Hidden Markov random field model and Broyden–Fletcher–Goldfarb–Shanno algorithm for brain image segmentation
Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis and interpretation became a tedious task. Thus, automatic image segmentation became essential for diagnosis assistance. Segmentation consists i...
Saved in:
Published in | Journal of experimental & theoretical artificial intelligence Vol. 30; no. 3; pp. 415 - 427 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis Ltd
04.05.2018
Taylor & Francis |
Subjects | |
Online Access | Get full text |
ISSN | 0952-813X 1362-3079 |
DOI | 10.1080/0952813X.2017.1409280 |
Cover
Abstract | Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis and interpretation became a tedious task. Thus, automatic image segmentation became essential for diagnosis assistance. Segmentation consists in dividing the image into homogeneous and significant regions. We focus on hidden Markov random fields referred to as HMRF to model the problem of segmentation. This modelisation leads to a classical function minimisation problem. Broyden-Fletcher-Goldfarb-Shanno algorithm referred to as BFGS is one of the most powerful methods to solve unconstrained optimisation problem. In this paper, we investigate the combination of HMRF and BFGS algorithm to perform the segmentation operation. The proposed method shows very good segmentation results comparing with well-known approaches. The tests are conducted on brain magnetic resonance image databases (BrainWeb and IBSR) largely used to objectively confront the results obtained. The well-known Dice coefficient (DC) was used as similarity metric. The experimental results show that, in many cases, our proposed method approaches the perfect segmentation with a Dice Coefficient above .9. Moreover, it generally outperforms other methods in the tests conducted. |
---|---|
AbstractList | Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis and interpretation became a tedious task. Thus, automatic image segmentation became essential for diagnosis assistance. Segmentation consists in dividing the image into homogeneous and significant regions. We focus on hidden Markov random fields referred to as HMRF to model the problem of segmentation. This modelisation leads to a classical function minimisation problem. Broyden-Fletcher-Goldfarb-Shanno algorithm referred to as BFGS is one of the most powerful methods to solve unconstrained optimisation problem. In this paper, we investigate the combination of HMRF and BFGS algorithm to perform the segmentation operation. The proposed method shows very good segmentation results comparing with well-known approaches. The tests are conducted on brain magnetic resonance image databases (BrainWeb and IBSR) largely used to objectively confront the results obtained. The well-known Dice coefficient (DC) was used as similarity metric. The experimental results show that, in many cases, our proposed method approaches the perfect segmentation with a Dice Coefficient above .9. Moreover, it generally outperforms other methods in the tests conducted. |
Author | Michelucci, Dominique Guerrout, EL-Hachemi Ait-Aoudia, Samy Mahiou, Ramdane |
Author_xml | – sequence: 1 givenname: EL-Hachemi orcidid: 0000-0002-8957-4611 surname: Guerrout fullname: Guerrout, EL-Hachemi organization: Laboratoire LMCS, Ecole nationale Supérieure en Informatique, Oued-Smar, Algeria – sequence: 2 givenname: Samy orcidid: 0000-0002-6074-2060 surname: Ait-Aoudia fullname: Ait-Aoudia, Samy organization: Laboratoire LMCS, Ecole nationale Supérieure en Informatique, Oued-Smar, Algeria – sequence: 3 givenname: Dominique orcidid: 0000-0002-1256-9080 surname: Michelucci fullname: Michelucci, Dominique organization: Laboratoire LE2I, Université de Bourgogne, Dijon, France – sequence: 4 givenname: Ramdane orcidid: 0000-0003-2168-3640 surname: Mahiou fullname: Mahiou, Ramdane organization: Laboratoire LMCS, Ecole nationale Supérieure en Informatique, Oued-Smar, Algeria |
BackLink | https://ube.hal.science/hal-01861654$$DView record in HAL |
BookMark | eNqFkc1KAzEUhYMoWH8eQQi4cjH1ZjKZSXBVRVuh4kIFdyEzSdqp06RmxkJ3voNv6JOYoerCjat7uXzncDnnAO067wxCJwSGBDicg2ApJ_R5mAIphiQDkXLYQQNC8zShUIhdNOiZpIf20UHbLgCAMEIGKExqrY3Ddyq8-DUOymm_xLY2jcZLr02D4wVfBr-J1Of7x01jumpuQlzHvtFWhTKuD3PlnMeqmflQd_No4AMug6odrpdqZnBrZkvjOtXV3h2hPaua1hx_z0P0dHP9eDVJpvfj26vRNKkoYV3CS2t4SbhNRakUKFHYqiis0bpgmlYZoxnLuGJUZBXPbUFZWhADeZaDFmVZ0UN0tvWdq0auQnwkbKRXtZyMprK_AeE5yVm2JpE93bKr4F_fTNvJhX8LLr4nU8iYoFwwFim2parg2zYY-2tLQPZVyJ8qZF-F_K4i6i7-6Kp6m0UXM2r-UX8B7yeTlw |
CitedBy_id | crossref_primary_10_1007_s42979_023_02197_y crossref_primary_10_1590_0001_3765202420221041 crossref_primary_10_1109_TIP_2020_2990346 crossref_primary_10_3390_f15091599 crossref_primary_10_1109_ACCESS_2019_2936254 crossref_primary_10_1016_j_rinp_2021_103860 crossref_primary_10_3233_THC_228008 crossref_primary_10_3832_ifor3209_012 crossref_primary_10_3389_fmed_2022_794126 crossref_primary_10_1109_ACCESS_2020_2979686 |
Cites_doi | 10.2307/1932409 10.1090/S0025-5718-1970-0258249-6 10.1016/j.neuroimage.2012.01.021 10.1016/S1361-8415(96)80007-7 10.1093/comjnl/6.2.163 10.1007/s10044-014-0373-y 10.1109/TPAMI.2007.70844 10.1109/42.668699 10.1016/j.mri.2011.09.008 10.1109/83.902291 10.1016/j.media.2012.01.001 10.1007/s10851-012-0376-5 10.1016/S1361-8415(03)00067-7 10.1109/TPAMI.1984.4767596 10.1090/S0025-5718-1970-0274029-X 10.1007/BF00938762 10.1016/j.neuroimage.2005.02.018 10.1109/MIS.2015.93 10.1016/j.cmpb.2013.11.015 10.1016/j.ieri.2014.09.065 10.1109/42.906424 10.1016/j.bspc.2012.01.002 10.1093/imamat/6.1.76 10.1016/j.patcog.2016.06.020 10.1017/S0305004100027419 10.1017/CBO9780511804441 10.1016/j.neuroimage.2013.08.008 10.1093/comjnl/13.3.317 |
ContentType | Journal Article |
Copyright | 2017 Informa UK Limited, trading as Taylor & Francis Group Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION JQ2 1XC |
DOI | 10.1080/0952813X.2017.1409280 |
DatabaseName | CrossRef ProQuest Computer Science Collection Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1362-3079 |
EndPage | 427 |
ExternalDocumentID | oai_HAL_hal_01861654v1 10_1080_0952813X_2017_1409280 |
GroupedDBID | .4S .7F .DC .QJ 0BK 0R~ 29K 2DF 30N 4.4 5GY 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAYXX ABCCY ABDBF ABFIM ABHAV ABIVO ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACTIO ACUHS ADCVX ADGTB ADMLS ADXPE ADYSH AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AMPGV AQRUH ARCSS AVBZW AWYRJ BLEHA CCCUG CITATION CS3 D-I DGEBU DKSSO EAP EBR EBS EBU ECS EDO EJD EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P K1G KYCEM M4Z MK~ NA5 NX~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TH9 TNC TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ZL0 ~S~ JQ2 TASJS 1XC |
ID | FETCH-LOGICAL-c315t-8bfe8b18f29baa0a97fc77fedd75d3c4534548a5394c86f735271e06460d9bbc3 |
ISSN | 0952-813X |
IngestDate | Fri Sep 12 12:51:25 EDT 2025 Sun Jul 13 05:32:25 EDT 2025 Thu Apr 24 23:01:05 EDT 2025 Tue Jul 01 03:12:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Automatic segmentation MR-images Minimization Dice coefficient criterion hidden Markov random field Broyden-Fletcher-Goldfarb-Shanno algorithm Brain image segmentation |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c315t-8bfe8b18f29baa0a97fc77fedd75d3c4534548a5394c86f735271e06460d9bbc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2168-3640 0000-0002-1256-9080 0000-0002-8957-4611 0000-0002-6074-2060 |
PQID | 2045938955 |
PQPubID | 53008 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_hal_01861654v1 proquest_journals_2045938955 crossref_primary_10_1080_0952813X_2017_1409280 crossref_citationtrail_10_1080_0952813X_2017_1409280 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-04 |
PublicationDateYYYYMMDD | 2018-05-04 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Journal of experimental & theoretical artificial intelligence |
PublicationYear | 2018 |
Publisher | Taylor & Francis Ltd Taylor & Francis |
Publisher_xml | – name: Taylor & Francis Ltd – name: Taylor & Francis |
References | CIT0050 CIT0052 Zhao M. (CIT0063) 2015; 9 CIT0010 CIT0053 CIT0012 CIT0034 CIT0056 CIT0011 Cocosco C. A. (CIT0013) 1997; 5 Eberly D (CIT0018) 2003 CIT0014 CIT0058 CIT0016 CIT0038 Ait-Aoudia S (CIT0001) 2014 CIT0039 CIT0061 CIT0060 CIT0041 CIT0062 CIT0021 CIT0020 CIT0042 CIT0022 CIT0003 CIT0025 CIT0024 CIT0005 CIT0004 CIT0048 CIT0029 CIT0008 Hammersley J. M (CIT0031) 1971 |
References_xml | – volume: 9 start-page: 1971 issue: 4 year: 2015 ident: CIT0063 publication-title: Applied Mathematics & Information Sciences – ident: CIT0016 doi: 10.2307/1932409 – ident: CIT0025 doi: 10.1090/S0025-5718-1970-0258249-6 – ident: CIT0020 doi: 10.1016/j.neuroimage.2012.01.021 – ident: CIT0042 doi: 10.1016/S1361-8415(96)80007-7 – ident: CIT0022 doi: 10.1093/comjnl/6.2.163 – ident: CIT0005 doi: 10.1007/s10044-014-0373-y – ident: CIT0056 doi: 10.1109/TPAMI.2007.70844 – ident: CIT0004 doi: 10.1109/42.668699 – ident: CIT0038 doi: 10.1016/j.mri.2011.09.008 – ident: CIT0011 doi: 10.1109/83.902291 – ident: CIT0061 doi: 10.1016/j.media.2012.01.001 – ident: CIT0039 doi: 10.1007/s10851-012-0376-5 – ident: CIT0060 doi: 10.1016/S1361-8415(03)00067-7 – ident: CIT0024 doi: 10.1109/TPAMI.1984.4767596 – ident: CIT0052 doi: 10.1090/S0025-5718-1970-0274029-X – ident: CIT0053 doi: 10.1007/BF00938762 – ident: CIT0003 doi: 10.1016/j.neuroimage.2005.02.018 – ident: CIT0034 doi: 10.1109/MIS.2015.93 – ident: CIT0014 – ident: CIT0050 doi: 10.1016/j.cmpb.2013.11.015 – ident: CIT0029 doi: 10.1016/j.ieri.2014.09.065 – year: 1971 ident: CIT0031 publication-title: Markov fields on finite graphs and lattices – ident: CIT0062 doi: 10.1109/42.906424 – ident: CIT0041 doi: 10.1016/j.bspc.2012.01.002 – start-page: 287 year: 2014 ident: CIT0001 publication-title: 18th International Conference on Information Visualisation – ident: CIT0010 doi: 10.1093/imamat/6.1.76 – volume-title: Magic Software, Inc year: 2003 ident: CIT0018 – volume: 5 start-page: 425 issue: 4 year: 1997 ident: CIT0013 publication-title: NeuroImage – ident: CIT0012 doi: 10.1016/j.patcog.2016.06.020 – ident: CIT0048 doi: 10.1017/S0305004100027419 – ident: CIT0008 doi: 10.1017/CBO9780511804441 – ident: CIT0058 doi: 10.1016/j.neuroimage.2013.08.008 – ident: CIT0021 doi: 10.1093/comjnl/13.3.317 |
SSID | ssj0001511 |
Score | 2.1938713 |
Snippet | Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis... |
SourceID | hal proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 415 |
SubjectTerms | Algorithms Artificial Intelligence Brain Computer Science Fields (mathematics) Image segmentation Magnetic resonance imaging Markov analysis Markov chains Medical imaging Test procedures |
Title | Hidden Markov random field model and Broyden–Fletcher–Goldfarb–Shanno algorithm for brain image segmentation |
URI | https://www.proquest.com/docview/2045938955 https://ube.hal.science/hal-01861654 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZ2eeEFxk10DGQh3qpUTRPX8WPFGAHGhNROTLxEjuOskZoEZckkeOI_8A_5JRxfkqasiMFLFLlNUvt8PT52vvMdhF4yEbNkSlJHMMocf5IKh0k_dTihcsIDApZWucMfzqbhuf_uglzs7B70WEtNHY_Et615Jf9jVWgDu6os2X-wbHdTaIBzsC8cwcJwvJWNQ6X_Ueh8m_J6CLNOUuZDzUkzFW70mwFYaH9VzsWyGrzOUm3Dm3KVpLyKu4b5khdFOeSry7LK6mVuKJ2qlsQwyxXH50pe5jZnqfhDdLtROUDBq58xqbpilSuyniRoxwVqZFWVTW1oZ06oNKfzrINmVjuzskkMy3fO1ykZhtbaCGGS50slm2I45XbTfZmVjcYUzxNu-QR2x8MNNL9wveO5uFF8ZGNXExy8q0sMw_RmfLpKDANXxvpO374Myvp7AtqD-ya71AYDvhEuuDHPWGImPE09TDEE6UhJh01MWapNXe9wNo8-Hp9Ep2_P3m9-2gl8h7PTaAn4g95OVX7ZNSzo9yeUKubB_iw8_vypCy8gRHONgKTpaZuWpgTjt_2ejYBrd6novr9FHTqUWhyguxYleGYAfR_tyOIButfWF8F2unmIKoNvbPCNDb6xxjfW-MbQgi2-f37_0SIbTltMw6lBM-7QjAHNWKMZazTjPpofofOT14tXoWNrhDjCc0ntBHEqg9gN0gmLOR9zRlNBaSqThJLEEz7xfFiTc-IxXwTTlMJ6g7oS4vDpOGFxLLzHaK8oC_kE4SAlPkxn6r0-94VHmfSIpIHakOByMvYHyG8HMhJWQF_VcVlFbquza8c_UuMf2fEfoFF32RejIPO3C14oKLTf3Q6PATpqjRhZj3QVqdISDFYghBze5h5P0Z313-sI7dVVI59BiF3Hzy3ofgFIGtBq |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hidden+Markov+random+field+model+and+Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno+algorithm+for+brain+image+segmentation&rft.jtitle=Journal+of+experimental+%26+theoretical+artificial+intelligence&rft.au=Guerrout%2C+El-Hachemi&rft.au=Ait-Aoudia%2C+Samy&rft.au=Michelucci%2C+Dominique&rft.au=Mahiou%2C+Ramdane&rft.date=2018-05-04&rft.pub=Taylor+%26+Francis&rft.issn=0952-813X&rft.eissn=1362-3079&rft.volume=30&rft.issue=3&rft.spage=415&rft.epage=427&rft_id=info:doi/10.1080%2F0952813X.2017.1409280&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01861654v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-813X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-813X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-813X&client=summon |