Towards high-quality simultaneous EEG-fMRI at 7 T: Detection and reduction of EEG artifacts due to head motion

The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 120; pp. 143 - 153
Main Authors Jorge, João, Grouiller, Frédéric, Gruetter, Rolf, van der Zwaag, Wietske, Figueiredo, Patrícia
Format Journal Article
LanguageEnglish
Published United States 15.10.2015
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2015.07.020

Cover

Loading…
Abstract The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7 T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field.
AbstractList The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7 T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field.
The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7 T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field.The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7 T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field.
Author Grouiller, Frédéric
van der Zwaag, Wietske
Jorge, João
Figueiredo, Patrícia
Gruetter, Rolf
Author_xml – sequence: 1
  givenname: João
  surname: Jorge
  fullname: Jorge, João
– sequence: 2
  givenname: Frédéric
  surname: Grouiller
  fullname: Grouiller, Frédéric
– sequence: 3
  givenname: Rolf
  surname: Gruetter
  fullname: Gruetter, Rolf
– sequence: 4
  givenname: Wietske
  surname: van der Zwaag
  fullname: van der Zwaag, Wietske
– sequence: 5
  givenname: Patrícia
  surname: Figueiredo
  fullname: Figueiredo, Patrícia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26169325$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLxDAUhYMovv-CZOmmNWmbR10IouMDFEHGdcgkt06GttEkRebf2zI-wI2rey9858A95wBt974HhDAlOSWUn63yHobgXadfIS8IZTkROSnIFtqnpGZZzUSxPe2szCSl9R46iHFFCKlpJXfRXsEpr8uC7aN-7j90sBEv3esyex9069IaR9cNbdI9-CHi2ew2ax6f77FOWOD5Ob6GBCY532PdWxzADpvLNxOLdUiu0SZFbAfAyeMlaIs7PzFHaKfRbYTjr3mIXm5m86u77OHp9v7q8iEzJWUpqzljpjDCmqqStVwAkaaAhWBGUlJqWVDDdQVUMi6rsuJNaWRjLWOlFYwteHmITje-b8G_DxCT6lw00LabnxQVVBLBhWAjevKFDosOrHoLY6xhrb4zGgG5AUzwMQZofhBK1FSHWqnfOtRUhyJCjXWM0os_UuOSnoJIQbv2f4NPTZ-VVg
CitedBy_id crossref_primary_10_1212_WNL_0000000000011413
crossref_primary_10_1088_1741_2552_ac1037
crossref_primary_10_3390_s22062262
crossref_primary_10_1016_j_neuroimage_2023_120353
crossref_primary_10_1002_mrm_29298
crossref_primary_10_1007_s10548_020_00805_1
crossref_primary_10_1146_annurev_neuro_100220_093239
crossref_primary_10_1093_schbul_sbad014
crossref_primary_10_3389_fnhum_2017_00193
crossref_primary_10_1002_mrm_29251
crossref_primary_10_1016_j_neuroimage_2023_120092
crossref_primary_10_3389_fneur_2021_622719
crossref_primary_10_3389_fnins_2018_01009
crossref_primary_10_1016_j_crhy_2018_02_002
crossref_primary_10_1016_j_neuroimage_2018_04_026
crossref_primary_10_3389_fnhum_2023_976036
crossref_primary_10_1007_s10548_017_0606_7
crossref_primary_10_1016_j_neuroimage_2018_02_034
crossref_primary_10_1016_j_neuroimage_2021_117864
crossref_primary_10_1007_s10548_021_00870_0
crossref_primary_10_3389_fnins_2017_00140
crossref_primary_10_1109_TBME_2016_2602038
crossref_primary_10_1109_TRPMS_2018_2886525
crossref_primary_10_1007_s10334_016_0536_5
crossref_primary_10_1016_j_jcp_2023_112374
crossref_primary_10_1002_hbm_24396
crossref_primary_10_1016_j_neuroimage_2016_03_031
crossref_primary_10_1016_j_neuroimage_2016_03_034
crossref_primary_10_7554_eLife_49562
crossref_primary_10_1109_TBME_2016_2593726
crossref_primary_10_3390_s23073539
crossref_primary_10_1109_ACCESS_2019_2892766
crossref_primary_10_1088_1741_2552_14_2_026003
crossref_primary_10_1016_j_jneumeth_2016_09_012
crossref_primary_10_1038_s41598_018_27187_6
crossref_primary_10_1016_j_neuroimage_2016_07_014
crossref_primary_10_1016_j_dib_2018_08_030
crossref_primary_10_1162_imag_a_00272
crossref_primary_10_3389_fnhum_2018_00029
crossref_primary_10_1007_s42979_023_01959_y
crossref_primary_10_1016_j_clinph_2017_12_038
crossref_primary_10_1016_j_eplepsyres_2018_12_008
crossref_primary_10_1016_j_neuroimage_2019_02_021
crossref_primary_10_1088_1741_2552_aad7d7
Cites_doi 10.1093/biomet/89.1.111
10.1111/j.1528-1167.2011.03151.x
10.1002/jmri.1088
10.1371/journal.pone.0062915
10.1016/j.clinph.2009.04.025
10.3389/fnins.2014.00226
10.1109/89.861382
10.1016/j.ijpsycho.2007.05.015
10.1212/WNL.45.10.1942-a
10.1002/bem.2250040102
10.1016/j.neuroimage.2014.09.049
10.1016/j.neuroimage.2009.05.015
10.1016/j.ijpsycho.2007.06.008
10.1093/biomet/85.4.809
10.1002/mrm.23299
10.1523/JNEUROSCI.2000-11.2011
10.1016/j.jneumeth.2014.06.021
10.1162/089976699300016719
10.1016/j.mri.2008.02.014
10.1002/hbm.20891
10.1016/j.mri.2004.10.007
10.1016/j.neuroimage.2006.09.031
10.1016/j.neubiorev.2006.06.007
10.1006/nimg.1998.0361
10.1111/1467-9469.00218
10.1002/jmri.22843
10.1016/j.neuroimage.2014.10.055
10.1002/mrm.1910380614
10.1016/j.neuroimage.2007.02.060
10.1016/j.mri.2012.07.001
10.1016/j.neuroimage.2009.01.029
10.1371/journal.pone.0048088
10.1016/j.neuroimage.2012.12.070
10.1016/j.neuroimage.2013.05.114
10.1006/nimg.2000.0599
10.1016/j.neuroimage.2013.02.016
10.1073/pnas.0505508102
10.1016/j.neuroimage.2013.06.048
10.1016/j.neuroimage.2005.06.067
10.1016/j.neuroimage.2011.06.094
10.1016/j.jneumeth.2014.08.002
10.1073/pnas.0804110105
10.1007/978-1-61737-992-5_15
10.1016/j.tics.2006.09.010
10.1002/hbm.20723
10.1006/nimg.2002.1125
10.1016/j.neuroimage.2013.08.039
ContentType Journal Article
Copyright Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2015 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neuroimage.2015.07.020
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 153
ExternalDocumentID 26169325
10_1016_j_neuroimage_2015_07_020
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
AAYXX
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
CITATION
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
RIG
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
0SF
3V.
AACTN
AFKWA
AJOXV
AMFUW
C45
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PPXIY
PQGLB
ID FETCH-LOGICAL-c315t-9655c2c7dc44898be08c2eb75c8103a821c6a4e185684346f3c8fdd553d755b63
ISSN 1053-8119
1095-9572
IngestDate Fri Jul 11 03:05:36 EDT 2025
Wed Feb 19 01:58:40 EST 2025
Tue Jul 01 03:01:43 EDT 2025
Thu Apr 24 22:57:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ultra-high field
Adaptive filtering
Visual evoked potential
Simultaneous EEG-fMRI
Head motion
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-9655c2c7dc44898be08c2eb75c8103a821c6a4e185684346f3c8fdd553d755b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26169325
PQID 1718076775
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1718076775
pubmed_primary_26169325
crossref_primary_10_1016_j_neuroimage_2015_07_020
crossref_citationtrail_10_1016_j_neuroimage_2015_07_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-15
PublicationDateYYYYMMDD 2015-10-15
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2015
References Debener (10.1016/j.neuroimage.2015.07.020_bb0055) 2007; 34
Mullinger (10.1016/j.neuroimage.2015.07.020_bb0185) 2014; 8
Kim (10.1016/j.neuroimage.2015.07.020_bb0125) 2015; 104
Maclaren (10.1016/j.neuroimage.2015.07.020_bb0150) 2012; 7
Debener (10.1016/j.neuroimage.2015.07.020_bb0050) 2008; 67
Allen (10.1016/j.neuroimage.2015.07.020_bb0010) 2000; 12
Lemieux (10.1016/j.neuroimage.2015.07.020_bb0135) 1997; 38
Neuner (10.1016/j.neuroimage.2015.07.020_bb0195) 2014; 102
Marques (10.1016/j.neuroimage.2015.07.020_bb0160) 2009; 30
Lee (10.1016/j.neuroimage.2015.07.020_bb0130) 1999; 11
van der Zwaag (10.1016/j.neuroimage.2015.07.020_bb0230) 2009; 47
Allen (10.1016/j.neuroimage.2015.07.020_bb0015) 1998; 8
Chowdhury (10.1016/j.neuroimage.2015.07.020_bb0040) 2014; 84
Jorge (10.1016/j.neuroimage.2015.07.020_bb0115) 2015; 105
Hoover (10.1016/j.neuroimage.2015.07.020_bb0095) 1998; 85
Masterton (10.1016/j.neuroimage.2015.07.020_bb0165) 2007; 37
Makeig (10.1016/j.neuroimage.2015.07.020_bb0155) 1996; 8
Widmann (10.1016/j.neuroimage.2015.07.020_bb0235) 2015; 250
Fan (10.1016/j.neuroimage.2015.07.020_bb0075) 2000; 27
Dempsey (10.1016/j.neuroimage.2015.07.020_bb0065) 2001; 13
Gotman (10.1016/j.neuroimage.2015.07.020_bb0085) 2011; 52
Luo (10.1016/j.neuroimage.2015.07.020_bb0145) 2014; 233
Jorge (10.1016/j.neuroimage.2015.07.020_bb0110) 2013; 31
Jansen (10.1016/j.neuroimage.2015.07.020_bb0105) 2012; 59
Yacoub (10.1016/j.neuroimage.2015.07.020_bb0240) 2008; 105
Jorge (10.1016/j.neuroimage.2015.07.020_bb0120) 2014; 102
Yan (10.1016/j.neuroimage.2015.07.020_bb0250) 2010; 31
Debener (10.1016/j.neuroimage.2015.07.020_bb0060) 2006; 10
Noth (10.1016/j.neuroimage.2015.07.020_bb0210) 2012; 35
Bonmassar (10.1016/j.neuroimage.2015.07.020_bb0030) 2002; 16
Yan (10.1016/j.neuroimage.2015.07.020_bb0245) 2009; 46
Luo (10.1016/j.neuroimage.2015.07.020_bb0140) 2012; 68
Abbott (10.1016/j.neuroimage.2015.07.020_bb0005) 2014; 5
Tenforde (10.1016/j.neuroimage.2015.07.020_bb0225) 1983; 4
Rothlubbers (10.1016/j.neuroimage.2015.07.020_bb0220) 2013; 2013
Mullinger (10.1016/j.neuroimage.2015.07.020_bb0170) 2011; 711
Mullinger (10.1016/j.neuroimage.2015.07.020_bb0180) 2008; 67
Arrubla (10.1016/j.neuroimage.2015.07.020_bb0020) 2013; 8
Flanagan (10.1016/j.neuroimage.2015.07.020_bb0080) 2009; 120
Da Costa (10.1016/j.neuroimage.2015.07.020_bb0045) 2011; 31
Mullinger (10.1016/j.neuroimage.2015.07.020_bb0175) 2008; 26
Bouchard (10.1016/j.neuroimage.2015.07.020_bb0035) 2000; 8
Huang (10.1016/j.neuroimage.2015.07.020_bb0100) 2002; 89
Mullinger (10.1016/j.neuroimage.2015.07.020_bb0190) 2013; 71
Onton (10.1016/j.neuroimage.2015.07.020_bb0215) 2006; 30
Niazy (10.1016/j.neuroimage.2015.07.020_bb0200) 2005; 28
Hill (10.1016/j.neuroimage.2015.07.020_bb0090) 1995; 45
Babiloni (10.1016/j.neuroimage.2015.07.020_bb0025) 2004; 22
Nierhaus (10.1016/j.neuroimage.2015.07.020_bb0205) 2013; 74
Eichele (10.1016/j.neuroimage.2015.07.020_bb0070) 2005; 102
References_xml – volume: 89
  start-page: 111
  year: 2002
  ident: 10.1016/j.neuroimage.2015.07.020_bb0100
  article-title: Varying-coefficient models and basis function approximations for the analysis of repeated measurements
  publication-title: Biometrika
  doi: 10.1093/biomet/89.1.111
– volume: 52
  start-page: 38
  issue: Suppl. 4
  year: 2011
  ident: 10.1016/j.neuroimage.2015.07.020_bb0085
  article-title: Combining EEG and fMRI in the study of epileptic discharges
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2011.03151.x
– volume: 13
  start-page: 627
  year: 2001
  ident: 10.1016/j.neuroimage.2015.07.020_bb0065
  article-title: Investigation of the factors responsible for burns during MRI
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.1088
– volume: 8
  start-page: 145
  issue: 8
  year: 1996
  ident: 10.1016/j.neuroimage.2015.07.020_bb0155
  article-title: Independent component analysis of electroencephalographic data
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 8
  start-page: e62915
  year: 2013
  ident: 10.1016/j.neuroimage.2015.07.020_bb0020
  article-title: Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0062915
– volume: 120
  start-page: 1637
  year: 2009
  ident: 10.1016/j.neuroimage.2015.07.020_bb0080
  article-title: How wrong can we be? The effect of inaccurate mark-up of EEG/fMRI studies in epilepsy
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2009.04.025
– volume: 8
  start-page: 226
  year: 2014
  ident: 10.1016/j.neuroimage.2015.07.020_bb0185
  article-title: Investigating the effect of modifying the EEG cap lead configuration on the gradient artifact in simultaneous EEG-fMRI
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00226
– volume: 8
  start-page: 606
  year: 2000
  ident: 10.1016/j.neuroimage.2015.07.020_bb0035
  article-title: Multichannel recursive-least-square algorithms and fast-transversal-filter algorithms for active noise control and sound reproduction systems
  publication-title: IEEE Trans. Speech Audio Process.
  doi: 10.1109/89.861382
– volume: 67
  start-page: 189
  year: 2008
  ident: 10.1016/j.neuroimage.2015.07.020_bb0050
  article-title: Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7T static magnetic field strength
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2007.05.015
– volume: 45
  start-page: 1942
  year: 1995
  ident: 10.1016/j.neuroimage.2015.07.020_bb0090
  article-title: EEG during MR imaging: differentiation of movement artifact from paroxysmal cortical activity
  publication-title: Neurology
  doi: 10.1212/WNL.45.10.1942-a
– volume: 4
  start-page: 1
  year: 1983
  ident: 10.1016/j.neuroimage.2015.07.020_bb0225
  article-title: Cardiovascular alterations in Macaca monkeys exposed to stationary magnetic fields: experimental observations and theoretical analysis
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.2250040102
– volume: 104
  start-page: 437
  year: 2015
  ident: 10.1016/j.neuroimage.2015.07.020_bb0125
  article-title: Recursive approach of EEG-segment-based principal component analysis substantially reduces cryogenic pump artifacts in simultaneous EEG-fMRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.09.049
– volume: 47
  start-page: 1425
  year: 2009
  ident: 10.1016/j.neuroimage.2015.07.020_bb0230
  article-title: fMRI at 1.5, 3 and 7T: characterising BOLD signal changes
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.015
– volume: 67
  start-page: 178
  year: 2008
  ident: 10.1016/j.neuroimage.2015.07.020_bb0180
  article-title: Effects of simultaneous EEG recording on MRI data quality at 1.5, 3 and 7Tesla
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2007.06.008
– volume: 85
  start-page: 809
  year: 1998
  ident: 10.1016/j.neuroimage.2015.07.020_bb0095
  article-title: Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data
  publication-title: Biometrika
  doi: 10.1093/biomet/85.4.809
– volume: 68
  start-page: 807
  year: 2012
  ident: 10.1016/j.neuroimage.2015.07.020_bb0140
  article-title: Influence of dense-array EEG cap on fMRI signal
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23299
– volume: 31
  start-page: 14067
  year: 2011
  ident: 10.1016/j.neuroimage.2015.07.020_bb0045
  article-title: Human primary auditory cortex follows the shape of Heschl's gyrus
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2000-11.2011
– volume: 233
  start-page: 137
  year: 2014
  ident: 10.1016/j.neuroimage.2015.07.020_bb0145
  article-title: Ballistocardiogram artifact removal with a reference layer and standard EEG cap
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.06.021
– volume: 11
  start-page: 417
  year: 1999
  ident: 10.1016/j.neuroimage.2015.07.020_bb0130
  article-title: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources
  publication-title: Neural Comput.
  doi: 10.1162/089976699300016719
– volume: 26
  start-page: 968
  year: 2008
  ident: 10.1016/j.neuroimage.2015.07.020_bb0175
  article-title: Exploring the feasibility of simultaneous electroencephalography/functional magnetic resonance imaging at 7T
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2008.02.014
– volume: 31
  start-page: 604
  year: 2010
  ident: 10.1016/j.neuroimage.2015.07.020_bb0250
  article-title: Physical modeling of pulse artefact sources in simultaneous EEG/fMRI
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20891
– volume: 22
  start-page: 1471
  year: 2004
  ident: 10.1016/j.neuroimage.2015.07.020_bb0025
  article-title: Multimodal integration of EEG, MEG and fMRI data for the solution of the neuroimage puzzle
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2004.10.007
– volume: 34
  start-page: 587
  year: 2007
  ident: 10.1016/j.neuroimage.2015.07.020_bb0055
  article-title: Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: removal of the ballistocardiogram artefact
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.031
– volume: 30
  start-page: 808
  year: 2006
  ident: 10.1016/j.neuroimage.2015.07.020_bb0215
  article-title: Imaging human EEG dynamics using independent component analysis
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2006.06.007
– volume: 8
  start-page: 229
  year: 1998
  ident: 10.1016/j.neuroimage.2015.07.020_bb0015
  article-title: Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0361
– volume: 27
  start-page: 715
  year: 2000
  ident: 10.1016/j.neuroimage.2015.07.020_bb0075
  article-title: Simultaneous confidence bands and hypothesis testing in varying-coefficient models
  publication-title: Scand. J. Stat.
  doi: 10.1111/1467-9469.00218
– volume: 35
  start-page: 561
  year: 2012
  ident: 10.1016/j.neuroimage.2015.07.020_bb0210
  article-title: Simultaneous electroencephalography-functional MRI at 3T: an analysis of safety risks imposed by performing anatomical reference scans with the EEG equipment in place
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22843
– volume: 105
  start-page: 132
  year: 2015
  ident: 10.1016/j.neuroimage.2015.07.020_bb0115
  article-title: Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.055
– volume: 38
  start-page: 943
  year: 1997
  ident: 10.1016/j.neuroimage.2015.07.020_bb0135
  article-title: Recording of EEG during fMRI experiments: patient safety
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910380614
– volume: 37
  start-page: 202
  year: 2007
  ident: 10.1016/j.neuroimage.2015.07.020_bb0165
  article-title: Measurement and reduction of motion and ballistocardiogram artefacts from simultaneous EEG and fMRI recordings
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.060
– volume: 31
  start-page: 212
  year: 2013
  ident: 10.1016/j.neuroimage.2015.07.020_bb0110
  article-title: Signal fluctuations in fMRI data acquired with 2D-EPI and 3D-EPI at 7Tesla
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2012.07.001
– volume: 46
  start-page: 459
  year: 2009
  ident: 10.1016/j.neuroimage.2015.07.020_bb0245
  article-title: Understanding gradient artefacts in simultaneous EEG/fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.01.029
– volume: 7
  start-page: e48088
  year: 2012
  ident: 10.1016/j.neuroimage.2015.07.020_bb0150
  article-title: Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0048088
– volume: 71
  start-page: 75
  year: 2013
  ident: 10.1016/j.neuroimage.2015.07.020_bb0190
  article-title: Identifying the sources of the pulse artefact in EEG recordings made inside an MR scanner
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.12.070
– volume: 102
  start-page: 24
  issue: Pt 1
  year: 2014
  ident: 10.1016/j.neuroimage.2015.07.020_bb0120
  article-title: EEG-fMRI integration for the study of human brain function
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.114
– volume: 12
  start-page: 230
  year: 2000
  ident: 10.1016/j.neuroimage.2015.07.020_bb0010
  article-title: A method for removing imaging artifact from continuous EEG recorded during functional MRI
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0599
– volume: 74
  start-page: 70
  year: 2013
  ident: 10.1016/j.neuroimage.2015.07.020_bb0205
  article-title: Internal ventilation system of MR scanners induces specific EEG artifact during simultaneous EEG-fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.02.016
– volume: 102
  start-page: 17798
  year: 2005
  ident: 10.1016/j.neuroimage.2015.07.020_bb0070
  article-title: Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0505508102
– volume: 102
  start-page: 71
  issue: Part 1
  year: 2014
  ident: 10.1016/j.neuroimage.2015.07.020_bb0195
  article-title: Simultaneous EEG-fMRI acquisition at low, high and ultra-high magnetic fields up to 9.4T: perspectives and challenges
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.06.048
– volume: 5
  start-page: 260
  year: 2014
  ident: 10.1016/j.neuroimage.2015.07.020_bb0005
  article-title: Constructing carbon fiber motion-detection loops for simultaneous EEG-fMRI
  publication-title: Front. Neurol.
– volume: 28
  start-page: 720
  year: 2005
  ident: 10.1016/j.neuroimage.2015.07.020_bb0200
  article-title: Removal of FMRI environment artifacts from EEG data using optimal basis sets
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.06.067
– volume: 59
  start-page: 261
  year: 2012
  ident: 10.1016/j.neuroimage.2015.07.020_bb0105
  article-title: Motion-related artefacts in EEG predict neuronally plausible patterns of activation in fMRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.06.094
– volume: 250
  start-page: 34
  year: 2015
  ident: 10.1016/j.neuroimage.2015.07.020_bb0235
  article-title: Digital filter design for electrophysiological data — a practical approach
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.08.002
– volume: 105
  start-page: 10607
  year: 2008
  ident: 10.1016/j.neuroimage.2015.07.020_bb0240
  article-title: High-field fMRI unveils orientation columns in humans
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0804110105
– volume: 711
  start-page: 303
  year: 2011
  ident: 10.1016/j.neuroimage.2015.07.020_bb0170
  article-title: Combining EEG and fMRI
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61737-992-5_15
– volume: 2013
  start-page: 2092
  year: 2013
  ident: 10.1016/j.neuroimage.2015.07.020_bb0220
  article-title: Reduction of EEG artefacts induced by vibration in the MR-environment
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 10
  start-page: 558
  year: 2006
  ident: 10.1016/j.neuroimage.2015.07.020_bb0060
  article-title: Single-trial EEG-fMRI reveals the dynamics of cognitive function
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2006.09.010
– volume: 30
  start-page: 2986
  year: 2009
  ident: 10.1016/j.neuroimage.2015.07.020_bb0160
  article-title: ICA decomposition of EEG signal for fMRI processing in epilepsy
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20723
– volume: 16
  start-page: 1127
  year: 2002
  ident: 10.1016/j.neuroimage.2015.07.020_bb0030
  article-title: Motion and ballistocardiogram artifact removal for interleaved recording of EEG and EPs during MRI
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1125
– volume: 84
  start-page: 307
  year: 2014
  ident: 10.1016/j.neuroimage.2015.07.020_bb0040
  article-title: Reference layer artefact subtraction (RLAS): a novel method of minimizing EEG artefacts during simultaneous fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.039
SSID ssj0009148
Score 2.4039285
Snippet The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 143
SubjectTerms Adult
Brain - physiology
Brain Waves - physiology
Electroencephalography - instrumentation
Electroencephalography - methods
Electroencephalography - standards
Evoked Potentials, Visual - physiology
Female
Head
Humans
Magnetic Resonance Imaging - standards
Male
Motion
Multimodal Imaging - instrumentation
Multimodal Imaging - methods
Multimodal Imaging - standards
Young Adult
Title Towards high-quality simultaneous EEG-fMRI at 7 T: Detection and reduction of EEG artifacts due to head motion
URI https://www.ncbi.nlm.nih.gov/pubmed/26169325
https://www.proquest.com/docview/1718076775
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtowELVYVqr6UvVeelm5Ut9QUJzEcejbdhv2IqArFFTUlyhxHIkthaoEVe0_9J87Y5uQValE-0KQFRs0czDjyZkzhLxRXGayFLkj_NJ3Ao8pJwpZ4UCkHRVeKTKvxDzkaBxeTIOrGZ-1Wr8arKVNlffkz711Jf_jVRgDv2KV7D94tl4UBuA9-BdewcPwepiPNed13UXNYceUR_7orudIEsyWCsmtcXzulKPJJdYsim6C5__3qlK2P7guXSmMfqymGMbnKHo0x2qHdbfY6LYasFsXXdPspxnJalWPyy9I-UHFUl0zrNOug0XWa-QXrjDnbvL0-qG8v9pRflabuhJxYB_ZF-bybS53t210yZHhgS_K7TgWXqEQxqfvWab3q49zVa0_q2Yeg2n9U1PJabdeF7tGctPIp6f2jG33a89t7LjMqDz98U9gkhI3PS0LOkdrII-Pa6VWu8At8e3xh3QwHQ7TJJ4lR-TYg1OH2ybHp2eT4fVOxZkFprbSfi1LDTOEwf2fdDve-cshRgczyX1yz55C6KmB1APSUsuH5M7I8iwekaVFFm0iizaRRbfIollFBU3e0hpXFJBAa1zRVYn30hpXFHBFqxVFXFGDq8dkOoiTswvHduZwpM945fRDzqUnRSHhdN-PcuVG0lO54DJirp9FHpNhFiiIBcMo8IOw9GVUFgXnfiE4z0P_CWkvV0v1jNB-4Oe88MCGzIcZEK7DwlEUBqzsY7KgQ8TWfqm0svXYPWWRbvmJN-nO8ilaPnVFCpbvEFbP_GqkWw6Y83rrohT2WXx4ZqyaMgjiXBEKwTvkqfFdvaoXoqSRx58fMPsFubtD_0vSruBH9Ari2io_IUdiJk4s5uD6Lh5fT34DPISiKA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+high-quality+simultaneous+EEG-fMRI+at+7+T%3A+Detection+and+reduction+of+EEG+artifacts+due+to+head+motion&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Jorge%2C+Jo%C3%A3o&rft.au=Grouiller%2C+Fr%C3%A9d%C3%A9ric&rft.au=Gruetter%2C+Rolf&rft.au=van+der+Zwaag%2C+Wietske&rft.date=2015-10-15&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=120&rft.spage=143&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.07.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon