-fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.02.016 – volume: 102 start-page: 17798 year: 2005 ident: 10.1016/j.neuroimage.2015.07.020_bb0070 article-title: Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0505508102 – volume: 102 start-page: 71 issue: Part 1 year: 2014 ident: 10.1016/j.neuroimage.2015.07.020_bb0195 article-title: Simultaneous EEG-fMRI acquisition at low, high and ultra-high magnetic fields up to 9.4T: perspectives and challenges publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.06.048 – volume: 5 start-page: 260 year: 2014 ident: 10.1016/j.neuroimage.2015.07.020_bb0005 article-title: Constructing carbon fiber motion-detection loops for simultaneous EEG-fMRI publication-title: Front. Neurol. – volume: 28 start-page: 720 year: 2005 ident: 10.1016/j.neuroimage.2015.07.020_bb0200 article-title: Removal of FMRI environment artifacts from EEG data using optimal basis sets publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.06.067 – volume: 59 start-page: 261 year: 2012 ident: 10.1016/j.neuroimage.2015.07.020_bb0105 article-title: Motion-related artefacts in EEG predict neuronally plausible patterns of activation in fMRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.094 – volume: 250 start-page: 34 year: 2015 ident: 10.1016/j.neuroimage.2015.07.020_bb0235 article-title: Digital filter design for electrophysiological data — a practical approach publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.08.002 – volume: 105 start-page: 10607 year: 2008 ident: 10.1016/j.neuroimage.2015.07.020_bb0240 article-title: High-field fMRI unveils orientation columns in humans publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0804110105 – volume: 711 start-page: 303 year: 2011 ident: 10.1016/j.neuroimage.2015.07.020_bb0170 article-title: Combining EEG and fMRI publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61737-992-5_15 – volume: 2013 start-page: 2092 year: 2013 ident: 10.1016/j.neuroimage.2015.07.020_bb0220 article-title: Reduction of EEG artefacts induced by vibration in the MR-environment publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 10 start-page: 558 year: 2006 ident: 10.1016/j.neuroimage.2015.07.020_bb0060 article-title: Single-trial EEG-fMRI reveals the dynamics of cognitive function publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2006.09.010 – volume: 30 start-page: 2986 year: 2009 ident: 10.1016/j.neuroimage.2015.07.020_bb0160 article-title: ICA decomposition of EEG signal for fMRI processing in epilepsy publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20723 – volume: 16 start-page: 1127 year: 2002 ident: 10.1016/j.neuroimage.2015.07.020_bb0030 article-title: Motion and ballistocardiogram artifact removal for interleaved recording of EEG and EPs during MRI publication-title: Neuroimage doi: 10.1006/nimg.2002.1125 – volume: 84 start-page: 307 year: 2014 ident: 10.1016/j.neuroimage.2015.07.020_bb0040 article-title: Reference layer artefact subtraction (RLAS): a novel method of minimizing EEG artefacts during simultaneous fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.08.039 |
SSID | ssj0009148 |
Score | 2.4039285 |
Snippet | The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 143 |
SubjectTerms | Adult Brain - physiology Brain Waves - physiology Electroencephalography - instrumentation Electroencephalography - methods Electroencephalography - standards Evoked Potentials, Visual - physiology Female Head Humans Magnetic Resonance Imaging - standards Male Motion Multimodal Imaging - instrumentation Multimodal Imaging - methods Multimodal Imaging - standards Young Adult |
Title | Towards high-quality simultaneous EEG-fMRI at 7 T: Detection and reduction of EEG artifacts due to head motion |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26169325 https://www.proquest.com/docview/1718076775 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtowELVYVqr6UvVeelm5Ut9QUJzEcejbdhv2IqArFFTUlyhxHIkthaoEVe0_9J87Y5uQValE-0KQFRs0czDjyZkzhLxRXGayFLkj_NJ3Ao8pJwpZ4UCkHRVeKTKvxDzkaBxeTIOrGZ-1Wr8arKVNlffkz711Jf_jVRgDv2KV7D94tl4UBuA9-BdewcPwepiPNed13UXNYceUR_7orudIEsyWCsmtcXzulKPJJdYsim6C5__3qlK2P7guXSmMfqymGMbnKHo0x2qHdbfY6LYasFsXXdPspxnJalWPyy9I-UHFUl0zrNOug0XWa-QXrjDnbvL0-qG8v9pRflabuhJxYB_ZF-bybS53t210yZHhgS_K7TgWXqEQxqfvWab3q49zVa0_q2Yeg2n9U1PJabdeF7tGctPIp6f2jG33a89t7LjMqDz98U9gkhI3PS0LOkdrII-Pa6VWu8At8e3xh3QwHQ7TJJ4lR-TYg1OH2ybHp2eT4fVOxZkFprbSfi1LDTOEwf2fdDve-cshRgczyX1yz55C6KmB1APSUsuH5M7I8iwekaVFFm0iizaRRbfIollFBU3e0hpXFJBAa1zRVYn30hpXFHBFqxVFXFGDq8dkOoiTswvHduZwpM945fRDzqUnRSHhdN-PcuVG0lO54DJirp9FHpNhFiiIBcMo8IOw9GVUFgXnfiE4z0P_CWkvV0v1jNB-4Oe88MCGzIcZEK7DwlEUBqzsY7KgQ8TWfqm0svXYPWWRbvmJN-nO8ilaPnVFCpbvEFbP_GqkWw6Y83rrohT2WXx4ZqyaMgjiXBEKwTvkqfFdvaoXoqSRx58fMPsFubtD_0vSruBH9Ari2io_IUdiJk4s5uD6Lh5fT34DPISiKA |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+high-quality+simultaneous+EEG-fMRI+at+7+T%3A+Detection+and+reduction+of+EEG+artifacts+due+to+head+motion&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Jorge%2C+Jo%C3%A3o&rft.au=Grouiller%2C+Fr%C3%A9d%C3%A9ric&rft.au=Gruetter%2C+Rolf&rft.au=van+der+Zwaag%2C+Wietske&rft.date=2015-10-15&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=120&rft.spage=143&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.07.020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |