Efficient multiplex CRISPR/Cpf1 (Cas12a) genome editing system in Aspergillus aculeatus TBRC 277

CRISPR/Cas technology is a versatile tool for genome engineering in many organisms, including filamentous fungi. Cpf1 is a multi-domain protein of class 2 (type V) RNA-guided CRISPR/Cas endonuclease, and is an alternative platform with distinct features when compared to Cas9. However, application of...

Full description

Saved in:
Bibliographic Details
Published inJournal of biotechnology Vol. 355; pp. 53 - 64
Main Authors Abdulrachman, Dede, Champreda, Verawat, Eurwilaichitr, Lily, Chantasingh, Duriya, Pootanakit, Kusol
Format Journal Article
LanguageEnglish
Published 20.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CRISPR/Cas technology is a versatile tool for genome engineering in many organisms, including filamentous fungi. Cpf1 is a multi-domain protein of class 2 (type V) RNA-guided CRISPR/Cas endonuclease, and is an alternative platform with distinct features when compared to Cas9. However, application of this technology in filamentous fungi is limited. Here, we present a single CRISPR/Cpf1 plasmid system in Aspergillus aculeatus strain TBRC 277, an industrially relevant cell factory. We first evaluated the functionality of three Cpf1 orthologs from Acidaminococcus sp. BV3L6 (AsCpf1), Francisella tularensis subsp. novicida U112 (FnCpf1), and Lachnospiraceae bacterium (LbCpf1), in RNA-guided site-specific DNA cleavage at the pksP locus. FnCpf1 showed the highest editing efficiency (93 %) among the three Cpf1s. It was further investigated for its ability to delete a 1.7 kb and a 0.5 kb from pksP and pyrG genes, respectively, using two protospacers targeting these gene loci in a single crRNA array. Lastly, simultaneous editing of three sites within TBRC 277 genome was performed using three guide sequences targeting these two genes as well as an additional gene, kusA, which resulted in combined editing efficiency of 40 %. The editing of the NHEJ pathway by targeting kusA to generate a NHEJ-deficient strain of A. aculeatus TBRC 277 improved gene targeting efficiency and yielded more precise gene-editing than that of using wild-type strain. This promising genome-editing system can be used for strain improvement in industrial applications such as production of valuable bioproducts.CRISPR/Cas technology is a versatile tool for genome engineering in many organisms, including filamentous fungi. Cpf1 is a multi-domain protein of class 2 (type V) RNA-guided CRISPR/Cas endonuclease, and is an alternative platform with distinct features when compared to Cas9. However, application of this technology in filamentous fungi is limited. Here, we present a single CRISPR/Cpf1 plasmid system in Aspergillus aculeatus strain TBRC 277, an industrially relevant cell factory. We first evaluated the functionality of three Cpf1 orthologs from Acidaminococcus sp. BV3L6 (AsCpf1), Francisella tularensis subsp. novicida U112 (FnCpf1), and Lachnospiraceae bacterium (LbCpf1), in RNA-guided site-specific DNA cleavage at the pksP locus. FnCpf1 showed the highest editing efficiency (93 %) among the three Cpf1s. It was further investigated for its ability to delete a 1.7 kb and a 0.5 kb from pksP and pyrG genes, respectively, using two protospacers targeting these gene loci in a single crRNA array. Lastly, simultaneous editing of three sites within TBRC 277 genome was performed using three guide sequences targeting these two genes as well as an additional gene, kusA, which resulted in combined editing efficiency of 40 %. The editing of the NHEJ pathway by targeting kusA to generate a NHEJ-deficient strain of A. aculeatus TBRC 277 improved gene targeting efficiency and yielded more precise gene-editing than that of using wild-type strain. This promising genome-editing system can be used for strain improvement in industrial applications such as production of valuable bioproducts.
AbstractList CRISPR/Cas technology is a versatile tool for genome engineering in many organisms, including filamentous fungi. Cpf1 is a multi-domain protein of class 2 (type V) RNA-guided CRISPR/Cas endonuclease, and is an alternative platform with distinct features when compared to Cas9. However, application of this technology in filamentous fungi is limited. Here, we present a single CRISPR/Cpf1 plasmid system in Aspergillus aculeatus strain TBRC 277, an industrially relevant cell factory. We first evaluated the functionality of three Cpf1 orthologs from Acidaminococcus sp. BV3L6 (AsCpf1), Francisella tularensis subsp. novicida U112 (FnCpf1), and Lachnospiraceae bacterium (LbCpf1), in RNA-guided site-specific DNA cleavage at the pksP locus. FnCpf1 showed the highest editing efficiency (93 %) among the three Cpf1s. It was further investigated for its ability to delete a 1.7 kb and a 0.5 kb from pksP and pyrG genes, respectively, using two protospacers targeting these gene loci in a single crRNA array. Lastly, simultaneous editing of three sites within TBRC 277 genome was performed using three guide sequences targeting these two genes as well as an additional gene, kusA, which resulted in combined editing efficiency of 40 %. The editing of the NHEJ pathway by targeting kusA to generate a NHEJ-deficient strain of A. aculeatus TBRC 277 improved gene targeting efficiency and yielded more precise gene-editing than that of using wild-type strain. This promising genome-editing system can be used for strain improvement in industrial applications such as production of valuable bioproducts.
CRISPR/Cas technology is a versatile tool for genome engineering in many organisms, including filamentous fungi. Cpf1 is a multi-domain protein of class 2 (type V) RNA-guided CRISPR/Cas endonuclease, and is an alternative platform with distinct features when compared to Cas9. However, application of this technology in filamentous fungi is limited. Here, we present a single CRISPR/Cpf1 plasmid system in Aspergillus aculeatus strain TBRC 277, an industrially relevant cell factory. We first evaluated the functionality of three Cpf1 orthologs from Acidaminococcus sp. BV3L6 (AsCpf1), Francisella tularensis subsp. novicida U112 (FnCpf1), and Lachnospiraceae bacterium (LbCpf1), in RNA-guided site-specific DNA cleavage at the pksP locus. FnCpf1 showed the highest editing efficiency (93 %) among the three Cpf1s. It was further investigated for its ability to delete a 1.7 kb and a 0.5 kb from pksP and pyrG genes, respectively, using two protospacers targeting these gene loci in a single crRNA array. Lastly, simultaneous editing of three sites within TBRC 277 genome was performed using three guide sequences targeting these two genes as well as an additional gene, kusA, which resulted in combined editing efficiency of 40 %. The editing of the NHEJ pathway by targeting kusA to generate a NHEJ-deficient strain of A. aculeatus TBRC 277 improved gene targeting efficiency and yielded more precise gene-editing than that of using wild-type strain. This promising genome-editing system can be used for strain improvement in industrial applications such as production of valuable bioproducts.CRISPR/Cas technology is a versatile tool for genome engineering in many organisms, including filamentous fungi. Cpf1 is a multi-domain protein of class 2 (type V) RNA-guided CRISPR/Cas endonuclease, and is an alternative platform with distinct features when compared to Cas9. However, application of this technology in filamentous fungi is limited. Here, we present a single CRISPR/Cpf1 plasmid system in Aspergillus aculeatus strain TBRC 277, an industrially relevant cell factory. We first evaluated the functionality of three Cpf1 orthologs from Acidaminococcus sp. BV3L6 (AsCpf1), Francisella tularensis subsp. novicida U112 (FnCpf1), and Lachnospiraceae bacterium (LbCpf1), in RNA-guided site-specific DNA cleavage at the pksP locus. FnCpf1 showed the highest editing efficiency (93 %) among the three Cpf1s. It was further investigated for its ability to delete a 1.7 kb and a 0.5 kb from pksP and pyrG genes, respectively, using two protospacers targeting these gene loci in a single crRNA array. Lastly, simultaneous editing of three sites within TBRC 277 genome was performed using three guide sequences targeting these two genes as well as an additional gene, kusA, which resulted in combined editing efficiency of 40 %. The editing of the NHEJ pathway by targeting kusA to generate a NHEJ-deficient strain of A. aculeatus TBRC 277 improved gene targeting efficiency and yielded more precise gene-editing than that of using wild-type strain. This promising genome-editing system can be used for strain improvement in industrial applications such as production of valuable bioproducts.
Author Champreda, Verawat
Eurwilaichitr, Lily
Chantasingh, Duriya
Abdulrachman, Dede
Pootanakit, Kusol
Author_xml – sequence: 1
  givenname: Dede
  surname: Abdulrachman
  fullname: Abdulrachman, Dede
– sequence: 2
  givenname: Verawat
  surname: Champreda
  fullname: Champreda, Verawat
– sequence: 3
  givenname: Lily
  surname: Eurwilaichitr
  fullname: Eurwilaichitr, Lily
– sequence: 4
  givenname: Duriya
  surname: Chantasingh
  fullname: Chantasingh, Duriya
– sequence: 5
  givenname: Kusol
  surname: Pootanakit
  fullname: Pootanakit, Kusol
BookMark eNqFkE1LJDEQQIO44Kj7E4Qc9dBtKp2kI57cxi8QlFn3HDPpypAh_bGdNOi_t0VPXjxVHd4rqHdI9vuhR0JOgJXAQJ3vyt0mDBldyRnnJVMlA9gjK9B1VQitqn2yWjhdgJLqgBymtGOMiQsJK_Jy7X1wAftMuznmMEZ8pc36_u_T-rwZPdDTxibg9oxusR86pNiGHPotTW8pY0dDT6_SiNM2xDgnat0c0eZle_6zbiiv62Pyy9uY8PfXPCL_bq6fm7vi4fH2vrl6KFwFMheqarlE9EwIt6kU87oFqIE57aSVrhWAGjk60Uruvag3yBzfCK6ZFeh9XR2R08-74zT8nzFl04XkMEbb4zAnw2vQ_GL5G35GlZasUkpXCyo_UTcNKU3ozTiFzk5vBpj5iG925iu--YhvmDJL_MW7_Oa5kG0OQ58nG-IP9juz847Q
CitedBy_id crossref_primary_10_3390_mi15111329
crossref_primary_10_1016_j_biotechadv_2025_108561
crossref_primary_10_1007_s12223_023_01081_9
crossref_primary_10_1093_jrr_rrad081
crossref_primary_10_1186_s12967_024_05235_2
crossref_primary_10_1016_j_ymthe_2023_11_013
crossref_primary_10_1007_s11033_023_08240_8
crossref_primary_10_1007_s42452_024_06405_z
crossref_primary_10_1016_j_tim_2024_11_001
Cites_doi 10.1186/s12896-016-0289-2
10.1016/j.molcel.2017.06.035
10.1038/nmeth.1318
10.1016/j.cell.2016.04.003
10.1021/jf070710p
10.1007/s40484-014-0030-x
10.1016/0378-1119(91)90365-I
10.1021/acssynbio.6b00082
10.1007/s10529-015-2015-x
10.1186/s40694-015-0015-1
10.1186/s13068-015-0253-8
10.1186/s40694-018-0054-5
10.1016/j.cell.2014.05.010
10.1186/s12864-015-1658-2
10.1016/j.nbt.2020.02.002
10.1016/j.fgb.2015.12.007
10.1016/j.biotechadv.2019.02.017
10.1093/bioinformatics/bts199
10.1038/ncomms15058
10.1007/s00294-012-0367-5
10.1021/acssynbio.7b00456
10.1038/celldisc.2015.7
10.1186/s40694-019-0069-6
10.1073/pnas.1420294112
10.1186/s13059-018-1534-x
10.1128/EC.00107-15
10.1038/nbt.3620
10.1186/s12896-017-0334-9
10.1186/s13068-016-0693-9
10.1186/s12859-019-2939-6
10.1371/journal.pone.0133085
10.1016/j.micres.2018.10.010
10.1371/journal.pone.0210243
10.1126/science.1231143
10.1038/nmeth.4104
10.1038/ncomms14406
10.1093/nar/gkx1007
10.1016/j.fgb.2018.01.004
10.1016/j.cell.2015.09.038
10.1016/j.jbiosc.2015.05.002
10.1186/s13068-019-1637-y
10.1016/j.biotechadv.2013.08.005
10.1016/j.biotechadv.2011.09.012
10.1038/nbt.3609
10.1038/s41598-018-32702-w
10.1038/s41598-017-10052-3
10.1016/j.gene.2017.06.019
10.1002/yea.3278
10.1016/j.ijfoodmicro.2013.06.033
10.1186/s40694-019-0076-7
10.1371/journal.pone.0202868
10.1186/s12896-021-00669-8
10.1016/j.biortech.2017.05.004
10.1007/s00253-018-9354-1
10.1186/s13578-019-0298-7
ContentType Journal Article
Copyright Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jbiotec.2022.06.011
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4863
EndPage 64
ExternalDocumentID 10_1016_j_jbiotec_2022_06_011
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABDPE
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADUVX
ADVLN
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGRDE
AGRNS
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CITATION
CJTIS
CNWQP
CS3
D-I
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HMG
HVGLF
HZ~
IHE
J1W
KOM
LUGTX
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SIN
SPC
SPCBC
SSG
SSH
SSI
SSU
SSZ
T5K
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
7X8
7S9
L.6
ID FETCH-LOGICAL-c315t-63d25eef044cb360f8d11710c8c5a5cd41e8e2ec4d52ff47be0c2b4280a4eff73
ISSN 0168-1656
1873-4863
IngestDate Fri Jul 11 08:54:36 EDT 2025
Thu Jul 10 18:35:26 EDT 2025
Tue Jul 01 04:37:16 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-63d25eef044cb360f8d11710c8c5a5cd41e8e2ec4d52ff47be0c2b4280a4eff73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2685036683
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2718290001
proquest_miscellaneous_2685036683
crossref_primary_10_1016_j_jbiotec_2022_06_011
crossref_citationtrail_10_1016_j_jbiotec_2022_06_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-20
PublicationDateYYYYMMDD 2022-08-20
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-20
  day: 20
PublicationDecade 2020
PublicationTitle Journal of biotechnology
PublicationYear 2022
References Safari (10.1016/j.jbiotec.2022.06.011_bib39) 2019; 9
Leynaud-Kieffer (10.1016/j.jbiotec.2022.06.011_bib25) 2019; 14
Naika (10.1016/j.jbiotec.2022.06.011_bib34) 2007; 55
Qi (10.1016/j.jbiotec.2022.06.011_bib38) 2016; 16
Zetsche (10.1016/j.jbiotec.2022.06.011_bib57) 2015; 163
Deng (10.1016/j.jbiotec.2022.06.011_bib8) 2017; 627
Fuller (10.1016/j.jbiotec.2022.06.011_bib11) 2015; 14
Abdulrachman (10.1016/j.jbiotec.2022.06.011_bib1) 2017; 17
Arnau (10.1016/j.jbiotec.2022.06.011_bib5) 2019
Javed (10.1016/j.jbiotec.2022.06.011_bib14) 2019; 219
Leynaud-Kieffer (10.1016/j.jbiotec.2022.06.011_bib24) 2019; 14
Wu (10.1016/j.jbiotec.2022.06.011_bib51) 2014; 2
Swarts (10.1016/j.jbiotec.2022.06.011_bib42) 2018; 9
Zheng (10.1016/j.jbiotec.2022.06.011_bib59) 2019; 8
Sarkari (10.1016/j.jbiotec.2022.06.011_bib40) 2017; 245
Gibson (10.1016/j.jbiotec.2022.06.011_bib12) 2009; 6
Moretti (10.1016/j.jbiotec.2022.06.011_bib33) 2013; 167
Jiang (10.1016/j.jbiotec.2022.06.011_bib15) 2013; 31
Foster (10.1016/j.jbiotec.2022.06.011_bib9) 2018; 8
Cong (10.1016/j.jbiotec.2022.06.011_bib7) 2013; 339
Nodvig (10.1016/j.jbiotec.2022.06.011_bib35) 2015; 10
Vanegas (10.1016/j.jbiotec.2022.06.011_bib47) 2019; 6
Kim (10.1016/j.jbiotec.2022.06.011_bib19) 2016; 34
Kun (10.1016/j.jbiotec.2022.06.011_bib23) 2019; 37
Jiménez (10.1016/j.jbiotec.2022.06.011_bib16) 2020; 57
Liu (10.1016/j.jbiotec.2022.06.011_bib26) 2017; 10
Song (10.1016/j.jbiotec.2022.06.011_bib41) 2018; 13
Liu (10.1016/j.jbiotec.2022.06.011_bib27) 2019; 12
Swiat (10.1016/j.jbiotec.2022.06.011_bib43) 2017; 45
Mhuantong (10.1016/j.jbiotec.2022.06.011_bib31) 2021; 8
Hsu (10.1016/j.jbiotec.2022.06.011_bib13) 2014; 157
Yamano (10.1016/j.jbiotec.2022.06.011_bib54) 2017; 67
Kearse (10.1016/j.jbiotec.2022.06.011_bib18) 2012; 28
10.1016/j.jbiotec.2022.06.011_bib52
Luo (10.1016/j.jbiotec.2022.06.011_bib29) 2019; 20
Abdulrachman (10.1016/j.jbiotec.2022.06.011_bib2) 2021; 21
Kleinstiver (10.1016/j.jbiotec.2022.06.011_bib22) 2016; 34
Pohl (10.1016/j.jbiotec.2022.06.011_bib37) 2016; 5
Alkan (10.1016/j.jbiotec.2022.06.011_bib3) 2018; 19
Katayama (10.1016/j.jbiotec.2022.06.011_bib17) 2016; 38
Cairns (10.1016/j.jbiotec.2022.06.011_bib6) 2018; 5
Kim (10.1016/j.jbiotec.2022.06.011_bib20) 2017; 8
Yan (10.1016/j.jbiotec.2022.06.011_bib55) 2017; 8
Vieira (10.1016/j.jbiotec.2022.06.011_bib49) 1991; 100
Liu (10.1016/j.jbiotec.2022.06.011_bib28) 2015; 1
Matsu-ura (10.1016/j.jbiotec.2022.06.011_bib30) 2015; 2
Zhang (10.1016/j.jbiotec.2022.06.011_bib58) 2016; 86
Arentshorst (10.1016/j.jbiotec.2022.06.011_bib4) 2012
Treebupachatsakul (10.1016/j.jbiotec.2022.06.011_bib45) 2016; 121
Nodvig (10.1016/j.jbiotec.2022.06.011_bib36) 2018; 115
Miao (10.1016/j.jbiotec.2022.06.011_bib32) 2015; 16
Kim (10.1016/j.jbiotec.2022.06.011_bib21) 2017; 14
Ward (10.1016/j.jbiotec.2022.06.011_bib50) 2012; 30
Yamano (10.1016/j.jbiotec.2022.06.011_bib53) 2016; 165
Yao (10.1016/j.jbiotec.2022.06.011_bib56) 2015; 8
Frisvad (10.1016/j.jbiotec.2022.06.011_bib10) 2018; 102
Tani (10.1016/j.jbiotec.2022.06.011_bib44) 2012; 58
Zheng (10.1016/j.jbiotec.2022.06.011_bib60) 2017; 7
van Leeuwe (10.1016/j.jbiotec.2022.06.011_bib46) 2019; 6
Verwaal (10.1016/j.jbiotec.2022.06.011_bib48) 2018; 35
References_xml – volume: 16
  start-page: 58
  issue: 1
  year: 2016
  ident: 10.1016/j.jbiotec.2022.06.011_bib38
  article-title: High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize
  publication-title: BMC Biotechnol.
  doi: 10.1186/s12896-016-0289-2
– volume: 67
  issue: 4
  year: 2017
  ident: 10.1016/j.jbiotec.2022.06.011_bib54
  article-title: Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.06.035
– volume: 6
  start-page: 343
  issue: 5
  year: 2009
  ident: 10.1016/j.jbiotec.2022.06.011_bib12
  article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1318
– volume: 165
  start-page: 949
  issue: 4
  year: 2016
  ident: 10.1016/j.jbiotec.2022.06.011_bib53
  article-title: Crystal Structure of Cpf1 in complex with guide RNA and target DNA
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.003
– volume: 55
  start-page: 7566
  issue: 18
  year: 2007
  ident: 10.1016/j.jbiotec.2022.06.011_bib34
  article-title: Purification and characterization of a new endoglucanase from Aspergillus aculeatus
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf070710p
– volume: 2
  start-page: 59
  issue: 2
  year: 2014
  ident: 10.1016/j.jbiotec.2022.06.011_bib51
  article-title: Target specificity of the CRISPR-Cas9 system
  publication-title: Quant. Biol.
  doi: 10.1007/s40484-014-0030-x
– volume: 100
  start-page: 189
  year: 1991
  ident: 10.1016/j.jbiotec.2022.06.011_bib49
  article-title: New pUC-derived cloning vectors with different selectable markers and DNA replication origins
  publication-title: Gene
  doi: 10.1016/0378-1119(91)90365-I
– volume: 5
  start-page: 754
  issue: 7
  year: 2016
  ident: 10.1016/j.jbiotec.2022.06.011_bib37
  article-title: CRISPR/Cas9 based genome editing of Penicillium chrysogenum
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.6b00082
– volume: 38
  start-page: 637
  issue: 4
  year: 2016
  ident: 10.1016/j.jbiotec.2022.06.011_bib17
  article-title: Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-015-2015-x
– volume: 2
  start-page: 4
  issue: 1
  year: 2015
  ident: 10.1016/j.jbiotec.2022.06.011_bib30
  article-title: Efficient gene editing in Neurospora crassa with CRISPR technology
  publication-title: Fungal Biol. Biotechnol.
  doi: 10.1186/s40694-015-0015-1
– volume: 8
  start-page: 71
  year: 2015
  ident: 10.1016/j.jbiotec.2022.06.011_bib56
  article-title: Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-015-0253-8
– volume: 5
  issue: 1
  year: 2018
  ident: 10.1016/j.jbiotec.2022.06.011_bib6
  article-title: How a fungus shapes biotechnology: 100 years of Aspergillus niger research
  publication-title: Fungal Biol. Biotechnol.
  doi: 10.1186/s40694-018-0054-5
– volume: 157
  start-page: 1262
  issue: 6
  year: 2014
  ident: 10.1016/j.jbiotec.2022.06.011_bib13
  article-title: Development and applications of CRISPR-Cas9 for genome engineering
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.010
– volume: 16
  start-page: 459
  year: 2015
  ident: 10.1016/j.jbiotec.2022.06.011_bib32
  article-title: Genome-wide transcriptomic analysis of a superior biomass-degrading strain of A. fumigatus revealed active lignocellulose-degrading genes
  publication-title: BMC Genom.
  doi: 10.1186/s12864-015-1658-2
– volume: 57
  start-page: 29
  year: 2020
  ident: 10.1016/j.jbiotec.2022.06.011_bib16
  article-title: Multiplex genome editing in Ashbya gossypii using CRISPR-Cpf1
  publication-title: N. Biotechnol.
  doi: 10.1016/j.nbt.2020.02.002
– volume: 86
  start-page: 47
  year: 2016
  ident: 10.1016/j.jbiotec.2022.06.011_bib58
  article-title: Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus
  publication-title: Fungal Genet Biol.
  doi: 10.1016/j.fgb.2015.12.007
– volume: 37
  issue: 6
  year: 2019
  ident: 10.1016/j.jbiotec.2022.06.011_bib23
  article-title: Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2019.02.017
– start-page: 133
  year: 2012
  ident: 10.1016/j.jbiotec.2022.06.011_bib4
  article-title: Using Non-homologous End-Joining-Deficient Strains for Functional Gene Analyses in Filamentous Fungi
– volume: 28
  start-page: 1647
  issue: 12
  year: 2012
  ident: 10.1016/j.jbiotec.2022.06.011_bib18
  article-title: Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts199
– volume: 8
  start-page: 15058
  issue: 1
  year: 2017
  ident: 10.1016/j.jbiotec.2022.06.011_bib55
  article-title: BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15058
– volume: 58
  start-page: 93
  issue: 2
  year: 2012
  ident: 10.1016/j.jbiotec.2022.06.011_bib44
  article-title: XlnR-independent signaling pathway regulates both cellulase and xylanase genes in response to cellobiose in Aspergillus aculeatus
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-012-0367-5
– volume: 8
  start-page: 1568
  issue: 7
  year: 2019
  ident: 10.1016/j.jbiotec.2022.06.011_bib59
  article-title: 5S rRNA promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.7b00456
– start-page: 179
  year: 2019
  ident: 10.1016/j.jbiotec.2022.06.011_bib5
  article-title: Strategies and challenges for the development of industrial enzymes using fungal cell factories
  publication-title: Grand Chall. Fungal Biotechnol.
– volume: 1
  start-page: 15007
  year: 2015
  ident: 10.1016/j.jbiotec.2022.06.011_bib28
  article-title: Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system
  publication-title: Cell Disco
  doi: 10.1038/celldisc.2015.7
– volume: 6
  start-page: 6
  issue: 1
  year: 2019
  ident: 10.1016/j.jbiotec.2022.06.011_bib47
  article-title: Cpf1 enables fast and efficient genome editing in Aspergilli
  publication-title: Fungal Biol. Biotechnol.
  doi: 10.1186/s40694-019-0069-6
– ident: 10.1016/j.jbiotec.2022.06.011_bib52
  doi: 10.1073/pnas.1420294112
– volume: 19
  start-page: 177
  issue: 1
  year: 2018
  ident: 10.1016/j.jbiotec.2022.06.011_bib3
  article-title: CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1534-x
– volume: 14
  start-page: 1073
  issue: 11
  year: 2015
  ident: 10.1016/j.jbiotec.2022.06.011_bib11
  article-title: Development of the CRISPR/Cas9 System for targeted gene disruption in Aspergillus fumigatus
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00107-15
– volume: 34
  start-page: 869
  issue: 8
  year: 2016
  ident: 10.1016/j.jbiotec.2022.06.011_bib22
  article-title: Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3620
– volume: 17
  start-page: 15
  issue: 1
  year: 2017
  ident: 10.1016/j.jbiotec.2022.06.011_bib1
  article-title: Heterologous expression of Aspergillus aculeatus endo-polygalacturonase in Pichia pastoris by high cell density fermentation and its application in textile scouring
  publication-title: BMC Biotechnol.
  doi: 10.1186/s12896-017-0334-9
– volume: 10
  start-page: 1
  year: 2017
  ident: 10.1016/j.jbiotec.2022.06.011_bib26
  article-title: Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0693-9
– volume: 20
  start-page: 332
  issue: 1
  year: 2019
  ident: 10.1016/j.jbiotec.2022.06.011_bib29
  article-title: Prediction of activity and specificity of CRISPR-Cpf1 using convolutional deep learning neural networks
  publication-title: BMC Bioinforma.
  doi: 10.1186/s12859-019-2939-6
– volume: 10
  issue: 7
  year: 2015
  ident: 10.1016/j.jbiotec.2022.06.011_bib35
  article-title: A CRISPR-Cas9 system for genetic engineering of filamentous fungi
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0133085
– volume: 219
  start-page: 1
  year: 2019
  ident: 10.1016/j.jbiotec.2022.06.011_bib14
  article-title: Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2018.10.010
– volume: 14
  issue: 1
  year: 2019
  ident: 10.1016/j.jbiotec.2022.06.011_bib24
  article-title: A new approach to Cas9-based genome editing in Aspergillus niger that is precise, efficient and selectable
  publication-title: PloS One
  doi: 10.1371/journal.pone.0210243
– volume: 339
  start-page: 819
  issue: 6121
  year: 2013
  ident: 10.1016/j.jbiotec.2022.06.011_bib7
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 14
  start-page: 153
  issue: 2
  year: 2017
  ident: 10.1016/j.jbiotec.2022.06.011_bib21
  article-title: In vivo high-throughput profiling of CRISPR–Cpf1 activity
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4104
– volume: 8
  start-page: 14406
  year: 2017
  ident: 10.1016/j.jbiotec.2022.06.011_bib20
  article-title: CRISPR/Cpf1-mediated DNA-free plant genome editing
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14406
– volume: 45
  start-page: 12585
  issue: 21
  year: 2017
  ident: 10.1016/j.jbiotec.2022.06.011_bib43
  article-title: FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1007
– volume: 115
  start-page: 78
  year: 2018
  ident: 10.1016/j.jbiotec.2022.06.011_bib36
  article-title: Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli
  publication-title: Fungal Genet Biol.
  doi: 10.1016/j.fgb.2018.01.004
– volume: 163
  start-page: 759
  issue: 3
  year: 2015
  ident: 10.1016/j.jbiotec.2022.06.011_bib57
  article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.038
– volume: 121
  start-page: 27
  issue: 1
  year: 2016
  ident: 10.1016/j.jbiotec.2022.06.011_bib45
  article-title: Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2015.05.002
– volume: 12
  start-page: 293
  year: 2019
  ident: 10.1016/j.jbiotec.2022.06.011_bib27
  article-title: Upgrading of efficient and scalable CRISPR-Cas-mediated technology for genetic engineering in thermophilic fungus Myceliophthora thermophila
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-019-1637-y
– volume: 31
  start-page: 1562
  issue: 8
  year: 2013
  ident: 10.1016/j.jbiotec.2022.06.011_bib15
  article-title: Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2013.08.005
– volume: 30
  start-page: 1119
  issue: 5
  year: 2012
  ident: 10.1016/j.jbiotec.2022.06.011_bib50
  article-title: Production of recombinant proteins by filamentous fungi
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2011.09.012
– volume: 34
  start-page: 863
  issue: 8
  year: 2016
  ident: 10.1016/j.jbiotec.2022.06.011_bib19
  article-title: Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3609
– volume: 8
  start-page: 14355
  issue: 1
  year: 2018
  ident: 10.1016/j.jbiotec.2022.06.011_bib9
  article-title: CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32702-w
– volume: 7
  start-page: 9250
  issue: 1
  year: 2017
  ident: 10.1016/j.jbiotec.2022.06.011_bib60
  article-title: Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR-Cas9 technology
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-10052-3
– volume: 627
  start-page: 212
  year: 2017
  ident: 10.1016/j.jbiotec.2022.06.011_bib8
  article-title: CRISPR system in filamentous fungi: current achievements and future directions
  publication-title: Gene
  doi: 10.1016/j.gene.2017.06.019
– volume: 35
  start-page: 201
  issue: 2
  year: 2018
  ident: 10.1016/j.jbiotec.2022.06.011_bib48
  article-title: CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae
  publication-title: Yeast
  doi: 10.1002/yea.3278
– volume: 9
  issue: 5
  year: 2018
  ident: 10.1016/j.jbiotec.2022.06.011_bib42
  article-title: Cas9 versus Cas12a/Cpf1: structure–function comparisons and implications for genome editing
  publication-title: Wiley Interdiscip. Rev.: RNA
– volume: 167
  start-page: 57
  issue: 1
  year: 2013
  ident: 10.1016/j.jbiotec.2022.06.011_bib33
  article-title: Molecular biodiversity of mycotoxigenic fungi that threaten food safety
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2013.06.033
– volume: 6
  start-page: 13
  year: 2019
  ident: 10.1016/j.jbiotec.2022.06.011_bib46
  article-title: Efficient marker free CRISPR/Cas9 genome editing for functional analysis of gene families in filamentous fungi
  publication-title: Fungal Biol. Biotechnol.
  doi: 10.1186/s40694-019-0076-7
– volume: 13
  issue: 8
  year: 2018
  ident: 10.1016/j.jbiotec.2022.06.011_bib41
  article-title: Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger
  publication-title: PloS One
  doi: 10.1371/journal.pone.0202868
– volume: 8
  issue: 1594
  year: 2021
  ident: 10.1016/j.jbiotec.2022.06.011_bib31
  article-title: High Quality Aspergillus aculeatus genomes and transcriptomes: a platform for cellulase activity optimization toward industrial applications
  publication-title: Front. Bioeng. Biotechnol.
– volume: 21
  start-page: 15
  issue: 1
  year: 2021
  ident: 10.1016/j.jbiotec.2022.06.011_bib2
  article-title: Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277
  publication-title: BMC Biotechnol.
  doi: 10.1186/s12896-021-00669-8
– volume: 14
  issue: 1
  year: 2019
  ident: 10.1016/j.jbiotec.2022.06.011_bib25
  article-title: A new approach to Cas9-based genome editing in Aspergillus niger that is precise, efficient and selectable
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0210243
– volume: 245
  start-page: 1327
  issue: Pt B
  year: 2017
  ident: 10.1016/j.jbiotec.2022.06.011_bib40
  article-title: An efficient tool for metabolic pathway construction and gene integration for Aspergillus niger
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.05.004
– volume: 102
  start-page: 9481
  issue: 22
  year: 2018
  ident: 10.1016/j.jbiotec.2022.06.011_bib10
  article-title: Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-018-9354-1
– volume: 9
  start-page: 36
  issue: 1
  year: 2019
  ident: 10.1016/j.jbiotec.2022.06.011_bib39
  article-title: CRISPR Cpf1 proteins: structure, function and implications for genome editing
  publication-title: Cell Biosci.
  doi: 10.1186/s13578-019-0298-7
SSID ssj0004951
Score 2.433301
Snippet CRISPR/Cas technology is a versatile tool for genome engineering in many organisms, including filamentous fungi. Cpf1 is a multi-domain protein of class 2...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 53
SubjectTerms Acidaminococcus
Aspergillus aculeatus
bacteria
biobased products
biotechnology
DNA damage
gene editing
genes
Lachnospiraceae
loci
plasmids
Title Efficient multiplex CRISPR/Cpf1 (Cas12a) genome editing system in Aspergillus aculeatus TBRC 277
URI https://www.proquest.com/docview/2685036683
https://www.proquest.com/docview/2718290001
Volume 355
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeIEHxKcYXzISD6AqXe3YSfY4uk4DjYFKi_oWbMfZUnVtlSbi44G_nbOdpqlaweAliqzYSXy_XO7O598h9EpJzUP4b3icJ6nHAhF6UhPiBYauLtCHh8JWnvtwHpyO2PsxH7dai0bWUlnIjvq5c1_J_0gV2kCuZpfsP0i2HhQa4BzkC0eQMByvJeO-5X8wq_mrvMDv7d7g3edPA0N7u0iJXaMVS0KF8f4NH-uVIWvNbK6zI3G2AQ9DF36RTaflsi1UOQX9DGfDt4Nem1blT7btV5nNi624_JFMymku1GUVWD3WSY2c3qW4WuQ6sebqF52Lb6LOuemXORjtIjOrGrmLFazzTM0OiEKYoIaNAR2XefZDNMMV4Ol2jcwaGjYKfY9FlVbTO9oqtexz3lCsjlF4S9-70MOkM3Hv3DF3tHyslQbf4Nc-_xifjM7O4mF_PLyBbsIEWpO682udFATuonXRVw-03vN1sPMmm9bM5s_cWijDu-hOJRp85HByD7X07D663SCcfIC-1ojBNWKwQ8yBwQt-7dDyBjus4Aor2GEFZzPcwAqusYINVjC86kM0OukPe6deVWPDUz7hhRf4CeVap13GlPSDbholhIDVqSLFBVcJIzrSVCuWcJqmLJS6q6gEn7UrmE7T0H-E9mbzmX6MMPQXqfYZ1ZQzKuGzV5GAETkVSSpDto_Yaq5iVRHQmzoo03iVaTiJqymOzRTHJuOSkH3UqbstHAPL3zq8XAkiBl1pFsDETM_LZUyDiIPFFkT-H64BY42aSrrkyTXGeYpurUH-DO0Veamfg5VayBcWWL8BuMmTKQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+multiplex+CRISPR%2FCpf1+%28Cas12a%29+genome+editing+system+in+Aspergillus+aculeatus+TBRC+277&rft.jtitle=Journal+of+biotechnology&rft.au=Abdulrachman%2C+Dede&rft.au=Champreda%2C+Verawat&rft.au=Eurwilaichitr%2C+Lily&rft.au=Chantasingh%2C+Duriya&rft.date=2022-08-20&rft.issn=1873-4863&rft.eissn=1873-4863&rft.volume=355&rft.spage=53&rft_id=info:doi/10.1016%2Fj.jbiotec.2022.06.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1656&client=summon