Soil microbial respiration is regulated by stoichiometric imbalances: Evidence from a humidity gradient case
Humidity not only affects soil microbial respiration (SMR) directly, but, indirectly by regulating the availability of soil water and nutrients. However, the patterns of direct and indirect effects of humidity on SMR over large precipitation gradients remain unclear, limiting our understanding of th...
Saved in:
Cover
Loading…
Abstract | Humidity not only affects soil microbial respiration (SMR) directly, but, indirectly by regulating the availability of soil water and nutrients. However, the patterns of direct and indirect effects of humidity on SMR over large precipitation gradients remain unclear, limiting our understanding of the effects of precipitation changes on soil C cycle. Here, we investigated the relationships among humidity, soil nutrients, and SMR by identifying stoichiometric imbalances, microbial elemental homeostasis, and microbial C use efficiency along a precipitation gradient at a continental scale. The relationship between SMR and humidity index (HI) corresponded to a Richard's curve with an inflection point threshold value of approximately 0.7. Soil microbial respiration increased with increasing humidity in drier areas (HI < 0.7), but tended to balance above this threshold. Increasing humidity exacerbated C:P and N:P imbalances across the selected gradient. Severe N and P limitations in soil microbial communities were observed in drier areas, while soil microbes suffered from aggravated P limitation as the humidity increased in wetter areas (HI > 0.7). Soil microbial communities regulated their enzyme production to maintain a strong stoichiometric homeostasis in drier areas; enzyme production, microbial biomass, and threshold elemental ratios were non-homeostatic under P limitation in wetter areas, which further contributed to the increase in SMR. Our results identified a moisture constraint on SMR in drier areas and highlighted the importance of nutrient (especially for P) limitations induced by humidity in regulating SMR in wetter areas. Understanding the modulation of SMR via soil enzyme activity may improve the prediction of soil C budget under future global climate change. |
---|---|
AbstractList | Humidity not only affects soil microbial respiration (SMR) directly, but, indirectly by regulating the availability of soil water and nutrients. However, the patterns of direct and indirect effects of humidity on SMR over large precipitation gradients remain unclear, limiting our understanding of the effects of precipitation changes on soil C cycle. Here, we investigated the relationships among humidity, soil nutrients, and SMR by identifying stoichiometric imbalances, microbial elemental homeostasis, and microbial C use efficiency along a precipitation gradient at a continental scale. The relationship between SMR and humidity index (HI) corresponded to a Richard's curve with an inflection point threshold value of approximately 0.7. Soil microbial respiration increased with increasing humidity in drier areas (HI < 0.7), but tended to balance above this threshold. Increasing humidity exacerbated C:P and N:P imbalances across the selected gradient. Severe N and P limitations in soil microbial communities were observed in drier areas, while soil microbes suffered from aggravated P limitation as the humidity increased in wetter areas (HI > 0.7). Soil microbial communities regulated their enzyme production to maintain a strong stoichiometric homeostasis in drier areas; enzyme production, microbial biomass, and threshold elemental ratios were non-homeostatic under P limitation in wetter areas, which further contributed to the increase in SMR. Our results identified a moisture constraint on SMR in drier areas and highlighted the importance of nutrient (especially for P) limitations induced by humidity in regulating SMR in wetter areas. Understanding the modulation of SMR via soil enzyme activity may improve the prediction of soil C budget under future global climate change. Humidity not only affects soil microbial respiration(SMR)directly,but,indirectly by regulating the availability of soil water and nutrients.However,the patterns of direct and indirect effects of humidity on SMR over large precipitation gradients remain unclear,limiting our understanding of the effects of precipitation changes on soil C cycle.Here,we investigated the relationships among humidity,soil nutrients,and SMR by identifying stoichiometric imbalances,microbial elemental homeostasis,and microbial C use efficiency along a precipitation gradient at a continental scale.The relationship between SMR and humidity index(HI)corresponded to a Richard's curve with an inflection point threshold value of approximately 0.7.Soil microbial respiration increased with increasing humidity in drier areas(HI<0.7),but tended to balance above this threshold.Increasing humidity exacerbated C:P and N:P imbalances across the selected gradient.Severe N and P limitations in soil microbial communities were observed in drier areas,while soil microbes suffered from aggravated P limitation as the humidity increased in wetter areas(HI>0.7).Soil microbial communities regulated their enzyme production to maintain a strong stoichiometric homeostasis in drier areas;enzyme production,microbial biomass,and threshold elemental ratios were non-homeostatic under P limitation in wetter areas,which further contributed to the increase in SMR.Our results identified a moisture constraint on SMR in drier areas and highlighted the importance of nutrient(especially for P)limitations induced by humidity in regulating SMR in wetter areas.Understanding the modulation of SMR via soil enzyme activity may improve the prediction of soil C budget under future global climate change. |
Author | XIE, Jiangbo HAI, Xuying LI, Yan LI, Jiwei WU, Jianzhao SHANGGUAN, Zhouping LIU, Yulin DENG, Lei CUI, Yongxing WANG, Kaibo DONG, Lingbo PENG, Changhui |
AuthorAffiliation | State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,College of Soil and Water Conservation Science and Engineering(Institute of Soil and Water Conservation),Northwest A&F University,Yangling 712100(China);Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources,Yangling 712100(China);University of Chinese Academy of Sciences,Beijing 100049(China);State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences,Xi'an 710061(China)%State Key Laboratory of Subtropical Silviculture,Zhejiang A&F University,Lin'an 311300(China)%State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,College of Soil and Water Conservation Science and Engineering(Institute of Soil and Water Conservation),Northwest A&F University,Yangling 712100(China)%Sino-French Institute for Earth System Science,College of Urban and Environmental Sciences,Peking University,Beijing 100871( |
AuthorAffiliation_xml | – name: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,College of Soil and Water Conservation Science and Engineering(Institute of Soil and Water Conservation),Northwest A&F University,Yangling 712100(China);Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources,Yangling 712100(China);University of Chinese Academy of Sciences,Beijing 100049(China);State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences,Xi'an 710061(China)%State Key Laboratory of Subtropical Silviculture,Zhejiang A&F University,Lin'an 311300(China)%State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,College of Soil and Water Conservation Science and Engineering(Institute of Soil and Water Conservation),Northwest A&F University,Yangling 712100(China)%Sino-French Institute for Earth System Science,College of Urban and Environmental Sciences,Peking University,Beijing 100871(China)%Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources,Yangling 712100(China);University of Chinese Academy of Sciences,Beijing 100049(China)%State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,College of Soil and Water Conservation Science and Engineering(Institute of Soil and Water Conservation),Northwest A&F University,Yangling 712100(China);Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources,Yangling 712100(China)%State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences,Xi'an 710061(China)%Center of CEF/ESCER,Department of Biological Science,University of Quebec at Montreal,Montreal H3C 3P8(Canada) |
Author_xml | – sequence: 1 givenname: Jiwei surname: LI fullname: LI, Jiwei – sequence: 2 givenname: Jiangbo surname: XIE fullname: XIE, Jiangbo – sequence: 3 givenname: Jianzhao surname: WU fullname: WU, Jianzhao – sequence: 4 givenname: Yongxing surname: CUI fullname: CUI, Yongxing – sequence: 5 givenname: Lingbo surname: DONG fullname: DONG, Lingbo – sequence: 6 givenname: Yulin surname: LIU fullname: LIU, Yulin – sequence: 7 givenname: Xuying surname: HAI fullname: HAI, Xuying – sequence: 8 givenname: Yan surname: LI fullname: LI, Yan – sequence: 9 givenname: Zhouping surname: SHANGGUAN fullname: SHANGGUAN, Zhouping – sequence: 10 givenname: Kaibo surname: WANG fullname: WANG, Kaibo – sequence: 11 givenname: Changhui surname: PENG fullname: PENG, Changhui – sequence: 12 givenname: Lei surname: DENG fullname: DENG, Lei |
BookMark | eNp9kMFu2zAMhnXogKXt3qAHnYpeklGWE9u9DUXXDijQQ7ezQEt0wsC2XEnekLev0uzUQwECJMH_J8HvXJyNfiQhrhSsFKjN9_1qIhen3aqAQq8gB9RnYqEAimWew1dxHuMeoFSNUgvRv3ju5cA2-Jaxl4HixAET-1FyzO127jGRk-1BxuTZ7tgPlAJbyUOLPY6W4q28_8uOcim74AeJcjcP7Dgd5DagYxqTtBjpUnzpsI_07X--EH9-3v--e1w-PT_8uvvxtLRardOyAdVWzsJauRrqWrnSotMNVAjrRtuyxLIjrCrXuI5aqtZtqza6rqCosSm01Rfi-rT3H44djluz93MY80WTwquhIxnYADRZeHMSTsG_zhSTGTha6vNb5OdoNJSgN1AVkKXlSZpJxRioM1PgAcPBKDBH8mZvTuTNcb-BHFBn2-0Hm-X0jjcF5P5z8xtaZ5HT |
CitedBy_id | crossref_primary_10_1111_1365_2664_14749 |
Cites_doi | 10.1016/j.catena.2021.105849 10.1016/j.soilbio.2015.01.007 10.1890/15-2110.1 10.1016/j.soilbio.2019.107580 10.1016/j.scitotenv.2018.09.036 10.1038/s41559-018-0771-4 10.1016/j.scitotenv.2018.06.033 10.1016/j.soilbio.2018.02.022 10.1111/geb.12190 10.1016/j.soilbio.2011.05.011 10.1111/j.1469-8137.2012.04225.x 10.1038/ncomms4694 10.1111/gcb.12789 10.1016/j.soilbio.2015.04.007 10.1007/s10533-016-0217-5 10.1111/ele.12113 10.1111/gcb.14970 10.1007/s10533-013-9849-x 10.1016/S1002-0160(20)60026-1 10.1016/j.scitotenv.2019.133613 10.1016/0038-0717(82)90001-3 10.1016/S1002-0160(17)60329-1 10.1016/j.scitotenv.2018.08.173 10.3389/fmicb.2012.00042 10.1111/ele.12108 10.3389/fmicb.2014.00022 10.1002/2014GB005021 10.1029/2018GB006112 10.1111/ele.12269 10.1016/j.pedsph.2022.06.035 10.1073/pnas.0812721106 10.1016/j.soilbio.2016.04.008 10.1016/j.earscirev.2020.103501 10.1016/j.geoderma.2019.06.037 10.1111/j.1365-2486.2005.00902.x |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 7S9 L.6 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/j.pedsph.2023.03.008 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EndPage | 915 |
ExternalDocumentID | trq_e202306009 10_1016_j_pedsph_2023_03_008 |
GroupedDBID | --K --M -SD -S~ .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VR 5VS 5XA 5XE 7-5 71M 8P~ 8RM AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AATTM AAXKI AAXUO AAYWO AAYXX ABGRD ABMAC ABWVN ABXDB ACDAQ ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV AEBSH AEIPS AEKER AENEX AEQOU AEUPX AFPUW AFTJW AFUIB AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC BNPGV CAJED CCEZO CHBEP CHDYS CITATION CS3 CW9 DU5 EBS EFJIC EJD EO9 EP2 EP3 FA0 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q-- Q38 RIG ROL SDC SDF SDG SES SPCBC SSA SSH SSZ T5K TCJ TGD TGMPQ U1G U5N Y6R ~02 ~G- 7S9 L.6 188 2B. 4A8 92I 93N PSX UZ3 |
ID | FETCH-LOGICAL-c315t-901b7dc051d80881d4cad3907a0593c44a4fea77d9dfebe75bb16387028a923c3 |
ISSN | 1002-0160 |
IngestDate | Thu May 29 03:54:56 EDT 2025 Fri Jul 11 00:44:06 EDT 2025 Thu Apr 24 22:59:19 EDT 2025 Tue Jul 01 03:41:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | soil enzyme activities precipitation nutrient limitations stoichiometric homeostasis microorganisms carbon use efficiency ecological stoichiometry |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c315t-901b7dc051d80881d4cad3907a0593c44a4fea77d9dfebe75bb16387028a923c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3040360720 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | wanfang_journals_trq_e202306009 proquest_miscellaneous_3040360720 crossref_primary_10_1016_j_pedsph_2023_03_008 crossref_citationtrail_10_1016_j_pedsph_2023_03_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Pedosphere |
PublicationTitle_FL | Pedosphere |
PublicationYear | 2023 |
Publisher | State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,College of Soil and Water Conservation Science and Engineering(Institute of Soil and Water Conservation),Northwest A&F University,Yangling 712100(China) Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources,Yangling 712100(China) Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources,Yangling 712100(China)%State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences,Xi'an 710061(China)%Center of CEF/ESCER,Department of Biological Science,University of Quebec at Montreal,Montreal H3C 3P8(Canada) State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences,Xi'an 710061(China)%State Key Laboratory of Subtropical Silviculture,Zhejiang A&F University,Lin'an 311300(China)%State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,College of Soil and Water Conservation Science and Engineering(Institute of Soil and Water Conservation),Northwest A&F University,Yangling 712100(China)%Sino-French Institute for Earth System Science,College of Urban and Environmental Sciences,Peking University,Beijing 100871(China)%Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources,Yangling 712100(China) University of Chinese Academy of Sciences,Beijing 100049(China) University of Chinese Academy of Sciences,Beijing 100049(China)%State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,College of Soil and Water Conservation Science and Engineering(Institute of Soil and Water Conservation),Northwest A&F University,Yangling 712100(China) |
Publisher_xml | – name: State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences,Xi'an 710061(China)%State Key Laboratory of Subtropical Silviculture,Zhejiang A&F University,Lin'an 311300(China)%State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,College of Soil and Water Conservation Science and Engineering(Institute of Soil and Water Conservation),Northwest A&F University,Yangling 712100(China)%Sino-French Institute for Earth System Science,College of Urban and Environmental Sciences,Peking University,Beijing 100871(China)%Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources,Yangling 712100(China) – name: Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources,Yangling 712100(China)%State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences,Xi'an 710061(China)%Center of CEF/ESCER,Department of Biological Science,University of Quebec at Montreal,Montreal H3C 3P8(Canada) – name: University of Chinese Academy of Sciences,Beijing 100049(China) – name: Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources,Yangling 712100(China) – name: University of Chinese Academy of Sciences,Beijing 100049(China)%State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,College of Soil and Water Conservation Science and Engineering(Institute of Soil and Water Conservation),Northwest A&F University,Yangling 712100(China) – name: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,College of Soil and Water Conservation Science and Engineering(Institute of Soil and Water Conservation),Northwest A&F University,Yangling 712100(China) |
References | Tian (10.1016/j.pedsph.2023.03.008_bib34) 2015; 29 Yao (10.1016/j.pedsph.2023.03.008_bib38) 2020; 30 Sinsabaugh (10.1016/j.pedsph.2023.03.008_bib28) 2013; 16 Zechmeister-Boltenstern (10.1016/j.pedsph.2023.03.008_bib40) 2015; 85 Zhang (10.1016/j.pedsph.2023.03.008_bib41) 2005; 11 Feng (10.1016/j.pedsph.2023.03.008_bib13) 2019; 33 Huang (10.1016/j.pedsph.2023.03.008_bib14) 2015; 83 Tapia-Torres (10.1016/j.pedsph.2023.03.008_bib33) 2015; 87 Waring (10.1016/j.pedsph.2023.03.008_bib36) 2014; 117 Fanin (10.1016/j.pedsph.2023.03.008_bib11) 2013; 16 Kaiser (10.1016/j.pedsph.2023.03.008_bib15) 2014; 17 Li (10.1016/j.pedsph.2023.03.008_bib17) 2023; 00 Wang (10.1016/j.pedsph.2023.03.008_bib35) 2014; 5 Chen (10.1016/j.pedsph.2023.03.008_bib4) 2019; 650 Cui (10.1016/j.pedsph.2023.03.008_bib5) 2018; 642 Takriti (10.1016/j.pedsph.2023.03.008_bib32) 2018; 121 Li (10.1016/j.pedsph.2023.03.008_bib16) 2019; 693 Bradford (10.1016/j.pedsph.2023.03.008_bib1) 2019; 3 Liu (10.1016/j.pedsph.2023.03.008_bib20) 2005; 16 Shao (10.1016/j.pedsph.2023.03.008_bib27) 2023; 33 Deng (10.1016/j.pedsph.2023.03.008_bib8) 2019; 353 Peng (10.1016/j.pedsph.2023.03.008_bib25) 2016; 98 Mooshammer (10.1016/j.pedsph.2023.03.008_bib22) 2014; 5 Xu (10.1016/j.pedsph.2023.03.008_bib37) Fanin (10.1016/j.pedsph.2023.03.008_bib12) 2016; 129 Manzoni (10.1016/j.pedsph.2023.03.008_bib21) 2012; 196 Debnath (10.1016/j.pedsph.2023.03.008_bib7) 2020; 30 Butenschoen (10.1016/j.pedsph.2023.03.008_bib3) 2011; 43 Li (10.1016/j.pedsph.2023.03.008_bib19) 2014; 23 Nielsen (10.1016/j.pedsph.2023.03.008_bib24) 2015; 21 Scott (10.1016/j.pedsph.2023.03.008_bib26) 2012; 3 Li (10.1016/j.pedsph.2023.03.008_bib18) 2022; 209 Solomon (10.1016/j.pedsph.2023.03.008_bib30) 2009; 106 Yuan (10.1016/j.pedsph.2023.03.008_bib39) 2019; 138 Brookes (10.1016/j.pedsph.2023.03.008_bib2) 1982; 14 Sinsabaugh (10.1016/j.pedsph.2023.03.008_bib29) 2016; 86 Deng (10.1016/j.pedsph.2023.03.008_bib9) 2020; 26 Deng (10.1016/j.pedsph.2023.03.008_bib10) 2021; 214 Cui (10.1016/j.pedsph.2023.03.008_bib6) 2020; 648 Sterner (10.1016/j.pedsph.2023.03.008_bib31) 2002 Mooshammer (10.1016/j.pedsph.2023.03.008_bib23) 2014; 5 |
References_xml | – volume: 209 year: 2022 ident: 10.1016/j.pedsph.2023.03.008_bib18 article-title: Soil organic carbon variation determined by biogeographic patterns of microbial carbon and nutrient limitations across a 3 000-km humidity gradient in China publication-title: Catena doi: 10.1016/j.catena.2021.105849 – volume: 85 start-page: 133 year: 2015 ident: 10.1016/j.pedsph.2023.03.008_bib40 article-title: The application of ecological stoichiometry to plant-microbial-soil organic matter transformations publication-title: EcolMonogr – volume: 83 start-page: 52 year: 2015 ident: 10.1016/j.pedsph.2023.03.008_bib14 article-title: Effects of increasing precipitation on soil microbial community composition and soil respiration in a temperate desert, Northwestern China publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.01.007 – volume: 86 start-page: 172 year: 2016 ident: 10.1016/j.pedsph.2023.03.008_bib29 article-title: Stoichiometry of microbial carbon use efficiency in soils publication-title: Ecol Monogr doi: 10.1890/15-2110.1 – volume: 138 year: 2019 ident: 10.1016/j.pedsph.2023.03.008_bib39 article-title: Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: Evidence from a long-term grassland experiment publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.107580 – volume: 650 start-page: 241 year: 2019 ident: 10.1016/j.pedsph.2023.03.008_bib4 article-title: Resource limitation of soil microbes in karst ecosystems publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.09.036 – volume: 3 start-page: 223 year: 2019 ident: 10.1016/j.pedsph.2023.03.008_bib1 article-title: Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation publication-title: Nat Ecol Evol doi: 10.1038/s41559-018-0771-4 – volume: 642 start-page: 45 year: 2018 ident: 10.1016/j.pedsph.2023.03.008_bib5 article-title: Responses of soil microbial communities to nutrient limitation in the desert-grassland ecological transition zone publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.06.033 – volume: 121 start-page: 212 year: 2018 ident: 10.1016/j.pedsph.2023.03.008_bib32 article-title: Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.02.022 – year: 2002 ident: 10.1016/j.pedsph.2023.03.008_bib31 – volume: 23 start-page: 979 year: 2014 ident: 10.1016/j.pedsph.2023.03.008_bib19 article-title: Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems publication-title: Glob Ecol Biogeogr doi: 10.1111/geb.12190 – volume: 43 start-page: 1902 year: 2011 ident: 10.1016/j.pedsph.2023.03.008_bib3 article-title: Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.05.011 – volume: 196 start-page: 79 year: 2012 ident: 10.1016/j.pedsph.2023.03.008_bib21 article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04225.x – volume: 5 year: 2014 ident: 10.1016/j.pedsph.2023.03.008_bib22 article-title: Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling publication-title: Nat Commun doi: 10.1038/ncomms4694 – volume: 21 start-page: 1407 year: 2015 ident: 10.1016/j.pedsph.2023.03.008_bib24 article-title: Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems publication-title: Glob Change Biol doi: 10.1111/gcb.12789 – volume: 87 start-page: 34 year: 2015 ident: 10.1016/j.pedsph.2023.03.008_bib33 article-title: Ecoenzymatic stoichiometry at the extremes: How microbes cope in an ultra-oligotrophic desert soil publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.04.007 – volume: 129 start-page: 21 year: 2016 ident: 10.1016/j.pedsph.2023.03.008_bib12 article-title: Eco-enzymatic stoichiometry and enzymatic vectors reveal differential C, N, P dynamics in decaying litter along a land-use gradient publication-title: Biogeochemistry doi: 10.1007/s10533-016-0217-5 – volume: 16 start-page: 930 year: 2013 ident: 10.1016/j.pedsph.2023.03.008_bib28 article-title: Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling publication-title: Ecol Lett doi: 10.1111/ele.12113 – ident: 10.1016/j.pedsph.2023.03.008_bib37 – volume: 26 start-page: 2613 year: 2020 ident: 10.1016/j.pedsph.2023.03.008_bib9 article-title: Soil GHG fluxes are altered by N deposition: New data indicate lower N stimulation of the N2O flux and greater stimulation of the calculated C pools publication-title: Glob Change Biol doi: 10.1111/gcb.14970 – volume: 00 start-page: 1 year: 2023 ident: 10.1016/j.pedsph.2023.03.008_bib17 article-title: C:N:P stoichiometry of plants, soils, and microorganisms: Response to altered precipitation publication-title: Glob Change Biol – volume: 117 start-page: 101 year: 2014 ident: 10.1016/j.pedsph.2023.03.008_bib36 article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils publication-title: Biogeochemistry doi: 10.1007/s10533-013-9849-x – volume: 30 start-page: 638 year: 2020 ident: 10.1016/j.pedsph.2023.03.008_bib7 article-title: Influence of peach (Prunus persica Batsch) phenological stage on the short-term changes in oxidizable and labile pools of soil organic carbon and activities of carbon-cycle enzymes in the North-Western Himalayas publication-title: Pedosphere doi: 10.1016/S1002-0160(20)60026-1 – volume: 693 year: 2019 ident: 10.1016/j.pedsph.2023.03.008_bib16 article-title: Dynamics of soil microbial C:N:P stoichiometry and its driving mechanisms following natural vegetation restoration after farmland abandonment publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.133613 – volume: 14 start-page: 319 year: 1982 ident: 10.1016/j.pedsph.2023.03.008_bib2 article-title: Measurement of microbial biomass phosphorus in soil publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(82)90001-3 – volume: 30 start-page: 433 year: 2020 ident: 10.1016/j.pedsph.2023.03.008_bib38 article-title: Soil microbial attributes along a chronosequence of Scots pine (Pinus sylvestris var. mongolica) plantations in northern China publication-title: Pedosphere doi: 10.1016/S1002-0160(17)60329-1 – volume: 648 start-page: 388 year: 2020 ident: 10.1016/j.pedsph.2023.03.008_bib6 article-title: Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: Evidence from nutrient limitation of soil microbes publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.08.173 – volume: 3 start-page: 42 year: 2012 ident: 10.1016/j.pedsph.2023.03.008_bib26 article-title: Variable stoichiometry and homeostatic regulation of bacterial biomass elemental composition publication-title: Front Microbiol doi: 10.3389/fmicb.2012.00042 – volume: 16 start-page: 764 year: 2013 ident: 10.1016/j.pedsph.2023.03.008_bib11 article-title: An experimental test of the hypothesis of non-homeostatic consumer stoichiometry in a plant litter-microbe system publication-title: Ecol Lett doi: 10.1111/ele.12108 – volume: 5 start-page: 22 year: 2014 ident: 10.1016/j.pedsph.2023.03.008_bib23 article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources publication-title: Front Microbiol doi: 10.3389/fmicb.2014.00022 – volume: 29 start-page: 775 year: 2015 ident: 10.1016/j.pedsph.2023.03.008_bib34 article-title: Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions publication-title: Glob Biogeochem Cy doi: 10.1002/2014GB005021 – volume: 5 year: 2014 ident: 10.1016/j.pedsph.2023.03.008_bib35 article-title: Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands publication-title: Nat Commun – volume: 33 start-page: 559 year: 2019 ident: 10.1016/j.pedsph.2023.03.008_bib13 article-title: Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern China: Evidence from ecoenzymatic stoichiometry publication-title: Glob Biogeochem Cycles doi: 10.1029/2018GB006112 – volume: 17 start-page: 680 year: 2014 ident: 10.1016/j.pedsph.2023.03.008_bib15 article-title: Microbial community dynamics alleviate stoichiometric constraints during litter decay publication-title: Ecol Lett doi: 10.1111/ele.12269 – volume: 33 start-page: 194 year: 2023 ident: 10.1016/j.pedsph.2023.03.008_bib27 article-title: Effects of global change and human disturbance on soil carbon cycling in boreal forest: A review publication-title: Pedosphere doi: 10.1016/j.pedsph.2022.06.035 – volume: 106 start-page: 1704 year: 2009 ident: 10.1016/j.pedsph.2023.03.008_bib30 article-title: Irreversible climate change due to carbon dioxide emissions publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0812721106 – volume: 98 start-page: 74 year: 2016 ident: 10.1016/j.pedsph.2023.03.008_bib25 article-title: Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.04.008 – volume: 16 start-page: 1581 year: 2005 ident: 10.1016/j.pedsph.2023.03.008_bib20 article-title: Effects of soil temperature and humidity on soil respiration rate under Pinus sylvestriformis forest publication-title: Chin J Appl Ecol (in Chinese) – volume: 214 year: 2021 ident: 10.1016/j.pedsph.2023.03.008_bib10 article-title: Drought effects on droughts on soil carbon and nitrogen dynamics in global natural ecosystems publication-title: Earth-Sci Rev doi: 10.1016/j.earscirev.2020.103501 – volume: 353 start-page: 188 year: 2019 ident: 10.1016/j.pedsph.2023.03.008_bib8 article-title: Drivers of soil microbial metabolic limitation changes along a vegetation restoration gradient on the Loess Plateau, China publication-title: Geoderma doi: 10.1016/j.geoderma.2019.06.037 – volume: 11 start-page: 266 year: 2005 ident: 10.1016/j.pedsph.2023.03.008_bib41 article-title: Soil microbial responses to experimental warming and clipping in a tallgrass prairie publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2005.00902.x |
SSID | ssj0041911 |
Score | 2.3360376 |
Snippet | Humidity not only affects soil microbial respiration (SMR) directly, but, indirectly by regulating the availability of soil water and nutrients. However, the... Humidity not only affects soil microbial respiration(SMR)directly,but,indirectly by regulating the availability of soil water and nutrients.However,the... |
SourceID | wanfang proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 905 |
SubjectTerms | atmospheric precipitation climate change enzyme activity enzymes homeostasis humidity microbial biomass prediction soil enzymes soil water stoichiometry |
Title | Soil microbial respiration is regulated by stoichiometric imbalances: Evidence from a humidity gradient case |
URI | https://www.proquest.com/docview/3040360720 https://d.wanfangdata.com.cn/periodical/trq-e202306009 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9NQFL-UDUE_DJ_YOfUKfispaW7S2-xbGZPWxxBcoX4K95Uuo0u2NmM6_3nPfaWZE3VCCOHQ3DQ5v5xHzguhtyrnuRzFPJCEiiCOhAhSRYdBykcErGWhqInofjoaTmbx-3ky73R-tKtLat4X17-tK_kfrgIN-KqrZO_A2WZRIMAx8Bf2wGHY_xOPv1TFsndWmF5KpkG_DZub9EUdDjBj5q2JCTZeIU50rb1uyd8rzrjOaRQ2I86PFrXFJkwP7iukNs8XK5MRVveED-I4O_azktVadyRocPFxagBRXKnCk-bTQ0tj5YJXjfifeeL1CWuoBzNz_teqXHzz2tR9jIhIK7HDys_QJDTbEQFewNpOFw5IbWmZhklL8aa2rvOWTLefF07750rCjfX1ZV1f2o0O83H7X1Rbk3Doc9lOM7tKplfJQth0ofh2BD4GCMnt8fTD5Mgr8hhcWeOv-3vylZcmPfD2v7lp2WzclXtXrMzhQbfsluOHaMc5HHhs0fMIdVT5GD0YL1au6Yp6gpYaR7jBEW7hCBdr3OAI8-_4Jo7wBkf72KMIaxRhhj2KsEcR1ih6imbvDo8PJoGbwhEIMkhqnb_DqRQgvOUIVNJAxoJJkoaU6WmQIo5ZnCtGqUxlDhKBJpxrG5-C4crAexDkGdoqq1I9RzjinAwIBRNfiJizhLGBSuKcq6FIIh7lXUT8E8yEa1GvJ6Ussz_xr4uC5qxz26LlL79_45mTgSzVATJWqupynRHQaGQY0ijsoteOa5l739dZvbrIVGR8dnBMdu941Rfo_uaF2UNb9epSvQR7tuavHO5-AuzvpLU |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+microbial+respiration+is+regulated+by+stoichiometric+imbalances%3A+Evidence+from+a+humidity+gradient+case&rft.jtitle=Pedosphere&rft.au=LI%2C+Jiwei&rft.au=XIE%2C+Jiangbo&rft.au=WU%2C+Jianzhao&rft.au=CUI%2C+Yongxing&rft.date=2023-12-01&rft.issn=1002-0160&rft.volume=33&rft.issue=6&rft.spage=905&rft.epage=915&rft_id=info:doi/10.1016%2Fj.pedsph.2023.03.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pedsph_2023_03_008 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ftrq-e%2Ftrq-e.jpg |