Enhancing property prediction and process optimization in building materials through machine learning: A review

[Display omitted] Analysis and design, as the most critical components in material science, require a highly rigorous approach to assure long-term success. Due to a recent increase in the amount of available experimental data, large databases now contain a depth of knowledge on important properties...

Full description

Saved in:
Bibliographic Details
Published inComputational materials science Vol. 220; p. 112031
Main Authors Stergiou, Konstantinos, Ntakolia, Charis, Varytis, Paris, Koumoulos, Elias, Karlsson, Patrik, Moustakidis, Serafeim
Format Journal Article
LanguageEnglish
Published Elsevier B.V 05.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Analysis and design, as the most critical components in material science, require a highly rigorous approach to assure long-term success. Due to a recent increase in the amount of available experimental data, large databases now contain a depth of knowledge on important properties of materials. The use of this information, combined with Machine Learning (ML) solutions, can enhance the materials’ manufacturing process and efficiency. Indeed, ML can predict material properties, minimize the time and cost of laboratory testing, as well as optimize critical manufacturing processes. This paper aims to give an up-to-date review of the literature on how ML models are used to predict buildings’ material properties (thermal, mechanical, and optical) and optimize the production lines for: a) Phase Change Materials (PCMs), b) Thermoelectric generators (TEGs), c) Customizable 3D-components, d) Advanced cement/concrete-based materials, e) Aerogels, f) Insulation components made from waste materials, g) Multifunctional component materials (MCs), h) Solar active building envelopes (SAE), i) Omniphobic coatings. The review showed that ML-driven approaches for materials’ properties prediction in buildings and process optimization have grown rapidly, providing information and insights that can be utilized in the industry to maximize the materials’ production and efficiency while reducing CO2 emissions, resulting in a more productive and environmentally friendly era.
AbstractList [Display omitted] Analysis and design, as the most critical components in material science, require a highly rigorous approach to assure long-term success. Due to a recent increase in the amount of available experimental data, large databases now contain a depth of knowledge on important properties of materials. The use of this information, combined with Machine Learning (ML) solutions, can enhance the materials’ manufacturing process and efficiency. Indeed, ML can predict material properties, minimize the time and cost of laboratory testing, as well as optimize critical manufacturing processes. This paper aims to give an up-to-date review of the literature on how ML models are used to predict buildings’ material properties (thermal, mechanical, and optical) and optimize the production lines for: a) Phase Change Materials (PCMs), b) Thermoelectric generators (TEGs), c) Customizable 3D-components, d) Advanced cement/concrete-based materials, e) Aerogels, f) Insulation components made from waste materials, g) Multifunctional component materials (MCs), h) Solar active building envelopes (SAE), i) Omniphobic coatings. The review showed that ML-driven approaches for materials’ properties prediction in buildings and process optimization have grown rapidly, providing information and insights that can be utilized in the industry to maximize the materials’ production and efficiency while reducing CO2 emissions, resulting in a more productive and environmentally friendly era.
ArticleNumber 112031
Author Stergiou, Konstantinos
Ntakolia, Charis
Moustakidis, Serafeim
Karlsson, Patrik
Varytis, Paris
Koumoulos, Elias
Author_xml – sequence: 1
  givenname: Konstantinos
  surname: Stergiou
  fullname: Stergiou, Konstantinos
  organization: AIDEAS OÜ, Narva mnt 5, 10117 Tallinn, Estonia
– sequence: 2
  givenname: Charis
  surname: Ntakolia
  fullname: Ntakolia, Charis
  organization: Hellenic Air Force Academy, Department of Aeronautical Studies, Sector of Materials Engineering, Machining Technology and Production Management, Dekelia Air Base, GR 1010, Athens, Greece
– sequence: 3
  givenname: Paris
  surname: Varytis
  fullname: Varytis, Paris
  organization: IRES - Innovation in Research & Engineering Solutions, Rue Koningin Astridlaan 59B, 1780 Wemmel, Belgium
– sequence: 4
  givenname: Elias
  surname: Koumoulos
  fullname: Koumoulos, Elias
  organization: IRES - Innovation in Research & Engineering Solutions, Rue Koningin Astridlaan 59B, 1780 Wemmel, Belgium
– sequence: 5
  givenname: Patrik
  surname: Karlsson
  fullname: Karlsson, Patrik
  organization: AIDEAS OÜ, Narva mnt 5, 10117 Tallinn, Estonia
– sequence: 6
  givenname: Serafeim
  orcidid: 0000-0002-1090-2177
  surname: Moustakidis
  fullname: Moustakidis, Serafeim
  email: s.moustakidis@aideas.eu
  organization: AIDEAS OÜ, Narva mnt 5, 10117 Tallinn, Estonia
BookMark eNqNkMtOwzAQRS1UJNrCN5AfSPGjSRwkFlXFS6rEBtaWM5m0rhI7clxQ-XrcFrFgAytb43tmPGdCRtZZJOSa0RmjLL_ZzsB1nQ4DmBmnXMwY41SwMzJmsihTKikbkTEteZFSnuUXZDIMWxrJUvIxcfd2oy0Yu05673r0YR8vWBsIxtlE2_pQBxyGxPXBdOZTHx-MTaqdaesDGIejN7odkrDxbrfexApsjMWkRe1tjNwmi8Tju8GPS3LexCRefZ9T8vZw_7p8Slcvj8_LxSoFwbKQFiBylBXNRZlnoqkkatlwXVZCVlzmjaRYyXmh56UGUSFA2XDIaFnrjAHjIKbk7tQXvBsGj40CE45fD16bVjGqDvbUVv3YUwd76mQv8sUvvvem037_D3JxIjGuF1f2KibQQnTqEYKqnfmzxxdqOpT4
CitedBy_id crossref_primary_10_3390_fluids8070212
crossref_primary_10_1039_D4YA00014E
crossref_primary_10_1016_j_commatsci_2023_112432
crossref_primary_10_3390_cryst13040602
crossref_primary_10_1016_j_jksus_2024_103456
crossref_primary_10_3390_computers13010002
crossref_primary_10_3390_met13050898
crossref_primary_10_1016_j_jobe_2025_111788
crossref_primary_10_3390_math12213443
crossref_primary_10_20517_jmi_2024_46
crossref_primary_10_1016_j_egyr_2024_11_016
crossref_primary_10_3390_su151411365
crossref_primary_10_3390_su16166775
crossref_primary_10_1016_j_conbuildmat_2024_137370
crossref_primary_10_3390_met14060634
crossref_primary_10_1016_j_compositesa_2024_108578
crossref_primary_10_1016_j_iswa_2024_200451
crossref_primary_10_1016_j_jobe_2023_108369
crossref_primary_10_1007_s42107_024_01131_8
crossref_primary_10_1002_ep_14319
crossref_primary_10_1007_s13369_023_07917_3
crossref_primary_10_1088_2632_2153_ad95db
crossref_primary_10_1088_2515_7639_ad3d89
crossref_primary_10_1016_j_ijsolstr_2024_113014
crossref_primary_10_1016_j_ccr_2024_216380
crossref_primary_10_1016_j_mtcomm_2024_108268
crossref_primary_10_1016_j_jcomc_2024_100513
crossref_primary_10_1016_j_matpr_2023_10_109
crossref_primary_10_1557_s43577_024_00816_4
crossref_primary_10_1016_j_jestch_2024_101743
crossref_primary_10_3390_polym16111589
crossref_primary_10_1002_inf2_70005
crossref_primary_10_1016_j_triboint_2024_109697
crossref_primary_10_1016_j_psep_2024_09_025
crossref_primary_10_1007_s11082_023_05140_w
crossref_primary_10_1088_1742_6596_2734_1_012038
crossref_primary_10_1016_j_clwas_2025_100216
crossref_primary_10_1007_s43939_025_00176_z
crossref_primary_10_54033_cadpedv21n7_247
crossref_primary_10_1038_s41467_024_53431_x
crossref_primary_10_1016_j_compstruct_2025_119120
crossref_primary_10_3390_applmech5010014
crossref_primary_10_1007_s10614_024_10837_5
crossref_primary_10_1016_j_commatsci_2024_113432
crossref_primary_10_3390_en17133295
crossref_primary_10_1016_j_mtcomm_2024_109180
crossref_primary_10_1088_2053_1583_ad8011
crossref_primary_10_1007_s42107_023_00918_5
crossref_primary_10_1016_j_istruc_2025_108206
crossref_primary_10_1134_S2075113324700783
crossref_primary_10_1016_j_conbuildmat_2023_132293
crossref_primary_10_1016_j_mtcomm_2024_109419
crossref_primary_10_3390_pr12122855
crossref_primary_10_1016_j_mtcomm_2023_107659
crossref_primary_10_3390_buildings14092850
crossref_primary_10_1016_j_engappai_2025_110377
crossref_primary_10_1061_JMCEE7_MTENG_17430
crossref_primary_10_1016_j_bprint_2024_e00331
crossref_primary_10_1016_j_matpr_2023_10_128
crossref_primary_10_1007_s12008_024_01912_0
crossref_primary_10_1016_j_commatsci_2025_113780
Cites_doi 10.1107/S0567739476001551
10.1038/srep20952
10.3389/fmats.2016.00019
10.1016/j.applthermaleng.2021.117384
10.1080/01621459.1977.10480627
10.1016/j.commatsci.2015.11.013
10.1016/j.enconman.2019.111859
10.1115/1.4023584
10.1088/2632-2153/ab8aa3
10.1016/j.commatsci.2019.109155
10.3390/s18010209
10.1016/j.istruc.2018.11.013
10.1016/j.conbuildmat.2020.118271
10.1016/j.conb.2008.08.003
10.1063/5.0082147
10.1021/acsphotonics.7b01377
10.1016/j.apenergy.2021.117800
10.1038/s42254-021-00314-5
10.1016/j.conbuildmat.2020.119889
10.3390/en10121981
10.1016/j.jclepro.2021.126032
10.3390/app12052408
10.1016/j.jclepro.2020.119964
10.3389/fmats.2019.00110
10.1038/s41598-017-01939-2
10.1162/neco.1997.9.8.1735
10.3390/polym12010163
10.1016/j.enbuild.2019.109440
10.1038/s41578-020-00255-y
10.1038/s41524-021-00650-1
10.1039/C9MH00589G
10.1103/PhysRevLett.117.135502
10.1016/j.molliq.2021.117631
10.1126/science.aau0323
10.1038/d41586-017-07820-6
10.1109/COMITCon.2019.8862451
10.1063/5.0011512
10.1016/j.fluid.2018.11.030
10.1038/s41524-018-0085-8
10.3846/20294913.2012.661205
10.1155/2021/6682283
10.1557/mrc.2019.32
10.1063/5.0093658
10.1016/j.jmat.2017.08.002
10.1016/j.coche.2021.100739
10.1299/jtst.2016jtst0001
10.1007/s10973-020-09458-5
10.1061/(ASCE)1076-0431(2002)8:1(19)
10.1016/j.advengsoft.2020.102927
10.1016/j.compstruct.2019.01.042
10.1007/s10462-020-09876-9
10.1016/j.commatsci.2007.07.011
10.1016/j.compositesa.2006.06.022
10.1038/s41377-018-0060-7
10.1021/acs.chemrev.0c00083
10.1016/j.cad.2019.06.007
10.1007/978-3-030-22475-2_1
10.1016/j.fluid.2021.113206
10.1021/acs.chemmater.7b02532
10.1016/j.conbuildmat.2020.120848
10.1021/acs.jpcc.1c00588
10.1016/j.matdes.2021.110334
10.31224/osf.io/3dh9s
10.1109/ICIoT48696.2020.9089603
10.1103/PhysRevB.93.115104
10.1016/j.solener.2019.11.067
10.1007/s40192-018-0108-9
10.1016/j.jnoncrysol.2020.120306
10.1007/s11721-007-0002-0
10.1103/PhysRevB.95.144110
10.1039/D0TB00896F
10.1117/1.AP.2.2.026003
10.1016/j.jclepro.2021.128554
10.1007/s11222-014-9500-2
10.1016/j.procir.2018.03.087
10.1063/5.0023759
10.1002/adma.202102703
10.1109/ComPE49325.2020.9200093
10.1016/j.enbuild.2016.06.092
10.1038/s41598-019-50144-w
10.1016/j.apenergy.2018.12.026
10.1016/j.egypro.2018.08.108
10.1080/02673030802293208
10.1109/IITSI.2010.74
10.1038/s41586-018-0337-2
10.1109/TVLSI.2017.2656843
10.1016/j.apenergy.2015.12.016
10.1364/OE.422119
10.1002/inf2.12028
10.1016/j.conbuildmat.2013.02.064
10.1146/annurev-fluid-010719-060214
10.1002/adma.201907176
10.3389/fnbot.2013.00021
10.1016/j.ceramint.2019.06.076
10.1021/acs.jpcc.8b02913
10.1038/nature17439
10.1016/j.conbuildmat.2019.02.071
10.1103/PhysRevLett.115.205901
10.1016/j.matdes.2020.109201
10.3390/fluids7030116
10.1021/acs.jpcc.1c09737
10.1061/(ASCE)AE.1943-5568.0000058
10.1016/j.eswa.2011.04.063
10.1007/s10409-021-01143-6
10.1016/j.renene.2020.01.133
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.commatsci.2023.112031
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0801
ExternalDocumentID 10_1016_j_commatsci_2023_112031
S0927025623000253
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
XPP
ZMT
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SMS
SSH
VH1
WUQ
ID FETCH-LOGICAL-c315t-7c36e8b0639653fb8ea8f2a9b38b286f80eb847a49ac3becc9f2c509da51c12c3
IEDL.DBID .~1
ISSN 0927-0256
IngestDate Tue Jul 01 02:01:18 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
Fri Feb 23 02:38:41 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Materials Science
Materials production process
Optical parameters
Materials properties
Mechanical properties
Evolutionary algorithms
Machine Learning
Physical properties
Optimization
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-7c36e8b0639653fb8ea8f2a9b38b286f80eb847a49ac3becc9f2c509da51c12c3
ORCID 0000-0002-1090-2177
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0927025623000253
ParticipantIDs crossref_citationtrail_10_1016_j_commatsci_2023_112031
crossref_primary_10_1016_j_commatsci_2023_112031
elsevier_sciencedirect_doi_10_1016_j_commatsci_2023_112031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-05
PublicationDateYYYYMMDD 2023-03-05
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-05
  day: 05
PublicationDecade 2020
PublicationTitle Computational materials science
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References F.E. Bock, R.C. Aydin, C.J. Cyron, N. Huber, S.R. Kalidindi, B. Klusemann, “A review of the application of machine learning and data mining approaches in continuum materials mechanics,” Front. Mater., vol. 6, 2019, Accessed: Dec. 16, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fmats.2019.00110.
J. Feng, J. Fu, C. Shang, Z. Lin, and B. Li, “Sandwich panel design and performance optimization based on triply periodic minimal surfaces,”
“Toward ‘On‐Demand’ Materials Synthesis and Scientific Discovery through Intelligent Robots - Li - 2020 - Advanced Science - Wiley Online Library.” https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201901957 (accessed Dec. 20, 2022).
Tallini, Cedola (b0625) 2018; 148
Tercan, Guajardo, Heinisch, Thiele, Hopmann, Meisen (b0025) 2018; 72
“Applying machine learning techniques to predict the properties of energetic materials | Scientific Reports.” https://www.nature.com/articles/s41598-018-27344-x (accessed Dec. 19, 2022).
“Magnetic and superconducting phase diagrams and transition temperatures predicted using text mining and machine learning | npj Computational Materials.” https://www.nature.com/articles/s41524-020-0287-8 (accessed Dec. 19, 2022).
K.J. Bergen, P.A. Johnson, M.V. de Hoop, G.C. Beroza, “Machine learning for data-driven discovery in solid Earth geoscience,” Science, vol. 363, no. 6433, p. eaau0323, Mar. 2019, doi: 10.1126/science.aau0323.
Liu (b0205) 2021
Chen, Gu (b0090) 2019; 9
P.W. Koh
Jul. 2018, Accessed: Dec. 19, 2022. [Online]. Available: https://www.semanticscholar.org/paper/A-Tutorial-on-Bayesian-Optimization-Frazier/c27078d60737ea10e8ca4f05acd114fef29c8276.
Luo (b0525) 2021; 29
Duan, Kou, Poon (b0275) 2013; 44
Jing, Cai, Zhang, Cui, Yin, Xian (b0550) 2019; 236
“Optimization of multi-sandwich-panel composite structures for minimum weight with strength and buckling considerations.” https://www.degruyter.com/document/doi/10.1515/secm-2015-0171/html (accessed Dec. 20, 2022).
Han, Siddique, Khayat, Huang, Kumar (b0595) 2020; 244
Tang, Zhou, Zheng, Zhang (b0530) 2020; 195
M.V. Pathan
Tian, Shi, Liu (b0370) 2012; 18
A. Y. Piggott, J. Petykiewicz, L. Su, J. Vučković, “Fabrication-constrained nanophotonic inverse design,” Sci. Rep., vol. 7, no. 1, Art. no. 1, May 2017, doi: 10.1038/s41598-017-01939-2.
Ducamp, Coudert (b0400) 2022; 126
Thursby, Schmidt (b0345) 1977; 72
2020, p. 72. doi: 10.1109/ICIoT48696.2020.9089603.
Diao, Yan, Gao (b0210) 2021; 109
Mannodi-Kanakkithodi, Pilania, Huan, Lookman, Ramprasad (b0030) 2016; vol. 6
Liu, Hu, Jiao, Li (b0620) 2020; 547
“(5) (PDF) Rock-Burst Occurrence Prediction Based on Optimized Naïve Bayes Models.” https://www.researchgate.net/publication/352389372_Rock-Burst_Occurrence_Prediction_Based_on_Optimized_Naive_Bayes_Models (accessed Dec. 19, 2022).
“Spectral clustering via half-quadratic optimization | World Wide Web.” https://dl.acm.org/doi/10.1007/s11280-019-00731-8 (accessed Dec. 19, 2022).
Gandhi, Hasan (b0215) 2022; 35
Wei (b0020) 2019; 1
“(5) (PDF) A Review of Distributed Algorithms for Principal Component Analysis.” https://www.researchgate.net/publication/326854927_A_Review_of_Distributed_Algorithms_for_Principal_Component_Analysis (accessed Dec. 19, 2022).
M. Malviya and K. A. Desai, “Build Orientation Optimization for Strength Enhancement of FDM Parts Using Machine Learning based Algorithm.” Engineering Archive, Aug. 06, 2019. doi: 10.31224/osf.io/3dh9s.
vol. 2021, p. e6682283, Mar. 2021, doi: 10.1155/2021/6682283.
Marasco, Kontokosta (b0105) 2016; 128
D’Amico (b0110) 2019; 19
“Graph neural networks for materials science and chemistry | Communications Materials.” https://www.nature.com/articles/s43246-022-00315-6 (accessed Dec. 16, 2022).
Sun, Fang, Hu (b0010) 2020; 120
Sofos, Stavrogiannis, Exarchou-Kouveli, Akabua, Charilas, Karakasidis (b0175) 2022; vol. 7
vol. 135, no. 6, May 2013, doi: 10.1115/1.4023584.
Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (b0165) 2021; vol. 3
vol. 115, pp. 307–322, Oct. 2019, doi: 10.1016/j.cad.2019.06.007.
Chen (b0095) 2020; 12
Kumar, Husain, Upreti, Gupta (b0385) 2010; 2
Malsiner-Walli, Frühwirth-Schnatter, Grün (b0310) Jan. 2016; 26
“Review of Deep Learning Algorithms and Architectures | IEEE Journals & Magazine | IEEE Xplore.” https://ieeexplore.ieee.org/document/8694781 (accessed Dec. 19, 2022).
Rostami, Toghraie, Shabani, Sina, Barnoon (b0425) 2020; 143
Goh, Sing, Yeong (b0075) 2021; 54
Shannon (b0135) 1976; vol. 32
Alam, Allers, Leverant, Harvey (b0230) 2022; 157
Halman, Voordijk, Reymen (b0640) 2008; 23
Malkiel, Mrejen, Nagler, Arieli, Wolf, Suchowski (b0050) 2018; vol. 7
vol. 151, no. 102927, Jan. 2021, doi: 10.1016/j.advengsoft.2020.102927.
“Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach.” https://www.spiedigitallibrary.org/journals/advanced-photonics/volume-2/issue-02/026003/Enhanced-lightmatter-interactions-in-dielectric-nanostructures-via-machine-learning-approach/10.1117/1.AP.2.2.026003.full?SSO=1 (accessed Dec. 19, 2022).
X. Chen, L. Sztandera, H. Cartwright, “A neural network approach to prediction of glass transition temperature of polymers,” Int. J. Intell. Syst., vol. 23, no. 1, 2008, Accessed: Dec. 19, 2022. [Online]. Available: https://ora.ox.ac.uk/objects/uuid:5f3b9a0c-9c3a-444e-83f6-b59c3d3a9ea9.
De Luna, Wei, Bengio, Aspuru-Guzik, Sargent (b0100) 2017; 552
O. Laban, S. Gowid, and E. Mahdi
Z. Acar, P. Nguyen, K.C. Lau, “Machine-Learning Model Prediction of Ionic Liquids Melting Points,” Appl. Sci., vol. 12, no. 5, Art. no. 5, Jan. 2022, doi: 10.3390/app12052408.
Evans, Coudert (b0440) 2017; 29
Badir, Kadir, Hashim (b0650) 2002; 8
“Machine Learning Accelerates the Discovery of Light-Absorbing Materials for Double Perovskite Solar Cells | The Journal of Physical Chemistry C.” https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.1c07262 (accessed Dec. 19, 2022).
“Fast and Accurate Performance Prediction and Optimization of Thermoelectric Generators with Deep Neural Networks - Wang - 2021 - Advanced Materials Technologies - Wiley Online Library.” https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.202100011 (accessed Dec. 19, 2022).
Xie, Suvarna, Li, Zhu, Cai, Wang (b0450) 2021; 197
Dabbaghi, Tanhadoust, Nehdi, Nasrollahpour, Dehestani, Yousefpour (b0605) 2021; 318
Liu, Fu, Yang, Xu, Bauchy (b0085) 2019; 4
Zhou, Zheng (b0610) 2020; 153
Shao, Hanaor, Shen, Gurlo (b0015) 2020; 32
H. Doan Tran
Liu, Zhao, Ju, Shi (b0055) 2017; 3
“Nanophotonic particle simulation and inverse design using artificial neural networks | Science Advances.” https://www.science.org/doi/10.1126/sciadv.aar4206 (accessed Dec. 19, 2022).
Alloghani, Al-Jumeily Obe, Mustafina, Hussain, Aljaaf, a (b0305) 2020
Jirasek, Hasse (b0170) 2021; 549
Zhou, Zheng (b0615) 2020; 253
F. Murtagh, P. Contreras, “Methods of Hierarchical Clustering.” arXiv, Apr. 30, 2011. doi: 10.48550/arXiv.1105.0121.
Groven, Desgranges, Delhommelle (b0145) 2019; 484
S. Ray, “A Quick Review of Machine Learning Algorithms,” in: 2019 Int. Conf. Mach. Learn. Big Data Cloud Parallel Comput. Com., pp. 35–39, Feb. 2019, doi: 10.1109/COMITCon.2019.8862451.
“Heat conduction in nanostructured materials.” https://www.jstage.jst.go.jp/article/jtst/11/1/11_2016jtst0001/_article (accessed Dec. 19, 2022).
S. Na, L. Xumin, G. Yong, “Research on k-means Clustering Algorithm: An Improved k-means Clustering Algorithm,” in: 2010 Third Int. Symp. Intell. Inf. Technol. Secur. Inform., pp. 63–67, Apr. 2010, doi: 10.1109/IITSI.2010.74.
Napoletano, Piccoli, Schettini (b0335) 2018; 18
Köksal, Batmaz, Testik (b0200) 2011; 38
Zhou, Zheng, Zhang (b0535) 2019; 197
J. Shlens, “A Tutorial on Principal Component Analysis.” arXiv, Apr. 03, 2014. doi: 10.48550/arXiv.1404.1100.
Paduszyński, Kłębowski, Królikowska (b0140) 2021; 344
H. Wang, J. Hong, J. Zhou, Z. Wang, “How Robust is Your Fairness? Evaluating and Sustaining Fairness under Unseen Distribution Shifts.” arXiv, Jul. 03, 2022. doi: 10.48550/arXiv.2207.01168.
A. Sharma, P. Madhushri, V. Kushvaha, A. Kumar, “Prediction of the Fracture Toughness of Silicafilled Epoxy Composites using K-Nearest Neighbor (KNN) Method,” in: 2020 International Conference on Computational Performance Evaluation (ComPE), Jul. 2020, pp. 194–198. doi: 10.1109/ComPE49325.2020.9200093.
Butler, Davies, Cartwright, Isayev, Walsh (b0060) 2018; vol. 559
Takahashi, Tanaka (b0125) 2016; 112
Frank, Drikakis, Charissis (b0180) 2020; vol. 8, no. 1, Art. no. 1
Stanev (b0035) 2018; vol. 4
“Predictions of the mechanical properties of unidirectional fibre composites by supervised machine learning,” Sci. Rep., vol. 9, no. 1, Art. no. 1, Sep. 2019, doi: 10.1038/s41598-019-50144-w.
vol. 10, no. 12, Art. no. 12, Dec. 2017, doi: 10.3390/en10121981.
Batra (b0065) 2020
Ling, Qian, Kang, Liang, Chen (b0295) 2019; 206
Altun, Kisi, Aydin (b0445) 2008; 42
Bhatasana, Marconnet (b0540) 2021; 199
M.I. Shah, S.A. Memon, M.S. Khan Niazi, M. N. Amin, F. Aslam, and M. F. Javed, “Machine Learning-Based Modeling with Optimization Algorithm for Predicting Mechanical Properties of Sustainable Concrete,”
Omee (b0195) 2022; 3
Sivaraman (b0265) 2020; 1
Poli, Kennedy, Blackwell (b0395) 2007; 1
Kwan, Wu (b0555) 2016; 165
Lee, Seko, Shitara, Nakayama, Tanaka (b0270) 2016; 93
Hochreiter, Schmidhuber (b0375) 1997; 9
Suwardi (b0225) 2022; 34
P. M. Norris, N. Q. Le, and C. H. Baker, “Tuning Phonon Transport: From Interfaces to Nanostructures,”
Prediction of mechanical properties of rail pads under in-service conditions through machine learning algorithms
“‘A machine learning case study with limited data for prediction of carb’ by Gelayol Golkarnarenji, Minoo Naebe et al.” https://ro.ecu.edu.au/ecuworkspost2013/5550/ (accessed Dec. 19, 2022).
Raccuglia (b0240) 2016; 533
Ben Chaabene, Flah, Nehdi (b0115) 2020; 260
Liu, Zhang, Zhang, Kitipornchai, Yang (b0475) 2022; 213
Islam, Wanigasekara, Rajan, Swain, Prusty (b0220) 2022; 32
Papastamatiou, Sofos, Karakasidis (b0235) 2022; 12
A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,”
“(5) (PDF) Designing Nanostructures for Phonon Transport via Bayesian Optimizat
Batra (10.1016/j.commatsci.2023.112031_b0065) 2020
Duan (10.1016/j.commatsci.2023.112031_b0275) 2013; 44
10.1016/j.commatsci.2023.112031_b0415
Balabanov (10.1016/j.commatsci.2023.112031_b0655) 2012
Tian (10.1016/j.commatsci.2023.112031_b0370) 2012; 18
10.1016/j.commatsci.2023.112031_b0665
Choudhary (10.1016/j.commatsci.2023.112031_b0185) 2021; vol. 7
10.1016/j.commatsci.2023.112031_b0420
10.1016/j.commatsci.2023.112031_b0300
10.1016/j.commatsci.2023.112031_b0660
10.1016/j.commatsci.2023.112031_b0260
Sivaraman (10.1016/j.commatsci.2023.112031_b0265) 2020; 1
Tercan (10.1016/j.commatsci.2023.112031_b0025) 2018; 72
10.1016/j.commatsci.2023.112031_b0380
Xie (10.1016/j.commatsci.2023.112031_b0450) 2021; 197
Paduszyński (10.1016/j.commatsci.2023.112031_b0140) 2021; 344
Sun (10.1016/j.commatsci.2023.112031_b0010) 2020; 120
Kauwe (10.1016/j.commatsci.2023.112031_b0410) 2018; 7
Marasco (10.1016/j.commatsci.2023.112031_b0105) 2016; 128
Ben Chaabene (10.1016/j.commatsci.2023.112031_b0115) 2020; 260
Evans (10.1016/j.commatsci.2023.112031_b0440) 2017; 29
Halman (10.1016/j.commatsci.2023.112031_b0640) 2008; 23
Sofos (10.1016/j.commatsci.2023.112031_b0175) 2022; vol. 7
Napoletano (10.1016/j.commatsci.2023.112031_b0335) 2018; 18
Omee (10.1016/j.commatsci.2023.112031_b0195) 2022; 3
Thursby (10.1016/j.commatsci.2023.112031_b0345) 1977; 72
10.1016/j.commatsci.2023.112031_b0675
Takahashi (10.1016/j.commatsci.2023.112031_b0125) 2016; 112
Liu (10.1016/j.commatsci.2023.112031_b0475) 2022; 213
10.1016/j.commatsci.2023.112031_b0670
10.1016/j.commatsci.2023.112031_b0390
Shao (10.1016/j.commatsci.2023.112031_b0015) 2020; 32
Brunton (10.1016/j.commatsci.2023.112031_b0155) 2020; 52
Faber (10.1016/j.commatsci.2023.112031_b0040) 2016; 117
Shannon (10.1016/j.commatsci.2023.112031_b0135) 1976; vol. 32
10.1016/j.commatsci.2023.112031_b0515
Schubel (10.1016/j.commatsci.2023.112031_b0645) 2007; 38
Chen (10.1016/j.commatsci.2023.112031_b0090) 2019; 9
10.1016/j.commatsci.2023.112031_b0005
10.1016/j.commatsci.2023.112031_b0365
10.1016/j.commatsci.2023.112031_b0520
10.1016/j.commatsci.2023.112031_b0245
Ling (10.1016/j.commatsci.2023.112031_b0295) 2019; 206
Kwan (10.1016/j.commatsci.2023.112031_b0555) 2016; 165
Frank (10.1016/j.commatsci.2023.112031_b0180) 2020; vol. 8, no. 1, Art. no. 1
Liu (10.1016/j.commatsci.2023.112031_b0620) 2020; 547
10.1016/j.commatsci.2023.112031_b0480
Bhatasana (10.1016/j.commatsci.2023.112031_b0540) 2021; 199
Ducamp (10.1016/j.commatsci.2023.112031_b0400) 2022; 126
Lee (10.1016/j.commatsci.2023.112031_b0270) 2016; 93
Qu (10.1016/j.commatsci.2023.112031_b0430) 2019; 45
Chakraborty (10.1016/j.commatsci.2023.112031_b0495) 2021; 125
Raccuglia (10.1016/j.commatsci.2023.112031_b0240) 2016; 533
Dayan (10.1016/j.commatsci.2023.112031_b0340) 2008; 18
10.1016/j.commatsci.2023.112031_b0405
Wei (10.1016/j.commatsci.2023.112031_b0020) 2019; 1
Malsiner-Walli (10.1016/j.commatsci.2023.112031_b0310) 2016; 26
Tallini (10.1016/j.commatsci.2023.112031_b0625) 2018; 148
10.1016/j.commatsci.2023.112031_b0255
Mannodi-Kanakkithodi (10.1016/j.commatsci.2023.112031_b0030) 2016; vol. 6
10.1016/j.commatsci.2023.112031_b0250
Diao (10.1016/j.commatsci.2023.112031_b0210) 2021; 109
10.1016/j.commatsci.2023.112031_b0490
Seko (10.1016/j.commatsci.2023.112031_b0150) 2015; 115
Zhou (10.1016/j.commatsci.2023.112031_b0615) 2020; 253
Goh (10.1016/j.commatsci.2023.112031_b0075) 2021; 54
Gandhi (10.1016/j.commatsci.2023.112031_b0215) 2022; 35
10.1016/j.commatsci.2023.112031_b0500
D’Amico (10.1016/j.commatsci.2023.112031_b0110) 2019; 19
Sargam (10.1016/j.commatsci.2023.112031_b0120) 2021; 34
10.1016/j.commatsci.2023.112031_b0465
10.1016/j.commatsci.2023.112031_b0585
Jing (10.1016/j.commatsci.2023.112031_b0550) 2019; 236
10.1016/j.commatsci.2023.112031_b0460
Heo (10.1016/j.commatsci.2023.112031_b0545) 2019; 202
10.1016/j.commatsci.2023.112031_b0580
Groven (10.1016/j.commatsci.2023.112031_b0145) 2019; 484
Zhai (10.1016/j.commatsci.2023.112031_b0080) 2020; 8
Alam (10.1016/j.commatsci.2023.112031_b0230) 2022; 157
Liu (10.1016/j.commatsci.2023.112031_b0085) 2019; 4
De Luna (10.1016/j.commatsci.2023.112031_b0100) 2017; 552
Pilania (10.1016/j.commatsci.2023.112031_b0045) 2016; 3
Seko (10.1016/j.commatsci.2023.112031_b0130) 2017; 95
10.1016/j.commatsci.2023.112031_b0505
Köksal (10.1016/j.commatsci.2023.112031_b0200) 2011; 38
Zhou (10.1016/j.commatsci.2023.112031_b0610) 2020; 153
Papastamatiou (10.1016/j.commatsci.2023.112031_b0235) 2022; 12
Farooq (10.1016/j.commatsci.2023.112031_b0630) 2021; 292
Liu (10.1016/j.commatsci.2023.112031_b0510) 2018; 5
Malkiel (10.1016/j.commatsci.2023.112031_b0050) 2018; vol. 7
10.1016/j.commatsci.2023.112031_b0355
10.1016/j.commatsci.2023.112031_b0350
Haghanifar (10.1016/j.commatsci.2023.112031_b0680) 2019; 6
Dabbaghi (10.1016/j.commatsci.2023.112031_b0605) 2021; 318
Fathi (10.1016/j.commatsci.2023.112031_b0455) 2020; 262
10.1016/j.commatsci.2023.112031_b0470
Park (10.1016/j.commatsci.2023.112031_b0590) 2017; 25
Han (10.1016/j.commatsci.2023.112031_b0595) 2020; 244
10.1016/j.commatsci.2023.112031_b0190
10.1016/j.commatsci.2023.112031_b0070
Liu (10.1016/j.commatsci.2023.112031_b0055) 2017; 3
10.1016/j.commatsci.2023.112031_b0435
Chen (10.1016/j.commatsci.2023.112031_b0095) 2020; 12
Jirasek (10.1016/j.commatsci.2023.112031_b0170) 2021; 549
10.1016/j.commatsci.2023.112031_b0315
Allers (10.1016/j.commatsci.2023.112031_b0360) 2020; 153
Rostami (10.1016/j.commatsci.2023.112031_b0425) 2020; 143
Pan (10.1016/j.commatsci.2023.112031_b0635) 2012; 18
Luo (10.1016/j.commatsci.2023.112031_b0525) 2021; 29
10.1016/j.commatsci.2023.112031_b0685
Alloghani (10.1016/j.commatsci.2023.112031_b0305) 2020
Hochreiter (10.1016/j.commatsci.2023.112031_b0375) 1997; 9
Karniadakis (10.1016/j.commatsci.2023.112031_b0165) 2021; vol. 3
10.1016/j.commatsci.2023.112031_b0320
10.1016/j.commatsci.2023.112031_b0560
Islam (10.1016/j.commatsci.2023.112031_b0220) 2022; 32
10.1016/j.commatsci.2023.112031_b0285
Qi (10.1016/j.commatsci.2023.112031_b0290) 2019; 212
Altun (10.1016/j.commatsci.2023.112031_b0445) 2008; 42
Butler (10.1016/j.commatsci.2023.112031_b0060) 2018; vol. 559
10.1016/j.commatsci.2023.112031_b0280
Kim (10.1016/j.commatsci.2023.112031_b0485) 2018; 122
Stanev (10.1016/j.commatsci.2023.112031_b0035) 2018; vol. 4
Tang (10.1016/j.commatsci.2023.112031_b0530) 2020; 195
Badir (10.1016/j.commatsci.2023.112031_b0650) 2002; 8
Brunton (10.1016/j.commatsci.2023.112031_b0160) 2021; 37
Zhu (10.1016/j.commatsci.2023.112031_b0565) 2022; 305
10.1016/j.commatsci.2023.112031_b0325
Suwardi (10.1016/j.commatsci.2023.112031_b0225) 2022; 34
10.1016/j.commatsci.2023.112031_b0600
Poli (10.1016/j.commatsci.2023.112031_b0395) 2007; 1
10.1016/j.commatsci.2023.112031_b0575
10.1016/j.commatsci.2023.112031_b0330
10.1016/j.commatsci.2023.112031_b0570
Liu (10.1016/j.commatsci.2023.112031_b0205) 2021
Zhou (10.1016/j.commatsci.2023.112031_b0535) 2019; 197
Kumar (10.1016/j.commatsci.2023.112031_b0385) 2010; 2
References_xml – volume: 44
  start-page: 524
  year: 2013
  end-page: 532
  ident: b0275
  article-title: Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete
  publication-title: Constr. Build. Mater.
– reference: , vol. 115, pp. 307–322, Oct. 2019, doi: 10.1016/j.cad.2019.06.007.
– reference: L. Chen, H. Tran, R. Batra, C. Kim, R. Ramprasad, “Machine Learning Models for the Lattice Thermal Conductivity Prediction of Inorganic Materials.” arXiv, Aug. 04, 2019. doi: 10.48550/arXiv.1906.06378.
– volume: 4
  year: 2019
  ident: b0085
  article-title: Machine learning for glass science and engineering: A review
  publication-title: J. Non-Cryst. Solids X
– reference: F. Murtagh, P. Contreras, “Methods of Hierarchical Clustering.” arXiv, Apr. 30, 2011. doi: 10.48550/arXiv.1105.0121.
– volume: 165
  start-page: 297
  year: 2016
  end-page: 307
  ident: b0555
  article-title: Power and mass optimization of the hybrid solar panel and thermoelectric generators
  publication-title: Appl. Energy
– volume: 153
  start-page: 375
  year: 2020
  end-page: 391
  ident: b0610
  article-title: Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization
  publication-title: Renew. Energy
– reference: , vol. 10, no. 12, Art. no. 12, Dec. 2017, doi: 10.3390/en10121981.
– volume: 52
  start-page: 477
  year: 2020
  end-page: 508
  ident: b0155
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 260
  year: 2020
  ident: b0115
  article-title: Machine learning prediction of mechanical properties of concrete: Critical review
  publication-title: Constr. Build. Mater.
– volume: 42
  start-page: 259
  year: 2008
  end-page: 265
  ident: b0445
  article-title: Predicting the compressive strength of steel fiber added lightweight concrete using neural network
  publication-title: Comput. Mater. Sci.
– volume: 262
  year: 2020
  ident: b0455
  article-title: Prediction of the mechanical properties of wood using guided wave propagation and machine learning
  publication-title: Constr. Build. Mater.
– volume: 344
  year: 2021
  ident: b0140
  article-title: Predicting melting point of ionic liquids using QSPR approach: Literature review and new models
  publication-title: J. Mol. Liq.
– volume: 38
  start-page: 1051
  year: 2007
  end-page: 1057
  ident: b0645
  article-title: Impact and post impact behavior of composite sandwich panels
  publication-title: Compos. Part Appl. Sci. Manuf.
– reference: , Jul. 2018, Accessed: Dec. 19, 2022. [Online]. Available: https://www.semanticscholar.org/paper/A-Tutorial-on-Bayesian-Optimization-Frazier/c27078d60737ea10e8ca4f05acd114fef29c8276.
– volume: 125
  start-page: 5251
  year: 2021
  end-page: 5259
  ident: b0495
  article-title: Neural networks for analysis of optical properties in 2D layered hybrid lead halide perovskites
  publication-title: J. Phys. Chem. C
– volume: 244
  year: 2020
  ident: b0595
  article-title: An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete
  publication-title: Constr. Build. Mater.
– year: 2012
  ident: b0655
  publication-title: Optimal Design of a Composite Sandwich Structure Using Lamination Parameters.
– volume: vol. 559
  year: 2018
  ident: b0060
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
– volume: 34
  start-page: 2102703
  year: 2022
  ident: b0225
  article-title: Machine learning-driven biomaterials evolution
  publication-title: Adv. Mater.
– reference: “(5) (PDF) Rock-Burst Occurrence Prediction Based on Optimized Naïve Bayes Models.” https://www.researchgate.net/publication/352389372_Rock-Burst_Occurrence_Prediction_Based_on_Optimized_Naive_Bayes_Models (accessed Dec. 19, 2022).
– volume: 12
  year: 2022
  ident: b0235
  article-title: Machine learning symbolic equations for diffusion with physics-based descriptions
  publication-title: AIP Adv.
– volume: 305
  year: 2022
  ident: b0565
  article-title: Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator
  publication-title: Appl. Energy
– volume: 18
  start-page: 209
  year: 2018
  ident: b0335
  article-title: Anomaly detection in nanofibrous materials by CNN-Based Self-Similarity
  publication-title: Sensors
– reference: J. Shlens, “A Tutorial on Principal Component Analysis.” arXiv, Apr. 03, 2014. doi: 10.48550/arXiv.1404.1100.
– reference: “Machine Learning With Big Data: Challenges and Approaches | IEEE Journals & Magazine | IEEE Xplore.” https://ieeexplore.ieee.org/document/7906512 (accessed Dec. 19, 2022).
– volume: 8
  year: 2020
  ident: b0080
  article-title: Discovery and design of soft polymeric bio-inspired materials with multiscale simulations and artificial intelligence
  publication-title: J. Mater. Chem. B
– volume: 3
  year: 2022
  ident: b0195
  article-title: Scalable deeper graph neural networks for high-performance materials property prediction
  publication-title: Patterns N. Y. N
– volume: 5
  start-page: 1365
  year: 2018
  end-page: 1369
  ident: b0510
  article-title: Training deep neural networks for the inverse design of nanophotonic structures
  publication-title: ACS Photonics
– volume: 3
  year: Apr. 2016
  ident: b0045
  article-title: Finding New Perovskite Halides via Machine Learning
  publication-title: Front. Mater.
– reference: H. Doan Tran
– volume: 8
  start-page: 19
  year: 2002
  end-page: 23
  ident: b0650
  article-title: Industrialized Building Systems Construction in Malaysia
  publication-title: J. Archit. Eng.
– volume: 34
  year: 2021
  ident: b0120
  article-title: Machine learning based prediction model for thermal conductivity of concrete
  publication-title: J. Build. Eng.
– volume: vol. 3
  year: 2021
  ident: b0165
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
– volume: 236
  start-page: 574
  year: 2019
  end-page: 589
  ident: b0550
  article-title: Modeling, air balancing and optimal pressure set-point selection for the ventilation system with minimized energy consumption
  publication-title: Appl. Energy
– volume: 195
  start-page: 514
  year: 2020
  end-page: 526
  ident: b0530
  article-title: Exergy-based optimisation of a phase change materials integrated hybrid renewable system for active cooling applications using supervised machine learning method
  publication-title: Sol. Energy
– volume: 157
  year: 2022
  ident: b0230
  article-title: Symbolic regression development of empirical equations for diffusion in Lennard-Jones fluids
  publication-title: J. Chem. Phys.
– volume: 253
  year: 2020
  ident: b0615
  article-title: Machine learning-based multi-objective optimisation of an aerogel glazing system using NSGA-II—study of modelling and application in the subtropical climate Hong Kong
  publication-title: J. Clean. Prod.
– volume: 26
  start-page: 303
  year: Jan. 2016
  end-page: 324
  ident: b0310
  article-title: Model-based clustering based on sparse finite Gaussian mixtures
  publication-title: Stat. Comput.
– reference: K.J. Bergen, P.A. Johnson, M.V. de Hoop, G.C. Beroza, “Machine learning for data-driven discovery in solid Earth geoscience,” Science, vol. 363, no. 6433, p. eaau0323, Mar. 2019, doi: 10.1126/science.aau0323.
– volume: 1
  year: 2020
  ident: b0265
  article-title: A machine learning workflow for molecular analysis: application to melting points
  publication-title: Mach. Learn. Sci. Technol.
– reference: , “Predictions of the mechanical properties of unidirectional fibre composites by supervised machine learning,” Sci. Rep., vol. 9, no. 1, Art. no. 1, Sep. 2019, doi: 10.1038/s41598-019-50144-w.
– volume: vol. 6
  year: 2016
  ident: b0030
  article-title: Machine learning strategy for accelerated design of polymer dielectrics
  publication-title: Sci. Rep.
– volume: 120
  start-page: 10336
  year: 2020
  end-page: 10453
  ident: b0010
  article-title: 3D graphene materials: from understanding to design and synthesis control
  publication-title: Chem. Rev.
– volume: 202
  year: 2019
  ident: b0545
  article-title: A deep reinforcement learning-based autonomous ventilation control system for smart indoor air quality management in a subway station
  publication-title: Energy Build.
– reference: M. Malviya and K. A. Desai, “Build Orientation Optimization for Strength Enhancement of FDM Parts Using Machine Learning based Algorithm.” Engineering Archive, Aug. 06, 2019. doi: 10.31224/osf.io/3dh9s.
– volume: 18
  start-page: 185
  year: 2008
  end-page: 196
  ident: b0340
  article-title: Reinforcement learning: the good, the bad and the ugly
  publication-title: Curr. Opin. Neurobiol.
– reference: “‘A machine learning case study with limited data for prediction of carb’ by Gelayol Golkarnarenji, Minoo Naebe et al.” https://ro.ecu.edu.au/ecuworkspost2013/5550/ (accessed Dec. 19, 2022).
– volume: 3
  start-page: 159
  year: 2017
  end-page: 177
  ident: b0055
  article-title: Materials discovery and design using machine learning
  publication-title: J. Materiomics
– volume: 197
  year: 2021
  ident: b0450
  article-title: Online prediction of mechanical properties of hot rolled steel plate using machine learning
  publication-title: Mater. Des.
– reference: , “WILDS: A Benchmark of in-the-Wild Distribution Shifts,” in: Proceedings of the 38th International Conference on Machine Learning, Jul. 2021, pp. 5637–5664. Accessed: Dec. 19, 2022. [Online]. Available: https://proceedings.mlr.press/v139/koh21a.html.
– volume: 549
  year: 2021
  ident: b0170
  article-title: Perspective: machine learning of thermophysical properties
  publication-title: Fluid Phase Equilibria
– reference: , vol. 2021, p. e6682283, Mar. 2021, doi: 10.1155/2021/6682283.
– reference: “Fast and Accurate Performance Prediction and Optimization of Thermoelectric Generators with Deep Neural Networks - Wang - 2021 - Advanced Materials Technologies - Wiley Online Library.” https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.202100011 (accessed Dec. 19, 2022).
– volume: 2
  start-page: 451
  year: 2010
  end-page: 454
  ident: b0385
  article-title: Genetic Algorithm: Review and Application
  publication-title: J. Inf. Knowl. Manag.
– reference: “Toward ‘On‐Demand’ Materials Synthesis and Scientific Discovery through Intelligent Robots - Li - 2020 - Advanced Science - Wiley Online Library.” https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201901957 (accessed Dec. 20, 2022).
– volume: 54
  start-page: 63
  year: 2021
  end-page: 94
  ident: b0075
  article-title: A review on machine learning in 3D printing: applications, potential, and challenges
  publication-title: Artif. Intell. Rev.
– reference: P. M. Norris, N. Q. Le, and C. H. Baker, “Tuning Phonon Transport: From Interfaces to Nanostructures,”
– reference: “Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach.” https://www.spiedigitallibrary.org/journals/advanced-photonics/volume-2/issue-02/026003/Enhanced-lightmatter-interactions-in-dielectric-nanostructures-via-machine-learning-approach/10.1117/1.AP.2.2.026003.full?SSO=1 (accessed Dec. 19, 2022).
– volume: 484
  start-page: 225
  year: 2019
  end-page: 231
  ident: b0145
  article-title: Prediction of the boiling and critical points of polycyclic aromatic hydrocarbons via Wang-Landau simulations and machine learning
  publication-title: Fluid Phase Equilibria
– reference: , “Machine-learning predictions of polymer properties with Polymer Genome,” J. Appl. Phys., vol. 128, no. 17, p. 171104, Nov. 2020, doi: 10.1063/5.0023759.
– reference: “Optimization of multi-sandwich-panel composite structures for minimum weight with strength and buckling considerations.” https://www.degruyter.com/document/doi/10.1515/secm-2015-0171/html (accessed Dec. 20, 2022).
– reference: Z. Acar, P. Nguyen, K.C. Lau, “Machine-Learning Model Prediction of Ionic Liquids Melting Points,” Appl. Sci., vol. 12, no. 5, Art. no. 5, Jan. 2022, doi: 10.3390/app12052408.
– volume: 93
  year: 2016
  ident: b0270
  article-title: Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques
  publication-title: Phys. Rev. B
– volume: vol. 8, no. 1, Art. no. 1
  year: 2020
  ident: b0180
  article-title: Machine-learning methods for computational science and engineering
  publication-title: Computation
– volume: 6
  start-page: 1632
  year: 2019
  end-page: 1642
  ident: b0680
  article-title: Creating glasswing butterfly-inspired durable antifogging superomniphobic supertransmissive, superclear nanostructured glass through Bayesian learning and optimization
  publication-title: Mater. Horiz.
– volume: vol. 7
  year: 2022
  ident: b0175
  article-title: Current trends in fluid research in the era of artificial intelligence: a review
  publication-title: Fluids
– volume: 112
  start-page: 364
  year: 2016
  end-page: 367
  ident: b0125
  article-title: Material synthesis and design from first principle calculations and machine learning
  publication-title: Comput. Mater. Sci.
– volume: vol. 32
  year: 1976
  ident: b0135
  article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
  publication-title: Acta Crystallogr. A
– volume: 109
  year: 2021
  ident: b0210
  article-title: A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels
  publication-title: J. Mater. Sci. Technol.
– volume: 533
  start-page: 73
  year: 2016
  end-page: 76
  ident: b0240
  article-title: Machine-learning-assisted materials discovery using failed experiments
  publication-title: Nature
– volume: 45
  start-page: 18551
  year: 2019
  end-page: 18555
  ident: b0430
  article-title: Ultra-high temperature ceramics melting temperature prediction via machine learning
  publication-title: Ceram. Int.
– volume: 7
  start-page: 43
  year: 2018
  end-page: 51
  ident: b0410
  article-title: Machine Learning Prediction of Heat Capacity for Solid Inorganics
  publication-title: Integrating Mater. Manuf. Innov.
– reference: , vol. 135, no. 6, May 2013, doi: 10.1115/1.4023584.
– volume: 206
  start-page: 355
  year: 2019
  end-page: 363
  ident: b0295
  article-title: Combination of Support Vector Machine and K-Fold cross validation to predict compressive strength of concrete in marine environment
  publication-title: Constr. Build. Mater.
– volume: vol. 4
  year: 2018
  ident: b0035
  article-title: Machine learning modeling of superconducting critical temperature
  publication-title: Npj Comput. Mater.
– reference: , vol. 151, no. 102927, Jan. 2021, doi: 10.1016/j.advengsoft.2020.102927.
– volume: 115
  year: 2015
  ident: b0150
  article-title: Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization
  publication-title: Phys. Rev. Lett.
– reference: F.E. Bock, R.C. Aydin, C.J. Cyron, N. Huber, S.R. Kalidindi, B. Klusemann, “A review of the application of machine learning and data mining approaches in continuum materials mechanics,” Front. Mater., vol. 6, 2019, Accessed: Dec. 16, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fmats.2019.00110.
– reference: P. Frazier, “A Tutorial on Bayesian Optimization,”
– reference: “Machine Learning Accelerates the Discovery of Light-Absorbing Materials for Double Perovskite Solar Cells | The Journal of Physical Chemistry C.” https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.1c07262 (accessed Dec. 19, 2022).
– reference: “Spectral clustering via half-quadratic optimization | World Wide Web.” https://dl.acm.org/doi/10.1007/s11280-019-00731-8 (accessed Dec. 19, 2022).
– volume: 9
  start-page: 556
  year: 2019
  end-page: 566
  ident: b0090
  article-title: Machine learning for composite materials
  publication-title: MRS Commun.
– reference: A. Sharma, P. Madhushri, V. Kushvaha, A. Kumar, “Prediction of the Fracture Toughness of Silicafilled Epoxy Composites using K-Nearest Neighbor (KNN) Method,” in: 2020 International Conference on Computational Performance Evaluation (ComPE), Jul. 2020, pp. 194–198. doi: 10.1109/ComPE49325.2020.9200093.
– volume: 18
  start-page: 84
  year: 2012
  end-page: 93
  ident: b0635
  article-title: House-Building Business Models and Off-Site Construction Take-Up
  publication-title: J. Archit. Eng.
– reference: S. Na, L. Xumin, G. Yong, “Research on k-means Clustering Algorithm: An Improved k-means Clustering Algorithm,” in: 2010 Third Int. Symp. Intell. Inf. Technol. Secur. Inform., pp. 63–67, Apr. 2010, doi: 10.1109/IITSI.2010.74.
– reference: P.W. Koh
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0375
  article-title: Long short-term memory
  publication-title: Neural Comput.
– reference: “Review of Deep Learning Algorithms and Architectures | IEEE Journals & Magazine | IEEE Xplore.” https://ieeexplore.ieee.org/document/8694781 (accessed Dec. 19, 2022).
– reference: , vol. 7, 2013, Accessed: Dec. 19, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021.
– reference: A. Y. Piggott, J. Petykiewicz, L. Su, J. Vučković, “Fabrication-constrained nanophotonic inverse design,” Sci. Rep., vol. 7, no. 1, Art. no. 1, May 2017, doi: 10.1038/s41598-017-01939-2.
– reference: M. Kaya and S. Hajimirza, “Extremely Efficient Design of Organic Thin Film Solar Cells via Learning-Based Optimization,”
– volume: 72
  start-page: 185
  year: 2018
  end-page: 190
  ident: b0025
  article-title: Transfer-learning: bridging the gap between real and simulation data for machine learning in injection molding
  publication-title: Proc. CIRP
– volume: 72
  start-page: 635
  year: 1977
  end-page: 641
  ident: b0345
  article-title: Some properties of tests for specification error in a linear regression model
  publication-title: J. Am. Stat. Assoc.
– reference: “(5) (PDF) Is Domain Knowledge Necessary for Machine Learning Materials Properties?” https://www.researchgate.net/publication/343926838_Is_Domain_Knowledge_Necessary_for_Machine_Learning_Materials_Properties (accessed Dec. 19, 2022).
– reference: M.V. Pathan
– volume: 1
  start-page: 338
  year: 2019
  end-page: 358
  ident: b0020
  article-title: Machine learning in materials science
  publication-title: InfoMat
– volume: 18
  year: 2012
  ident: b0370
  article-title: Recent advances on support vector machines research
  publication-title: Technol. Econ. Dev. Econ.
– reference: “Graph neural networks for materials science and chemistry | Communications Materials.” https://www.nature.com/articles/s43246-022-00315-6 (accessed Dec. 16, 2022).
– volume: 35
  year: 2022
  ident: b0215
  article-title: Machine learning for the design and discovery of zeolites and porous crystalline materials
  publication-title: Curr. Opin. Chem. Eng.
– volume: 29
  start-page: 10527
  year: 2021
  end-page: 10537
  ident: b0525
  article-title: Deep-learning-enabled inverse engineering of multi-wavelength invisibility-to-superscattering switching with phase-change materials
  publication-title: Opt. Express
– volume: vol. 7
  year: 2018
  ident: b0050
  article-title: Plasmonic nanostructure design and characterization via Deep Learning
  publication-title: Light Sci. Appl.
– reference: “(5) (PDF) Designing Nanostructures for Phonon Transport via Bayesian Optimization.” https://www.researchgate.net/publication/308262954_Designing_Nanostructures_for_Phonon_Transport_via_Bayesian_Optimization (accessed Dec. 19, 2022).
– volume: 29
  start-page: 7833
  year: 2017
  end-page: 7839
  ident: b0440
  article-title: Predicting the mechanical properties of zeolite frameworks by machine learning
  publication-title: Chem. Mater.
– volume: vol. 7
  year: 2021
  ident: b0185
  article-title: Atomistic Line Graph Neural Network for improved materials property predictions
  publication-title: Npj Comput. Mater.
– volume: 547
  year: 2020
  ident: b0620
  article-title: Geometric optimization of aerogel composites for high temperature thermal insulation applications
  publication-title: J. Non-Cryst. Solids
– volume: 292
  year: 2021
  ident: b0630
  article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners
  publication-title: J. Clean. Prod.
– reference: O. Laban, S. Gowid, and E. Mahdi,
– volume: 12
  start-page: 163
  year: 2020
  ident: b0095
  article-title: Machine-learning-assisted de novo design of organic molecules and polymers: opportunities and challenges
  publication-title: Polymers
– volume: 95
  year: 2017
  ident: b0130
  article-title: Representation of compounds for machine-learning prediction of physical properties
  publication-title: Phys. Rev. B
– reference: “Nanophotonic particle simulation and inverse design using artificial neural networks | Science Advances.” https://www.science.org/doi/10.1126/sciadv.aar4206 (accessed Dec. 19, 2022).
– volume: 318
  year: 2021
  ident: b0605
  article-title: Life cycle assessment multi-objective optimization and deep belief network model for sustainable lightweight aggregate concrete
  publication-title: J. Clean. Prod.
– volume: 19
  start-page: 1
  year: 2019
  end-page: 4
  ident: b0110
  article-title: Machine Learning for Sustainable Structures: A Call for Data
  publication-title: Structures
– volume: 197
  year: 2019
  ident: b0535
  article-title: Artificial neural network based multivariable optimization of a hybrid system integrated with phase change materials, active cooling and hybrid ventilations
  publication-title: Energy Convers. Manag.
– start-page: 3
  year: 2020
  end-page: 21
  ident: b0305
  publication-title: Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science”
– volume: 37
  start-page: 1718
  year: 2021
  end-page: 1726
  ident: b0160
  article-title: Applying machine learning to study fluid mechanics
  publication-title: Acta Mech. Sin.
– reference: J. Feng, J. Fu, C. Shang, Z. Lin, and B. Li, “Sandwich panel design and performance optimization based on triply periodic minimal surfaces,”
– reference: H. Wang, J. Hong, J. Zhou, Z. Wang, “How Robust is Your Fairness? Evaluating and Sustaining Fairness under Unseen Distribution Shifts.” arXiv, Jul. 03, 2022. doi: 10.48550/arXiv.2207.01168.
– volume: 143
  start-page: 1097
  year: 2020
  ident: b0425
  article-title: Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs)
  publication-title: J. Therm. Anal. Calorim.
– reference: M.I. Shah, S.A. Memon, M.S. Khan Niazi, M. N. Amin, F. Aslam, and M. F. Javed, “Machine Learning-Based Modeling with Optimization Algorithm for Predicting Mechanical Properties of Sustainable Concrete,”
– reference: D. Ferreño
– volume: 117
  year: 2016
  ident: b0040
  article-title: Machine Learning Energies of 2 Million Elpasolite $(AB{C}_{2}{D}_{6})$ Crystals
  publication-title: Phys. Rev. Lett.
– volume: 23
  start-page: 781
  year: 2008
  end-page: 799
  ident: b0640
  article-title: Modular approaches in dutch house building: an exploratory survey
  publication-title: Hous. Stud.
– volume: 128
  start-page: 431
  year: 2016
  end-page: 441
  ident: b0105
  article-title: Applications of machine learning methods to identifying and predicting building retrofit opportunities
  publication-title: Energy Build.
– reference: X. Chen, L. Sztandera, H. Cartwright, “A neural network approach to prediction of glass transition temperature of polymers,” Int. J. Intell. Syst., vol. 23, no. 1, 2008, Accessed: Dec. 19, 2022. [Online]. Available: https://ora.ox.ac.uk/objects/uuid:5f3b9a0c-9c3a-444e-83f6-b59c3d3a9ea9.
– volume: 199
  year: 2021
  ident: b0540
  article-title: Machine-learning assisted optimization strategies for phase change materials embedded within electronic packages
  publication-title: Appl. Therm. Eng.
– volume: 148
  start-page: 868
  year: 2018
  end-page: 875
  ident: b0625
  article-title: A review of the properties of recycled and waste materials for energy refurbishment of existing buildings towards the requirements of NZEB
  publication-title: Energy Procedia
– reference: “Applying machine learning techniques to predict the properties of energetic materials | Scientific Reports.” https://www.nature.com/articles/s41598-018-27344-x (accessed Dec. 19, 2022).
– reference: “Inverse design in search of materials with target functionalities | Nature Reviews Chemistry.” https://www.nature.com/articles/s41570-018-0121 (accessed Dec. 19, 2022).
– volume: 153
  year: 2020
  ident: b0360
  article-title: Machine learning prediction of self-diffusion in Lennard-Jones fluids
  publication-title: J. Chem. Phys.
– volume: 32
  start-page: e1907176
  year: 2020
  ident: b0015
  article-title: Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications
  publication-title: Adv. Mater. Deerfield Beach Fla
– volume: 1
  start-page: 33
  year: 2007
  end-page: 57
  ident: b0395
  article-title: Particle swarm optimization
  publication-title: Swarm Intell.
– reference: “Magnetic and superconducting phase diagrams and transition temperatures predicted using text mining and machine learning | npj Computational Materials.” https://www.nature.com/articles/s41524-020-0287-8 (accessed Dec. 19, 2022).
– volume: 213
  year: 2022
  ident: b0475
  article-title: Machine learning assisted prediction of mechanical properties of graphene/aluminium nanocomposite based on molecular dynamics simulation
  publication-title: Mater. Des.
– volume: 122
  start-page: 17575
  year: 2018
  end-page: 17585
  ident: b0485
  article-title: Polymer genome: a data-powered polymer informatics platform for property predictions
  publication-title: J. Phys. Chem. C
– volume: 38
  start-page: 13448
  year: 2011
  end-page: 13467
  ident: b0200
  article-title: A review of data mining applications for quality improvement in manufacturing industry
  publication-title: Expert Syst. Appl.
– volume: 25
  start-page: 1856
  year: 2017
  end-page: 1865
  ident: b0590
  article-title: “Application of Machine Learning for Optimization of 3-D Integrated Circuits and Systems”,
  publication-title: Very Large Scale Integr. VLSI Syst.
– year: 2020
  ident: b0065
  article-title: Emerging materials intelligence ecosystems propelled by machine learning
  publication-title: Nat. Rev. Mater.
– volume: 126
  start-page: 1651
  year: 2022
  end-page: 1660
  ident: b0400
  article-title: Prediction of thermal properties of zeolites through machine learning
  publication-title: J. Phys. Chem. C
– reference: , “Prediction of mechanical properties of rail pads under in-service conditions through machine learning algorithms,”
– year: 2021
  ident: b0205
  article-title: Machine learning with knowledge constraints for process optimization of open-air perovskite solar cell manufacturing
  publication-title: SSRN Electron. J.
– reference: “(5) (PDF) A Review of Distributed Algorithms for Principal Component Analysis.” https://www.researchgate.net/publication/326854927_A_Review_of_Distributed_Algorithms_for_Principal_Component_Analysis (accessed Dec. 19, 2022).
– volume: 32
  year: 2022
  ident: b0220
  article-title: An approach for process optimisation of the Automated Fibre Placement (AFP) based thermoplastic composites manufacturing using Machine Learning, photonic sensing and thermo-mechanics modelling
  publication-title: Manuf. Lett.
– reference: . 2020, p. 72. doi: 10.1109/ICIoT48696.2020.9089603.
– reference: S. Ray, “A Quick Review of Machine Learning Algorithms,” in: 2019 Int. Conf. Mach. Learn. Big Data Cloud Parallel Comput. Com., pp. 35–39, Feb. 2019, doi: 10.1109/COMITCon.2019.8862451.
– volume: 552
  start-page: 23
  year: 2017
  end-page: 27
  ident: b0100
  article-title: Use machine learning to find energy materials
  publication-title: Nature
– reference: A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,”
– reference: “Heat conduction in nanostructured materials.” https://www.jstage.jst.go.jp/article/jtst/11/1/11_2016jtst0001/_article (accessed Dec. 19, 2022).
– volume: 212
  start-page: 199
  year: 2019
  end-page: 206
  ident: b0290
  article-title: Prediction of mechanical properties of carbon fiber based on cross-scale FEM and machine learning
  publication-title: Compos. Struct.
– volume: vol. 32
  issue: no. 5, Art. no. 5
  year: 1976
  ident: 10.1016/j.commatsci.2023.112031_b0135
  article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
  publication-title: Acta Crystallogr. A
  doi: 10.1107/S0567739476001551
– ident: 10.1016/j.commatsci.2023.112031_b0515
– volume: vol. 6
  issue: no. 1, Art. no. 1
  year: 2016
  ident: 10.1016/j.commatsci.2023.112031_b0030
  article-title: Machine learning strategy for accelerated design of polymer dielectrics
  publication-title: Sci. Rep.
  doi: 10.1038/srep20952
– volume: 3
  year: 2016
  ident: 10.1016/j.commatsci.2023.112031_b0045
  article-title: Finding New Perovskite Halides via Machine Learning
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2016.00019
– ident: 10.1016/j.commatsci.2023.112031_b0255
– volume: 199
  year: 2021
  ident: 10.1016/j.commatsci.2023.112031_b0540
  article-title: Machine-learning assisted optimization strategies for phase change materials embedded within electronic packages
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117384
– volume: 72
  start-page: 635
  issue: 359
  year: 1977
  ident: 10.1016/j.commatsci.2023.112031_b0345
  article-title: Some properties of tests for specification error in a linear regression model
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1977.10480627
– volume: 112
  start-page: 364
  year: 2016
  ident: 10.1016/j.commatsci.2023.112031_b0125
  article-title: Material synthesis and design from first principle calculations and machine learning
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.11.013
– volume: 197
  year: 2019
  ident: 10.1016/j.commatsci.2023.112031_b0535
  article-title: Artificial neural network based multivariable optimization of a hybrid system integrated with phase change materials, active cooling and hybrid ventilations
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.111859
– ident: 10.1016/j.commatsci.2023.112031_b0415
– ident: 10.1016/j.commatsci.2023.112031_b0575
  doi: 10.1115/1.4023584
– volume: 1
  year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0265
  article-title: A machine learning workflow for molecular analysis: application to melting points
  publication-title: Mach. Learn. Sci. Technol.
  doi: 10.1088/2632-2153/ab8aa3
– volume: 4
  year: 2019
  ident: 10.1016/j.commatsci.2023.112031_b0085
  article-title: Machine learning for glass science and engineering: A review
  publication-title: J. Non-Cryst. Solids X
– ident: 10.1016/j.commatsci.2023.112031_b0420
  doi: 10.1016/j.commatsci.2019.109155
– ident: 10.1016/j.commatsci.2023.112031_b0685
– volume: 18
  start-page: 209
  issue: 1
  year: 2018
  ident: 10.1016/j.commatsci.2023.112031_b0335
  article-title: Anomaly detection in nanofibrous materials by CNN-Based Self-Similarity
  publication-title: Sensors
  doi: 10.3390/s18010209
– volume: 19
  start-page: 1
  year: 2019
  ident: 10.1016/j.commatsci.2023.112031_b0110
  article-title: Machine Learning for Sustainable Structures: A Call for Data
  publication-title: Structures
  doi: 10.1016/j.istruc.2018.11.013
– ident: 10.1016/j.commatsci.2023.112031_b0390
– ident: 10.1016/j.commatsci.2023.112031_b0350
– volume: 244
  year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0595
  article-title: An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118271
– volume: 18
  start-page: 185
  issue: 2
  year: 2008
  ident: 10.1016/j.commatsci.2023.112031_b0340
  article-title: Reinforcement learning: the good, the bad and the ugly
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2008.08.003
– volume: 12
  issue: 2
  year: 2022
  ident: 10.1016/j.commatsci.2023.112031_b0235
  article-title: Machine learning symbolic equations for diffusion with physics-based descriptions
  publication-title: AIP Adv.
  doi: 10.1063/5.0082147
– ident: 10.1016/j.commatsci.2023.112031_b0470
– volume: 5
  start-page: 1365
  issue: 4
  year: 2018
  ident: 10.1016/j.commatsci.2023.112031_b0510
  article-title: Training deep neural networks for the inverse design of nanophotonic structures
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01377
– volume: 305
  year: 2022
  ident: 10.1016/j.commatsci.2023.112031_b0565
  article-title: Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117800
– volume: vol. 3
  issue: no. 6, Art. no. 6
  year: 2021
  ident: 10.1016/j.commatsci.2023.112031_b0165
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
– volume: 2
  start-page: 451
  year: 2010
  ident: 10.1016/j.commatsci.2023.112031_b0385
  article-title: Genetic Algorithm: Review and Application
  publication-title: J. Inf. Knowl. Manag.
– volume: 260
  year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0115
  article-title: Machine learning prediction of mechanical properties of concrete: Critical review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119889
– ident: 10.1016/j.commatsci.2023.112031_b0675
  doi: 10.3390/en10121981
– volume: 292
  year: 2021
  ident: 10.1016/j.commatsci.2023.112031_b0630
  article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126032
– ident: 10.1016/j.commatsci.2023.112031_b0435
  doi: 10.3390/app12052408
– volume: 253
  year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0615
  article-title: Machine learning-based multi-objective optimisation of an aerogel glazing system using NSGA-II—study of modelling and application in the subtropical climate Hong Kong
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.119964
– ident: 10.1016/j.commatsci.2023.112031_b0070
  doi: 10.3389/fmats.2019.00110
– ident: 10.1016/j.commatsci.2023.112031_b0330
– ident: 10.1016/j.commatsci.2023.112031_b0505
  doi: 10.1038/s41598-017-01939-2
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.commatsci.2023.112031_b0375
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 12
  start-page: 163
  issue: 1
  year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0095
  article-title: Machine-learning-assisted de novo design of organic molecules and polymers: opportunities and challenges
  publication-title: Polymers
  doi: 10.3390/polym12010163
– volume: 202
  year: 2019
  ident: 10.1016/j.commatsci.2023.112031_b0545
  article-title: A deep reinforcement learning-based autonomous ventilation control system for smart indoor air quality management in a subway station
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109440
– year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0065
  article-title: Emerging materials intelligence ecosystems propelled by machine learning
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-00255-y
– volume: vol. 7
  issue: no. 1, Art. no. 1
  year: 2021
  ident: 10.1016/j.commatsci.2023.112031_b0185
  article-title: Atomistic Line Graph Neural Network for improved materials property predictions
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-021-00650-1
– volume: 6
  start-page: 1632
  issue: 8
  year: 2019
  ident: 10.1016/j.commatsci.2023.112031_b0680
  article-title: Creating glasswing butterfly-inspired durable antifogging superomniphobic supertransmissive, superclear nanostructured glass through Bayesian learning and optimization
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH00589G
– volume: 117
  issue: 13
  year: 2016
  ident: 10.1016/j.commatsci.2023.112031_b0040
  article-title: Machine Learning Energies of 2 Million Elpasolite $(AB{C}_{2}{D}_{6})$ Crystals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.135502
– volume: 344
  year: 2021
  ident: 10.1016/j.commatsci.2023.112031_b0140
  article-title: Predicting melting point of ionic liquids using QSPR approach: Literature review and new models
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2021.117631
– ident: 10.1016/j.commatsci.2023.112031_b0005
  doi: 10.1126/science.aau0323
– volume: 552
  start-page: 23
  issue: 7683
  year: 2017
  ident: 10.1016/j.commatsci.2023.112031_b0100
  article-title: Use machine learning to find energy materials
  publication-title: Nature
  doi: 10.1038/d41586-017-07820-6
– ident: 10.1016/j.commatsci.2023.112031_b0355
  doi: 10.1109/COMITCon.2019.8862451
– volume: 153
  year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0360
  article-title: Machine learning prediction of self-diffusion in Lennard-Jones fluids
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0011512
– volume: 484
  start-page: 225
  year: 2019
  ident: 10.1016/j.commatsci.2023.112031_b0145
  article-title: Prediction of the boiling and critical points of polycyclic aromatic hydrocarbons via Wang-Landau simulations and machine learning
  publication-title: Fluid Phase Equilibria
  doi: 10.1016/j.fluid.2018.11.030
– volume: vol. 4
  issue: no. 1, Art. no. 1
  year: 2018
  ident: 10.1016/j.commatsci.2023.112031_b0035
  article-title: Machine learning modeling of superconducting critical temperature
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-018-0085-8
– volume: 18
  year: 2012
  ident: 10.1016/j.commatsci.2023.112031_b0370
  article-title: Recent advances on support vector machines research
  publication-title: Technol. Econ. Dev. Econ.
  doi: 10.3846/20294913.2012.661205
– ident: 10.1016/j.commatsci.2023.112031_b0660
– ident: 10.1016/j.commatsci.2023.112031_b0600
  doi: 10.1155/2021/6682283
– volume: 9
  start-page: 556
  issue: 2
  year: 2019
  ident: 10.1016/j.commatsci.2023.112031_b0090
  article-title: Machine learning for composite materials
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2019.32
– volume: 157
  issue: 1
  year: 2022
  ident: 10.1016/j.commatsci.2023.112031_b0230
  article-title: Symbolic regression development of empirical equations for diffusion in Lennard-Jones fluids
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0093658
– volume: 3
  start-page: 159
  issue: 3
  year: 2017
  ident: 10.1016/j.commatsci.2023.112031_b0055
  article-title: Materials discovery and design using machine learning
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2017.08.002
– volume: 35
  year: 2022
  ident: 10.1016/j.commatsci.2023.112031_b0215
  article-title: Machine learning for the design and discovery of zeolites and porous crystalline materials
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2021.100739
– ident: 10.1016/j.commatsci.2023.112031_b0570
  doi: 10.1299/jtst.2016jtst0001
– volume: 143
  start-page: 1097
  issue: 2
  year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0425
  article-title: Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs)
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-09458-5
– volume: 8
  start-page: 19
  issue: 1
  year: 2002
  ident: 10.1016/j.commatsci.2023.112031_b0650
  article-title: Industrialized Building Systems Construction in Malaysia
  publication-title: J. Archit. Eng.
  doi: 10.1061/(ASCE)1076-0431(2002)8:1(19)
– ident: 10.1016/j.commatsci.2023.112031_b0460
  doi: 10.1016/j.advengsoft.2020.102927
– year: 2021
  ident: 10.1016/j.commatsci.2023.112031_b0205
  article-title: Machine learning with knowledge constraints for process optimization of open-air perovskite solar cell manufacturing
  publication-title: SSRN Electron. J.
– volume: 212
  start-page: 199
  year: 2019
  ident: 10.1016/j.commatsci.2023.112031_b0290
  article-title: Prediction of mechanical properties of carbon fiber based on cross-scale FEM and machine learning
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.01.042
– volume: 54
  start-page: 63
  issue: 1
  year: 2021
  ident: 10.1016/j.commatsci.2023.112031_b0075
  article-title: A review on machine learning in 3D printing: applications, potential, and challenges
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09876-9
– volume: 42
  start-page: 259
  year: 2008
  ident: 10.1016/j.commatsci.2023.112031_b0445
  article-title: Predicting the compressive strength of steel fiber added lightweight concrete using neural network
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2007.07.011
– volume: 38
  start-page: 1051
  issue: 3
  year: 2007
  ident: 10.1016/j.commatsci.2023.112031_b0645
  article-title: Impact and post impact behavior of composite sandwich panels
  publication-title: Compos. Part Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2006.06.022
– volume: 3
  issue: 5
  year: 2022
  ident: 10.1016/j.commatsci.2023.112031_b0195
  article-title: Scalable deeper graph neural networks for high-performance materials property prediction
  publication-title: Patterns N. Y. N
– ident: 10.1016/j.commatsci.2023.112031_b0250
– ident: 10.1016/j.commatsci.2023.112031_b0490
– volume: vol. 7
  issue: no. 1, Art. no. 1
  year: 2018
  ident: 10.1016/j.commatsci.2023.112031_b0050
  article-title: Plasmonic nanostructure design and characterization via Deep Learning
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-018-0060-7
– ident: 10.1016/j.commatsci.2023.112031_b0190
– volume: 109
  year: 2021
  ident: 10.1016/j.commatsci.2023.112031_b0210
  article-title: A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels
  publication-title: J. Mater. Sci. Technol.
– volume: 120
  start-page: 10336
  issue: 18
  year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0010
  article-title: 3D graphene materials: from understanding to design and synthesis control
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00083
– ident: 10.1016/j.commatsci.2023.112031_b0670
  doi: 10.1016/j.cad.2019.06.007
– start-page: 3
  year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0305
  publication-title: Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science”
  doi: 10.1007/978-3-030-22475-2_1
– volume: 549
  year: 2021
  ident: 10.1016/j.commatsci.2023.112031_b0170
  article-title: Perspective: machine learning of thermophysical properties
  publication-title: Fluid Phase Equilibria
  doi: 10.1016/j.fluid.2021.113206
– volume: 29
  start-page: 7833
  issue: 18
  year: 2017
  ident: 10.1016/j.commatsci.2023.112031_b0440
  article-title: Predicting the mechanical properties of zeolite frameworks by machine learning
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02532
– volume: 262
  year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0455
  article-title: Prediction of the mechanical properties of wood using guided wave propagation and machine learning
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120848
– volume: 125
  start-page: 5251
  issue: 9
  year: 2021
  ident: 10.1016/j.commatsci.2023.112031_b0495
  article-title: Neural networks for analysis of optical properties in 2D layered hybrid lead halide perovskites
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c00588
– ident: 10.1016/j.commatsci.2023.112031_b0380
– volume: 213
  year: 2022
  ident: 10.1016/j.commatsci.2023.112031_b0475
  article-title: Machine learning assisted prediction of mechanical properties of graphene/aluminium nanocomposite based on molecular dynamics simulation
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.110334
– ident: 10.1016/j.commatsci.2023.112031_b0585
  doi: 10.31224/osf.io/3dh9s
– ident: 10.1016/j.commatsci.2023.112031_b0665
  doi: 10.1109/ICIoT48696.2020.9089603
– volume: 93
  issue: 11
  year: 2016
  ident: 10.1016/j.commatsci.2023.112031_b0270
  article-title: Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.115104
– volume: 195
  start-page: 514
  year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0530
  article-title: Exergy-based optimisation of a phase change materials integrated hybrid renewable system for active cooling applications using supervised machine learning method
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.11.067
– ident: 10.1016/j.commatsci.2023.112031_b0245
– volume: 7
  start-page: 43
  issue: 2
  year: 2018
  ident: 10.1016/j.commatsci.2023.112031_b0410
  article-title: Machine Learning Prediction of Heat Capacity for Solid Inorganics
  publication-title: Integrating Mater. Manuf. Innov.
  doi: 10.1007/s40192-018-0108-9
– volume: 547
  year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0620
  article-title: Geometric optimization of aerogel composites for high temperature thermal insulation applications
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2020.120306
– volume: 1
  start-page: 33
  issue: 1
  year: 2007
  ident: 10.1016/j.commatsci.2023.112031_b0395
  article-title: Particle swarm optimization
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0002-0
– volume: 95
  issue: 14
  year: 2017
  ident: 10.1016/j.commatsci.2023.112031_b0130
  article-title: Representation of compounds for machine-learning prediction of physical properties
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.144110
– ident: 10.1016/j.commatsci.2023.112031_b0405
– volume: 8
  year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0080
  article-title: Discovery and design of soft polymeric bio-inspired materials with multiscale simulations and artificial intelligence
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB00896F
– ident: 10.1016/j.commatsci.2023.112031_b0500
– ident: 10.1016/j.commatsci.2023.112031_b0520
  doi: 10.1117/1.AP.2.2.026003
– volume: 318
  year: 2021
  ident: 10.1016/j.commatsci.2023.112031_b0605
  article-title: Life cycle assessment multi-objective optimization and deep belief network model for sustainable lightweight aggregate concrete
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128554
– volume: 26
  start-page: 303
  issue: 1
  year: 2016
  ident: 10.1016/j.commatsci.2023.112031_b0310
  article-title: Model-based clustering based on sparse finite Gaussian mixtures
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-014-9500-2
– volume: 72
  start-page: 185
  year: 2018
  ident: 10.1016/j.commatsci.2023.112031_b0025
  article-title: Transfer-learning: bridging the gap between real and simulation data for machine learning in injection molding
  publication-title: Proc. CIRP
  doi: 10.1016/j.procir.2018.03.087
– ident: 10.1016/j.commatsci.2023.112031_b0480
  doi: 10.1063/5.0023759
– volume: 34
  start-page: 2102703
  issue: 1
  year: 2022
  ident: 10.1016/j.commatsci.2023.112031_b0225
  article-title: Machine learning-driven biomaterials evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202102703
– ident: 10.1016/j.commatsci.2023.112031_b0280
  doi: 10.1109/ComPE49325.2020.9200093
– volume: 128
  start-page: 431
  year: 2016
  ident: 10.1016/j.commatsci.2023.112031_b0105
  article-title: Applications of machine learning methods to identifying and predicting building retrofit opportunities
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.06.092
– ident: 10.1016/j.commatsci.2023.112031_b0320
– year: 2012
  ident: 10.1016/j.commatsci.2023.112031_b0655
  publication-title: Optimal Design of a Composite Sandwich Structure Using Lamination Parameters.
– ident: 10.1016/j.commatsci.2023.112031_b0465
  doi: 10.1038/s41598-019-50144-w
– volume: 236
  start-page: 574
  year: 2019
  ident: 10.1016/j.commatsci.2023.112031_b0550
  article-title: Modeling, air balancing and optimal pressure set-point selection for the ventilation system with minimized energy consumption
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.12.026
– volume: 148
  start-page: 868
  year: 2018
  ident: 10.1016/j.commatsci.2023.112031_b0625
  article-title: A review of the properties of recycled and waste materials for energy refurbishment of existing buildings towards the requirements of NZEB
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2018.08.108
– ident: 10.1016/j.commatsci.2023.112031_b0580
– volume: 34
  year: 2021
  ident: 10.1016/j.commatsci.2023.112031_b0120
  article-title: Machine learning based prediction model for thermal conductivity of concrete
  publication-title: J. Build. Eng.
– volume: 23
  start-page: 781
  issue: 5
  year: 2008
  ident: 10.1016/j.commatsci.2023.112031_b0640
  article-title: Modular approaches in dutch house building: an exploratory survey
  publication-title: Hous. Stud.
  doi: 10.1080/02673030802293208
– ident: 10.1016/j.commatsci.2023.112031_b0315
  doi: 10.1109/IITSI.2010.74
– volume: vol. 559
  issue: no. 7715, Art. no. 7715
  year: 2018
  ident: 10.1016/j.commatsci.2023.112031_b0060
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
  doi: 10.1038/s41586-018-0337-2
– volume: 25
  start-page: 1856
  issue: 6
  year: 2017
  ident: 10.1016/j.commatsci.2023.112031_b0590
  article-title: “Application of Machine Learning for Optimization of 3-D Integrated Circuits and Systems”, IEEE Trans
  publication-title: Very Large Scale Integr. VLSI Syst.
  doi: 10.1109/TVLSI.2017.2656843
– volume: 165
  start-page: 297
  year: 2016
  ident: 10.1016/j.commatsci.2023.112031_b0555
  article-title: Power and mass optimization of the hybrid solar panel and thermoelectric generators
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.12.016
– volume: 29
  start-page: 10527
  issue: 7
  year: 2021
  ident: 10.1016/j.commatsci.2023.112031_b0525
  article-title: Deep-learning-enabled inverse engineering of multi-wavelength invisibility-to-superscattering switching with phase-change materials
  publication-title: Opt. Express
  doi: 10.1364/OE.422119
– volume: 1
  start-page: 338
  year: 2019
  ident: 10.1016/j.commatsci.2023.112031_b0020
  article-title: Machine learning in materials science
  publication-title: InfoMat
  doi: 10.1002/inf2.12028
– volume: 32
  year: 2022
  ident: 10.1016/j.commatsci.2023.112031_b0220
  article-title: An approach for process optimisation of the Automated Fibre Placement (AFP) based thermoplastic composites manufacturing using Machine Learning, photonic sensing and thermo-mechanics modelling
  publication-title: Manuf. Lett.
– volume: 44
  start-page: 524
  year: 2013
  ident: 10.1016/j.commatsci.2023.112031_b0275
  article-title: Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.02.064
– volume: 52
  start-page: 477
  issue: 1
  year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0155
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010719-060214
– volume: 32
  start-page: e1907176
  issue: 17
  year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0015
  article-title: Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications
  publication-title: Adv. Mater. Deerfield Beach Fla
  doi: 10.1002/adma.201907176
– ident: 10.1016/j.commatsci.2023.112031_b0260
– ident: 10.1016/j.commatsci.2023.112031_b0365
  doi: 10.3389/fnbot.2013.00021
– ident: 10.1016/j.commatsci.2023.112031_b0300
– volume: 45
  start-page: 18551
  issue: 15
  year: 2019
  ident: 10.1016/j.commatsci.2023.112031_b0430
  article-title: Ultra-high temperature ceramics melting temperature prediction via machine learning
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.06.076
– ident: 10.1016/j.commatsci.2023.112031_b0285
– volume: 122
  start-page: 17575
  issue: 31
  year: 2018
  ident: 10.1016/j.commatsci.2023.112031_b0485
  article-title: Polymer genome: a data-powered polymer informatics platform for property predictions
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b02913
– ident: 10.1016/j.commatsci.2023.112031_b0560
– ident: 10.1016/j.commatsci.2023.112031_b0325
– volume: 533
  start-page: 73
  issue: 7601
  year: 2016
  ident: 10.1016/j.commatsci.2023.112031_b0240
  article-title: Machine-learning-assisted materials discovery using failed experiments
  publication-title: Nature
  doi: 10.1038/nature17439
– volume: 206
  start-page: 355
  year: 2019
  ident: 10.1016/j.commatsci.2023.112031_b0295
  article-title: Combination of Support Vector Machine and K-Fold cross validation to predict compressive strength of concrete in marine environment
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.02.071
– volume: 115
  issue: 20
  year: 2015
  ident: 10.1016/j.commatsci.2023.112031_b0150
  article-title: Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.205901
– volume: 197
  year: 2021
  ident: 10.1016/j.commatsci.2023.112031_b0450
  article-title: Online prediction of mechanical properties of hot rolled steel plate using machine learning
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109201
– volume: vol. 7
  issue: no. 3, Art. no. 3
  year: 2022
  ident: 10.1016/j.commatsci.2023.112031_b0175
  article-title: Current trends in fluid research in the era of artificial intelligence: a review
  publication-title: Fluids
  doi: 10.3390/fluids7030116
– volume: 126
  start-page: 1651
  issue: 3
  year: 2022
  ident: 10.1016/j.commatsci.2023.112031_b0400
  article-title: Prediction of thermal properties of zeolites through machine learning
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c09737
– volume: 18
  start-page: 84
  issue: 2
  year: 2012
  ident: 10.1016/j.commatsci.2023.112031_b0635
  article-title: House-Building Business Models and Off-Site Construction Take-Up
  publication-title: J. Archit. Eng.
  doi: 10.1061/(ASCE)AE.1943-5568.0000058
– volume: 38
  start-page: 13448
  issue: 10
  year: 2011
  ident: 10.1016/j.commatsci.2023.112031_b0200
  article-title: A review of data mining applications for quality improvement in manufacturing industry
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.063
– volume: 37
  start-page: 1718
  issue: 12
  year: 2021
  ident: 10.1016/j.commatsci.2023.112031_b0160
  article-title: Applying machine learning to study fluid mechanics
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-021-01143-6
– volume: 153
  start-page: 375
  year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0610
  article-title: Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.01.133
– volume: vol. 8, no. 1, Art. no. 1
  year: 2020
  ident: 10.1016/j.commatsci.2023.112031_b0180
  article-title: Machine-learning methods for computational science and engineering
  publication-title: Computation
SSID ssj0016982
Score 2.6236699
SecondaryResourceType review_article
Snippet [Display omitted] Analysis and design, as the most critical components in material science, require a highly rigorous approach to assure long-term success. Due...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112031
SubjectTerms Evolutionary algorithms
Machine Learning
Materials production process
Materials properties
Materials Science
Mechanical properties
Optical parameters
Optimization
Physical properties
Title Enhancing property prediction and process optimization in building materials through machine learning: A review
URI https://dx.doi.org/10.1016/j.commatsci.2023.112031
Volume 220
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQXdqh6lOlD-ShqyGJncRhQwhEW5WlRWKLbGNTqjZEKB269LfXlzgIpEoM3RLLZ1l3l7uzc3cfQvc-l4wnihNPxYwwbQzhWiQkEFprnxrqKzgoPk-i8ZQ9zsJZAw3qWhhIq3S2v7LppbV2I13HzW6-XHZfvARqqcB_w2cdQsdPxmLQ8s7PJs3Dj5ISMAomE5i9k-Nl17ZxoV29AyjiUE7jUf9vD7XldUYn6NiFi7hf7egUNXR2ho62mgieo9Uwe4OmGdkC53Czvi6-7QP8fwGeY5HNcV5VA-CVtQ-frvASLzMsHSY2tturNBE73B47AkmWGjtUiUUP93FV5nKBpqPh62BMHIwCUdQPCxIrGmkuIRaJQmqklQU3gUgk5TLgkeGeltZHCZYIRUGkiQmUjSPmIrSCChS9RM1slekrhOcmBkRNZc-JmmnmCwgwuI0QtGE6YrKFopp1qXI9xgHq4iOtk8ne0w3PU-B5WvG8hbwNYV612dhP0qtlk-5oTGqdwT7i6_8Q36BDeCsz0cJb1CzWX_rOhiaFbJe610YH_Yen8eQXscznAA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwED5RGNoOVZ8qfXrompLETnDYEAJBeSwFiS2KjU2p2hChdOi_r48YBFKlDt0iJ5dYd87d5-TuPoAnjwvGI8kdV9aZw5TWDldJ5PiJUsqjmnoSN4rDUdidsJdpMC1Ba1MLg2mV1vcXPn3tre1IzWqzli0WtVc3wloqjN_4Wgf0ACrYnSooQ6XZ63dH258JYbTmjMLrHRTYS_MytzfQ0DzgGYnEsaLGpd7vQWon8HRO4cQiRtIsJnUGJZWew_FOH8ELWLbTN-ybkc5Jhh_XV_m3OcBfMKh2kqQzkhUFAWRpXMSnrb0ki5QIS4tNzPSKxUgsdY8ZwTxLRSyxxLxBmqSodLmESac9bnUdy6TgSOoFuVOXNFRcIBwJA6qFMQfXfhIJyoXPQ81dJUyYSliUSIpWjbQvDZSYJYGxlS_pFZTTZaqugcx0HUk1pdkqKqaYlyDG4AYkKM1UyEQVwo3qYmnbjCPbxUe8ySd7j7c6j1HncaHzKrhbwazotPG3SGNjm3hv0cQmHvwlfPMf4Uc47I6Hg3jQG_Vv4QjPrBPTgjso56svdW-QSi4e7Er8AZrU6bE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+property+prediction+and+process+optimization+in+building+materials+through+machine+learning%3A+A+review&rft.jtitle=Computational+materials+science&rft.au=Stergiou%2C+Konstantinos&rft.au=Ntakolia%2C+Charis&rft.au=Varytis%2C+Paris&rft.au=Koumoulos%2C+Elias&rft.date=2023-03-05&rft.issn=0927-0256&rft.volume=220&rft.spage=112031&rft_id=info:doi/10.1016%2Fj.commatsci.2023.112031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_commatsci_2023_112031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon