Excited state dynamics for hybridized local and charge transfer state fluorescent emitters with aggregation-induced emission in the solid phase: a QM/MM study

Highly efficient organic light-emitting diodes (OLEDs) based on fluorescent emitters with a hybridized local and charge transfer (HLCT) state have attracted significant attention. Recently, a near-infrared fluorescent compound, 2,3-bis(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)fumaronitrile...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 19; no. 44; pp. 29872 - 29879
Main Authors Fan, Jianzhong, Cai, Lei, Lin, Lili, Wang, Chuan-Kui
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highly efficient organic light-emitting diodes (OLEDs) based on fluorescent emitters with a hybridized local and charge transfer (HLCT) state have attracted significant attention. Recently, a near-infrared fluorescent compound, 2,3-bis(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)fumaronitrile (TPATCN), with an HLCT state has been synthetized, and the features of OLEDs based on this compound have been explored. In this study, excited state dynamics of TPATCN in the solid phase has been theoretically studied through a combined quantum mechanics and molecular mechanics (QM/MM) method. By analyzing the changes in geometry, the Huang-Rhys factor, and reorganization energy, non-radiative consumption ways through the torsional motions of diphenylamino and central fumaronitrile in low frequency regions (<200 cm ) are effectively hindered by the restricted intramolecular rotation (RIR) effect in the solid phase. The fluorescence efficiency of the OLED has been quantitatively calculated. The results show that the fluorescence efficiency is greatly enhanced from 0.16% in the gas phase to 52.1% in the solid phase; this demonstrates the aggregation-induced emission (AIE) mechanism for the OLED. Furthermore, by combining the dynamics of the excited states and the adiabatic energy structures calculated in the solid phase, the so-called hot-exciton process from higher triplet states to a singlet state has been illustrated. Our investigation elucidates the experimental measurement and helps understand the AIE mechanism for HLCT compounds, which is beneficial for developing highly efficient emitters.
AbstractList Highly efficient organic light-emitting diodes (OLEDs) based on fluorescent emitters with a hybridized local and charge transfer (HLCT) state have attracted significant attention. Recently, a near-infrared fluorescent compound, 2,3-bis(4′-(diphenylamino)-[1,1′-biphenyl]-4-yl)fumaronitrile (TPATCN), with an HLCT state has been synthetized, and the features of OLEDs based on this compound have been explored. In this study, excited state dynamics of TPATCN in the solid phase has been theoretically studied through a combined quantum mechanics and molecular mechanics (QM/MM) method. By analyzing the changes in geometry, the Huang–Rhys factor, and reorganization energy, non-radiative consumption ways through the torsional motions of diphenylamino and central fumaronitrile in low frequency regions (<200 cm −1 ) are effectively hindered by the restricted intramolecular rotation (RIR) effect in the solid phase. The fluorescence efficiency of the OLED has been quantitatively calculated. The results show that the fluorescence efficiency is greatly enhanced from 0.16% in the gas phase to 52.1% in the solid phase; this demonstrates the aggregation-induced emission (AIE) mechanism for the OLED. Furthermore, by combining the dynamics of the excited states and the adiabatic energy structures calculated in the solid phase, the so-called hot-exciton process from higher triplet states to a singlet state has been illustrated. Our investigation elucidates the experimental measurement and helps understand the AIE mechanism for HLCT compounds, which is beneficial for developing highly efficient emitters.
Highly efficient organic light-emitting diodes (OLEDs) based on fluorescent emitters with a hybridized local and charge transfer (HLCT) state have attracted significant attention. Recently, a near-infrared fluorescent compound, 2,3-bis(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)fumaronitrile (TPATCN), with an HLCT state has been synthetized, and the features of OLEDs based on this compound have been explored. In this study, excited state dynamics of TPATCN in the solid phase has been theoretically studied through a combined quantum mechanics and molecular mechanics (QM/MM) method. By analyzing the changes in geometry, the Huang-Rhys factor, and reorganization energy, non-radiative consumption ways through the torsional motions of diphenylamino and central fumaronitrile in low frequency regions (&lt;200 cm-1) are effectively hindered by the restricted intramolecular rotation (RIR) effect in the solid phase. The fluorescence efficiency of the OLED has been quantitatively calculated. The results show that the fluorescence efficiency is greatly enhanced from 0.16% in the gas phase to 52.1% in the solid phase; this demonstrates the aggregation-induced emission (AIE) mechanism for the OLED. Furthermore, by combining the dynamics of the excited states and the adiabatic energy structures calculated in the solid phase, the so-called hot-exciton process from higher triplet states to a singlet state has been illustrated. Our investigation elucidates the experimental measurement and helps understand the AIE mechanism for HLCT compounds, which is beneficial for developing highly efficient emitters.
Highly efficient organic light-emitting diodes (OLEDs) based on fluorescent emitters with a hybridized local and charge transfer (HLCT) state have attracted significant attention. Recently, a near-infrared fluorescent compound, 2,3-bis(4′-(diphenylamino)-[1,1′-biphenyl]-4-yl)fumaronitrile (TPATCN), with an HLCT state has been synthetized, and the features of OLEDs based on this compound have been explored. In this study, excited state dynamics of TPATCN in the solid phase has been theoretically studied through a combined quantum mechanics and molecular mechanics (QM/MM) method. By analyzing the changes in geometry, the Huang–Rhys factor, and reorganization energy, non-radiative consumption ways through the torsional motions of diphenylamino and central fumaronitrile in low frequency regions (<200 cm−1) are effectively hindered by the restricted intramolecular rotation (RIR) effect in the solid phase. The fluorescence efficiency of the OLED has been quantitatively calculated. The results show that the fluorescence efficiency is greatly enhanced from 0.16% in the gas phase to 52.1% in the solid phase; this demonstrates the aggregation-induced emission (AIE) mechanism for the OLED. Furthermore, by combining the dynamics of the excited states and the adiabatic energy structures calculated in the solid phase, the so-called hot-exciton process from higher triplet states to a singlet state has been illustrated. Our investigation elucidates the experimental measurement and helps understand the AIE mechanism for HLCT compounds, which is beneficial for developing highly efficient emitters.
Highly efficient organic light-emitting diodes (OLEDs) based on fluorescent emitters with a hybridized local and charge transfer (HLCT) state have attracted significant attention. Recently, a near-infrared fluorescent compound, 2,3-bis(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)fumaronitrile (TPATCN), with an HLCT state has been synthetized, and the features of OLEDs based on this compound have been explored. In this study, excited state dynamics of TPATCN in the solid phase has been theoretically studied through a combined quantum mechanics and molecular mechanics (QM/MM) method. By analyzing the changes in geometry, the Huang-Rhys factor, and reorganization energy, non-radiative consumption ways through the torsional motions of diphenylamino and central fumaronitrile in low frequency regions (<200 cm ) are effectively hindered by the restricted intramolecular rotation (RIR) effect in the solid phase. The fluorescence efficiency of the OLED has been quantitatively calculated. The results show that the fluorescence efficiency is greatly enhanced from 0.16% in the gas phase to 52.1% in the solid phase; this demonstrates the aggregation-induced emission (AIE) mechanism for the OLED. Furthermore, by combining the dynamics of the excited states and the adiabatic energy structures calculated in the solid phase, the so-called hot-exciton process from higher triplet states to a singlet state has been illustrated. Our investigation elucidates the experimental measurement and helps understand the AIE mechanism for HLCT compounds, which is beneficial for developing highly efficient emitters.
Author Lin, Lili
Cai, Lei
Wang, Chuan-Kui
Fan, Jianzhong
Author_xml – sequence: 1
  givenname: Jianzhong
  surname: Fan
  fullname: Fan, Jianzhong
  email: ckwang@sdnu.edu.cn, linll@sdnu.edu.cn
  organization: Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China. ckwang@sdnu.edu.cn linll@sdnu.edu.cn
– sequence: 2
  givenname: Lei
  surname: Cai
  fullname: Cai, Lei
– sequence: 3
  givenname: Lili
  surname: Lin
  fullname: Lin, Lili
– sequence: 4
  givenname: Chuan-Kui
  surname: Wang
  fullname: Wang, Chuan-Kui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29110002$$D View this record in MEDLINE/PubMed
BookMark eNpdkV1rFDEUhoO02A-98QdIwBsRpk0mk2TjXVlqFbpUQa-HTHIykzKbrEkGXX-Mv9Vo11706nw95-Vw3jN0FGIAhF5RckEJU5dGmh3hhKjxGTqlnWCNIqvu6DGX4gSd5XxPCKGcsufopFWU1qo9Rb-vfxpfwOJcdAFs90FvvcnYxYSn_ZC89b_qdI5Gz1gHi82k0wi4JB2yg3TYc_MSE2QDoWDY-lIgZfzDlwnrcUww6uJjaHywi6lqlci5NrAPuEyAc5y9xbtJZ3iPNf6yudxsqvBi9y_QsdNzhpeHeI6-fbj-uv7Y3N7dfFpf3TaGUV4a0VLGmOzo4JjqBtMxwluuNWOmbQdlBrEaKGdSGmHqP5TlsnNuEE4K4EQZdo7ePujuUvy-QC59PdHAPOsAcck9VYIKpgRhFX3zBL2PSwr1ur4llKy4kFxW6t0DZVLMOYHrd8lvddr3lPR_XevXcv35n2s3FX59kFyGLdhH9L9N7A98WZU7
CitedBy_id crossref_primary_10_1021_acs_jpca_1c08320
crossref_primary_10_1039_D3CP05632E
crossref_primary_10_1016_j_cplett_2020_138260
crossref_primary_10_1002_adom_201800512
crossref_primary_10_1039_D2MA00039C
crossref_primary_10_1002_ange_201904427
crossref_primary_10_1021_acsmaterialslett_9b00369
crossref_primary_10_1016_j_saa_2018_10_053
crossref_primary_10_1021_acs_jpcc_8b05105
crossref_primary_10_1039_C9CP00402E
crossref_primary_10_1016_j_dyepig_2022_110560
crossref_primary_10_1016_j_molstruc_2020_129721
crossref_primary_10_1063_1674_0068_31_cjcp1710191
crossref_primary_10_1080_00268976_2022_2143447
crossref_primary_10_3390_ijms241512362
crossref_primary_10_1016_j_jlumin_2018_07_012
crossref_primary_10_1016_j_saa_2023_123319
crossref_primary_10_1016_j_orgel_2019_05_028
crossref_primary_10_1016_j_saa_2019_117473
crossref_primary_10_1039_D0CS00391C
crossref_primary_10_1039_D0TC06083F
crossref_primary_10_1021_acs_accounts_2c00827
crossref_primary_10_1021_acs_jpclett_1c00772
crossref_primary_10_1016_j_molliq_2021_116626
crossref_primary_10_1093_nsr_nwab222
crossref_primary_10_1021_acs_jpcc_8b08228
crossref_primary_10_1002_anie_201904427
crossref_primary_10_1039_C9CP05552E
crossref_primary_10_1080_00268976_2023_2295423
crossref_primary_10_1016_j_tet_2021_132061
crossref_primary_10_1088_1674_1056_ac1b91
crossref_primary_10_1002_cptc_202400073
Cites_doi 10.1039/c2cp40347a
10.1016/j.dyepig.2016.10.029
10.1021/jacs.7b00873
10.1002/adma.201602604
10.1021/jp101568f
10.1039/C5CC04469C
10.1038/nature11687
10.1021/acs.chemmater.5b02685
10.1021/cr5004419
10.1063/1.1412875
10.1039/C5CC05022G
10.1021/acs.jpcc.5b03530
10.1021/ja100936w
10.1021/acs.jpclett.6b01156
10.1098/rsta.2014.0318
10.1039/c3cc41730a
10.1016/j.orgel.2015.11.019
10.1021/acs.jpcc.6b07963
10.1039/C3CP53806K
10.1039/C6FD00218H
10.1002/adfm.201503344
10.1021/ja510144h
10.1021/ja306538w
10.1039/C7TC02541F
10.1007/s11426-013-5046-y
10.1063/1674-0068/29/cjcp1508181
10.1039/C6TC02949C
10.1021/ct400415r
10.1039/C6CP02778D
10.1080/00268977000100171
10.1016/j.cplett.2016.04.027
10.1039/c1cs15113d
10.1002/adma.201402532
10.1016/j.orgel.2016.11.035
10.1002/jcc.22885
10.1021/ct5009312
10.1039/C5TC03322E
10.1039/c3cc44179b
10.1038/srep10923
10.1016/j.dyepig.2016.12.063
10.1016/j.jlumin.2015.11.012
10.1039/C6TC00858E
10.1021/acs.jpca.6b09852
10.1021/jp5099409
10.1002/anie.201506782
10.1021/acs.jpcc.5b01323
10.1002/jcc.24266
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2017
Copyright_xml – notice: Copyright Royal Society of Chemistry 2017
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/c7cp05009g
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 29879
ExternalDocumentID 10_1039_C7CP05009G
29110002
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29O
2WC
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AANOJ
AAXHV
AAXPP
ABASK
ABDVN
ABJNI
ABPDG
ABRYZ
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
AENEX
AETIL
AFOGI
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GNO
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
NPM
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
XFK
YNT
0UZ
1TJ
6TJ
71~
9M8
AAJAE
AAMEH
AAWGC
AAYXX
ABEMK
ABXOH
ACHDF
ACMRT
ADSRN
AEFDR
AENGV
AESAV
AFFNX
AFLYV
AFRDS
AHGCF
AHGXI
ANBJS
ANLMG
APEMP
ASPBG
AVWKF
BBWZM
CAG
CITATION
EEHRC
FEDTE
GGIMP
H13
HVGLF
H~9
IDY
J3H
KC5
L-8
MVM
NDZJH
R56
RCLXC
ROL
XJT
XOL
ZCG
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c315t-621333741bf394bc430525aa33c22b9cb68b15377c6c9079d574ffb6f76e509c3
ISSN 1463-9076
IngestDate Thu Jul 25 08:23:53 EDT 2024
Fri Sep 13 06:57:50 EDT 2024
Fri Aug 23 01:24:36 EDT 2024
Fri May 24 00:05:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-621333741bf394bc430525aa33c22b9cb68b15377c6c9079d574ffb6f76e509c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1524-0037
PMID 29110002
PQID 2010856757
PQPubID 2047499
PageCount 8
ParticipantIDs proquest_miscellaneous_1961639603
proquest_journals_2010856757
crossref_primary_10_1039_C7CP05009G
pubmed_primary_29110002
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2017
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Minaev (C7CP05009G-(cit5)/*[position()=1]) 2014; 16
Lin (C7CP05009G-(cit11)/*[position()=1]) 2017; 41
Zhang (C7CP05009G-(cit2)/*[position()=1]) 2012; 134
Hong (C7CP05009G-(cit18)/*[position()=1]) 2011; 40
Wang (C7CP05009G-(cit4)/*[position()=1]) 2015; 51
Zambianchi (C7CP05009G-(cit20)/*[position()=1]) 2016; 4
Fan (C7CP05009G-(cit28)/*[position()=1]) 2016; 29
Hu (C7CP05009G-(cit15)/*[position()=1]) 2015; 373
Penfold (C7CP05009G-(cit27)/*[position()=1]) 2015; 119
Niu (C7CP05009G-(cit39)/*[position()=1]) 2010; 114
Fan (C7CP05009G-(cit38)/*[position()=1]) 2014; 119
Xu (C7CP05009G-(cit7)/*[position()=1]) 2016; 28
Nasu (C7CP05009G-(cit8)/*[position()=1]) 2013; 49
Yao (C7CP05009G-(cit13)/*[position()=1]) 2014; 57
Gao (C7CP05009G-(cit47)/*[position()=1]) 2012; 14
Sun (C7CP05009G-(cit26)/*[position()=1]) 2016; 37
Tsujimoto (C7CP05009G-(cit10)/*[position()=1]) 2017; 139
Johnson (C7CP05009G-(cit41)/*[position()=1]) 2010; 132
Uoyama (C7CP05009G-(cit1)/*[position()=1]) 2012; 492
Tao (C7CP05009G-(cit6)/*[position()=1]) 2014; 26
Wang (C7CP05009G-(cit43)/*[position()=1]) 2016; 120
Reimers (C7CP05009G-(cit34)/*[position()=1]) 2001; 115
Huang (C7CP05009G-(cit30)/*[position()=1]) 2013; 9
Li (C7CP05009G-(cit44)/*[position()=1]) 2013; 49
Gao (C7CP05009G-(cit49)/*[position()=1]) 2016; 18
Bu (C7CP05009G-(cit17)/*[position()=1]) 2015; 54
Han (C7CP05009G-(cit25)/*[position()=1]) 2015; 25
Peng (C7CP05009G-(cit36)/*[position()=1]) 2016; 4
Gao (C7CP05009G-(cit23)/*[position()=1]) 2017; 139
Fan (C7CP05009G-(cit9)/*[position()=1]) 2016; 652
Lee (C7CP05009G-(cit21)/*[position()=1]) 2016; 29
C7CP05009G-(cit48)/*[position()=1]
Tang (C7CP05009G-(cit14)/*[position()=1]) 2015; 27
Sun (C7CP05009G-(cit46)/*[position()=1]) 2015; 11
Fan (C7CP05009G-(cit31)/*[position()=1]) 2016; 120
Zhang (C7CP05009G-(cit12)/*[position()=1]) 2014; 136
Frisch (C7CP05009G-(cit33)/*[position()=1]) 2009
Chen (C7CP05009G-(cit29)/*[position()=1]) 2015; 5
Lu (C7CP05009G-(cit40)/*[position()=1]) 2012; 33
Tsai (C7CP05009G-(cit3)/*[position()=1]) 2015; 51
Zhang (C7CP05009G-(cit37)/*[position()=1]) 2015; 119
Peng (C7CP05009G-(cit45)/*[position()=1]) 2016; 4
Hu (C7CP05009G-(cit19)/*[position()=1]) 2017; 137
Englman (C7CP05009G-(cit24)/*[position()=1]) 1970; 18
Huang (C7CP05009G-(cit22)/*[position()=1]) 2016; 172
Wang (C7CP05009G-(cit16)/*[position()=1]) 2017; 196
Ma (C7CP05009G-(cit35)/*[position()=1]) 2016; 7
Chung (C7CP05009G-(cit32)/*[position()=1]) 2015; 115
Fan (C7CP05009G-(cit42)/*[position()=1]) 2017; 5
References_xml – volume: 14
  start-page: 14207
  year: 2012
  ident: C7CP05009G-(cit47)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp40347a
  contributor:
    fullname: Gao
– volume: 137
  start-page: 480
  year: 2017
  ident: C7CP05009G-(cit19)/*[position()=1]
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2016.10.029
  contributor:
    fullname: Hu
– volume: 139
  start-page: 4894
  year: 2017
  ident: C7CP05009G-(cit10)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00873
  contributor:
    fullname: Tsujimoto
– volume: 28
  start-page: 9920
  year: 2016
  ident: C7CP05009G-(cit7)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602604
  contributor:
    fullname: Xu
– volume: 114
  start-page: 7817
  year: 2010
  ident: C7CP05009G-(cit39)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp101568f
  contributor:
    fullname: Niu
– volume: 51
  start-page: 11972
  year: 2015
  ident: C7CP05009G-(cit4)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC04469C
  contributor:
    fullname: Wang
– volume: 492
  start-page: 234
  year: 2012
  ident: C7CP05009G-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature11687
  contributor:
    fullname: Uoyama
– volume: 27
  start-page: 7050
  year: 2015
  ident: C7CP05009G-(cit14)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02685
  contributor:
    fullname: Tang
– ident: C7CP05009G-(cit48)/*[position()=1]
– volume: 115
  start-page: 5678
  year: 2015
  ident: C7CP05009G-(cit32)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr5004419
  contributor:
    fullname: Chung
– volume: 115
  start-page: 9103
  year: 2001
  ident: C7CP05009G-(cit34)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1412875
  contributor:
    fullname: Reimers
– volume: 51
  start-page: 13662
  year: 2015
  ident: C7CP05009G-(cit3)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC05022G
  contributor:
    fullname: Tsai
– volume: 119
  start-page: 13535
  year: 2015
  ident: C7CP05009G-(cit27)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b03530
  contributor:
    fullname: Penfold
– volume: 132
  start-page: 6498
  year: 2010
  ident: C7CP05009G-(cit41)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja100936w
  contributor:
    fullname: Johnson
– volume: 7
  start-page: 2893
  year: 2016
  ident: C7CP05009G-(cit35)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01156
  contributor:
    fullname: Ma
– volume: 373
  start-page: 20140318
  year: 2015
  ident: C7CP05009G-(cit15)/*[position()=1]
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.2014.0318
  contributor:
    fullname: Hu
– volume: 49
  start-page: 5966
  year: 2013
  ident: C7CP05009G-(cit44)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc41730a
  contributor:
    fullname: Li
– volume: 29
  start-page: 22
  year: 2016
  ident: C7CP05009G-(cit21)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2015.11.019
  contributor:
    fullname: Lee
– volume: 120
  start-page: 21850
  year: 2016
  ident: C7CP05009G-(cit43)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b07963
  contributor:
    fullname: Wang
– volume: 16
  start-page: 1719
  year: 2014
  ident: C7CP05009G-(cit5)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C3CP53806K
  contributor:
    fullname: Minaev
– volume: 196
  start-page: 9
  year: 2017
  ident: C7CP05009G-(cit16)/*[position()=1]
  publication-title: Faraday Discuss.
  doi: 10.1039/C6FD00218H
  contributor:
    fullname: Wang
– volume-title: Gaussian 09
  year: 2009
  ident: C7CP05009G-(cit33)/*[position()=1]
  contributor:
    fullname: Frisch
– volume: 25
  start-page: 7521
  year: 2015
  ident: C7CP05009G-(cit25)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503344
  contributor:
    fullname: Han
– volume: 136
  start-page: 18070
  year: 2014
  ident: C7CP05009G-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510144h
  contributor:
    fullname: Zhang
– volume: 134
  start-page: 14706
  year: 2012
  ident: C7CP05009G-(cit2)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja306538w
  contributor:
    fullname: Zhang
– volume: 5
  start-page: 8390
  year: 2017
  ident: C7CP05009G-(cit42)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC02541F
  contributor:
    fullname: Fan
– volume: 57
  start-page: 335
  year: 2014
  ident: C7CP05009G-(cit13)/*[position()=1]
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-013-5046-y
  contributor:
    fullname: Yao
– volume: 29
  start-page: 291
  year: 2016
  ident: C7CP05009G-(cit28)/*[position()=1]
  publication-title: Chin. J. Chem. Phys.
  doi: 10.1063/1674-0068/29/cjcp1508181
  contributor:
    fullname: Fan
– volume: 4
  start-page: 9411
  year: 2016
  ident: C7CP05009G-(cit20)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC02949C
  contributor:
    fullname: Zambianchi
– volume: 9
  start-page: 3872
  year: 2013
  ident: C7CP05009G-(cit30)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400415r
  contributor:
    fullname: Huang
– volume: 18
  start-page: 24176
  year: 2016
  ident: C7CP05009G-(cit49)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP02778D
  contributor:
    fullname: Gao
– volume: 18
  start-page: 145
  year: 1970
  ident: C7CP05009G-(cit24)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268977000100171
  contributor:
    fullname: Englman
– volume: 652
  start-page: 16
  year: 2016
  ident: C7CP05009G-(cit9)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.04.027
  contributor:
    fullname: Fan
– volume: 40
  start-page: 5361
  year: 2011
  ident: C7CP05009G-(cit18)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15113d
  contributor:
    fullname: Hong
– volume: 26
  start-page: 7931
  year: 2014
  ident: C7CP05009G-(cit6)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402532
  contributor:
    fullname: Tao
– volume: 41
  start-page: 17
  year: 2017
  ident: C7CP05009G-(cit11)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2016.11.035
  contributor:
    fullname: Lin
– volume: 33
  start-page: 580
  year: 2012
  ident: C7CP05009G-(cit40)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
  contributor:
    fullname: Lu
– volume: 11
  start-page: 2257
  year: 2015
  ident: C7CP05009G-(cit46)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct5009312
  contributor:
    fullname: Sun
– volume: 4
  start-page: 2802
  year: 2016
  ident: C7CP05009G-(cit45)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC03322E
  contributor:
    fullname: Peng
– volume: 49
  start-page: 10385
  year: 2013
  ident: C7CP05009G-(cit8)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc44179b
  contributor:
    fullname: Nasu
– volume: 5
  start-page: 10923
  year: 2015
  ident: C7CP05009G-(cit29)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep10923
  contributor:
    fullname: Chen
– volume: 139
  start-page: 644
  year: 2017
  ident: C7CP05009G-(cit23)/*[position()=1]
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2016.12.063
  contributor:
    fullname: Gao
– volume: 172
  start-page: 7
  year: 2016
  ident: C7CP05009G-(cit22)/*[position()=1]
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2015.11.012
  contributor:
    fullname: Huang
– volume: 4
  start-page: 6829
  year: 2016
  ident: C7CP05009G-(cit36)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC00858E
  contributor:
    fullname: Peng
– volume: 120
  start-page: 9422
  year: 2016
  ident: C7CP05009G-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.6b09852
  contributor:
    fullname: Fan
– volume: 119
  start-page: 5233
  year: 2014
  ident: C7CP05009G-(cit38)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp5099409
  contributor:
    fullname: Fan
– volume: 54
  start-page: 14492
  year: 2015
  ident: C7CP05009G-(cit17)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201506782
  contributor:
    fullname: Bu
– volume: 119
  start-page: 5040
  year: 2015
  ident: C7CP05009G-(cit37)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b01323
  contributor:
    fullname: Zhang
– volume: 37
  start-page: 684
  year: 2016
  ident: C7CP05009G-(cit26)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24266
  contributor:
    fullname: Sun
SSID ssj0001513
Score 2.4085047
Snippet Highly efficient organic light-emitting diodes (OLEDs) based on fluorescent emitters with a hybridized local and charge transfer (HLCT) state have attracted...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 29872
SubjectTerms Adiabatic flow
Agglomeration
Charge transfer
Chemical compounds
Diodes
Dynamic structural analysis
Emission analysis
Emitters
Fluorescence
Light emitting diodes
Mathematical analysis
Organic light emitting diodes
Quantum mechanics
Solids
Title Excited state dynamics for hybridized local and charge transfer state fluorescent emitters with aggregation-induced emission in the solid phase: a QM/MM study
URI https://www.ncbi.nlm.nih.gov/pubmed/29110002
https://www.proquest.com/docview/2010856757/abstract/
https://search.proquest.com/docview/1961639603
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wAviPsKAxnBW5UtsZ2k4W2KWsZoRie1om-R7SRtpJFWayNBfwz8VY7tJA1SkQYvUeLIqdzzxeeSc76D0Hvf5oJSzi0_SIjFXC4suAYsJ4Qz1d020RVy0ZV3MWOXc3fe6fxqZS2VW3EqdwfrSv5HqjAGclVVsv8g2eahMADnIF84goTheCcZD79LbTHqqqB-YprLa4KF_vKHKsXKd3BXqytTv6ZokVLVFgKMVUXjrOdlN-Xq1rA69dNvuebbrGreFuCNL7TsLPDdS5UroPrDbVoJkrDCPOmvl9xUufP-dQQLiqIWcW1l-05qSMi6yZw5U0MmwLLRAYpJGDZFZyMTn70EEO-Wq0rL6k8mpqo7zZuMIkOGMM5vmqGvVSw8XJa8sD6XeTvEYWo5T1OzITOPWoFt2sg1O3bQQiZj7f03GJhOQJUyV9fBQU1hU0W0Kn25tl2wMxd7fVjnAFx9iUez8TieDufTe-iI-OBKdtHR-XD6adwoezCYaM16S4Oz_fP-tHP-4rxoI2b6CD2svA98bqD0GHXS4gm6H9byeIp-VpDCGhq4hhQGSOE9pLCGFAZIYQMpXEOqmteCFK4hhRWk8AFI4RpSOC8wQAprSGENqQ-Y4-voLIqwhtMzNBsNp-GFVbXwsCR13K3lEYfCq88ckdGACakI5ojLOaWSEBFI4Q0E6Fzfl54MbNgvXJ9lmfAy30vBlJX0OeoWqyI9RtihRCo2wVQSytJBwjPOhJ0kXDoZY1nSQ-_qPzxeG6aWWGdY0CAO_XCixfKxh05qWcTVm7yJVUbIwAXX2e-ht81tWLv6eMaLdFVuYtBU4LqAv0976IWRYfMzJFDEizZ5eYfZr9ADBXETxTtB3e1tmb4Gu3Yr3lTY-g2Xr63i
link.rule.ids 315,786,790,4043,27956,27957,27958
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excited+state+dynamics+for+hybridized+local+and+charge+transfer+state+fluorescent+emitters+with+aggregation-induced+emission+in+the+solid+phase%3A+a+QM%2FMM+study&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Fan%2C+Jianzhong&rft.au=Cai%2C+Lei&rft.au=Lin%2C+Lili&rft.au=Wang%2C+Chuan-Kui&rft.date=2017&rft.eissn=1463-9084&rft.volume=19&rft.issue=44&rft.spage=29872&rft.epage=29879&rft_id=info:doi/10.1039%2Fc7cp05009g&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon