Hidden Markov random field model and Broyden–Fletcher–Goldfarb–Shanno algorithm for brain image segmentation

Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis and interpretation became a tedious task. Thus, automatic image segmentation became essential for diagnosis assistance. Segmentation consists i...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental & theoretical artificial intelligence Vol. 30; no. 3; pp. 415 - 427
Main Authors Guerrout, EL-Hachemi, Ait-Aoudia, Samy, Michelucci, Dominique, Mahiou, Ramdane
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis Ltd 04.05.2018
Taylor & Francis
Subjects
Online AccessGet full text
ISSN0952-813X
1362-3079
DOI10.1080/0952813X.2017.1409280

Cover

Abstract Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis and interpretation became a tedious task. Thus, automatic image segmentation became essential for diagnosis assistance. Segmentation consists in dividing the image into homogeneous and significant regions. We focus on hidden Markov random fields referred to as HMRF to model the problem of segmentation. This modelisation leads to a classical function minimisation problem. Broyden-Fletcher-Goldfarb-Shanno algorithm referred to as BFGS is one of the most powerful methods to solve unconstrained optimisation problem. In this paper, we investigate the combination of HMRF and BFGS algorithm to perform the segmentation operation. The proposed method shows very good segmentation results comparing with well-known approaches. The tests are conducted on brain magnetic resonance image databases (BrainWeb and IBSR) largely used to objectively confront the results obtained. The well-known Dice coefficient (DC) was used as similarity metric. The experimental results show that, in many cases, our proposed method approaches the perfect segmentation with a Dice Coefficient above .9. Moreover, it generally outperforms other methods in the tests conducted.
AbstractList Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis and interpretation became a tedious task. Thus, automatic image segmentation became essential for diagnosis assistance. Segmentation consists in dividing the image into homogeneous and significant regions. We focus on hidden Markov random fields referred to as HMRF to model the problem of segmentation. This modelisation leads to a classical function minimisation problem. Broyden-Fletcher-Goldfarb-Shanno algorithm referred to as BFGS is one of the most powerful methods to solve unconstrained optimisation problem. In this paper, we investigate the combination of HMRF and BFGS algorithm to perform the segmentation operation. The proposed method shows very good segmentation results comparing with well-known approaches. The tests are conducted on brain magnetic resonance image databases (BrainWeb and IBSR) largely used to objectively confront the results obtained. The well-known Dice coefficient (DC) was used as similarity metric. The experimental results show that, in many cases, our proposed method approaches the perfect segmentation with a Dice Coefficient above .9. Moreover, it generally outperforms other methods in the tests conducted.
Author Michelucci, Dominique
Guerrout, EL-Hachemi
Ait-Aoudia, Samy
Mahiou, Ramdane
Author_xml – sequence: 1
  givenname: EL-Hachemi
  orcidid: 0000-0002-8957-4611
  surname: Guerrout
  fullname: Guerrout, EL-Hachemi
  organization: Laboratoire LMCS, Ecole nationale Supérieure en Informatique, Oued-Smar, Algeria
– sequence: 2
  givenname: Samy
  orcidid: 0000-0002-6074-2060
  surname: Ait-Aoudia
  fullname: Ait-Aoudia, Samy
  organization: Laboratoire LMCS, Ecole nationale Supérieure en Informatique, Oued-Smar, Algeria
– sequence: 3
  givenname: Dominique
  orcidid: 0000-0002-1256-9080
  surname: Michelucci
  fullname: Michelucci, Dominique
  organization: Laboratoire LE2I, Université de Bourgogne, Dijon, France
– sequence: 4
  givenname: Ramdane
  orcidid: 0000-0003-2168-3640
  surname: Mahiou
  fullname: Mahiou, Ramdane
  organization: Laboratoire LMCS, Ecole nationale Supérieure en Informatique, Oued-Smar, Algeria
BackLink https://ube.hal.science/hal-01861654$$DView record in HAL
BookMark eNqFkc1KAzEUhYMoWH8eQQi4cjH1ZjKZSXBVRVuh4kIFdyEzSdqp06RmxkJ3voNv6JOYoerCjat7uXzncDnnAO067wxCJwSGBDicg2ApJ_R5mAIphiQDkXLYQQNC8zShUIhdNOiZpIf20UHbLgCAMEIGKExqrY3Ddyq8-DUOymm_xLY2jcZLr02D4wVfBr-J1Of7x01jumpuQlzHvtFWhTKuD3PlnMeqmflQd_No4AMug6odrpdqZnBrZkvjOtXV3h2hPaua1hx_z0P0dHP9eDVJpvfj26vRNKkoYV3CS2t4SbhNRakUKFHYqiis0bpgmlYZoxnLuGJUZBXPbUFZWhADeZaDFmVZ0UN0tvWdq0auQnwkbKRXtZyMprK_AeE5yVm2JpE93bKr4F_fTNvJhX8LLr4nU8iYoFwwFim2parg2zYY-2tLQPZVyJ8qZF-F_K4i6i7-6Kp6m0UXM2r-UX8B7yeTlw
CitedBy_id crossref_primary_10_1007_s42979_023_02197_y
crossref_primary_10_1590_0001_3765202420221041
crossref_primary_10_1109_TIP_2020_2990346
crossref_primary_10_3390_f15091599
crossref_primary_10_1109_ACCESS_2019_2936254
crossref_primary_10_1016_j_rinp_2021_103860
crossref_primary_10_3233_THC_228008
crossref_primary_10_3832_ifor3209_012
crossref_primary_10_3389_fmed_2022_794126
crossref_primary_10_1109_ACCESS_2020_2979686
Cites_doi 10.2307/1932409
10.1090/S0025-5718-1970-0258249-6
10.1016/j.neuroimage.2012.01.021
10.1016/S1361-8415(96)80007-7
10.1093/comjnl/6.2.163
10.1007/s10044-014-0373-y
10.1109/TPAMI.2007.70844
10.1109/42.668699
10.1016/j.mri.2011.09.008
10.1109/83.902291
10.1016/j.media.2012.01.001
10.1007/s10851-012-0376-5
10.1016/S1361-8415(03)00067-7
10.1109/TPAMI.1984.4767596
10.1090/S0025-5718-1970-0274029-X
10.1007/BF00938762
10.1016/j.neuroimage.2005.02.018
10.1109/MIS.2015.93
10.1016/j.cmpb.2013.11.015
10.1016/j.ieri.2014.09.065
10.1109/42.906424
10.1016/j.bspc.2012.01.002
10.1093/imamat/6.1.76
10.1016/j.patcog.2016.06.020
10.1017/S0305004100027419
10.1017/CBO9780511804441
10.1016/j.neuroimage.2013.08.008
10.1093/comjnl/13.3.317
ContentType Journal Article
Copyright 2017 Informa UK Limited, trading as Taylor & Francis Group
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
JQ2
1XC
DOI 10.1080/0952813X.2017.1409280
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1362-3079
EndPage 427
ExternalDocumentID oai_HAL_hal_01861654v1
10_1080_0952813X_2017_1409280
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
29K
2DF
30N
4.4
5GY
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAYXX
ABCCY
ABDBF
ABFIM
ABHAV
ABIVO
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ACUHS
ADCVX
ADGTB
ADMLS
ADXPE
ADYSH
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMPGV
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CITATION
CS3
D-I
DGEBU
DKSSO
EAP
EBR
EBS
EBU
ECS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
M4Z
MK~
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TNC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
ZL0
~S~
JQ2
TASJS
1XC
ID FETCH-LOGICAL-c315t-8bfe8b18f29baa0a97fc77fedd75d3c4534548a5394c86f735271e06460d9bbc3
ISSN 0952-813X
IngestDate Fri Sep 12 12:51:25 EDT 2025
Sun Jul 13 05:32:25 EDT 2025
Thu Apr 24 23:01:05 EDT 2025
Tue Jul 01 03:12:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Automatic segmentation
MR-images
Minimization
Dice coefficient criterion
hidden Markov random field
Broyden-Fletcher-Goldfarb-Shanno algorithm
Brain image segmentation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-8bfe8b18f29baa0a97fc77fedd75d3c4534548a5394c86f735271e06460d9bbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2168-3640
0000-0002-1256-9080
0000-0002-8957-4611
0000-0002-6074-2060
PQID 2045938955
PQPubID 53008
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_01861654v1
proquest_journals_2045938955
crossref_primary_10_1080_0952813X_2017_1409280
crossref_citationtrail_10_1080_0952813X_2017_1409280
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-04
PublicationDateYYYYMMDD 2018-05-04
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-04
  day: 04
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of experimental & theoretical artificial intelligence
PublicationYear 2018
Publisher Taylor & Francis Ltd
Taylor & Francis
Publisher_xml – name: Taylor & Francis Ltd
– name: Taylor & Francis
References CIT0050
CIT0052
Zhao M. (CIT0063) 2015; 9
CIT0010
CIT0053
CIT0012
CIT0034
CIT0056
CIT0011
Cocosco C. A. (CIT0013) 1997; 5
Eberly D (CIT0018) 2003
CIT0014
CIT0058
CIT0016
CIT0038
Ait-Aoudia S (CIT0001) 2014
CIT0039
CIT0061
CIT0060
CIT0041
CIT0062
CIT0021
CIT0020
CIT0042
CIT0022
CIT0003
CIT0025
CIT0024
CIT0005
CIT0004
CIT0048
CIT0029
CIT0008
Hammersley J. M (CIT0031) 1971
References_xml – volume: 9
  start-page: 1971
  issue: 4
  year: 2015
  ident: CIT0063
  publication-title: Applied Mathematics & Information Sciences
– ident: CIT0016
  doi: 10.2307/1932409
– ident: CIT0025
  doi: 10.1090/S0025-5718-1970-0258249-6
– ident: CIT0020
  doi: 10.1016/j.neuroimage.2012.01.021
– ident: CIT0042
  doi: 10.1016/S1361-8415(96)80007-7
– ident: CIT0022
  doi: 10.1093/comjnl/6.2.163
– ident: CIT0005
  doi: 10.1007/s10044-014-0373-y
– ident: CIT0056
  doi: 10.1109/TPAMI.2007.70844
– ident: CIT0004
  doi: 10.1109/42.668699
– ident: CIT0038
  doi: 10.1016/j.mri.2011.09.008
– ident: CIT0011
  doi: 10.1109/83.902291
– ident: CIT0061
  doi: 10.1016/j.media.2012.01.001
– ident: CIT0039
  doi: 10.1007/s10851-012-0376-5
– ident: CIT0060
  doi: 10.1016/S1361-8415(03)00067-7
– ident: CIT0024
  doi: 10.1109/TPAMI.1984.4767596
– ident: CIT0052
  doi: 10.1090/S0025-5718-1970-0274029-X
– ident: CIT0053
  doi: 10.1007/BF00938762
– ident: CIT0003
  doi: 10.1016/j.neuroimage.2005.02.018
– ident: CIT0034
  doi: 10.1109/MIS.2015.93
– ident: CIT0014
– ident: CIT0050
  doi: 10.1016/j.cmpb.2013.11.015
– ident: CIT0029
  doi: 10.1016/j.ieri.2014.09.065
– year: 1971
  ident: CIT0031
  publication-title: Markov fields on finite graphs and lattices
– ident: CIT0062
  doi: 10.1109/42.906424
– ident: CIT0041
  doi: 10.1016/j.bspc.2012.01.002
– start-page: 287
  year: 2014
  ident: CIT0001
  publication-title: 18th International Conference on Information Visualisation
– ident: CIT0010
  doi: 10.1093/imamat/6.1.76
– volume-title: Magic Software, Inc
  year: 2003
  ident: CIT0018
– volume: 5
  start-page: 425
  issue: 4
  year: 1997
  ident: CIT0013
  publication-title: NeuroImage
– ident: CIT0012
  doi: 10.1016/j.patcog.2016.06.020
– ident: CIT0048
  doi: 10.1017/S0305004100027419
– ident: CIT0008
  doi: 10.1017/CBO9780511804441
– ident: CIT0058
  doi: 10.1016/j.neuroimage.2013.08.008
– ident: CIT0021
  doi: 10.1093/comjnl/13.3.317
SSID ssj0001511
Score 2.1938713
Snippet Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 415
SubjectTerms Algorithms
Artificial Intelligence
Brain
Computer Science
Fields (mathematics)
Image segmentation
Magnetic resonance imaging
Markov analysis
Markov chains
Medical imaging
Test procedures
Title Hidden Markov random field model and Broyden–Fletcher–Goldfarb–Shanno algorithm for brain image segmentation
URI https://www.proquest.com/docview/2045938955
https://ube.hal.science/hal-01861654
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZ2eeEFxk10DGQh3qpUTRPX8WPFGAHGhNROTLxEjuOskZoEZckkeOI_8A_5JRxfkqasiMFLFLlNUvt8PT52vvMdhF4yEbNkSlJHMMocf5IKh0k_dTihcsIDApZWucMfzqbhuf_uglzs7B70WEtNHY_Et615Jf9jVWgDu6os2X-wbHdTaIBzsC8cwcJwvJWNQ6X_Ueh8m_J6CLNOUuZDzUkzFW70mwFYaH9VzsWyGrzOUm3Dm3KVpLyKu4b5khdFOeSry7LK6mVuKJ2qlsQwyxXH50pe5jZnqfhDdLtROUDBq58xqbpilSuyniRoxwVqZFWVTW1oZ06oNKfzrINmVjuzskkMy3fO1ykZhtbaCGGS50slm2I45XbTfZmVjcYUzxNu-QR2x8MNNL9wveO5uFF8ZGNXExy8q0sMw_RmfLpKDANXxvpO374Myvp7AtqD-ya71AYDvhEuuDHPWGImPE09TDEE6UhJh01MWapNXe9wNo8-Hp9Ep2_P3m9-2gl8h7PTaAn4g95OVX7ZNSzo9yeUKubB_iw8_vypCy8gRHONgKTpaZuWpgTjt_2ejYBrd6novr9FHTqUWhyguxYleGYAfR_tyOIButfWF8F2unmIKoNvbPCNDb6xxjfW-MbQgi2-f37_0SIbTltMw6lBM-7QjAHNWKMZazTjPpofofOT14tXoWNrhDjCc0ntBHEqg9gN0gmLOR9zRlNBaSqThJLEEz7xfFiTc-IxXwTTlMJ6g7oS4vDpOGFxLLzHaK8oC_kE4SAlPkxn6r0-94VHmfSIpIHakOByMvYHyG8HMhJWQF_VcVlFbquza8c_UuMf2fEfoFF32RejIPO3C14oKLTf3Q6PATpqjRhZj3QVqdISDFYghBze5h5P0Z313-sI7dVVI59BiF3Hzy3ofgFIGtBq
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hidden+Markov+random+field+model+and+Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno+algorithm+for+brain+image+segmentation&rft.jtitle=Journal+of+experimental+%26+theoretical+artificial+intelligence&rft.au=Guerrout%2C+El-Hachemi&rft.au=Ait-Aoudia%2C+Samy&rft.au=Michelucci%2C+Dominique&rft.au=Mahiou%2C+Ramdane&rft.date=2018-05-04&rft.pub=Taylor+%26+Francis&rft.issn=0952-813X&rft.eissn=1362-3079&rft.volume=30&rft.issue=3&rft.spage=415&rft.epage=427&rft_id=info:doi/10.1080%2F0952813X.2017.1409280&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01861654v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-813X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-813X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-813X&client=summon