Inferring random component distributions from environmental measurements for quality assurance

•Data need indicators of quality to be truly useful for future use.•A new single-sensor test statistic can inform sensor data quality.•A new dual-sensor test statistic uses redundancy to place bounds on data variation.•Both are intended for comprehensive near-real-time quality assurance programs. En...

Full description

Saved in:
Bibliographic Details
Published inAgricultural and forest meteorology Vol. 237-238; pp. 362 - 370
Main Authors Sadler, E. John, Sudduth, Kenneth A., Drummond, Scott T., Thompson, Allen L., Chen, Jiaxun, Nash, Patrick R.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Data need indicators of quality to be truly useful for future use.•A new single-sensor test statistic can inform sensor data quality.•A new dual-sensor test statistic uses redundancy to place bounds on data variation.•Both are intended for comprehensive near-real-time quality assurance programs. Environmental measurement programs can add value by providing not just accurate data, but also a measure of that accuracy. While quality assurance (QA) has been recognized as necessary since almost the beginning of automated weather measurement, it has received less attention than the data proper. Most QA systems examine data limits and rate of change for gross errors and examine data for unchanging values. Others compare data from other locations using spatial tools or examine temporal consistency. There exists a need for analytical tools that can increase the likelihood of detecting small errors, such as a calibration drift, or increased variation in a sensor reading. Two such empirical tools are described herein that can inform a first level QA process. One operates on data from a single sensor, using comparisons between a current and a prior datum; the other leverages additional information from a duplicate sensor and operates on only the current datum. The objectives of this paper are to describe the computational methods, illustrate results with multiple-month datasets representing both nominal and failing sensors, provide some indications of validity of assumptions made in the derivation, and suggest where in a quality assurance program these methods could be applied. With little additional datalogger programming to obtain both the period average and the ending value, these tools could be added to QA toolkits in many automated weather stations.
AbstractList •Data need indicators of quality to be truly useful for future use.•A new single-sensor test statistic can inform sensor data quality.•A new dual-sensor test statistic uses redundancy to place bounds on data variation.•Both are intended for comprehensive near-real-time quality assurance programs. Environmental measurement programs can add value by providing not just accurate data, but also a measure of that accuracy. While quality assurance (QA) has been recognized as necessary since almost the beginning of automated weather measurement, it has received less attention than the data proper. Most QA systems examine data limits and rate of change for gross errors and examine data for unchanging values. Others compare data from other locations using spatial tools or examine temporal consistency. There exists a need for analytical tools that can increase the likelihood of detecting small errors, such as a calibration drift, or increased variation in a sensor reading. Two such empirical tools are described herein that can inform a first level QA process. One operates on data from a single sensor, using comparisons between a current and a prior datum; the other leverages additional information from a duplicate sensor and operates on only the current datum. The objectives of this paper are to describe the computational methods, illustrate results with multiple-month datasets representing both nominal and failing sensors, provide some indications of validity of assumptions made in the derivation, and suggest where in a quality assurance program these methods could be applied. With little additional datalogger programming to obtain both the period average and the ending value, these tools could be added to QA toolkits in many automated weather stations.
Author Drummond, Scott T.
Thompson, Allen L.
Sadler, E. John
Chen, Jiaxun
Sudduth, Kenneth A.
Nash, Patrick R.
Author_xml – sequence: 1
  givenname: E. John
  surname: Sadler
  fullname: Sadler, E. John
  email: John.Sadler@ars.usda.gov, sadlerj@missouri.edu
  organization: USDA-ARS Cropping Systems & Water Quality Research Unit, Rm 269 Ag. Eng. Bldg, University of Missouri, Columbia, MO 65211, USA
– sequence: 2
  givenname: Kenneth A.
  surname: Sudduth
  fullname: Sudduth, Kenneth A.
  email: Ken.Sudduth@ars.usda.gov
  organization: USDA-ARS Cropping Systems & Water Quality Research Unit, Rm 269 Ag. Eng. Bldg, University of Missouri, Columbia, MO 65211, USA
– sequence: 3
  givenname: Scott T.
  surname: Drummond
  fullname: Drummond, Scott T.
  email: Scott.Drummond@ars.usda.gov
  organization: USDA-ARS Cropping Systems & Water Quality Research Unit, Rm 269 Ag. Eng. Bldg, University of Missouri, Columbia, MO 65211, USA
– sequence: 4
  givenname: Allen L.
  surname: Thompson
  fullname: Thompson, Allen L.
  email: ThompsonA@missouri.edu
  organization: Bioengineering Department, Rm 251 Ag. Eng. Bldg, University of Missouri, Columbia, MO 65211, USA
– sequence: 5
  givenname: Jiaxun
  surname: Chen
  fullname: Chen, Jiaxun
  email: jczz7@mail.missouri.edu
  organization: Statistics Department, Rm 9 Middlebush Hall, University of Missouri, Columbia, MO 65211, USA
– sequence: 6
  givenname: Patrick R.
  surname: Nash
  fullname: Nash, Patrick R.
  email: Pat.Nash@ars.usda.gov
  organization: USDA-ARS Cropping Systems & Water Quality Research Unit, Rm 269 Ag. Eng. Bldg, University of Missouri, Columbia, MO 65211, USA
BookMark eNqFUNtqAjEQDcVC1fYbuj-w29zc7D6K9CIIfWlfG3KViJvYySr4941Y-lo4MMycmTOHM0OTmKJD6JHghmDSPu0atQWfYHBjQzERDaYF5AZNSSdYTSnHEzQtm11Nesru0CznHcaECtFP0dc6egcQ4rYCFW0aKpOGQ_kQx8qGPELQxzGkmCsPhXTxFCDFodBqXw1O5SO4S1f4BNX3Ue3DeK5ULnMVjbtHt17ts3v4rXP0-fL8sXqrN--v69VyUxtGFmPdWmVb32vTK66F1tbi3hjTt5Qx1XZq4SzzlLdEc2u4boXuCcFedZwwLHjH5khcdQ2knMF5eYAwKDhLguUlJrmTfzHJS0wS0wJSLpfXS1fsnYIDmU1wxboN4MwobQr_avwARfx7Lw
CitedBy_id crossref_primary_10_2134_age2018_09_0036
Cites_doi 10.1175/2010JAMC2375.1
10.1175/2007JAMC1706.1
10.1175/1520-0493(1988)116<1137:CQCOMO>2.0.CO;2
10.1016/j.cageo.2010.05.010
10.1016/0168-1923(94)90083-3
10.1175/1520-0426(2001)018<1470:SPORIS>2.0.CO;2
10.1175/1520-0426(2000)017<0474:QAPITO>2.0.CO;2
10.1175/JTECH-1657.1
10.1175/JTECH1762.1
10.2134/jeq2013.12.0515
ContentType Journal Article
Copyright 2017
Copyright_xml – notice: 2017
DBID AAYXX
CITATION
DOI 10.1016/j.agrformet.2017.02.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Agriculture
EISSN 1873-2240
EndPage 370
ExternalDocumentID 10_1016_j_agrformet_2017_02_021
S0168192317300643
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABGRD
ABJNI
ABLJU
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
WH7
Y6R
ZMT
~02
~G-
~KM
0SF
AAHBH
AALCJ
AAQXK
AAXKI
AAYXX
ABEFU
ABFNM
ABXDB
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HLV
HMA
HVGLF
HZ~
R2-
SEP
SEW
WUQ
ID FETCH-LOGICAL-c315t-6dad6f9bc9a4b7bbdd09ccc96233a68a5ed3f2461b4dc4b67b9110fa841307483
IEDL.DBID AIKHN
ISSN 0168-1923
IngestDate Thu Sep 26 17:08:53 EDT 2024
Fri Feb 23 02:34:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords A
B
Environmental measurement
CMRB
Bias
O
QA
R
QC
Quality assurance
T
Air temperature
Tmax
Quality control
Tmin
LTAR
p, s
Random variation
i, j
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-6dad6f9bc9a4b7bbdd09ccc96233a68a5ed3f2461b4dc4b67b9110fa841307483
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_agrformet_2017_02_021
elsevier_sciencedirect_doi_10_1016_j_agrformet_2017_02_021
PublicationCentury 2000
PublicationDate 2017-05-01
2017-05-00
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Agricultural and forest meteorology
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hubbard, You, Shulski (bib0030) 2012
Hubbard, Goddard, Sorensen, Wells, Osugi (bib0025) 2005; 22
Meek, Hatfield (bib0040) 1994; 69
Lin, Hubbard, Walter-Shea, Brandle, Meyer (bib0035) 2001; 18
Shafer, Fiebrich, Arndt, Fredrickson, Hughes (bib0070) 2000; 17
Sadler, Sudduth, Drummond, Vories, Guinan (bib0060) 2015; 44
Gandin (bib0015) 1988; 116
Gray (bib0020) 2009
National Oceanic and Atmospheric Administration (bib0055) 1998
Durre, Menne, Gleason, Houston, Vose (bib0010) 2010; 49
Nakamura, Mahrt (bib0050) 2005; 22
Williams, Cornford, Bastin, Jones, Parker (bib0080) 2011; 37
WMO (bib0075) 2004
Durre, Menne, Vose (bib0005) 2008; 47
NOAA-NWS (bib0045) 2015
Sadler (bib0065) 1983
Gray (10.1016/j.agrformet.2017.02.021_bib0020) 2009
Sadler (10.1016/j.agrformet.2017.02.021_bib0060) 2015; 44
Sadler (10.1016/j.agrformet.2017.02.021_bib0065) 1983
Meek (10.1016/j.agrformet.2017.02.021_bib0040) 1994; 69
WMO (10.1016/j.agrformet.2017.02.021_bib0075) 2004
Gandin (10.1016/j.agrformet.2017.02.021_bib0015) 1988; 116
National Oceanic and Atmospheric Administration (10.1016/j.agrformet.2017.02.021_bib0055) 1998
Durre (10.1016/j.agrformet.2017.02.021_bib0010) 2010; 49
Hubbard (10.1016/j.agrformet.2017.02.021_bib0030) 2012
Lin (10.1016/j.agrformet.2017.02.021_bib0035) 2001; 18
Durre (10.1016/j.agrformet.2017.02.021_bib0005) 2008; 47
Nakamura (10.1016/j.agrformet.2017.02.021_bib0050) 2005; 22
Hubbard (10.1016/j.agrformet.2017.02.021_bib0025) 2005; 22
Shafer (10.1016/j.agrformet.2017.02.021_bib0070) 2000; 17
Williams (10.1016/j.agrformet.2017.02.021_bib0080) 2011; 37
NOAA-NWS (10.1016/j.agrformet.2017.02.021_bib0045) 2015
References_xml – volume: 49
  start-page: 1615
  year: 2010
  end-page: 1633
  ident: bib0010
  article-title: Comprehensive automated quality assurance of daily surface observations
  publication-title: J. Appl. Meteor. Climatol.
  contributor:
    fullname: Vose
– volume: 44
  start-page: 13
  year: 2015
  end-page: 17
  ident: bib0060
  article-title: Long-term agroecosystem research in the Central Mississippi River Basin: goodwater creek experimental watershed weather data
  publication-title: J. Environ. Qual.
  contributor:
    fullname: Guinan
– volume: 69
  start-page: 85
  year: 1994
  end-page: 109
  ident: bib0040
  article-title: Data quality checking for single station meteorological databases
  publication-title: Agric. For. Meteorol.
  contributor:
    fullname: Hatfield
– year: 2015
  ident: bib0045
  article-title: MADIS—Meteorological Assimilation Data Ingest System, National Oceanic and Atmospheric Administration
  contributor:
    fullname: NOAA-NWS
– volume: 17
  start-page: 474
  year: 2000
  end-page: 494
  ident: bib0070
  article-title: Quality assurance procedures in the Oklahoma Mesonetwork
  publication-title: J. Atmos. Ocean. Technol.
  contributor:
    fullname: Hughes
– year: 2004
  ident: bib0075
  article-title: Guidelines on Quality Control Procedures for Data from Automatic Weather Stations
  contributor:
    fullname: WMO
– volume: 37
  start-page: 353
  year: 2011
  end-page: 362
  ident: bib0080
  article-title: Automatic processing, quality assurance and serving of real-time weather data
  publication-title: Comput. Geosci.
  contributor:
    fullname: Parker
– volume: 47
  start-page: 1785
  year: 2008
  end-page: 1791
  ident: bib0005
  article-title: Strategies for evaluating quality assurance procedures
  publication-title: J. Appl. Meteor. Climatol.
  contributor:
    fullname: Vose
– year: 2012
  ident: bib0030
  article-title: Toward a better quality control of weather data
  publication-title: Practical Concepts of Quality Control
  contributor:
    fullname: Shulski
– volume: 22
  start-page: 1046
  year: 2005
  end-page: 1058
  ident: bib0050
  article-title: Air temperature measurement errors in naturally ventilated radiation shields
  publication-title: J. Atmos. Ocean. Technol.
  contributor:
    fullname: Mahrt
– volume: 18
  start-page: 1470
  year: 2001
  end-page: 1484
  ident: bib0035
  article-title: Some perspectives on recent in situ air temperature observations: modeling the microclimate inside the radiation shields
  publication-title: J. Atmos. Ocean. Technol.
  contributor:
    fullname: Meyer
– volume: 116
  start-page: 1137
  year: 1988
  end-page: 1156
  ident: bib0015
  article-title: Complex quality control of meteorological observations
  publication-title: Mon. Weather Rev.
  contributor:
    fullname: Gandin
– year: 1998
  ident: bib0055
  article-title: Automated Surface Observing System (ASOS) User’s Guide
  contributor:
    fullname: National Oceanic and Atmospheric Administration
– year: 2009
  ident: bib0020
  article-title: Jim Gray on eScience: a transformed scientific method
  publication-title: The Fourth Paradigm: Data-Intensive Scientific Discovery
  contributor:
    fullname: Gray
– year: 1983
  ident: bib0065
  article-title: Simulation of the Energy, Carbon, and Water Balance of a Fluid-roof Greenhouse. Ph.D. Thesis
  contributor:
    fullname: Sadler
– volume: 22
  start-page: 105
  year: 2005
  end-page: 112
  ident: bib0025
  article-title: Performance of quality assurance procedures for an Applied Climate Information System
  publication-title: J. Atmos. Ocean. Technol.
  contributor:
    fullname: Osugi
– volume: 49
  start-page: 1615
  issue: 8
  year: 2010
  ident: 10.1016/j.agrformet.2017.02.021_bib0010
  article-title: Comprehensive automated quality assurance of daily surface observations
  publication-title: J. Appl. Meteor. Climatol.
  doi: 10.1175/2010JAMC2375.1
  contributor:
    fullname: Durre
– year: 2004
  ident: 10.1016/j.agrformet.2017.02.021_bib0075
  contributor:
    fullname: WMO
– volume: 47
  start-page: 1785
  issue: 6
  year: 2008
  ident: 10.1016/j.agrformet.2017.02.021_bib0005
  article-title: Strategies for evaluating quality assurance procedures
  publication-title: J. Appl. Meteor. Climatol.
  doi: 10.1175/2007JAMC1706.1
  contributor:
    fullname: Durre
– volume: 116
  start-page: 1137
  year: 1988
  ident: 10.1016/j.agrformet.2017.02.021_bib0015
  article-title: Complex quality control of meteorological observations
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1988)116<1137:CQCOMO>2.0.CO;2
  contributor:
    fullname: Gandin
– year: 1983
  ident: 10.1016/j.agrformet.2017.02.021_bib0065
  contributor:
    fullname: Sadler
– volume: 37
  start-page: 353
  issue: 3
  year: 2011
  ident: 10.1016/j.agrformet.2017.02.021_bib0080
  article-title: Automatic processing, quality assurance and serving of real-time weather data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2010.05.010
  contributor:
    fullname: Williams
– volume: 69
  start-page: 85
  year: 1994
  ident: 10.1016/j.agrformet.2017.02.021_bib0040
  article-title: Data quality checking for single station meteorological databases
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(94)90083-3
  contributor:
    fullname: Meek
– volume: 18
  start-page: 1470
  issue: 9
  year: 2001
  ident: 10.1016/j.agrformet.2017.02.021_bib0035
  article-title: Some perspectives on recent in situ air temperature observations: modeling the microclimate inside the radiation shields
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/1520-0426(2001)018<1470:SPORIS>2.0.CO;2
  contributor:
    fullname: Lin
– year: 2012
  ident: 10.1016/j.agrformet.2017.02.021_bib0030
  article-title: Toward a better quality control of weather data
  contributor:
    fullname: Hubbard
– year: 1998
  ident: 10.1016/j.agrformet.2017.02.021_bib0055
  contributor:
    fullname: National Oceanic and Atmospheric Administration
– volume: 17
  start-page: 474
  year: 2000
  ident: 10.1016/j.agrformet.2017.02.021_bib0070
  article-title: Quality assurance procedures in the Oklahoma Mesonetwork
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/1520-0426(2000)017<0474:QAPITO>2.0.CO;2
  contributor:
    fullname: Shafer
– volume: 22
  start-page: 105
  issue: 1
  year: 2005
  ident: 10.1016/j.agrformet.2017.02.021_bib0025
  article-title: Performance of quality assurance procedures for an Applied Climate Information System
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-1657.1
  contributor:
    fullname: Hubbard
– volume: 22
  start-page: 1046
  issue: 7
  year: 2005
  ident: 10.1016/j.agrformet.2017.02.021_bib0050
  article-title: Air temperature measurement errors in naturally ventilated radiation shields
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH1762.1
  contributor:
    fullname: Nakamura
– year: 2009
  ident: 10.1016/j.agrformet.2017.02.021_bib0020
  article-title: Jim Gray on eScience: a transformed scientific method
  contributor:
    fullname: Gray
– volume: 44
  start-page: 13
  year: 2015
  ident: 10.1016/j.agrformet.2017.02.021_bib0060
  article-title: Long-term agroecosystem research in the Central Mississippi River Basin: goodwater creek experimental watershed weather data
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2013.12.0515
  contributor:
    fullname: Sadler
– year: 2015
  ident: 10.1016/j.agrformet.2017.02.021_bib0045
  contributor:
    fullname: NOAA-NWS
SSID ssj0012779
Score 2.2623038
Snippet •Data need indicators of quality to be truly useful for future use.•A new single-sensor test statistic can inform sensor data quality.•A new dual-sensor test...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 362
SubjectTerms Air temperature
Bias
Environmental measurement
Quality assurance
Quality control
Random variation
Title Inferring random component distributions from environmental measurements for quality assurance
URI https://dx.doi.org/10.1016/j.agrformet.2017.02.021
Volume 237-238
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4gXPRgFDXig_RgvK10d8tu1xshEtDARUk4udm-CEYeQTh48bc73QdCYuLBZC_dbrOTSTPztf3mK8CN4IkwaKFDpaQOM4jhuI58x4iAe4pFntB2odgfBN0hexw1RyVoF7UwllaZx_4spqfROn_TyL3ZWEwmjWcEKzzFJ1ZyHRPrHlTSQ6IyVFq9p-5gc5jghZnkHn7v2AE7NK9knPLzteVVumGq3-m5vyeprcTTOYLDHDGSVmbUMZT0rAoHrfEyV83QVaj1EfrOl-kOObkl7fcJ4tC0dQKvPVvSZ3fvCKYlNZ8SyyKfzzDZEGVVc_MLrz6IrTQhW4Vv-NPpzw4i9s-XJKvB_CQIudf2Sg59CsPOw0u76-SXKjjSd5srJ1CJCkwkZJQwEQqhFI2klBHCID8JeNLUyjdWZE4wJZkIQoHhkJqEW9eGjPtnUJ6hkedAZNOXwlfKGC6YCWkUUs3cUHOq7bKH14AWXowXmXZGXJDK3uKN42Pr-Jh6-Lg1uC-8He9Mgxgj_F-DL_4z-BL2bSvjMl5BebVc62vEGytRh727L7eez6pvmhDakg
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHNSDUdSIzz0Ybw3bdmm33giRgDwuQsLJpvsyGHkE4eC_d7YtCImJB5Ne2u2km8lm5tvtN98A3AueCIMzdKiU1GEGMRzXke8YEXBPscgT2m4Ue_2gNWTPo9qoAI11LYylVeaxP4vpabTOn1Rzb1bn43H1BcEKT_GJlVzHxLoHJUQDES72Ur3dafU3PxO8MJPcw_cda7BD80reUn6-trxKN0z1Oz339yS1lXiax3CUI0ZSzyZ1AgU9LcNh_W2Rq2boMlR6CH1ni_SEnDyQxscYcWh6dwqvbVvSZ0_vCKYlNZsQyyKfTTHZEGVVc_OGV5_EVpqQrcI3_Ojk5wQRx2cLktVgfhGE3CvbkkOfwbD5NGi0nLypgiN9t7Z0ApWowERCRgkToRBK0UhKGSEM8pOAJzWtfGNF5gRTkokgFBgOqUm4zXYh4_45FKc4yQsgsuZL4StlDBfMhDQKqWZuqDnVdtvDK0DXXoznmXZGvCaVvccbx8fW8TH18HIr8Lj2dryzDGKM8H8ZX_7H-A72W4NeN-62-50rOLAjGa_xGorLxUrfIPZYitt8bX0D-2rcjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+random+component+distributions+from+environmental+measurements+for+quality+assurance&rft.jtitle=Agricultural+and+forest+meteorology&rft.au=Sadler%2C+E.+John&rft.au=Sudduth%2C+Kenneth+A.&rft.au=Drummond%2C+Scott+T.&rft.au=Thompson%2C+Allen+L.&rft.date=2017-05-01&rft.pub=Elsevier+B.V&rft.issn=0168-1923&rft.eissn=1873-2240&rft.volume=237-238&rft.spage=362&rft.epage=370&rft_id=info:doi/10.1016%2Fj.agrformet.2017.02.021&rft.externalDocID=S0168192317300643
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1923&client=summon