Enhancing property prediction and process optimization in building materials through machine learning: A review
[Display omitted] Analysis and design, as the most critical components in material science, require a highly rigorous approach to assure long-term success. Due to a recent increase in the amount of available experimental data, large databases now contain a depth of knowledge on important properties...
Saved in:
Published in | Computational materials science Vol. 220; p. 112031 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Analysis and design, as the most critical components in material science, require a highly rigorous approach to assure long-term success. Due to a recent increase in the amount of available experimental data, large databases now contain a depth of knowledge on important properties of materials. The use of this information, combined with Machine Learning (ML) solutions, can enhance the materials’ manufacturing process and efficiency. Indeed, ML can predict material properties, minimize the time and cost of laboratory testing, as well as optimize critical manufacturing processes. This paper aims to give an up-to-date review of the literature on how ML models are used to predict buildings’ material properties (thermal, mechanical, and optical) and optimize the production lines for: a) Phase Change Materials (PCMs), b) Thermoelectric generators (TEGs), c) Customizable 3D-components, d) Advanced cement/concrete-based materials, e) Aerogels, f) Insulation components made from waste materials, g) Multifunctional component materials (MCs), h) Solar active building envelopes (SAE), i) Omniphobic coatings. The review showed that ML-driven approaches for materials’ properties prediction in buildings and process optimization have grown rapidly, providing information and insights that can be utilized in the industry to maximize the materials’ production and efficiency while reducing CO2 emissions, resulting in a more productive and environmentally friendly era. |
---|---|
AbstractList | [Display omitted]
Analysis and design, as the most critical components in material science, require a highly rigorous approach to assure long-term success. Due to a recent increase in the amount of available experimental data, large databases now contain a depth of knowledge on important properties of materials. The use of this information, combined with Machine Learning (ML) solutions, can enhance the materials’ manufacturing process and efficiency. Indeed, ML can predict material properties, minimize the time and cost of laboratory testing, as well as optimize critical manufacturing processes. This paper aims to give an up-to-date review of the literature on how ML models are used to predict buildings’ material properties (thermal, mechanical, and optical) and optimize the production lines for: a) Phase Change Materials (PCMs), b) Thermoelectric generators (TEGs), c) Customizable 3D-components, d) Advanced cement/concrete-based materials, e) Aerogels, f) Insulation components made from waste materials, g) Multifunctional component materials (MCs), h) Solar active building envelopes (SAE), i) Omniphobic coatings. The review showed that ML-driven approaches for materials’ properties prediction in buildings and process optimization have grown rapidly, providing information and insights that can be utilized in the industry to maximize the materials’ production and efficiency while reducing CO2 emissions, resulting in a more productive and environmentally friendly era. |
ArticleNumber | 112031 |
Author | Stergiou, Konstantinos Ntakolia, Charis Moustakidis, Serafeim Karlsson, Patrik Varytis, Paris Koumoulos, Elias |
Author_xml | – sequence: 1 givenname: Konstantinos surname: Stergiou fullname: Stergiou, Konstantinos organization: AIDEAS OÜ, Narva mnt 5, 10117 Tallinn, Estonia – sequence: 2 givenname: Charis surname: Ntakolia fullname: Ntakolia, Charis organization: Hellenic Air Force Academy, Department of Aeronautical Studies, Sector of Materials Engineering, Machining Technology and Production Management, Dekelia Air Base, GR 1010, Athens, Greece – sequence: 3 givenname: Paris surname: Varytis fullname: Varytis, Paris organization: IRES - Innovation in Research & Engineering Solutions, Rue Koningin Astridlaan 59B, 1780 Wemmel, Belgium – sequence: 4 givenname: Elias surname: Koumoulos fullname: Koumoulos, Elias organization: IRES - Innovation in Research & Engineering Solutions, Rue Koningin Astridlaan 59B, 1780 Wemmel, Belgium – sequence: 5 givenname: Patrik surname: Karlsson fullname: Karlsson, Patrik organization: AIDEAS OÜ, Narva mnt 5, 10117 Tallinn, Estonia – sequence: 6 givenname: Serafeim orcidid: 0000-0002-1090-2177 surname: Moustakidis fullname: Moustakidis, Serafeim email: s.moustakidis@aideas.eu organization: AIDEAS OÜ, Narva mnt 5, 10117 Tallinn, Estonia |
BookMark | eNqNkMtOwzAQRS1UJNrCN5AfSPGjSRwkFlXFS6rEBtaWM5m0rhI7clxQ-XrcFrFgAytb43tmPGdCRtZZJOSa0RmjLL_ZzsB1nQ4DmBmnXMwY41SwMzJmsihTKikbkTEteZFSnuUXZDIMWxrJUvIxcfd2oy0Yu05673r0YR8vWBsIxtlE2_pQBxyGxPXBdOZTHx-MTaqdaesDGIejN7odkrDxbrfexApsjMWkRe1tjNwmi8Tju8GPS3LexCRefZ9T8vZw_7p8Slcvj8_LxSoFwbKQFiBylBXNRZlnoqkkatlwXVZCVlzmjaRYyXmh56UGUSFA2XDIaFnrjAHjIKbk7tQXvBsGj40CE45fD16bVjGqDvbUVv3YUwd76mQv8sUvvvem037_D3JxIjGuF1f2KibQQnTqEYKqnfmzxxdqOpT4 |
CitedBy_id | crossref_primary_10_3390_fluids8070212 crossref_primary_10_1039_D4YA00014E crossref_primary_10_1016_j_commatsci_2023_112432 crossref_primary_10_3390_cryst13040602 crossref_primary_10_1016_j_jksus_2024_103456 crossref_primary_10_3390_computers13010002 crossref_primary_10_3390_met13050898 crossref_primary_10_1016_j_jobe_2025_111788 crossref_primary_10_3390_math12213443 crossref_primary_10_20517_jmi_2024_46 crossref_primary_10_1016_j_egyr_2024_11_016 crossref_primary_10_3390_su151411365 crossref_primary_10_3390_su16166775 crossref_primary_10_1016_j_conbuildmat_2024_137370 crossref_primary_10_3390_met14060634 crossref_primary_10_1016_j_compositesa_2024_108578 crossref_primary_10_1016_j_iswa_2024_200451 crossref_primary_10_1016_j_jobe_2023_108369 crossref_primary_10_1007_s42107_024_01131_8 crossref_primary_10_1002_ep_14319 crossref_primary_10_1007_s13369_023_07917_3 crossref_primary_10_1088_2632_2153_ad95db crossref_primary_10_1088_2515_7639_ad3d89 crossref_primary_10_1016_j_ijsolstr_2024_113014 crossref_primary_10_1016_j_ccr_2024_216380 crossref_primary_10_1016_j_mtcomm_2024_108268 crossref_primary_10_1016_j_jcomc_2024_100513 crossref_primary_10_1016_j_matpr_2023_10_109 crossref_primary_10_1557_s43577_024_00816_4 crossref_primary_10_1016_j_jestch_2024_101743 crossref_primary_10_3390_polym16111589 crossref_primary_10_1002_inf2_70005 crossref_primary_10_1016_j_triboint_2024_109697 crossref_primary_10_1016_j_psep_2024_09_025 crossref_primary_10_1007_s11082_023_05140_w crossref_primary_10_1088_1742_6596_2734_1_012038 crossref_primary_10_1016_j_clwas_2025_100216 crossref_primary_10_1007_s43939_025_00176_z crossref_primary_10_54033_cadpedv21n7_247 crossref_primary_10_1038_s41467_024_53431_x crossref_primary_10_1016_j_compstruct_2025_119120 crossref_primary_10_3390_applmech5010014 crossref_primary_10_1007_s10614_024_10837_5 crossref_primary_10_1016_j_commatsci_2024_113432 crossref_primary_10_3390_en17133295 crossref_primary_10_1016_j_mtcomm_2024_109180 crossref_primary_10_1088_2053_1583_ad8011 crossref_primary_10_1007_s42107_023_00918_5 crossref_primary_10_1016_j_istruc_2025_108206 crossref_primary_10_1134_S2075113324700783 crossref_primary_10_1016_j_conbuildmat_2023_132293 crossref_primary_10_1016_j_mtcomm_2024_109419 crossref_primary_10_3390_pr12122855 crossref_primary_10_1016_j_mtcomm_2023_107659 crossref_primary_10_3390_buildings14092850 crossref_primary_10_1016_j_engappai_2025_110377 crossref_primary_10_1061_JMCEE7_MTENG_17430 crossref_primary_10_1016_j_bprint_2024_e00331 crossref_primary_10_1016_j_matpr_2023_10_128 crossref_primary_10_1007_s12008_024_01912_0 crossref_primary_10_1016_j_commatsci_2025_113780 |
Cites_doi | 10.1107/S0567739476001551 10.1038/srep20952 10.3389/fmats.2016.00019 10.1016/j.applthermaleng.2021.117384 10.1080/01621459.1977.10480627 10.1016/j.commatsci.2015.11.013 10.1016/j.enconman.2019.111859 10.1115/1.4023584 10.1088/2632-2153/ab8aa3 10.1016/j.commatsci.2019.109155 10.3390/s18010209 10.1016/j.istruc.2018.11.013 10.1016/j.conbuildmat.2020.118271 10.1016/j.conb.2008.08.003 10.1063/5.0082147 10.1021/acsphotonics.7b01377 10.1016/j.apenergy.2021.117800 10.1038/s42254-021-00314-5 10.1016/j.conbuildmat.2020.119889 10.3390/en10121981 10.1016/j.jclepro.2021.126032 10.3390/app12052408 10.1016/j.jclepro.2020.119964 10.3389/fmats.2019.00110 10.1038/s41598-017-01939-2 10.1162/neco.1997.9.8.1735 10.3390/polym12010163 10.1016/j.enbuild.2019.109440 10.1038/s41578-020-00255-y 10.1038/s41524-021-00650-1 10.1039/C9MH00589G 10.1103/PhysRevLett.117.135502 10.1016/j.molliq.2021.117631 10.1126/science.aau0323 10.1038/d41586-017-07820-6 10.1109/COMITCon.2019.8862451 10.1063/5.0011512 10.1016/j.fluid.2018.11.030 10.1038/s41524-018-0085-8 10.3846/20294913.2012.661205 10.1155/2021/6682283 10.1557/mrc.2019.32 10.1063/5.0093658 10.1016/j.jmat.2017.08.002 10.1016/j.coche.2021.100739 10.1299/jtst.2016jtst0001 10.1007/s10973-020-09458-5 10.1061/(ASCE)1076-0431(2002)8:1(19) 10.1016/j.advengsoft.2020.102927 10.1016/j.compstruct.2019.01.042 10.1007/s10462-020-09876-9 10.1016/j.commatsci.2007.07.011 10.1016/j.compositesa.2006.06.022 10.1038/s41377-018-0060-7 10.1021/acs.chemrev.0c00083 10.1016/j.cad.2019.06.007 10.1007/978-3-030-22475-2_1 10.1016/j.fluid.2021.113206 10.1021/acs.chemmater.7b02532 10.1016/j.conbuildmat.2020.120848 10.1021/acs.jpcc.1c00588 10.1016/j.matdes.2021.110334 10.31224/osf.io/3dh9s 10.1109/ICIoT48696.2020.9089603 10.1103/PhysRevB.93.115104 10.1016/j.solener.2019.11.067 10.1007/s40192-018-0108-9 10.1016/j.jnoncrysol.2020.120306 10.1007/s11721-007-0002-0 10.1103/PhysRevB.95.144110 10.1039/D0TB00896F 10.1117/1.AP.2.2.026003 10.1016/j.jclepro.2021.128554 10.1007/s11222-014-9500-2 10.1016/j.procir.2018.03.087 10.1063/5.0023759 10.1002/adma.202102703 10.1109/ComPE49325.2020.9200093 10.1016/j.enbuild.2016.06.092 10.1038/s41598-019-50144-w 10.1016/j.apenergy.2018.12.026 10.1016/j.egypro.2018.08.108 10.1080/02673030802293208 10.1109/IITSI.2010.74 10.1038/s41586-018-0337-2 10.1109/TVLSI.2017.2656843 10.1016/j.apenergy.2015.12.016 10.1364/OE.422119 10.1002/inf2.12028 10.1016/j.conbuildmat.2013.02.064 10.1146/annurev-fluid-010719-060214 10.1002/adma.201907176 10.3389/fnbot.2013.00021 10.1016/j.ceramint.2019.06.076 10.1021/acs.jpcc.8b02913 10.1038/nature17439 10.1016/j.conbuildmat.2019.02.071 10.1103/PhysRevLett.115.205901 10.1016/j.matdes.2020.109201 10.3390/fluids7030116 10.1021/acs.jpcc.1c09737 10.1061/(ASCE)AE.1943-5568.0000058 10.1016/j.eswa.2011.04.063 10.1007/s10409-021-01143-6 10.1016/j.renene.2020.01.133 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.commatsci.2023.112031 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0801 |
ExternalDocumentID | 10_1016_j_commatsci_2023_112031 S0927025623000253 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSM SST SSZ T5K XPP ZMT ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SMS SSH VH1 WUQ |
ID | FETCH-LOGICAL-c315t-7c36e8b0639653fb8ea8f2a9b38b286f80eb847a49ac3becc9f2c509da51c12c3 |
IEDL.DBID | .~1 |
ISSN | 0927-0256 |
IngestDate | Tue Jul 01 02:01:18 EDT 2025 Thu Apr 24 22:57:16 EDT 2025 Fri Feb 23 02:38:41 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Materials Science Materials production process Optical parameters Materials properties Mechanical properties Evolutionary algorithms Machine Learning Physical properties Optimization |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c315t-7c36e8b0639653fb8ea8f2a9b38b286f80eb847a49ac3becc9f2c509da51c12c3 |
ORCID | 0000-0002-1090-2177 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0927025623000253 |
ParticipantIDs | crossref_citationtrail_10_1016_j_commatsci_2023_112031 crossref_primary_10_1016_j_commatsci_2023_112031 elsevier_sciencedirect_doi_10_1016_j_commatsci_2023_112031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-05 |
PublicationDateYYYYMMDD | 2023-03-05 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Computational materials science |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | F.E. Bock, R.C. Aydin, C.J. Cyron, N. Huber, S.R. Kalidindi, B. Klusemann, “A review of the application of machine learning and data mining approaches in continuum materials mechanics,” Front. Mater., vol. 6, 2019, Accessed: Dec. 16, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fmats.2019.00110. J. Feng, J. Fu, C. Shang, Z. Lin, and B. Li, “Sandwich panel design and performance optimization based on triply periodic minimal surfaces,” “Toward ‘On‐Demand’ Materials Synthesis and Scientific Discovery through Intelligent Robots - Li - 2020 - Advanced Science - Wiley Online Library.” https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201901957 (accessed Dec. 20, 2022). Tallini, Cedola (b0625) 2018; 148 Tercan, Guajardo, Heinisch, Thiele, Hopmann, Meisen (b0025) 2018; 72 “Applying machine learning techniques to predict the properties of energetic materials | Scientific Reports.” https://www.nature.com/articles/s41598-018-27344-x (accessed Dec. 19, 2022). “Magnetic and superconducting phase diagrams and transition temperatures predicted using text mining and machine learning | npj Computational Materials.” https://www.nature.com/articles/s41524-020-0287-8 (accessed Dec. 19, 2022). K.J. Bergen, P.A. Johnson, M.V. de Hoop, G.C. Beroza, “Machine learning for data-driven discovery in solid Earth geoscience,” Science, vol. 363, no. 6433, p. eaau0323, Mar. 2019, doi: 10.1126/science.aau0323. Liu (b0205) 2021 Chen, Gu (b0090) 2019; 9 P.W. Koh Jul. 2018, Accessed: Dec. 19, 2022. [Online]. Available: https://www.semanticscholar.org/paper/A-Tutorial-on-Bayesian-Optimization-Frazier/c27078d60737ea10e8ca4f05acd114fef29c8276. Luo (b0525) 2021; 29 Duan, Kou, Poon (b0275) 2013; 44 Jing, Cai, Zhang, Cui, Yin, Xian (b0550) 2019; 236 “Optimization of multi-sandwich-panel composite structures for minimum weight with strength and buckling considerations.” https://www.degruyter.com/document/doi/10.1515/secm-2015-0171/html (accessed Dec. 20, 2022). Han, Siddique, Khayat, Huang, Kumar (b0595) 2020; 244 Tang, Zhou, Zheng, Zhang (b0530) 2020; 195 M.V. Pathan Tian, Shi, Liu (b0370) 2012; 18 A. Y. Piggott, J. Petykiewicz, L. Su, J. Vučković, “Fabrication-constrained nanophotonic inverse design,” Sci. Rep., vol. 7, no. 1, Art. no. 1, May 2017, doi: 10.1038/s41598-017-01939-2. Ducamp, Coudert (b0400) 2022; 126 Thursby, Schmidt (b0345) 1977; 72 2020, p. 72. doi: 10.1109/ICIoT48696.2020.9089603. Diao, Yan, Gao (b0210) 2021; 109 Mannodi-Kanakkithodi, Pilania, Huan, Lookman, Ramprasad (b0030) 2016; vol. 6 Liu, Hu, Jiao, Li (b0620) 2020; 547 “(5) (PDF) Rock-Burst Occurrence Prediction Based on Optimized Naïve Bayes Models.” https://www.researchgate.net/publication/352389372_Rock-Burst_Occurrence_Prediction_Based_on_Optimized_Naive_Bayes_Models (accessed Dec. 19, 2022). “Spectral clustering via half-quadratic optimization | World Wide Web.” https://dl.acm.org/doi/10.1007/s11280-019-00731-8 (accessed Dec. 19, 2022). Gandhi, Hasan (b0215) 2022; 35 Wei (b0020) 2019; 1 “(5) (PDF) A Review of Distributed Algorithms for Principal Component Analysis.” https://www.researchgate.net/publication/326854927_A_Review_of_Distributed_Algorithms_for_Principal_Component_Analysis (accessed Dec. 19, 2022). M. Malviya and K. A. Desai, “Build Orientation Optimization for Strength Enhancement of FDM Parts Using Machine Learning based Algorithm.” Engineering Archive, Aug. 06, 2019. doi: 10.31224/osf.io/3dh9s. vol. 2021, p. e6682283, Mar. 2021, doi: 10.1155/2021/6682283. Marasco, Kontokosta (b0105) 2016; 128 D’Amico (b0110) 2019; 19 “Graph neural networks for materials science and chemistry | Communications Materials.” https://www.nature.com/articles/s43246-022-00315-6 (accessed Dec. 16, 2022). Sun, Fang, Hu (b0010) 2020; 120 Sofos, Stavrogiannis, Exarchou-Kouveli, Akabua, Charilas, Karakasidis (b0175) 2022; vol. 7 vol. 135, no. 6, May 2013, doi: 10.1115/1.4023584. Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (b0165) 2021; vol. 3 vol. 115, pp. 307–322, Oct. 2019, doi: 10.1016/j.cad.2019.06.007. Chen (b0095) 2020; 12 Kumar, Husain, Upreti, Gupta (b0385) 2010; 2 Malsiner-Walli, Frühwirth-Schnatter, Grün (b0310) Jan. 2016; 26 “Review of Deep Learning Algorithms and Architectures | IEEE Journals & Magazine | IEEE Xplore.” https://ieeexplore.ieee.org/document/8694781 (accessed Dec. 19, 2022). Rostami, Toghraie, Shabani, Sina, Barnoon (b0425) 2020; 143 Goh, Sing, Yeong (b0075) 2021; 54 Shannon (b0135) 1976; vol. 32 Alam, Allers, Leverant, Harvey (b0230) 2022; 157 Halman, Voordijk, Reymen (b0640) 2008; 23 Malkiel, Mrejen, Nagler, Arieli, Wolf, Suchowski (b0050) 2018; vol. 7 vol. 151, no. 102927, Jan. 2021, doi: 10.1016/j.advengsoft.2020.102927. “Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach.” https://www.spiedigitallibrary.org/journals/advanced-photonics/volume-2/issue-02/026003/Enhanced-lightmatter-interactions-in-dielectric-nanostructures-via-machine-learning-approach/10.1117/1.AP.2.2.026003.full?SSO=1 (accessed Dec. 19, 2022). X. Chen, L. Sztandera, H. Cartwright, “A neural network approach to prediction of glass transition temperature of polymers,” Int. J. Intell. Syst., vol. 23, no. 1, 2008, Accessed: Dec. 19, 2022. [Online]. Available: https://ora.ox.ac.uk/objects/uuid:5f3b9a0c-9c3a-444e-83f6-b59c3d3a9ea9. De Luna, Wei, Bengio, Aspuru-Guzik, Sargent (b0100) 2017; 552 O. Laban, S. Gowid, and E. Mahdi Z. Acar, P. Nguyen, K.C. Lau, “Machine-Learning Model Prediction of Ionic Liquids Melting Points,” Appl. Sci., vol. 12, no. 5, Art. no. 5, Jan. 2022, doi: 10.3390/app12052408. Evans, Coudert (b0440) 2017; 29 Badir, Kadir, Hashim (b0650) 2002; 8 “Machine Learning Accelerates the Discovery of Light-Absorbing Materials for Double Perovskite Solar Cells | The Journal of Physical Chemistry C.” https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.1c07262 (accessed Dec. 19, 2022). “Fast and Accurate Performance Prediction and Optimization of Thermoelectric Generators with Deep Neural Networks - Wang - 2021 - Advanced Materials Technologies - Wiley Online Library.” https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.202100011 (accessed Dec. 19, 2022). Xie, Suvarna, Li, Zhu, Cai, Wang (b0450) 2021; 197 Dabbaghi, Tanhadoust, Nehdi, Nasrollahpour, Dehestani, Yousefpour (b0605) 2021; 318 Liu, Fu, Yang, Xu, Bauchy (b0085) 2019; 4 Zhou, Zheng (b0610) 2020; 153 Shao, Hanaor, Shen, Gurlo (b0015) 2020; 32 H. Doan Tran Liu, Zhao, Ju, Shi (b0055) 2017; 3 “Nanophotonic particle simulation and inverse design using artificial neural networks | Science Advances.” https://www.science.org/doi/10.1126/sciadv.aar4206 (accessed Dec. 19, 2022). Alloghani, Al-Jumeily Obe, Mustafina, Hussain, Aljaaf, a (b0305) 2020 Jirasek, Hasse (b0170) 2021; 549 Zhou, Zheng (b0615) 2020; 253 F. Murtagh, P. Contreras, “Methods of Hierarchical Clustering.” arXiv, Apr. 30, 2011. doi: 10.48550/arXiv.1105.0121. Groven, Desgranges, Delhommelle (b0145) 2019; 484 S. Ray, “A Quick Review of Machine Learning Algorithms,” in: 2019 Int. Conf. Mach. Learn. Big Data Cloud Parallel Comput. Com., pp. 35–39, Feb. 2019, doi: 10.1109/COMITCon.2019.8862451. “Heat conduction in nanostructured materials.” https://www.jstage.jst.go.jp/article/jtst/11/1/11_2016jtst0001/_article (accessed Dec. 19, 2022). S. Na, L. Xumin, G. Yong, “Research on k-means Clustering Algorithm: An Improved k-means Clustering Algorithm,” in: 2010 Third Int. Symp. Intell. Inf. Technol. Secur. Inform., pp. 63–67, Apr. 2010, doi: 10.1109/IITSI.2010.74. Napoletano, Piccoli, Schettini (b0335) 2018; 18 Köksal, Batmaz, Testik (b0200) 2011; 38 Zhou, Zheng, Zhang (b0535) 2019; 197 J. Shlens, “A Tutorial on Principal Component Analysis.” arXiv, Apr. 03, 2014. doi: 10.48550/arXiv.1404.1100. Paduszyński, Kłębowski, Królikowska (b0140) 2021; 344 H. Wang, J. Hong, J. Zhou, Z. Wang, “How Robust is Your Fairness? Evaluating and Sustaining Fairness under Unseen Distribution Shifts.” arXiv, Jul. 03, 2022. doi: 10.48550/arXiv.2207.01168. A. Sharma, P. Madhushri, V. Kushvaha, A. Kumar, “Prediction of the Fracture Toughness of Silicafilled Epoxy Composites using K-Nearest Neighbor (KNN) Method,” in: 2020 International Conference on Computational Performance Evaluation (ComPE), Jul. 2020, pp. 194–198. doi: 10.1109/ComPE49325.2020.9200093. Butler, Davies, Cartwright, Isayev, Walsh (b0060) 2018; vol. 559 Takahashi, Tanaka (b0125) 2016; 112 Frank, Drikakis, Charissis (b0180) 2020; vol. 8, no. 1, Art. no. 1 Stanev (b0035) 2018; vol. 4 “Predictions of the mechanical properties of unidirectional fibre composites by supervised machine learning,” Sci. Rep., vol. 9, no. 1, Art. no. 1, Sep. 2019, doi: 10.1038/s41598-019-50144-w. vol. 10, no. 12, Art. no. 12, Dec. 2017, doi: 10.3390/en10121981. Batra (b0065) 2020 Ling, Qian, Kang, Liang, Chen (b0295) 2019; 206 Altun, Kisi, Aydin (b0445) 2008; 42 Bhatasana, Marconnet (b0540) 2021; 199 M.I. Shah, S.A. Memon, M.S. Khan Niazi, M. N. Amin, F. Aslam, and M. F. Javed, “Machine Learning-Based Modeling with Optimization Algorithm for Predicting Mechanical Properties of Sustainable Concrete,” Omee (b0195) 2022; 3 Sivaraman (b0265) 2020; 1 Poli, Kennedy, Blackwell (b0395) 2007; 1 Kwan, Wu (b0555) 2016; 165 Lee, Seko, Shitara, Nakayama, Tanaka (b0270) 2016; 93 Hochreiter, Schmidhuber (b0375) 1997; 9 Suwardi (b0225) 2022; 34 P. M. Norris, N. Q. Le, and C. H. Baker, “Tuning Phonon Transport: From Interfaces to Nanostructures,” Prediction of mechanical properties of rail pads under in-service conditions through machine learning algorithms “‘A machine learning case study with limited data for prediction of carb’ by Gelayol Golkarnarenji, Minoo Naebe et al.” https://ro.ecu.edu.au/ecuworkspost2013/5550/ (accessed Dec. 19, 2022). Raccuglia (b0240) 2016; 533 Ben Chaabene, Flah, Nehdi (b0115) 2020; 260 Liu, Zhang, Zhang, Kitipornchai, Yang (b0475) 2022; 213 Islam, Wanigasekara, Rajan, Swain, Prusty (b0220) 2022; 32 Papastamatiou, Sofos, Karakasidis (b0235) 2022; 12 A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,” “(5) (PDF) Designing Nanostructures for Phonon Transport via Bayesian Optimizat Batra (10.1016/j.commatsci.2023.112031_b0065) 2020 Duan (10.1016/j.commatsci.2023.112031_b0275) 2013; 44 10.1016/j.commatsci.2023.112031_b0415 Balabanov (10.1016/j.commatsci.2023.112031_b0655) 2012 Tian (10.1016/j.commatsci.2023.112031_b0370) 2012; 18 10.1016/j.commatsci.2023.112031_b0665 Choudhary (10.1016/j.commatsci.2023.112031_b0185) 2021; vol. 7 10.1016/j.commatsci.2023.112031_b0420 10.1016/j.commatsci.2023.112031_b0300 10.1016/j.commatsci.2023.112031_b0660 10.1016/j.commatsci.2023.112031_b0260 Sivaraman (10.1016/j.commatsci.2023.112031_b0265) 2020; 1 Tercan (10.1016/j.commatsci.2023.112031_b0025) 2018; 72 10.1016/j.commatsci.2023.112031_b0380 Xie (10.1016/j.commatsci.2023.112031_b0450) 2021; 197 Paduszyński (10.1016/j.commatsci.2023.112031_b0140) 2021; 344 Sun (10.1016/j.commatsci.2023.112031_b0010) 2020; 120 Kauwe (10.1016/j.commatsci.2023.112031_b0410) 2018; 7 Marasco (10.1016/j.commatsci.2023.112031_b0105) 2016; 128 Ben Chaabene (10.1016/j.commatsci.2023.112031_b0115) 2020; 260 Evans (10.1016/j.commatsci.2023.112031_b0440) 2017; 29 Halman (10.1016/j.commatsci.2023.112031_b0640) 2008; 23 Sofos (10.1016/j.commatsci.2023.112031_b0175) 2022; vol. 7 Napoletano (10.1016/j.commatsci.2023.112031_b0335) 2018; 18 Omee (10.1016/j.commatsci.2023.112031_b0195) 2022; 3 Thursby (10.1016/j.commatsci.2023.112031_b0345) 1977; 72 10.1016/j.commatsci.2023.112031_b0675 Takahashi (10.1016/j.commatsci.2023.112031_b0125) 2016; 112 Liu (10.1016/j.commatsci.2023.112031_b0475) 2022; 213 10.1016/j.commatsci.2023.112031_b0670 10.1016/j.commatsci.2023.112031_b0390 Shao (10.1016/j.commatsci.2023.112031_b0015) 2020; 32 Brunton (10.1016/j.commatsci.2023.112031_b0155) 2020; 52 Faber (10.1016/j.commatsci.2023.112031_b0040) 2016; 117 Shannon (10.1016/j.commatsci.2023.112031_b0135) 1976; vol. 32 10.1016/j.commatsci.2023.112031_b0515 Schubel (10.1016/j.commatsci.2023.112031_b0645) 2007; 38 Chen (10.1016/j.commatsci.2023.112031_b0090) 2019; 9 10.1016/j.commatsci.2023.112031_b0005 10.1016/j.commatsci.2023.112031_b0365 10.1016/j.commatsci.2023.112031_b0520 10.1016/j.commatsci.2023.112031_b0245 Ling (10.1016/j.commatsci.2023.112031_b0295) 2019; 206 Kwan (10.1016/j.commatsci.2023.112031_b0555) 2016; 165 Frank (10.1016/j.commatsci.2023.112031_b0180) 2020; vol. 8, no. 1, Art. no. 1 Liu (10.1016/j.commatsci.2023.112031_b0620) 2020; 547 10.1016/j.commatsci.2023.112031_b0480 Bhatasana (10.1016/j.commatsci.2023.112031_b0540) 2021; 199 Ducamp (10.1016/j.commatsci.2023.112031_b0400) 2022; 126 Lee (10.1016/j.commatsci.2023.112031_b0270) 2016; 93 Qu (10.1016/j.commatsci.2023.112031_b0430) 2019; 45 Chakraborty (10.1016/j.commatsci.2023.112031_b0495) 2021; 125 Raccuglia (10.1016/j.commatsci.2023.112031_b0240) 2016; 533 Dayan (10.1016/j.commatsci.2023.112031_b0340) 2008; 18 10.1016/j.commatsci.2023.112031_b0405 Wei (10.1016/j.commatsci.2023.112031_b0020) 2019; 1 Malsiner-Walli (10.1016/j.commatsci.2023.112031_b0310) 2016; 26 Tallini (10.1016/j.commatsci.2023.112031_b0625) 2018; 148 10.1016/j.commatsci.2023.112031_b0255 Mannodi-Kanakkithodi (10.1016/j.commatsci.2023.112031_b0030) 2016; vol. 6 10.1016/j.commatsci.2023.112031_b0250 Diao (10.1016/j.commatsci.2023.112031_b0210) 2021; 109 10.1016/j.commatsci.2023.112031_b0490 Seko (10.1016/j.commatsci.2023.112031_b0150) 2015; 115 Zhou (10.1016/j.commatsci.2023.112031_b0615) 2020; 253 Goh (10.1016/j.commatsci.2023.112031_b0075) 2021; 54 Gandhi (10.1016/j.commatsci.2023.112031_b0215) 2022; 35 10.1016/j.commatsci.2023.112031_b0500 D’Amico (10.1016/j.commatsci.2023.112031_b0110) 2019; 19 Sargam (10.1016/j.commatsci.2023.112031_b0120) 2021; 34 10.1016/j.commatsci.2023.112031_b0465 10.1016/j.commatsci.2023.112031_b0585 Jing (10.1016/j.commatsci.2023.112031_b0550) 2019; 236 10.1016/j.commatsci.2023.112031_b0460 Heo (10.1016/j.commatsci.2023.112031_b0545) 2019; 202 10.1016/j.commatsci.2023.112031_b0580 Groven (10.1016/j.commatsci.2023.112031_b0145) 2019; 484 Zhai (10.1016/j.commatsci.2023.112031_b0080) 2020; 8 Alam (10.1016/j.commatsci.2023.112031_b0230) 2022; 157 Liu (10.1016/j.commatsci.2023.112031_b0085) 2019; 4 De Luna (10.1016/j.commatsci.2023.112031_b0100) 2017; 552 Pilania (10.1016/j.commatsci.2023.112031_b0045) 2016; 3 Seko (10.1016/j.commatsci.2023.112031_b0130) 2017; 95 10.1016/j.commatsci.2023.112031_b0505 Köksal (10.1016/j.commatsci.2023.112031_b0200) 2011; 38 Zhou (10.1016/j.commatsci.2023.112031_b0610) 2020; 153 Papastamatiou (10.1016/j.commatsci.2023.112031_b0235) 2022; 12 Farooq (10.1016/j.commatsci.2023.112031_b0630) 2021; 292 Liu (10.1016/j.commatsci.2023.112031_b0510) 2018; 5 Malkiel (10.1016/j.commatsci.2023.112031_b0050) 2018; vol. 7 10.1016/j.commatsci.2023.112031_b0355 10.1016/j.commatsci.2023.112031_b0350 Haghanifar (10.1016/j.commatsci.2023.112031_b0680) 2019; 6 Dabbaghi (10.1016/j.commatsci.2023.112031_b0605) 2021; 318 Fathi (10.1016/j.commatsci.2023.112031_b0455) 2020; 262 10.1016/j.commatsci.2023.112031_b0470 Park (10.1016/j.commatsci.2023.112031_b0590) 2017; 25 Han (10.1016/j.commatsci.2023.112031_b0595) 2020; 244 10.1016/j.commatsci.2023.112031_b0190 10.1016/j.commatsci.2023.112031_b0070 Liu (10.1016/j.commatsci.2023.112031_b0055) 2017; 3 10.1016/j.commatsci.2023.112031_b0435 Chen (10.1016/j.commatsci.2023.112031_b0095) 2020; 12 Jirasek (10.1016/j.commatsci.2023.112031_b0170) 2021; 549 10.1016/j.commatsci.2023.112031_b0315 Allers (10.1016/j.commatsci.2023.112031_b0360) 2020; 153 Rostami (10.1016/j.commatsci.2023.112031_b0425) 2020; 143 Pan (10.1016/j.commatsci.2023.112031_b0635) 2012; 18 Luo (10.1016/j.commatsci.2023.112031_b0525) 2021; 29 10.1016/j.commatsci.2023.112031_b0685 Alloghani (10.1016/j.commatsci.2023.112031_b0305) 2020 Hochreiter (10.1016/j.commatsci.2023.112031_b0375) 1997; 9 Karniadakis (10.1016/j.commatsci.2023.112031_b0165) 2021; vol. 3 10.1016/j.commatsci.2023.112031_b0320 10.1016/j.commatsci.2023.112031_b0560 Islam (10.1016/j.commatsci.2023.112031_b0220) 2022; 32 10.1016/j.commatsci.2023.112031_b0285 Qi (10.1016/j.commatsci.2023.112031_b0290) 2019; 212 Altun (10.1016/j.commatsci.2023.112031_b0445) 2008; 42 Butler (10.1016/j.commatsci.2023.112031_b0060) 2018; vol. 559 10.1016/j.commatsci.2023.112031_b0280 Kim (10.1016/j.commatsci.2023.112031_b0485) 2018; 122 Stanev (10.1016/j.commatsci.2023.112031_b0035) 2018; vol. 4 Tang (10.1016/j.commatsci.2023.112031_b0530) 2020; 195 Badir (10.1016/j.commatsci.2023.112031_b0650) 2002; 8 Brunton (10.1016/j.commatsci.2023.112031_b0160) 2021; 37 Zhu (10.1016/j.commatsci.2023.112031_b0565) 2022; 305 10.1016/j.commatsci.2023.112031_b0325 Suwardi (10.1016/j.commatsci.2023.112031_b0225) 2022; 34 10.1016/j.commatsci.2023.112031_b0600 Poli (10.1016/j.commatsci.2023.112031_b0395) 2007; 1 10.1016/j.commatsci.2023.112031_b0575 10.1016/j.commatsci.2023.112031_b0330 10.1016/j.commatsci.2023.112031_b0570 Liu (10.1016/j.commatsci.2023.112031_b0205) 2021 Zhou (10.1016/j.commatsci.2023.112031_b0535) 2019; 197 Kumar (10.1016/j.commatsci.2023.112031_b0385) 2010; 2 |
References_xml | – volume: 44 start-page: 524 year: 2013 end-page: 532 ident: b0275 article-title: Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete publication-title: Constr. Build. Mater. – reference: , vol. 115, pp. 307–322, Oct. 2019, doi: 10.1016/j.cad.2019.06.007. – reference: L. Chen, H. Tran, R. Batra, C. Kim, R. Ramprasad, “Machine Learning Models for the Lattice Thermal Conductivity Prediction of Inorganic Materials.” arXiv, Aug. 04, 2019. doi: 10.48550/arXiv.1906.06378. – volume: 4 year: 2019 ident: b0085 article-title: Machine learning for glass science and engineering: A review publication-title: J. Non-Cryst. Solids X – reference: F. Murtagh, P. Contreras, “Methods of Hierarchical Clustering.” arXiv, Apr. 30, 2011. doi: 10.48550/arXiv.1105.0121. – volume: 165 start-page: 297 year: 2016 end-page: 307 ident: b0555 article-title: Power and mass optimization of the hybrid solar panel and thermoelectric generators publication-title: Appl. Energy – volume: 153 start-page: 375 year: 2020 end-page: 391 ident: b0610 article-title: Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization publication-title: Renew. Energy – reference: , vol. 10, no. 12, Art. no. 12, Dec. 2017, doi: 10.3390/en10121981. – volume: 52 start-page: 477 year: 2020 end-page: 508 ident: b0155 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. – volume: 260 year: 2020 ident: b0115 article-title: Machine learning prediction of mechanical properties of concrete: Critical review publication-title: Constr. Build. Mater. – volume: 42 start-page: 259 year: 2008 end-page: 265 ident: b0445 article-title: Predicting the compressive strength of steel fiber added lightweight concrete using neural network publication-title: Comput. Mater. Sci. – volume: 262 year: 2020 ident: b0455 article-title: Prediction of the mechanical properties of wood using guided wave propagation and machine learning publication-title: Constr. Build. Mater. – volume: 344 year: 2021 ident: b0140 article-title: Predicting melting point of ionic liquids using QSPR approach: Literature review and new models publication-title: J. Mol. Liq. – volume: 38 start-page: 1051 year: 2007 end-page: 1057 ident: b0645 article-title: Impact and post impact behavior of composite sandwich panels publication-title: Compos. Part Appl. Sci. Manuf. – reference: , Jul. 2018, Accessed: Dec. 19, 2022. [Online]. Available: https://www.semanticscholar.org/paper/A-Tutorial-on-Bayesian-Optimization-Frazier/c27078d60737ea10e8ca4f05acd114fef29c8276. – volume: 125 start-page: 5251 year: 2021 end-page: 5259 ident: b0495 article-title: Neural networks for analysis of optical properties in 2D layered hybrid lead halide perovskites publication-title: J. Phys. Chem. C – volume: 244 year: 2020 ident: b0595 article-title: An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete publication-title: Constr. Build. Mater. – year: 2012 ident: b0655 publication-title: Optimal Design of a Composite Sandwich Structure Using Lamination Parameters. – volume: vol. 559 year: 2018 ident: b0060 article-title: Machine learning for molecular and materials science publication-title: Nature – volume: 34 start-page: 2102703 year: 2022 ident: b0225 article-title: Machine learning-driven biomaterials evolution publication-title: Adv. Mater. – reference: “(5) (PDF) Rock-Burst Occurrence Prediction Based on Optimized Naïve Bayes Models.” https://www.researchgate.net/publication/352389372_Rock-Burst_Occurrence_Prediction_Based_on_Optimized_Naive_Bayes_Models (accessed Dec. 19, 2022). – volume: 12 year: 2022 ident: b0235 article-title: Machine learning symbolic equations for diffusion with physics-based descriptions publication-title: AIP Adv. – volume: 305 year: 2022 ident: b0565 article-title: Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator publication-title: Appl. Energy – volume: 18 start-page: 209 year: 2018 ident: b0335 article-title: Anomaly detection in nanofibrous materials by CNN-Based Self-Similarity publication-title: Sensors – reference: J. Shlens, “A Tutorial on Principal Component Analysis.” arXiv, Apr. 03, 2014. doi: 10.48550/arXiv.1404.1100. – reference: “Machine Learning With Big Data: Challenges and Approaches | IEEE Journals & Magazine | IEEE Xplore.” https://ieeexplore.ieee.org/document/7906512 (accessed Dec. 19, 2022). – volume: 8 year: 2020 ident: b0080 article-title: Discovery and design of soft polymeric bio-inspired materials with multiscale simulations and artificial intelligence publication-title: J. Mater. Chem. B – volume: 3 year: 2022 ident: b0195 article-title: Scalable deeper graph neural networks for high-performance materials property prediction publication-title: Patterns N. Y. N – volume: 5 start-page: 1365 year: 2018 end-page: 1369 ident: b0510 article-title: Training deep neural networks for the inverse design of nanophotonic structures publication-title: ACS Photonics – volume: 3 year: Apr. 2016 ident: b0045 article-title: Finding New Perovskite Halides via Machine Learning publication-title: Front. Mater. – reference: H. Doan Tran – volume: 8 start-page: 19 year: 2002 end-page: 23 ident: b0650 article-title: Industrialized Building Systems Construction in Malaysia publication-title: J. Archit. Eng. – volume: 34 year: 2021 ident: b0120 article-title: Machine learning based prediction model for thermal conductivity of concrete publication-title: J. Build. Eng. – volume: vol. 3 year: 2021 ident: b0165 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. – volume: 236 start-page: 574 year: 2019 end-page: 589 ident: b0550 article-title: Modeling, air balancing and optimal pressure set-point selection for the ventilation system with minimized energy consumption publication-title: Appl. Energy – volume: 195 start-page: 514 year: 2020 end-page: 526 ident: b0530 article-title: Exergy-based optimisation of a phase change materials integrated hybrid renewable system for active cooling applications using supervised machine learning method publication-title: Sol. Energy – volume: 157 year: 2022 ident: b0230 article-title: Symbolic regression development of empirical equations for diffusion in Lennard-Jones fluids publication-title: J. Chem. Phys. – volume: 253 year: 2020 ident: b0615 article-title: Machine learning-based multi-objective optimisation of an aerogel glazing system using NSGA-II—study of modelling and application in the subtropical climate Hong Kong publication-title: J. Clean. Prod. – volume: 26 start-page: 303 year: Jan. 2016 end-page: 324 ident: b0310 article-title: Model-based clustering based on sparse finite Gaussian mixtures publication-title: Stat. Comput. – reference: K.J. Bergen, P.A. Johnson, M.V. de Hoop, G.C. Beroza, “Machine learning for data-driven discovery in solid Earth geoscience,” Science, vol. 363, no. 6433, p. eaau0323, Mar. 2019, doi: 10.1126/science.aau0323. – volume: 1 year: 2020 ident: b0265 article-title: A machine learning workflow for molecular analysis: application to melting points publication-title: Mach. Learn. Sci. Technol. – reference: , “Predictions of the mechanical properties of unidirectional fibre composites by supervised machine learning,” Sci. Rep., vol. 9, no. 1, Art. no. 1, Sep. 2019, doi: 10.1038/s41598-019-50144-w. – volume: vol. 6 year: 2016 ident: b0030 article-title: Machine learning strategy for accelerated design of polymer dielectrics publication-title: Sci. Rep. – volume: 120 start-page: 10336 year: 2020 end-page: 10453 ident: b0010 article-title: 3D graphene materials: from understanding to design and synthesis control publication-title: Chem. Rev. – volume: 202 year: 2019 ident: b0545 article-title: A deep reinforcement learning-based autonomous ventilation control system for smart indoor air quality management in a subway station publication-title: Energy Build. – reference: M. Malviya and K. A. Desai, “Build Orientation Optimization for Strength Enhancement of FDM Parts Using Machine Learning based Algorithm.” Engineering Archive, Aug. 06, 2019. doi: 10.31224/osf.io/3dh9s. – volume: 18 start-page: 185 year: 2008 end-page: 196 ident: b0340 article-title: Reinforcement learning: the good, the bad and the ugly publication-title: Curr. Opin. Neurobiol. – reference: “‘A machine learning case study with limited data for prediction of carb’ by Gelayol Golkarnarenji, Minoo Naebe et al.” https://ro.ecu.edu.au/ecuworkspost2013/5550/ (accessed Dec. 19, 2022). – volume: 3 start-page: 159 year: 2017 end-page: 177 ident: b0055 article-title: Materials discovery and design using machine learning publication-title: J. Materiomics – volume: 197 year: 2021 ident: b0450 article-title: Online prediction of mechanical properties of hot rolled steel plate using machine learning publication-title: Mater. Des. – reference: , “WILDS: A Benchmark of in-the-Wild Distribution Shifts,” in: Proceedings of the 38th International Conference on Machine Learning, Jul. 2021, pp. 5637–5664. Accessed: Dec. 19, 2022. [Online]. Available: https://proceedings.mlr.press/v139/koh21a.html. – volume: 549 year: 2021 ident: b0170 article-title: Perspective: machine learning of thermophysical properties publication-title: Fluid Phase Equilibria – reference: , vol. 2021, p. e6682283, Mar. 2021, doi: 10.1155/2021/6682283. – reference: “Fast and Accurate Performance Prediction and Optimization of Thermoelectric Generators with Deep Neural Networks - Wang - 2021 - Advanced Materials Technologies - Wiley Online Library.” https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.202100011 (accessed Dec. 19, 2022). – volume: 2 start-page: 451 year: 2010 end-page: 454 ident: b0385 article-title: Genetic Algorithm: Review and Application publication-title: J. Inf. Knowl. Manag. – reference: “Toward ‘On‐Demand’ Materials Synthesis and Scientific Discovery through Intelligent Robots - Li - 2020 - Advanced Science - Wiley Online Library.” https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201901957 (accessed Dec. 20, 2022). – volume: 54 start-page: 63 year: 2021 end-page: 94 ident: b0075 article-title: A review on machine learning in 3D printing: applications, potential, and challenges publication-title: Artif. Intell. Rev. – reference: P. M. Norris, N. Q. Le, and C. H. Baker, “Tuning Phonon Transport: From Interfaces to Nanostructures,” – reference: “Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach.” https://www.spiedigitallibrary.org/journals/advanced-photonics/volume-2/issue-02/026003/Enhanced-lightmatter-interactions-in-dielectric-nanostructures-via-machine-learning-approach/10.1117/1.AP.2.2.026003.full?SSO=1 (accessed Dec. 19, 2022). – volume: 484 start-page: 225 year: 2019 end-page: 231 ident: b0145 article-title: Prediction of the boiling and critical points of polycyclic aromatic hydrocarbons via Wang-Landau simulations and machine learning publication-title: Fluid Phase Equilibria – reference: , “Machine-learning predictions of polymer properties with Polymer Genome,” J. Appl. Phys., vol. 128, no. 17, p. 171104, Nov. 2020, doi: 10.1063/5.0023759. – reference: “Optimization of multi-sandwich-panel composite structures for minimum weight with strength and buckling considerations.” https://www.degruyter.com/document/doi/10.1515/secm-2015-0171/html (accessed Dec. 20, 2022). – reference: Z. Acar, P. Nguyen, K.C. Lau, “Machine-Learning Model Prediction of Ionic Liquids Melting Points,” Appl. Sci., vol. 12, no. 5, Art. no. 5, Jan. 2022, doi: 10.3390/app12052408. – volume: 93 year: 2016 ident: b0270 article-title: Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques publication-title: Phys. Rev. B – volume: vol. 8, no. 1, Art. no. 1 year: 2020 ident: b0180 article-title: Machine-learning methods for computational science and engineering publication-title: Computation – volume: 6 start-page: 1632 year: 2019 end-page: 1642 ident: b0680 article-title: Creating glasswing butterfly-inspired durable antifogging superomniphobic supertransmissive, superclear nanostructured glass through Bayesian learning and optimization publication-title: Mater. Horiz. – volume: vol. 7 year: 2022 ident: b0175 article-title: Current trends in fluid research in the era of artificial intelligence: a review publication-title: Fluids – volume: 112 start-page: 364 year: 2016 end-page: 367 ident: b0125 article-title: Material synthesis and design from first principle calculations and machine learning publication-title: Comput. Mater. Sci. – volume: vol. 32 year: 1976 ident: b0135 article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides publication-title: Acta Crystallogr. A – volume: 109 year: 2021 ident: b0210 article-title: A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels publication-title: J. Mater. Sci. Technol. – volume: 533 start-page: 73 year: 2016 end-page: 76 ident: b0240 article-title: Machine-learning-assisted materials discovery using failed experiments publication-title: Nature – volume: 45 start-page: 18551 year: 2019 end-page: 18555 ident: b0430 article-title: Ultra-high temperature ceramics melting temperature prediction via machine learning publication-title: Ceram. Int. – volume: 7 start-page: 43 year: 2018 end-page: 51 ident: b0410 article-title: Machine Learning Prediction of Heat Capacity for Solid Inorganics publication-title: Integrating Mater. Manuf. Innov. – reference: , vol. 135, no. 6, May 2013, doi: 10.1115/1.4023584. – volume: 206 start-page: 355 year: 2019 end-page: 363 ident: b0295 article-title: Combination of Support Vector Machine and K-Fold cross validation to predict compressive strength of concrete in marine environment publication-title: Constr. Build. Mater. – volume: vol. 4 year: 2018 ident: b0035 article-title: Machine learning modeling of superconducting critical temperature publication-title: Npj Comput. Mater. – reference: , vol. 151, no. 102927, Jan. 2021, doi: 10.1016/j.advengsoft.2020.102927. – volume: 115 year: 2015 ident: b0150 article-title: Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization publication-title: Phys. Rev. Lett. – reference: F.E. Bock, R.C. Aydin, C.J. Cyron, N. Huber, S.R. Kalidindi, B. Klusemann, “A review of the application of machine learning and data mining approaches in continuum materials mechanics,” Front. Mater., vol. 6, 2019, Accessed: Dec. 16, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fmats.2019.00110. – reference: P. Frazier, “A Tutorial on Bayesian Optimization,” – reference: “Machine Learning Accelerates the Discovery of Light-Absorbing Materials for Double Perovskite Solar Cells | The Journal of Physical Chemistry C.” https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.1c07262 (accessed Dec. 19, 2022). – reference: “Spectral clustering via half-quadratic optimization | World Wide Web.” https://dl.acm.org/doi/10.1007/s11280-019-00731-8 (accessed Dec. 19, 2022). – volume: 9 start-page: 556 year: 2019 end-page: 566 ident: b0090 article-title: Machine learning for composite materials publication-title: MRS Commun. – reference: A. Sharma, P. Madhushri, V. Kushvaha, A. Kumar, “Prediction of the Fracture Toughness of Silicafilled Epoxy Composites using K-Nearest Neighbor (KNN) Method,” in: 2020 International Conference on Computational Performance Evaluation (ComPE), Jul. 2020, pp. 194–198. doi: 10.1109/ComPE49325.2020.9200093. – volume: 18 start-page: 84 year: 2012 end-page: 93 ident: b0635 article-title: House-Building Business Models and Off-Site Construction Take-Up publication-title: J. Archit. Eng. – reference: S. Na, L. Xumin, G. Yong, “Research on k-means Clustering Algorithm: An Improved k-means Clustering Algorithm,” in: 2010 Third Int. Symp. Intell. Inf. Technol. Secur. Inform., pp. 63–67, Apr. 2010, doi: 10.1109/IITSI.2010.74. – reference: P.W. Koh – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0375 article-title: Long short-term memory publication-title: Neural Comput. – reference: “Review of Deep Learning Algorithms and Architectures | IEEE Journals & Magazine | IEEE Xplore.” https://ieeexplore.ieee.org/document/8694781 (accessed Dec. 19, 2022). – reference: , vol. 7, 2013, Accessed: Dec. 19, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021. – reference: A. Y. Piggott, J. Petykiewicz, L. Su, J. Vučković, “Fabrication-constrained nanophotonic inverse design,” Sci. Rep., vol. 7, no. 1, Art. no. 1, May 2017, doi: 10.1038/s41598-017-01939-2. – reference: M. Kaya and S. Hajimirza, “Extremely Efficient Design of Organic Thin Film Solar Cells via Learning-Based Optimization,” – volume: 72 start-page: 185 year: 2018 end-page: 190 ident: b0025 article-title: Transfer-learning: bridging the gap between real and simulation data for machine learning in injection molding publication-title: Proc. CIRP – volume: 72 start-page: 635 year: 1977 end-page: 641 ident: b0345 article-title: Some properties of tests for specification error in a linear regression model publication-title: J. Am. Stat. Assoc. – reference: “(5) (PDF) Is Domain Knowledge Necessary for Machine Learning Materials Properties?” https://www.researchgate.net/publication/343926838_Is_Domain_Knowledge_Necessary_for_Machine_Learning_Materials_Properties (accessed Dec. 19, 2022). – reference: M.V. Pathan – volume: 1 start-page: 338 year: 2019 end-page: 358 ident: b0020 article-title: Machine learning in materials science publication-title: InfoMat – volume: 18 year: 2012 ident: b0370 article-title: Recent advances on support vector machines research publication-title: Technol. Econ. Dev. Econ. – reference: “Graph neural networks for materials science and chemistry | Communications Materials.” https://www.nature.com/articles/s43246-022-00315-6 (accessed Dec. 16, 2022). – volume: 35 year: 2022 ident: b0215 article-title: Machine learning for the design and discovery of zeolites and porous crystalline materials publication-title: Curr. Opin. Chem. Eng. – volume: 29 start-page: 10527 year: 2021 end-page: 10537 ident: b0525 article-title: Deep-learning-enabled inverse engineering of multi-wavelength invisibility-to-superscattering switching with phase-change materials publication-title: Opt. Express – volume: vol. 7 year: 2018 ident: b0050 article-title: Plasmonic nanostructure design and characterization via Deep Learning publication-title: Light Sci. Appl. – reference: “(5) (PDF) Designing Nanostructures for Phonon Transport via Bayesian Optimization.” https://www.researchgate.net/publication/308262954_Designing_Nanostructures_for_Phonon_Transport_via_Bayesian_Optimization (accessed Dec. 19, 2022). – volume: 29 start-page: 7833 year: 2017 end-page: 7839 ident: b0440 article-title: Predicting the mechanical properties of zeolite frameworks by machine learning publication-title: Chem. Mater. – volume: vol. 7 year: 2021 ident: b0185 article-title: Atomistic Line Graph Neural Network for improved materials property predictions publication-title: Npj Comput. Mater. – volume: 547 year: 2020 ident: b0620 article-title: Geometric optimization of aerogel composites for high temperature thermal insulation applications publication-title: J. Non-Cryst. Solids – volume: 292 year: 2021 ident: b0630 article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners publication-title: J. Clean. Prod. – reference: O. Laban, S. Gowid, and E. Mahdi, – volume: 12 start-page: 163 year: 2020 ident: b0095 article-title: Machine-learning-assisted de novo design of organic molecules and polymers: opportunities and challenges publication-title: Polymers – volume: 95 year: 2017 ident: b0130 article-title: Representation of compounds for machine-learning prediction of physical properties publication-title: Phys. Rev. B – reference: “Nanophotonic particle simulation and inverse design using artificial neural networks | Science Advances.” https://www.science.org/doi/10.1126/sciadv.aar4206 (accessed Dec. 19, 2022). – volume: 318 year: 2021 ident: b0605 article-title: Life cycle assessment multi-objective optimization and deep belief network model for sustainable lightweight aggregate concrete publication-title: J. Clean. Prod. – volume: 19 start-page: 1 year: 2019 end-page: 4 ident: b0110 article-title: Machine Learning for Sustainable Structures: A Call for Data publication-title: Structures – volume: 197 year: 2019 ident: b0535 article-title: Artificial neural network based multivariable optimization of a hybrid system integrated with phase change materials, active cooling and hybrid ventilations publication-title: Energy Convers. Manag. – start-page: 3 year: 2020 end-page: 21 ident: b0305 publication-title: Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science” – volume: 37 start-page: 1718 year: 2021 end-page: 1726 ident: b0160 article-title: Applying machine learning to study fluid mechanics publication-title: Acta Mech. Sin. – reference: J. Feng, J. Fu, C. Shang, Z. Lin, and B. Li, “Sandwich panel design and performance optimization based on triply periodic minimal surfaces,” – reference: H. Wang, J. Hong, J. Zhou, Z. Wang, “How Robust is Your Fairness? Evaluating and Sustaining Fairness under Unseen Distribution Shifts.” arXiv, Jul. 03, 2022. doi: 10.48550/arXiv.2207.01168. – volume: 143 start-page: 1097 year: 2020 ident: b0425 article-title: Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs) publication-title: J. Therm. Anal. Calorim. – reference: M.I. Shah, S.A. Memon, M.S. Khan Niazi, M. N. Amin, F. Aslam, and M. F. Javed, “Machine Learning-Based Modeling with Optimization Algorithm for Predicting Mechanical Properties of Sustainable Concrete,” – reference: D. Ferreño – volume: 117 year: 2016 ident: b0040 article-title: Machine Learning Energies of 2 Million Elpasolite $(AB{C}_{2}{D}_{6})$ Crystals publication-title: Phys. Rev. Lett. – volume: 23 start-page: 781 year: 2008 end-page: 799 ident: b0640 article-title: Modular approaches in dutch house building: an exploratory survey publication-title: Hous. Stud. – volume: 128 start-page: 431 year: 2016 end-page: 441 ident: b0105 article-title: Applications of machine learning methods to identifying and predicting building retrofit opportunities publication-title: Energy Build. – reference: X. Chen, L. Sztandera, H. Cartwright, “A neural network approach to prediction of glass transition temperature of polymers,” Int. J. Intell. Syst., vol. 23, no. 1, 2008, Accessed: Dec. 19, 2022. [Online]. Available: https://ora.ox.ac.uk/objects/uuid:5f3b9a0c-9c3a-444e-83f6-b59c3d3a9ea9. – volume: 199 year: 2021 ident: b0540 article-title: Machine-learning assisted optimization strategies for phase change materials embedded within electronic packages publication-title: Appl. Therm. Eng. – volume: 148 start-page: 868 year: 2018 end-page: 875 ident: b0625 article-title: A review of the properties of recycled and waste materials for energy refurbishment of existing buildings towards the requirements of NZEB publication-title: Energy Procedia – reference: “Applying machine learning techniques to predict the properties of energetic materials | Scientific Reports.” https://www.nature.com/articles/s41598-018-27344-x (accessed Dec. 19, 2022). – reference: “Inverse design in search of materials with target functionalities | Nature Reviews Chemistry.” https://www.nature.com/articles/s41570-018-0121 (accessed Dec. 19, 2022). – volume: 153 year: 2020 ident: b0360 article-title: Machine learning prediction of self-diffusion in Lennard-Jones fluids publication-title: J. Chem. Phys. – volume: 32 start-page: e1907176 year: 2020 ident: b0015 article-title: Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications publication-title: Adv. Mater. Deerfield Beach Fla – volume: 1 start-page: 33 year: 2007 end-page: 57 ident: b0395 article-title: Particle swarm optimization publication-title: Swarm Intell. – reference: “Magnetic and superconducting phase diagrams and transition temperatures predicted using text mining and machine learning | npj Computational Materials.” https://www.nature.com/articles/s41524-020-0287-8 (accessed Dec. 19, 2022). – volume: 213 year: 2022 ident: b0475 article-title: Machine learning assisted prediction of mechanical properties of graphene/aluminium nanocomposite based on molecular dynamics simulation publication-title: Mater. Des. – volume: 122 start-page: 17575 year: 2018 end-page: 17585 ident: b0485 article-title: Polymer genome: a data-powered polymer informatics platform for property predictions publication-title: J. Phys. Chem. C – volume: 38 start-page: 13448 year: 2011 end-page: 13467 ident: b0200 article-title: A review of data mining applications for quality improvement in manufacturing industry publication-title: Expert Syst. Appl. – volume: 25 start-page: 1856 year: 2017 end-page: 1865 ident: b0590 article-title: “Application of Machine Learning for Optimization of 3-D Integrated Circuits and Systems”, publication-title: Very Large Scale Integr. VLSI Syst. – year: 2020 ident: b0065 article-title: Emerging materials intelligence ecosystems propelled by machine learning publication-title: Nat. Rev. Mater. – volume: 126 start-page: 1651 year: 2022 end-page: 1660 ident: b0400 article-title: Prediction of thermal properties of zeolites through machine learning publication-title: J. Phys. Chem. C – reference: , “Prediction of mechanical properties of rail pads under in-service conditions through machine learning algorithms,” – year: 2021 ident: b0205 article-title: Machine learning with knowledge constraints for process optimization of open-air perovskite solar cell manufacturing publication-title: SSRN Electron. J. – reference: “(5) (PDF) A Review of Distributed Algorithms for Principal Component Analysis.” https://www.researchgate.net/publication/326854927_A_Review_of_Distributed_Algorithms_for_Principal_Component_Analysis (accessed Dec. 19, 2022). – volume: 32 year: 2022 ident: b0220 article-title: An approach for process optimisation of the Automated Fibre Placement (AFP) based thermoplastic composites manufacturing using Machine Learning, photonic sensing and thermo-mechanics modelling publication-title: Manuf. Lett. – reference: . 2020, p. 72. doi: 10.1109/ICIoT48696.2020.9089603. – reference: S. Ray, “A Quick Review of Machine Learning Algorithms,” in: 2019 Int. Conf. Mach. Learn. Big Data Cloud Parallel Comput. Com., pp. 35–39, Feb. 2019, doi: 10.1109/COMITCon.2019.8862451. – volume: 552 start-page: 23 year: 2017 end-page: 27 ident: b0100 article-title: Use machine learning to find energy materials publication-title: Nature – reference: A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,” – reference: “Heat conduction in nanostructured materials.” https://www.jstage.jst.go.jp/article/jtst/11/1/11_2016jtst0001/_article (accessed Dec. 19, 2022). – volume: 212 start-page: 199 year: 2019 end-page: 206 ident: b0290 article-title: Prediction of mechanical properties of carbon fiber based on cross-scale FEM and machine learning publication-title: Compos. Struct. – volume: vol. 32 issue: no. 5, Art. no. 5 year: 1976 ident: 10.1016/j.commatsci.2023.112031_b0135 article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides publication-title: Acta Crystallogr. A doi: 10.1107/S0567739476001551 – ident: 10.1016/j.commatsci.2023.112031_b0515 – volume: vol. 6 issue: no. 1, Art. no. 1 year: 2016 ident: 10.1016/j.commatsci.2023.112031_b0030 article-title: Machine learning strategy for accelerated design of polymer dielectrics publication-title: Sci. Rep. doi: 10.1038/srep20952 – volume: 3 year: 2016 ident: 10.1016/j.commatsci.2023.112031_b0045 article-title: Finding New Perovskite Halides via Machine Learning publication-title: Front. Mater. doi: 10.3389/fmats.2016.00019 – ident: 10.1016/j.commatsci.2023.112031_b0255 – volume: 199 year: 2021 ident: 10.1016/j.commatsci.2023.112031_b0540 article-title: Machine-learning assisted optimization strategies for phase change materials embedded within electronic packages publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117384 – volume: 72 start-page: 635 issue: 359 year: 1977 ident: 10.1016/j.commatsci.2023.112031_b0345 article-title: Some properties of tests for specification error in a linear regression model publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1977.10480627 – volume: 112 start-page: 364 year: 2016 ident: 10.1016/j.commatsci.2023.112031_b0125 article-title: Material synthesis and design from first principle calculations and machine learning publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2015.11.013 – volume: 197 year: 2019 ident: 10.1016/j.commatsci.2023.112031_b0535 article-title: Artificial neural network based multivariable optimization of a hybrid system integrated with phase change materials, active cooling and hybrid ventilations publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.111859 – ident: 10.1016/j.commatsci.2023.112031_b0415 – ident: 10.1016/j.commatsci.2023.112031_b0575 doi: 10.1115/1.4023584 – volume: 1 year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0265 article-title: A machine learning workflow for molecular analysis: application to melting points publication-title: Mach. Learn. Sci. Technol. doi: 10.1088/2632-2153/ab8aa3 – volume: 4 year: 2019 ident: 10.1016/j.commatsci.2023.112031_b0085 article-title: Machine learning for glass science and engineering: A review publication-title: J. Non-Cryst. Solids X – ident: 10.1016/j.commatsci.2023.112031_b0420 doi: 10.1016/j.commatsci.2019.109155 – ident: 10.1016/j.commatsci.2023.112031_b0685 – volume: 18 start-page: 209 issue: 1 year: 2018 ident: 10.1016/j.commatsci.2023.112031_b0335 article-title: Anomaly detection in nanofibrous materials by CNN-Based Self-Similarity publication-title: Sensors doi: 10.3390/s18010209 – volume: 19 start-page: 1 year: 2019 ident: 10.1016/j.commatsci.2023.112031_b0110 article-title: Machine Learning for Sustainable Structures: A Call for Data publication-title: Structures doi: 10.1016/j.istruc.2018.11.013 – ident: 10.1016/j.commatsci.2023.112031_b0390 – ident: 10.1016/j.commatsci.2023.112031_b0350 – volume: 244 year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0595 article-title: An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118271 – volume: 18 start-page: 185 issue: 2 year: 2008 ident: 10.1016/j.commatsci.2023.112031_b0340 article-title: Reinforcement learning: the good, the bad and the ugly publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2008.08.003 – volume: 12 issue: 2 year: 2022 ident: 10.1016/j.commatsci.2023.112031_b0235 article-title: Machine learning symbolic equations for diffusion with physics-based descriptions publication-title: AIP Adv. doi: 10.1063/5.0082147 – ident: 10.1016/j.commatsci.2023.112031_b0470 – volume: 5 start-page: 1365 issue: 4 year: 2018 ident: 10.1016/j.commatsci.2023.112031_b0510 article-title: Training deep neural networks for the inverse design of nanophotonic structures publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b01377 – volume: 305 year: 2022 ident: 10.1016/j.commatsci.2023.112031_b0565 article-title: Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117800 – volume: vol. 3 issue: no. 6, Art. no. 6 year: 2021 ident: 10.1016/j.commatsci.2023.112031_b0165 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00314-5 – volume: 2 start-page: 451 year: 2010 ident: 10.1016/j.commatsci.2023.112031_b0385 article-title: Genetic Algorithm: Review and Application publication-title: J. Inf. Knowl. Manag. – volume: 260 year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0115 article-title: Machine learning prediction of mechanical properties of concrete: Critical review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.119889 – ident: 10.1016/j.commatsci.2023.112031_b0675 doi: 10.3390/en10121981 – volume: 292 year: 2021 ident: 10.1016/j.commatsci.2023.112031_b0630 article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126032 – ident: 10.1016/j.commatsci.2023.112031_b0435 doi: 10.3390/app12052408 – volume: 253 year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0615 article-title: Machine learning-based multi-objective optimisation of an aerogel glazing system using NSGA-II—study of modelling and application in the subtropical climate Hong Kong publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.119964 – ident: 10.1016/j.commatsci.2023.112031_b0070 doi: 10.3389/fmats.2019.00110 – ident: 10.1016/j.commatsci.2023.112031_b0330 – ident: 10.1016/j.commatsci.2023.112031_b0505 doi: 10.1038/s41598-017-01939-2 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.commatsci.2023.112031_b0375 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 12 start-page: 163 issue: 1 year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0095 article-title: Machine-learning-assisted de novo design of organic molecules and polymers: opportunities and challenges publication-title: Polymers doi: 10.3390/polym12010163 – volume: 202 year: 2019 ident: 10.1016/j.commatsci.2023.112031_b0545 article-title: A deep reinforcement learning-based autonomous ventilation control system for smart indoor air quality management in a subway station publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.109440 – year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0065 article-title: Emerging materials intelligence ecosystems propelled by machine learning publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-00255-y – volume: vol. 7 issue: no. 1, Art. no. 1 year: 2021 ident: 10.1016/j.commatsci.2023.112031_b0185 article-title: Atomistic Line Graph Neural Network for improved materials property predictions publication-title: Npj Comput. Mater. doi: 10.1038/s41524-021-00650-1 – volume: 6 start-page: 1632 issue: 8 year: 2019 ident: 10.1016/j.commatsci.2023.112031_b0680 article-title: Creating glasswing butterfly-inspired durable antifogging superomniphobic supertransmissive, superclear nanostructured glass through Bayesian learning and optimization publication-title: Mater. Horiz. doi: 10.1039/C9MH00589G – volume: 117 issue: 13 year: 2016 ident: 10.1016/j.commatsci.2023.112031_b0040 article-title: Machine Learning Energies of 2 Million Elpasolite $(AB{C}_{2}{D}_{6})$ Crystals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.135502 – volume: 344 year: 2021 ident: 10.1016/j.commatsci.2023.112031_b0140 article-title: Predicting melting point of ionic liquids using QSPR approach: Literature review and new models publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.117631 – ident: 10.1016/j.commatsci.2023.112031_b0005 doi: 10.1126/science.aau0323 – volume: 552 start-page: 23 issue: 7683 year: 2017 ident: 10.1016/j.commatsci.2023.112031_b0100 article-title: Use machine learning to find energy materials publication-title: Nature doi: 10.1038/d41586-017-07820-6 – ident: 10.1016/j.commatsci.2023.112031_b0355 doi: 10.1109/COMITCon.2019.8862451 – volume: 153 year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0360 article-title: Machine learning prediction of self-diffusion in Lennard-Jones fluids publication-title: J. Chem. Phys. doi: 10.1063/5.0011512 – volume: 484 start-page: 225 year: 2019 ident: 10.1016/j.commatsci.2023.112031_b0145 article-title: Prediction of the boiling and critical points of polycyclic aromatic hydrocarbons via Wang-Landau simulations and machine learning publication-title: Fluid Phase Equilibria doi: 10.1016/j.fluid.2018.11.030 – volume: vol. 4 issue: no. 1, Art. no. 1 year: 2018 ident: 10.1016/j.commatsci.2023.112031_b0035 article-title: Machine learning modeling of superconducting critical temperature publication-title: Npj Comput. Mater. doi: 10.1038/s41524-018-0085-8 – volume: 18 year: 2012 ident: 10.1016/j.commatsci.2023.112031_b0370 article-title: Recent advances on support vector machines research publication-title: Technol. Econ. Dev. Econ. doi: 10.3846/20294913.2012.661205 – ident: 10.1016/j.commatsci.2023.112031_b0660 – ident: 10.1016/j.commatsci.2023.112031_b0600 doi: 10.1155/2021/6682283 – volume: 9 start-page: 556 issue: 2 year: 2019 ident: 10.1016/j.commatsci.2023.112031_b0090 article-title: Machine learning for composite materials publication-title: MRS Commun. doi: 10.1557/mrc.2019.32 – volume: 157 issue: 1 year: 2022 ident: 10.1016/j.commatsci.2023.112031_b0230 article-title: Symbolic regression development of empirical equations for diffusion in Lennard-Jones fluids publication-title: J. Chem. Phys. doi: 10.1063/5.0093658 – volume: 3 start-page: 159 issue: 3 year: 2017 ident: 10.1016/j.commatsci.2023.112031_b0055 article-title: Materials discovery and design using machine learning publication-title: J. Materiomics doi: 10.1016/j.jmat.2017.08.002 – volume: 35 year: 2022 ident: 10.1016/j.commatsci.2023.112031_b0215 article-title: Machine learning for the design and discovery of zeolites and porous crystalline materials publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2021.100739 – ident: 10.1016/j.commatsci.2023.112031_b0570 doi: 10.1299/jtst.2016jtst0001 – volume: 143 start-page: 1097 issue: 2 year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0425 article-title: Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs) publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09458-5 – volume: 8 start-page: 19 issue: 1 year: 2002 ident: 10.1016/j.commatsci.2023.112031_b0650 article-title: Industrialized Building Systems Construction in Malaysia publication-title: J. Archit. Eng. doi: 10.1061/(ASCE)1076-0431(2002)8:1(19) – ident: 10.1016/j.commatsci.2023.112031_b0460 doi: 10.1016/j.advengsoft.2020.102927 – year: 2021 ident: 10.1016/j.commatsci.2023.112031_b0205 article-title: Machine learning with knowledge constraints for process optimization of open-air perovskite solar cell manufacturing publication-title: SSRN Electron. J. – volume: 212 start-page: 199 year: 2019 ident: 10.1016/j.commatsci.2023.112031_b0290 article-title: Prediction of mechanical properties of carbon fiber based on cross-scale FEM and machine learning publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.01.042 – volume: 54 start-page: 63 issue: 1 year: 2021 ident: 10.1016/j.commatsci.2023.112031_b0075 article-title: A review on machine learning in 3D printing: applications, potential, and challenges publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09876-9 – volume: 42 start-page: 259 year: 2008 ident: 10.1016/j.commatsci.2023.112031_b0445 article-title: Predicting the compressive strength of steel fiber added lightweight concrete using neural network publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2007.07.011 – volume: 38 start-page: 1051 issue: 3 year: 2007 ident: 10.1016/j.commatsci.2023.112031_b0645 article-title: Impact and post impact behavior of composite sandwich panels publication-title: Compos. Part Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2006.06.022 – volume: 3 issue: 5 year: 2022 ident: 10.1016/j.commatsci.2023.112031_b0195 article-title: Scalable deeper graph neural networks for high-performance materials property prediction publication-title: Patterns N. Y. N – ident: 10.1016/j.commatsci.2023.112031_b0250 – ident: 10.1016/j.commatsci.2023.112031_b0490 – volume: vol. 7 issue: no. 1, Art. no. 1 year: 2018 ident: 10.1016/j.commatsci.2023.112031_b0050 article-title: Plasmonic nanostructure design and characterization via Deep Learning publication-title: Light Sci. Appl. doi: 10.1038/s41377-018-0060-7 – ident: 10.1016/j.commatsci.2023.112031_b0190 – volume: 109 year: 2021 ident: 10.1016/j.commatsci.2023.112031_b0210 article-title: A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels publication-title: J. Mater. Sci. Technol. – volume: 120 start-page: 10336 issue: 18 year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0010 article-title: 3D graphene materials: from understanding to design and synthesis control publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00083 – ident: 10.1016/j.commatsci.2023.112031_b0670 doi: 10.1016/j.cad.2019.06.007 – start-page: 3 year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0305 publication-title: Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science” doi: 10.1007/978-3-030-22475-2_1 – volume: 549 year: 2021 ident: 10.1016/j.commatsci.2023.112031_b0170 article-title: Perspective: machine learning of thermophysical properties publication-title: Fluid Phase Equilibria doi: 10.1016/j.fluid.2021.113206 – volume: 29 start-page: 7833 issue: 18 year: 2017 ident: 10.1016/j.commatsci.2023.112031_b0440 article-title: Predicting the mechanical properties of zeolite frameworks by machine learning publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02532 – volume: 262 year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0455 article-title: Prediction of the mechanical properties of wood using guided wave propagation and machine learning publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120848 – volume: 125 start-page: 5251 issue: 9 year: 2021 ident: 10.1016/j.commatsci.2023.112031_b0495 article-title: Neural networks for analysis of optical properties in 2D layered hybrid lead halide perovskites publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c00588 – ident: 10.1016/j.commatsci.2023.112031_b0380 – volume: 213 year: 2022 ident: 10.1016/j.commatsci.2023.112031_b0475 article-title: Machine learning assisted prediction of mechanical properties of graphene/aluminium nanocomposite based on molecular dynamics simulation publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.110334 – ident: 10.1016/j.commatsci.2023.112031_b0585 doi: 10.31224/osf.io/3dh9s – ident: 10.1016/j.commatsci.2023.112031_b0665 doi: 10.1109/ICIoT48696.2020.9089603 – volume: 93 issue: 11 year: 2016 ident: 10.1016/j.commatsci.2023.112031_b0270 article-title: Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.115104 – volume: 195 start-page: 514 year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0530 article-title: Exergy-based optimisation of a phase change materials integrated hybrid renewable system for active cooling applications using supervised machine learning method publication-title: Sol. Energy doi: 10.1016/j.solener.2019.11.067 – ident: 10.1016/j.commatsci.2023.112031_b0245 – volume: 7 start-page: 43 issue: 2 year: 2018 ident: 10.1016/j.commatsci.2023.112031_b0410 article-title: Machine Learning Prediction of Heat Capacity for Solid Inorganics publication-title: Integrating Mater. Manuf. Innov. doi: 10.1007/s40192-018-0108-9 – volume: 547 year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0620 article-title: Geometric optimization of aerogel composites for high temperature thermal insulation applications publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2020.120306 – volume: 1 start-page: 33 issue: 1 year: 2007 ident: 10.1016/j.commatsci.2023.112031_b0395 article-title: Particle swarm optimization publication-title: Swarm Intell. doi: 10.1007/s11721-007-0002-0 – volume: 95 issue: 14 year: 2017 ident: 10.1016/j.commatsci.2023.112031_b0130 article-title: Representation of compounds for machine-learning prediction of physical properties publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.144110 – ident: 10.1016/j.commatsci.2023.112031_b0405 – volume: 8 year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0080 article-title: Discovery and design of soft polymeric bio-inspired materials with multiscale simulations and artificial intelligence publication-title: J. Mater. Chem. B doi: 10.1039/D0TB00896F – ident: 10.1016/j.commatsci.2023.112031_b0500 – ident: 10.1016/j.commatsci.2023.112031_b0520 doi: 10.1117/1.AP.2.2.026003 – volume: 318 year: 2021 ident: 10.1016/j.commatsci.2023.112031_b0605 article-title: Life cycle assessment multi-objective optimization and deep belief network model for sustainable lightweight aggregate concrete publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128554 – volume: 26 start-page: 303 issue: 1 year: 2016 ident: 10.1016/j.commatsci.2023.112031_b0310 article-title: Model-based clustering based on sparse finite Gaussian mixtures publication-title: Stat. Comput. doi: 10.1007/s11222-014-9500-2 – volume: 72 start-page: 185 year: 2018 ident: 10.1016/j.commatsci.2023.112031_b0025 article-title: Transfer-learning: bridging the gap between real and simulation data for machine learning in injection molding publication-title: Proc. CIRP doi: 10.1016/j.procir.2018.03.087 – ident: 10.1016/j.commatsci.2023.112031_b0480 doi: 10.1063/5.0023759 – volume: 34 start-page: 2102703 issue: 1 year: 2022 ident: 10.1016/j.commatsci.2023.112031_b0225 article-title: Machine learning-driven biomaterials evolution publication-title: Adv. Mater. doi: 10.1002/adma.202102703 – ident: 10.1016/j.commatsci.2023.112031_b0280 doi: 10.1109/ComPE49325.2020.9200093 – volume: 128 start-page: 431 year: 2016 ident: 10.1016/j.commatsci.2023.112031_b0105 article-title: Applications of machine learning methods to identifying and predicting building retrofit opportunities publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.06.092 – ident: 10.1016/j.commatsci.2023.112031_b0320 – year: 2012 ident: 10.1016/j.commatsci.2023.112031_b0655 publication-title: Optimal Design of a Composite Sandwich Structure Using Lamination Parameters. – ident: 10.1016/j.commatsci.2023.112031_b0465 doi: 10.1038/s41598-019-50144-w – volume: 236 start-page: 574 year: 2019 ident: 10.1016/j.commatsci.2023.112031_b0550 article-title: Modeling, air balancing and optimal pressure set-point selection for the ventilation system with minimized energy consumption publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.12.026 – volume: 148 start-page: 868 year: 2018 ident: 10.1016/j.commatsci.2023.112031_b0625 article-title: A review of the properties of recycled and waste materials for energy refurbishment of existing buildings towards the requirements of NZEB publication-title: Energy Procedia doi: 10.1016/j.egypro.2018.08.108 – ident: 10.1016/j.commatsci.2023.112031_b0580 – volume: 34 year: 2021 ident: 10.1016/j.commatsci.2023.112031_b0120 article-title: Machine learning based prediction model for thermal conductivity of concrete publication-title: J. Build. Eng. – volume: 23 start-page: 781 issue: 5 year: 2008 ident: 10.1016/j.commatsci.2023.112031_b0640 article-title: Modular approaches in dutch house building: an exploratory survey publication-title: Hous. Stud. doi: 10.1080/02673030802293208 – ident: 10.1016/j.commatsci.2023.112031_b0315 doi: 10.1109/IITSI.2010.74 – volume: vol. 559 issue: no. 7715, Art. no. 7715 year: 2018 ident: 10.1016/j.commatsci.2023.112031_b0060 article-title: Machine learning for molecular and materials science publication-title: Nature doi: 10.1038/s41586-018-0337-2 – volume: 25 start-page: 1856 issue: 6 year: 2017 ident: 10.1016/j.commatsci.2023.112031_b0590 article-title: “Application of Machine Learning for Optimization of 3-D Integrated Circuits and Systems”, IEEE Trans publication-title: Very Large Scale Integr. VLSI Syst. doi: 10.1109/TVLSI.2017.2656843 – volume: 165 start-page: 297 year: 2016 ident: 10.1016/j.commatsci.2023.112031_b0555 article-title: Power and mass optimization of the hybrid solar panel and thermoelectric generators publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.12.016 – volume: 29 start-page: 10527 issue: 7 year: 2021 ident: 10.1016/j.commatsci.2023.112031_b0525 article-title: Deep-learning-enabled inverse engineering of multi-wavelength invisibility-to-superscattering switching with phase-change materials publication-title: Opt. Express doi: 10.1364/OE.422119 – volume: 1 start-page: 338 year: 2019 ident: 10.1016/j.commatsci.2023.112031_b0020 article-title: Machine learning in materials science publication-title: InfoMat doi: 10.1002/inf2.12028 – volume: 32 year: 2022 ident: 10.1016/j.commatsci.2023.112031_b0220 article-title: An approach for process optimisation of the Automated Fibre Placement (AFP) based thermoplastic composites manufacturing using Machine Learning, photonic sensing and thermo-mechanics modelling publication-title: Manuf. Lett. – volume: 44 start-page: 524 year: 2013 ident: 10.1016/j.commatsci.2023.112031_b0275 article-title: Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.02.064 – volume: 52 start-page: 477 issue: 1 year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0155 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010719-060214 – volume: 32 start-page: e1907176 issue: 17 year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0015 article-title: Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications publication-title: Adv. Mater. Deerfield Beach Fla doi: 10.1002/adma.201907176 – ident: 10.1016/j.commatsci.2023.112031_b0260 – ident: 10.1016/j.commatsci.2023.112031_b0365 doi: 10.3389/fnbot.2013.00021 – ident: 10.1016/j.commatsci.2023.112031_b0300 – volume: 45 start-page: 18551 issue: 15 year: 2019 ident: 10.1016/j.commatsci.2023.112031_b0430 article-title: Ultra-high temperature ceramics melting temperature prediction via machine learning publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.06.076 – ident: 10.1016/j.commatsci.2023.112031_b0285 – volume: 122 start-page: 17575 issue: 31 year: 2018 ident: 10.1016/j.commatsci.2023.112031_b0485 article-title: Polymer genome: a data-powered polymer informatics platform for property predictions publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b02913 – ident: 10.1016/j.commatsci.2023.112031_b0560 – ident: 10.1016/j.commatsci.2023.112031_b0325 – volume: 533 start-page: 73 issue: 7601 year: 2016 ident: 10.1016/j.commatsci.2023.112031_b0240 article-title: Machine-learning-assisted materials discovery using failed experiments publication-title: Nature doi: 10.1038/nature17439 – volume: 206 start-page: 355 year: 2019 ident: 10.1016/j.commatsci.2023.112031_b0295 article-title: Combination of Support Vector Machine and K-Fold cross validation to predict compressive strength of concrete in marine environment publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.02.071 – volume: 115 issue: 20 year: 2015 ident: 10.1016/j.commatsci.2023.112031_b0150 article-title: Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.205901 – volume: 197 year: 2021 ident: 10.1016/j.commatsci.2023.112031_b0450 article-title: Online prediction of mechanical properties of hot rolled steel plate using machine learning publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109201 – volume: vol. 7 issue: no. 3, Art. no. 3 year: 2022 ident: 10.1016/j.commatsci.2023.112031_b0175 article-title: Current trends in fluid research in the era of artificial intelligence: a review publication-title: Fluids doi: 10.3390/fluids7030116 – volume: 126 start-page: 1651 issue: 3 year: 2022 ident: 10.1016/j.commatsci.2023.112031_b0400 article-title: Prediction of thermal properties of zeolites through machine learning publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c09737 – volume: 18 start-page: 84 issue: 2 year: 2012 ident: 10.1016/j.commatsci.2023.112031_b0635 article-title: House-Building Business Models and Off-Site Construction Take-Up publication-title: J. Archit. Eng. doi: 10.1061/(ASCE)AE.1943-5568.0000058 – volume: 38 start-page: 13448 issue: 10 year: 2011 ident: 10.1016/j.commatsci.2023.112031_b0200 article-title: A review of data mining applications for quality improvement in manufacturing industry publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.063 – volume: 37 start-page: 1718 issue: 12 year: 2021 ident: 10.1016/j.commatsci.2023.112031_b0160 article-title: Applying machine learning to study fluid mechanics publication-title: Acta Mech. Sin. doi: 10.1007/s10409-021-01143-6 – volume: 153 start-page: 375 year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0610 article-title: Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization publication-title: Renew. Energy doi: 10.1016/j.renene.2020.01.133 – volume: vol. 8, no. 1, Art. no. 1 year: 2020 ident: 10.1016/j.commatsci.2023.112031_b0180 article-title: Machine-learning methods for computational science and engineering publication-title: Computation |
SSID | ssj0016982 |
Score | 2.6236699 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
Analysis and design, as the most critical components in material science, require a highly rigorous approach to assure long-term success. Due... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112031 |
SubjectTerms | Evolutionary algorithms Machine Learning Materials production process Materials properties Materials Science Mechanical properties Optical parameters Optimization Physical properties |
Title | Enhancing property prediction and process optimization in building materials through machine learning: A review |
URI | https://dx.doi.org/10.1016/j.commatsci.2023.112031 |
Volume | 220 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQXdqh6lOlD-ShqyGJncRhQwhEW5WlRWKLbGNTqjZEKB269LfXlzgIpEoM3RLLZ1l3l7uzc3cfQvc-l4wnihNPxYwwbQzhWiQkEFprnxrqKzgoPk-i8ZQ9zsJZAw3qWhhIq3S2v7LppbV2I13HzW6-XHZfvARqqcB_w2cdQsdPxmLQ8s7PJs3Dj5ISMAomE5i9k-Nl17ZxoV29AyjiUE7jUf9vD7XldUYn6NiFi7hf7egUNXR2ho62mgieo9Uwe4OmGdkC53Czvi6-7QP8fwGeY5HNcV5VA-CVtQ-frvASLzMsHSY2tturNBE73B47AkmWGjtUiUUP93FV5nKBpqPh62BMHIwCUdQPCxIrGmkuIRaJQmqklQU3gUgk5TLgkeGeltZHCZYIRUGkiQmUjSPmIrSCChS9RM1slekrhOcmBkRNZc-JmmnmCwgwuI0QtGE6YrKFopp1qXI9xgHq4iOtk8ne0w3PU-B5WvG8hbwNYV612dhP0qtlk-5oTGqdwT7i6_8Q36BDeCsz0cJb1CzWX_rOhiaFbJe610YH_Yen8eQXscznAA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwED5RGNoOVZ8qfXrompLETnDYEAJBeSwFiS2KjU2p2hChdOi_r48YBFKlDt0iJ5dYd87d5-TuPoAnjwvGI8kdV9aZw5TWDldJ5PiJUsqjmnoSN4rDUdidsJdpMC1Ba1MLg2mV1vcXPn3tre1IzWqzli0WtVc3wloqjN_4Wgf0ACrYnSooQ6XZ63dH258JYbTmjMLrHRTYS_MytzfQ0DzgGYnEsaLGpd7vQWon8HRO4cQiRtIsJnUGJZWew_FOH8ELWLbTN-ybkc5Jhh_XV_m3OcBfMKh2kqQzkhUFAWRpXMSnrb0ki5QIS4tNzPSKxUgsdY8ZwTxLRSyxxLxBmqSodLmESac9bnUdy6TgSOoFuVOXNFRcIBwJA6qFMQfXfhIJyoXPQ81dJUyYSliUSIpWjbQvDZSYJYGxlS_pFZTTZaqugcx0HUk1pdkqKqaYlyDG4AYkKM1UyEQVwo3qYmnbjCPbxUe8ySd7j7c6j1HncaHzKrhbwazotPG3SGNjm3hv0cQmHvwlfPMf4Uc47I6Hg3jQG_Vv4QjPrBPTgjso56svdW-QSi4e7Er8AZrU6bE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+property+prediction+and+process+optimization+in+building+materials+through+machine+learning%3A+A+review&rft.jtitle=Computational+materials+science&rft.au=Stergiou%2C+Konstantinos&rft.au=Ntakolia%2C+Charis&rft.au=Varytis%2C+Paris&rft.au=Koumoulos%2C+Elias&rft.date=2023-03-05&rft.issn=0927-0256&rft.volume=220&rft.spage=112031&rft_id=info:doi/10.1016%2Fj.commatsci.2023.112031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_commatsci_2023_112031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon |