Efficient multiplex CRISPR/Cpf1 (Cas12a) genome editing system in Aspergillus aculeatus TBRC 277
CRISPR/Cas technology is a versatile tool for genome engineering in many organisms, including filamentous fungi. Cpf1 is a multi-domain protein of class 2 (type V) RNA-guided CRISPR/Cas endonuclease, and is an alternative platform with distinct features when compared to Cas9. However, application of...
Saved in:
Published in | Journal of biotechnology Vol. 355; pp. 53 - 64 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
20.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CRISPR/Cas technology is a versatile tool for genome engineering in many organisms, including filamentous fungi. Cpf1 is a multi-domain protein of class 2 (type V) RNA-guided CRISPR/Cas endonuclease, and is an alternative platform with distinct features when compared to Cas9. However, application of this technology in filamentous fungi is limited. Here, we present a single CRISPR/Cpf1 plasmid system in Aspergillus aculeatus strain TBRC 277, an industrially relevant cell factory. We first evaluated the functionality of three Cpf1 orthologs from Acidaminococcus sp. BV3L6 (AsCpf1), Francisella tularensis subsp. novicida U112 (FnCpf1), and Lachnospiraceae bacterium (LbCpf1), in RNA-guided site-specific DNA cleavage at the pksP locus. FnCpf1 showed the highest editing efficiency (93 %) among the three Cpf1s. It was further investigated for its ability to delete a 1.7 kb and a 0.5 kb from pksP and pyrG genes, respectively, using two protospacers targeting these gene loci in a single crRNA array. Lastly, simultaneous editing of three sites within TBRC 277 genome was performed using three guide sequences targeting these two genes as well as an additional gene, kusA, which resulted in combined editing efficiency of 40 %. The editing of the NHEJ pathway by targeting kusA to generate a NHEJ-deficient strain of A. aculeatus TBRC 277 improved gene targeting efficiency and yielded more precise gene-editing than that of using wild-type strain. This promising genome-editing system can be used for strain improvement in industrial applications such as production of valuable bioproducts.CRISPR/Cas technology is a versatile tool for genome engineering in many organisms, including filamentous fungi. Cpf1 is a multi-domain protein of class 2 (type V) RNA-guided CRISPR/Cas endonuclease, and is an alternative platform with distinct features when compared to Cas9. However, application of this technology in filamentous fungi is limited. Here, we present a single CRISPR/Cpf1 plasmid system in Aspergillus aculeatus strain TBRC 277, an industrially relevant cell factory. We first evaluated the functionality of three Cpf1 orthologs from Acidaminococcus sp. BV3L6 (AsCpf1), Francisella tularensis subsp. novicida U112 (FnCpf1), and Lachnospiraceae bacterium (LbCpf1), in RNA-guided site-specific DNA cleavage at the pksP locus. FnCpf1 showed the highest editing efficiency (93 %) among the three Cpf1s. It was further investigated for its ability to delete a 1.7 kb and a 0.5 kb from pksP and pyrG genes, respectively, using two protospacers targeting these gene loci in a single crRNA array. Lastly, simultaneous editing of three sites within TBRC 277 genome was performed using three guide sequences targeting these two genes as well as an additional gene, kusA, which resulted in combined editing efficiency of 40 %. The editing of the NHEJ pathway by targeting kusA to generate a NHEJ-deficient strain of A. aculeatus TBRC 277 improved gene targeting efficiency and yielded more precise gene-editing than that of using wild-type strain. This promising genome-editing system can be used for strain improvement in industrial applications such as production of valuable bioproducts. |
---|---|
AbstractList | CRISPR/Cas technology is a versatile tool for genome engineering in many organisms, including filamentous fungi. Cpf1 is a multi-domain protein of class 2 (type V) RNA-guided CRISPR/Cas endonuclease, and is an alternative platform with distinct features when compared to Cas9. However, application of this technology in filamentous fungi is limited. Here, we present a single CRISPR/Cpf1 plasmid system in Aspergillus aculeatus strain TBRC 277, an industrially relevant cell factory. We first evaluated the functionality of three Cpf1 orthologs from Acidaminococcus sp. BV3L6 (AsCpf1), Francisella tularensis subsp. novicida U112 (FnCpf1), and Lachnospiraceae bacterium (LbCpf1), in RNA-guided site-specific DNA cleavage at the pksP locus. FnCpf1 showed the highest editing efficiency (93 %) among the three Cpf1s. It was further investigated for its ability to delete a 1.7 kb and a 0.5 kb from pksP and pyrG genes, respectively, using two protospacers targeting these gene loci in a single crRNA array. Lastly, simultaneous editing of three sites within TBRC 277 genome was performed using three guide sequences targeting these two genes as well as an additional gene, kusA, which resulted in combined editing efficiency of 40 %. The editing of the NHEJ pathway by targeting kusA to generate a NHEJ-deficient strain of A. aculeatus TBRC 277 improved gene targeting efficiency and yielded more precise gene-editing than that of using wild-type strain. This promising genome-editing system can be used for strain improvement in industrial applications such as production of valuable bioproducts. CRISPR/Cas technology is a versatile tool for genome engineering in many organisms, including filamentous fungi. Cpf1 is a multi-domain protein of class 2 (type V) RNA-guided CRISPR/Cas endonuclease, and is an alternative platform with distinct features when compared to Cas9. However, application of this technology in filamentous fungi is limited. Here, we present a single CRISPR/Cpf1 plasmid system in Aspergillus aculeatus strain TBRC 277, an industrially relevant cell factory. We first evaluated the functionality of three Cpf1 orthologs from Acidaminococcus sp. BV3L6 (AsCpf1), Francisella tularensis subsp. novicida U112 (FnCpf1), and Lachnospiraceae bacterium (LbCpf1), in RNA-guided site-specific DNA cleavage at the pksP locus. FnCpf1 showed the highest editing efficiency (93 %) among the three Cpf1s. It was further investigated for its ability to delete a 1.7 kb and a 0.5 kb from pksP and pyrG genes, respectively, using two protospacers targeting these gene loci in a single crRNA array. Lastly, simultaneous editing of three sites within TBRC 277 genome was performed using three guide sequences targeting these two genes as well as an additional gene, kusA, which resulted in combined editing efficiency of 40 %. The editing of the NHEJ pathway by targeting kusA to generate a NHEJ-deficient strain of A. aculeatus TBRC 277 improved gene targeting efficiency and yielded more precise gene-editing than that of using wild-type strain. This promising genome-editing system can be used for strain improvement in industrial applications such as production of valuable bioproducts.CRISPR/Cas technology is a versatile tool for genome engineering in many organisms, including filamentous fungi. Cpf1 is a multi-domain protein of class 2 (type V) RNA-guided CRISPR/Cas endonuclease, and is an alternative platform with distinct features when compared to Cas9. However, application of this technology in filamentous fungi is limited. Here, we present a single CRISPR/Cpf1 plasmid system in Aspergillus aculeatus strain TBRC 277, an industrially relevant cell factory. We first evaluated the functionality of three Cpf1 orthologs from Acidaminococcus sp. BV3L6 (AsCpf1), Francisella tularensis subsp. novicida U112 (FnCpf1), and Lachnospiraceae bacterium (LbCpf1), in RNA-guided site-specific DNA cleavage at the pksP locus. FnCpf1 showed the highest editing efficiency (93 %) among the three Cpf1s. It was further investigated for its ability to delete a 1.7 kb and a 0.5 kb from pksP and pyrG genes, respectively, using two protospacers targeting these gene loci in a single crRNA array. Lastly, simultaneous editing of three sites within TBRC 277 genome was performed using three guide sequences targeting these two genes as well as an additional gene, kusA, which resulted in combined editing efficiency of 40 %. The editing of the NHEJ pathway by targeting kusA to generate a NHEJ-deficient strain of A. aculeatus TBRC 277 improved gene targeting efficiency and yielded more precise gene-editing than that of using wild-type strain. This promising genome-editing system can be used for strain improvement in industrial applications such as production of valuable bioproducts. |
Author | Champreda, Verawat Eurwilaichitr, Lily Chantasingh, Duriya Abdulrachman, Dede Pootanakit, Kusol |
Author_xml | – sequence: 1 givenname: Dede surname: Abdulrachman fullname: Abdulrachman, Dede – sequence: 2 givenname: Verawat surname: Champreda fullname: Champreda, Verawat – sequence: 3 givenname: Lily surname: Eurwilaichitr fullname: Eurwilaichitr, Lily – sequence: 4 givenname: Duriya surname: Chantasingh fullname: Chantasingh, Duriya – sequence: 5 givenname: Kusol surname: Pootanakit fullname: Pootanakit, Kusol |
BookMark | eNqFkE1LJDEQQIO44Kj7E4Qc9dBtKp2kI57cxi8QlFn3HDPpypAh_bGdNOi_t0VPXjxVHd4rqHdI9vuhR0JOgJXAQJ3vyt0mDBldyRnnJVMlA9gjK9B1VQitqn2yWjhdgJLqgBymtGOMiQsJK_Jy7X1wAftMuznmMEZ8pc36_u_T-rwZPdDTxibg9oxusR86pNiGHPotTW8pY0dDT6_SiNM2xDgnat0c0eZle_6zbiiv62Pyy9uY8PfXPCL_bq6fm7vi4fH2vrl6KFwFMheqarlE9EwIt6kU87oFqIE57aSVrhWAGjk60Uruvag3yBzfCK6ZFeh9XR2R08-74zT8nzFl04XkMEbb4zAnw2vQ_GL5G35GlZasUkpXCyo_UTcNKU3ozTiFzk5vBpj5iG925iu--YhvmDJL_MW7_Oa5kG0OQ58nG-IP9juz847Q |
CitedBy_id | crossref_primary_10_3390_mi15111329 crossref_primary_10_1016_j_biotechadv_2025_108561 crossref_primary_10_1007_s12223_023_01081_9 crossref_primary_10_1093_jrr_rrad081 crossref_primary_10_1186_s12967_024_05235_2 crossref_primary_10_1016_j_ymthe_2023_11_013 crossref_primary_10_1007_s11033_023_08240_8 crossref_primary_10_1007_s42452_024_06405_z crossref_primary_10_1016_j_tim_2024_11_001 |
Cites_doi | 10.1186/s12896-016-0289-2 10.1016/j.molcel.2017.06.035 10.1038/nmeth.1318 10.1016/j.cell.2016.04.003 10.1021/jf070710p 10.1007/s40484-014-0030-x 10.1016/0378-1119(91)90365-I 10.1021/acssynbio.6b00082 10.1007/s10529-015-2015-x 10.1186/s40694-015-0015-1 10.1186/s13068-015-0253-8 10.1186/s40694-018-0054-5 10.1016/j.cell.2014.05.010 10.1186/s12864-015-1658-2 10.1016/j.nbt.2020.02.002 10.1016/j.fgb.2015.12.007 10.1016/j.biotechadv.2019.02.017 10.1093/bioinformatics/bts199 10.1038/ncomms15058 10.1007/s00294-012-0367-5 10.1021/acssynbio.7b00456 10.1038/celldisc.2015.7 10.1186/s40694-019-0069-6 10.1073/pnas.1420294112 10.1186/s13059-018-1534-x 10.1128/EC.00107-15 10.1038/nbt.3620 10.1186/s12896-017-0334-9 10.1186/s13068-016-0693-9 10.1186/s12859-019-2939-6 10.1371/journal.pone.0133085 10.1016/j.micres.2018.10.010 10.1371/journal.pone.0210243 10.1126/science.1231143 10.1038/nmeth.4104 10.1038/ncomms14406 10.1093/nar/gkx1007 10.1016/j.fgb.2018.01.004 10.1016/j.cell.2015.09.038 10.1016/j.jbiosc.2015.05.002 10.1186/s13068-019-1637-y 10.1016/j.biotechadv.2013.08.005 10.1016/j.biotechadv.2011.09.012 10.1038/nbt.3609 10.1038/s41598-018-32702-w 10.1038/s41598-017-10052-3 10.1016/j.gene.2017.06.019 10.1002/yea.3278 10.1016/j.ijfoodmicro.2013.06.033 10.1186/s40694-019-0076-7 10.1371/journal.pone.0202868 10.1186/s12896-021-00669-8 10.1016/j.biortech.2017.05.004 10.1007/s00253-018-9354-1 10.1186/s13578-019-0298-7 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jbiotec.2022.06.011 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4863 |
EndPage | 64 |
ExternalDocumentID | 10_1016_j_jbiotec_2022_06_011 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO AAYXX ABDPE ABFNM ABFRF ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADUVX ADVLN AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AHHHB AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CITATION CJTIS CNWQP CS3 D-I DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HMG HVGLF HZ~ IHE J1W KOM LUGTX LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBG SDF SDG SDP SES SEW SIN SPC SPCBC SSG SSH SSI SSU SSZ T5K WUQ XPP Y6R ZMT ~02 ~G- ~KM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c315t-63d25eef044cb360f8d11710c8c5a5cd41e8e2ec4d52ff47be0c2b4280a4eff73 |
ISSN | 0168-1656 1873-4863 |
IngestDate | Fri Jul 11 08:54:36 EDT 2025 Thu Jul 10 18:35:26 EDT 2025 Tue Jul 01 04:37:16 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c315t-63d25eef044cb360f8d11710c8c5a5cd41e8e2ec4d52ff47be0c2b4280a4eff73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2685036683 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2718290001 proquest_miscellaneous_2685036683 crossref_primary_10_1016_j_jbiotec_2022_06_011 crossref_citationtrail_10_1016_j_jbiotec_2022_06_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-20 |
PublicationDateYYYYMMDD | 2022-08-20 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Journal of biotechnology |
PublicationYear | 2022 |
References | Safari (10.1016/j.jbiotec.2022.06.011_bib39) 2019; 9 Leynaud-Kieffer (10.1016/j.jbiotec.2022.06.011_bib25) 2019; 14 Naika (10.1016/j.jbiotec.2022.06.011_bib34) 2007; 55 Qi (10.1016/j.jbiotec.2022.06.011_bib38) 2016; 16 Zetsche (10.1016/j.jbiotec.2022.06.011_bib57) 2015; 163 Deng (10.1016/j.jbiotec.2022.06.011_bib8) 2017; 627 Fuller (10.1016/j.jbiotec.2022.06.011_bib11) 2015; 14 Abdulrachman (10.1016/j.jbiotec.2022.06.011_bib1) 2017; 17 Arnau (10.1016/j.jbiotec.2022.06.011_bib5) 2019 Javed (10.1016/j.jbiotec.2022.06.011_bib14) 2019; 219 Leynaud-Kieffer (10.1016/j.jbiotec.2022.06.011_bib24) 2019; 14 Wu (10.1016/j.jbiotec.2022.06.011_bib51) 2014; 2 Swarts (10.1016/j.jbiotec.2022.06.011_bib42) 2018; 9 Zheng (10.1016/j.jbiotec.2022.06.011_bib59) 2019; 8 Sarkari (10.1016/j.jbiotec.2022.06.011_bib40) 2017; 245 Gibson (10.1016/j.jbiotec.2022.06.011_bib12) 2009; 6 Moretti (10.1016/j.jbiotec.2022.06.011_bib33) 2013; 167 Jiang (10.1016/j.jbiotec.2022.06.011_bib15) 2013; 31 Foster (10.1016/j.jbiotec.2022.06.011_bib9) 2018; 8 Cong (10.1016/j.jbiotec.2022.06.011_bib7) 2013; 339 Nodvig (10.1016/j.jbiotec.2022.06.011_bib35) 2015; 10 Vanegas (10.1016/j.jbiotec.2022.06.011_bib47) 2019; 6 Kim (10.1016/j.jbiotec.2022.06.011_bib19) 2016; 34 Kun (10.1016/j.jbiotec.2022.06.011_bib23) 2019; 37 Jiménez (10.1016/j.jbiotec.2022.06.011_bib16) 2020; 57 Liu (10.1016/j.jbiotec.2022.06.011_bib26) 2017; 10 Song (10.1016/j.jbiotec.2022.06.011_bib41) 2018; 13 Liu (10.1016/j.jbiotec.2022.06.011_bib27) 2019; 12 Swiat (10.1016/j.jbiotec.2022.06.011_bib43) 2017; 45 Mhuantong (10.1016/j.jbiotec.2022.06.011_bib31) 2021; 8 Hsu (10.1016/j.jbiotec.2022.06.011_bib13) 2014; 157 Yamano (10.1016/j.jbiotec.2022.06.011_bib54) 2017; 67 Kearse (10.1016/j.jbiotec.2022.06.011_bib18) 2012; 28 10.1016/j.jbiotec.2022.06.011_bib52 Luo (10.1016/j.jbiotec.2022.06.011_bib29) 2019; 20 Abdulrachman (10.1016/j.jbiotec.2022.06.011_bib2) 2021; 21 Kleinstiver (10.1016/j.jbiotec.2022.06.011_bib22) 2016; 34 Pohl (10.1016/j.jbiotec.2022.06.011_bib37) 2016; 5 Alkan (10.1016/j.jbiotec.2022.06.011_bib3) 2018; 19 Katayama (10.1016/j.jbiotec.2022.06.011_bib17) 2016; 38 Cairns (10.1016/j.jbiotec.2022.06.011_bib6) 2018; 5 Kim (10.1016/j.jbiotec.2022.06.011_bib20) 2017; 8 Yan (10.1016/j.jbiotec.2022.06.011_bib55) 2017; 8 Vieira (10.1016/j.jbiotec.2022.06.011_bib49) 1991; 100 Liu (10.1016/j.jbiotec.2022.06.011_bib28) 2015; 1 Matsu-ura (10.1016/j.jbiotec.2022.06.011_bib30) 2015; 2 Zhang (10.1016/j.jbiotec.2022.06.011_bib58) 2016; 86 Arentshorst (10.1016/j.jbiotec.2022.06.011_bib4) 2012 Treebupachatsakul (10.1016/j.jbiotec.2022.06.011_bib45) 2016; 121 Nodvig (10.1016/j.jbiotec.2022.06.011_bib36) 2018; 115 Miao (10.1016/j.jbiotec.2022.06.011_bib32) 2015; 16 Kim (10.1016/j.jbiotec.2022.06.011_bib21) 2017; 14 Ward (10.1016/j.jbiotec.2022.06.011_bib50) 2012; 30 Yamano (10.1016/j.jbiotec.2022.06.011_bib53) 2016; 165 Yao (10.1016/j.jbiotec.2022.06.011_bib56) 2015; 8 Frisvad (10.1016/j.jbiotec.2022.06.011_bib10) 2018; 102 Tani (10.1016/j.jbiotec.2022.06.011_bib44) 2012; 58 Zheng (10.1016/j.jbiotec.2022.06.011_bib60) 2017; 7 van Leeuwe (10.1016/j.jbiotec.2022.06.011_bib46) 2019; 6 Verwaal (10.1016/j.jbiotec.2022.06.011_bib48) 2018; 35 |
References_xml | – volume: 16 start-page: 58 issue: 1 year: 2016 ident: 10.1016/j.jbiotec.2022.06.011_bib38 article-title: High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize publication-title: BMC Biotechnol. doi: 10.1186/s12896-016-0289-2 – volume: 67 issue: 4 year: 2017 ident: 10.1016/j.jbiotec.2022.06.011_bib54 article-title: Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.06.035 – volume: 6 start-page: 343 issue: 5 year: 2009 ident: 10.1016/j.jbiotec.2022.06.011_bib12 article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases publication-title: Nat. Methods doi: 10.1038/nmeth.1318 – volume: 165 start-page: 949 issue: 4 year: 2016 ident: 10.1016/j.jbiotec.2022.06.011_bib53 article-title: Crystal Structure of Cpf1 in complex with guide RNA and target DNA publication-title: Cell doi: 10.1016/j.cell.2016.04.003 – volume: 55 start-page: 7566 issue: 18 year: 2007 ident: 10.1016/j.jbiotec.2022.06.011_bib34 article-title: Purification and characterization of a new endoglucanase from Aspergillus aculeatus publication-title: J. Agric. Food Chem. doi: 10.1021/jf070710p – volume: 2 start-page: 59 issue: 2 year: 2014 ident: 10.1016/j.jbiotec.2022.06.011_bib51 article-title: Target specificity of the CRISPR-Cas9 system publication-title: Quant. Biol. doi: 10.1007/s40484-014-0030-x – volume: 100 start-page: 189 year: 1991 ident: 10.1016/j.jbiotec.2022.06.011_bib49 article-title: New pUC-derived cloning vectors with different selectable markers and DNA replication origins publication-title: Gene doi: 10.1016/0378-1119(91)90365-I – volume: 5 start-page: 754 issue: 7 year: 2016 ident: 10.1016/j.jbiotec.2022.06.011_bib37 article-title: CRISPR/Cas9 based genome editing of Penicillium chrysogenum publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.6b00082 – volume: 38 start-page: 637 issue: 4 year: 2016 ident: 10.1016/j.jbiotec.2022.06.011_bib17 article-title: Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae publication-title: Biotechnol. Lett. doi: 10.1007/s10529-015-2015-x – volume: 2 start-page: 4 issue: 1 year: 2015 ident: 10.1016/j.jbiotec.2022.06.011_bib30 article-title: Efficient gene editing in Neurospora crassa with CRISPR technology publication-title: Fungal Biol. Biotechnol. doi: 10.1186/s40694-015-0015-1 – volume: 8 start-page: 71 year: 2015 ident: 10.1016/j.jbiotec.2022.06.011_bib56 article-title: Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-015-0253-8 – volume: 5 issue: 1 year: 2018 ident: 10.1016/j.jbiotec.2022.06.011_bib6 article-title: How a fungus shapes biotechnology: 100 years of Aspergillus niger research publication-title: Fungal Biol. Biotechnol. doi: 10.1186/s40694-018-0054-5 – volume: 157 start-page: 1262 issue: 6 year: 2014 ident: 10.1016/j.jbiotec.2022.06.011_bib13 article-title: Development and applications of CRISPR-Cas9 for genome engineering publication-title: Cell doi: 10.1016/j.cell.2014.05.010 – volume: 16 start-page: 459 year: 2015 ident: 10.1016/j.jbiotec.2022.06.011_bib32 article-title: Genome-wide transcriptomic analysis of a superior biomass-degrading strain of A. fumigatus revealed active lignocellulose-degrading genes publication-title: BMC Genom. doi: 10.1186/s12864-015-1658-2 – volume: 57 start-page: 29 year: 2020 ident: 10.1016/j.jbiotec.2022.06.011_bib16 article-title: Multiplex genome editing in Ashbya gossypii using CRISPR-Cpf1 publication-title: N. Biotechnol. doi: 10.1016/j.nbt.2020.02.002 – volume: 86 start-page: 47 year: 2016 ident: 10.1016/j.jbiotec.2022.06.011_bib58 article-title: Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus publication-title: Fungal Genet Biol. doi: 10.1016/j.fgb.2015.12.007 – volume: 37 issue: 6 year: 2019 ident: 10.1016/j.jbiotec.2022.06.011_bib23 article-title: Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2019.02.017 – start-page: 133 year: 2012 ident: 10.1016/j.jbiotec.2022.06.011_bib4 article-title: Using Non-homologous End-Joining-Deficient Strains for Functional Gene Analyses in Filamentous Fungi – volume: 28 start-page: 1647 issue: 12 year: 2012 ident: 10.1016/j.jbiotec.2022.06.011_bib18 article-title: Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts199 – volume: 8 start-page: 15058 issue: 1 year: 2017 ident: 10.1016/j.jbiotec.2022.06.011_bib55 article-title: BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks publication-title: Nat. Commun. doi: 10.1038/ncomms15058 – volume: 58 start-page: 93 issue: 2 year: 2012 ident: 10.1016/j.jbiotec.2022.06.011_bib44 article-title: XlnR-independent signaling pathway regulates both cellulase and xylanase genes in response to cellobiose in Aspergillus aculeatus publication-title: Curr. Genet. doi: 10.1007/s00294-012-0367-5 – volume: 8 start-page: 1568 issue: 7 year: 2019 ident: 10.1016/j.jbiotec.2022.06.011_bib59 article-title: 5S rRNA promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.7b00456 – start-page: 179 year: 2019 ident: 10.1016/j.jbiotec.2022.06.011_bib5 article-title: Strategies and challenges for the development of industrial enzymes using fungal cell factories publication-title: Grand Chall. Fungal Biotechnol. – volume: 1 start-page: 15007 year: 2015 ident: 10.1016/j.jbiotec.2022.06.011_bib28 article-title: Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system publication-title: Cell Disco doi: 10.1038/celldisc.2015.7 – volume: 6 start-page: 6 issue: 1 year: 2019 ident: 10.1016/j.jbiotec.2022.06.011_bib47 article-title: Cpf1 enables fast and efficient genome editing in Aspergilli publication-title: Fungal Biol. Biotechnol. doi: 10.1186/s40694-019-0069-6 – ident: 10.1016/j.jbiotec.2022.06.011_bib52 doi: 10.1073/pnas.1420294112 – volume: 19 start-page: 177 issue: 1 year: 2018 ident: 10.1016/j.jbiotec.2022.06.011_bib3 article-title: CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters publication-title: Genome Biol. doi: 10.1186/s13059-018-1534-x – volume: 14 start-page: 1073 issue: 11 year: 2015 ident: 10.1016/j.jbiotec.2022.06.011_bib11 article-title: Development of the CRISPR/Cas9 System for targeted gene disruption in Aspergillus fumigatus publication-title: Eukaryot. Cell doi: 10.1128/EC.00107-15 – volume: 34 start-page: 869 issue: 8 year: 2016 ident: 10.1016/j.jbiotec.2022.06.011_bib22 article-title: Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3620 – volume: 17 start-page: 15 issue: 1 year: 2017 ident: 10.1016/j.jbiotec.2022.06.011_bib1 article-title: Heterologous expression of Aspergillus aculeatus endo-polygalacturonase in Pichia pastoris by high cell density fermentation and its application in textile scouring publication-title: BMC Biotechnol. doi: 10.1186/s12896-017-0334-9 – volume: 10 start-page: 1 year: 2017 ident: 10.1016/j.jbiotec.2022.06.011_bib26 article-title: Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0693-9 – volume: 20 start-page: 332 issue: 1 year: 2019 ident: 10.1016/j.jbiotec.2022.06.011_bib29 article-title: Prediction of activity and specificity of CRISPR-Cpf1 using convolutional deep learning neural networks publication-title: BMC Bioinforma. doi: 10.1186/s12859-019-2939-6 – volume: 10 issue: 7 year: 2015 ident: 10.1016/j.jbiotec.2022.06.011_bib35 article-title: A CRISPR-Cas9 system for genetic engineering of filamentous fungi publication-title: PLoS One doi: 10.1371/journal.pone.0133085 – volume: 219 start-page: 1 year: 2019 ident: 10.1016/j.jbiotec.2022.06.011_bib14 article-title: Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells publication-title: Microbiol. Res. doi: 10.1016/j.micres.2018.10.010 – volume: 14 issue: 1 year: 2019 ident: 10.1016/j.jbiotec.2022.06.011_bib24 article-title: A new approach to Cas9-based genome editing in Aspergillus niger that is precise, efficient and selectable publication-title: PloS One doi: 10.1371/journal.pone.0210243 – volume: 339 start-page: 819 issue: 6121 year: 2013 ident: 10.1016/j.jbiotec.2022.06.011_bib7 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 14 start-page: 153 issue: 2 year: 2017 ident: 10.1016/j.jbiotec.2022.06.011_bib21 article-title: In vivo high-throughput profiling of CRISPR–Cpf1 activity publication-title: Nat. Methods doi: 10.1038/nmeth.4104 – volume: 8 start-page: 14406 year: 2017 ident: 10.1016/j.jbiotec.2022.06.011_bib20 article-title: CRISPR/Cpf1-mediated DNA-free plant genome editing publication-title: Nat. Commun. doi: 10.1038/ncomms14406 – volume: 45 start-page: 12585 issue: 21 year: 2017 ident: 10.1016/j.jbiotec.2022.06.011_bib43 article-title: FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1007 – volume: 115 start-page: 78 year: 2018 ident: 10.1016/j.jbiotec.2022.06.011_bib36 article-title: Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli publication-title: Fungal Genet Biol. doi: 10.1016/j.fgb.2018.01.004 – volume: 163 start-page: 759 issue: 3 year: 2015 ident: 10.1016/j.jbiotec.2022.06.011_bib57 article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system publication-title: Cell doi: 10.1016/j.cell.2015.09.038 – volume: 121 start-page: 27 issue: 1 year: 2016 ident: 10.1016/j.jbiotec.2022.06.011_bib45 article-title: Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2015.05.002 – volume: 12 start-page: 293 year: 2019 ident: 10.1016/j.jbiotec.2022.06.011_bib27 article-title: Upgrading of efficient and scalable CRISPR-Cas-mediated technology for genetic engineering in thermophilic fungus Myceliophthora thermophila publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-019-1637-y – volume: 31 start-page: 1562 issue: 8 year: 2013 ident: 10.1016/j.jbiotec.2022.06.011_bib15 article-title: Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.08.005 – volume: 30 start-page: 1119 issue: 5 year: 2012 ident: 10.1016/j.jbiotec.2022.06.011_bib50 article-title: Production of recombinant proteins by filamentous fungi publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2011.09.012 – volume: 34 start-page: 863 issue: 8 year: 2016 ident: 10.1016/j.jbiotec.2022.06.011_bib19 article-title: Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3609 – volume: 8 start-page: 14355 issue: 1 year: 2018 ident: 10.1016/j.jbiotec.2022.06.011_bib9 article-title: CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus publication-title: Sci. Rep. doi: 10.1038/s41598-018-32702-w – volume: 7 start-page: 9250 issue: 1 year: 2017 ident: 10.1016/j.jbiotec.2022.06.011_bib60 article-title: Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR-Cas9 technology publication-title: Sci. Rep. doi: 10.1038/s41598-017-10052-3 – volume: 627 start-page: 212 year: 2017 ident: 10.1016/j.jbiotec.2022.06.011_bib8 article-title: CRISPR system in filamentous fungi: current achievements and future directions publication-title: Gene doi: 10.1016/j.gene.2017.06.019 – volume: 35 start-page: 201 issue: 2 year: 2018 ident: 10.1016/j.jbiotec.2022.06.011_bib48 article-title: CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae publication-title: Yeast doi: 10.1002/yea.3278 – volume: 9 issue: 5 year: 2018 ident: 10.1016/j.jbiotec.2022.06.011_bib42 article-title: Cas9 versus Cas12a/Cpf1: structure–function comparisons and implications for genome editing publication-title: Wiley Interdiscip. Rev.: RNA – volume: 167 start-page: 57 issue: 1 year: 2013 ident: 10.1016/j.jbiotec.2022.06.011_bib33 article-title: Molecular biodiversity of mycotoxigenic fungi that threaten food safety publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2013.06.033 – volume: 6 start-page: 13 year: 2019 ident: 10.1016/j.jbiotec.2022.06.011_bib46 article-title: Efficient marker free CRISPR/Cas9 genome editing for functional analysis of gene families in filamentous fungi publication-title: Fungal Biol. Biotechnol. doi: 10.1186/s40694-019-0076-7 – volume: 13 issue: 8 year: 2018 ident: 10.1016/j.jbiotec.2022.06.011_bib41 article-title: Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger publication-title: PloS One doi: 10.1371/journal.pone.0202868 – volume: 8 issue: 1594 year: 2021 ident: 10.1016/j.jbiotec.2022.06.011_bib31 article-title: High Quality Aspergillus aculeatus genomes and transcriptomes: a platform for cellulase activity optimization toward industrial applications publication-title: Front. Bioeng. Biotechnol. – volume: 21 start-page: 15 issue: 1 year: 2021 ident: 10.1016/j.jbiotec.2022.06.011_bib2 article-title: Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277 publication-title: BMC Biotechnol. doi: 10.1186/s12896-021-00669-8 – volume: 14 issue: 1 year: 2019 ident: 10.1016/j.jbiotec.2022.06.011_bib25 article-title: A new approach to Cas9-based genome editing in Aspergillus niger that is precise, efficient and selectable publication-title: PLoS ONE doi: 10.1371/journal.pone.0210243 – volume: 245 start-page: 1327 issue: Pt B year: 2017 ident: 10.1016/j.jbiotec.2022.06.011_bib40 article-title: An efficient tool for metabolic pathway construction and gene integration for Aspergillus niger publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.05.004 – volume: 102 start-page: 9481 issue: 22 year: 2018 ident: 10.1016/j.jbiotec.2022.06.011_bib10 article-title: Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-9354-1 – volume: 9 start-page: 36 issue: 1 year: 2019 ident: 10.1016/j.jbiotec.2022.06.011_bib39 article-title: CRISPR Cpf1 proteins: structure, function and implications for genome editing publication-title: Cell Biosci. doi: 10.1186/s13578-019-0298-7 |
SSID | ssj0004951 |
Score | 2.433301 |
Snippet | CRISPR/Cas technology is a versatile tool for genome engineering in many organisms, including filamentous fungi. Cpf1 is a multi-domain protein of class 2... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 53 |
SubjectTerms | Acidaminococcus Aspergillus aculeatus bacteria biobased products biotechnology DNA damage gene editing genes Lachnospiraceae loci plasmids |
Title | Efficient multiplex CRISPR/Cpf1 (Cas12a) genome editing system in Aspergillus aculeatus TBRC 277 |
URI | https://www.proquest.com/docview/2685036683 https://www.proquest.com/docview/2718290001 |
Volume | 355 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeIEHxKcYXzISD6AqXe3YSfY4uk4DjYFKi_oWbMfZUnVtlSbi44G_nbOdpqlaweAliqzYSXy_XO7O598h9EpJzUP4b3icJ6nHAhF6UhPiBYauLtCHh8JWnvtwHpyO2PsxH7dai0bWUlnIjvq5c1_J_0gV2kCuZpfsP0i2HhQa4BzkC0eQMByvJeO-5X8wq_mrvMDv7d7g3edPA0N7u0iJXaMVS0KF8f4NH-uVIWvNbK6zI3G2AQ9DF36RTaflsi1UOQX9DGfDt4Nem1blT7btV5nNi624_JFMymku1GUVWD3WSY2c3qW4WuQ6sebqF52Lb6LOuemXORjtIjOrGrmLFazzTM0OiEKYoIaNAR2XefZDNMMV4Ol2jcwaGjYKfY9FlVbTO9oqtexz3lCsjlF4S9-70MOkM3Hv3DF3tHyslQbf4Nc-_xifjM7O4mF_PLyBbsIEWpO682udFATuonXRVw-03vN1sPMmm9bM5s_cWijDu-hOJRp85HByD7X07D663SCcfIC-1ojBNWKwQ8yBwQt-7dDyBjus4Aor2GEFZzPcwAqusYINVjC86kM0OukPe6deVWPDUz7hhRf4CeVap13GlPSDbholhIDVqSLFBVcJIzrSVCuWcJqmLJS6q6gEn7UrmE7T0H-E9mbzmX6MMPQXqfYZ1ZQzKuGzV5GAETkVSSpDto_Yaq5iVRHQmzoo03iVaTiJqymOzRTHJuOSkH3UqbstHAPL3zq8XAkiBl1pFsDETM_LZUyDiIPFFkT-H64BY42aSrrkyTXGeYpurUH-DO0Veamfg5VayBcWWL8BuMmTKQ |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+multiplex+CRISPR%2FCpf1+%28Cas12a%29+genome+editing+system+in+Aspergillus+aculeatus+TBRC+277&rft.jtitle=Journal+of+biotechnology&rft.au=Abdulrachman%2C+Dede&rft.au=Champreda%2C+Verawat&rft.au=Eurwilaichitr%2C+Lily&rft.au=Chantasingh%2C+Duriya&rft.date=2022-08-20&rft.issn=1873-4863&rft.eissn=1873-4863&rft.volume=355&rft.spage=53&rft_id=info:doi/10.1016%2Fj.jbiotec.2022.06.011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1656&client=summon |