In situ synthesis of HCNFs@SnS2 composite via solid-phase vulcanization reaction for high-performance anode of lithium-ion batteries
•Novel HCNFs@SnS2 anode materials were first synthesized by a simple and controllable two-step method.•HCNFs@SnS2 composite exhibits the excellent reversible capacity of 901.6 mAh/g, about seven times as many as HCNFs@SnO2.•High performance of HCNFs@SnS2 benefits from the synergistic contribution be...
Saved in:
Published in | Electrochimica acta Vol. 469; p. 143255 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
20.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Novel HCNFs@SnS2 anode materials were first synthesized by a simple and controllable two-step method.•HCNFs@SnS2 composite exhibits the excellent reversible capacity of 901.6 mAh/g, about seven times as many as HCNFs@SnO2.•High performance of HCNFs@SnS2 benefits from the synergistic contribution between coiled carbon and SnS2 nanoparticles.
Tin-based oxides or sulfides are regarded as prospective anode materials for lithium-ion batteries owing to their high theoretical specific capacity, low-cost, and low insertion/extraction potential. However, their practical application is limited duo to the poor intrinsic conductivity and tremendous volume expansion/shrinkage during Li+ intercalation/deintercalation. In this study, a simple and controllable two-step method was used to design and prepare the novel SnS2@helical carbon nanofibers (HCNFs@SnS2) anode composite, in which the size and content of SnS2 nanoparticles are about 10 nm and 62.67%, respectively. The HCNFs@SnS2 anode exhibits a superior reversible discharge specific capacity of 901.6 mAh/g (about seven times as many as HCNFs@SnO2), higher capacity retention rate of 69.1 % after 100 cycles at 200 mA/g, and an excellent ultra-long cycle capacity of 470.9 mAh/g at 2000 mA/g after 1000 cycles. The outstanding electrochemical performance of HCNFs@SnS2 mainly benefits from the synergistic contribution between HCNFs matrix and SnS2, and especially the specific 3D helical structure of HCNFs effectively improves the volumetric expansion and conductivity of SnS2 nanoparticles. This work provides some novel insights and references for developing other transition metal-oxide/sulfide-based anode materials with significantly practical application potential in energy storage areas.
[Display omitted] |
---|---|
AbstractList | •Novel HCNFs@SnS2 anode materials were first synthesized by a simple and controllable two-step method.•HCNFs@SnS2 composite exhibits the excellent reversible capacity of 901.6 mAh/g, about seven times as many as HCNFs@SnO2.•High performance of HCNFs@SnS2 benefits from the synergistic contribution between coiled carbon and SnS2 nanoparticles.
Tin-based oxides or sulfides are regarded as prospective anode materials for lithium-ion batteries owing to their high theoretical specific capacity, low-cost, and low insertion/extraction potential. However, their practical application is limited duo to the poor intrinsic conductivity and tremendous volume expansion/shrinkage during Li+ intercalation/deintercalation. In this study, a simple and controllable two-step method was used to design and prepare the novel SnS2@helical carbon nanofibers (HCNFs@SnS2) anode composite, in which the size and content of SnS2 nanoparticles are about 10 nm and 62.67%, respectively. The HCNFs@SnS2 anode exhibits a superior reversible discharge specific capacity of 901.6 mAh/g (about seven times as many as HCNFs@SnO2), higher capacity retention rate of 69.1 % after 100 cycles at 200 mA/g, and an excellent ultra-long cycle capacity of 470.9 mAh/g at 2000 mA/g after 1000 cycles. The outstanding electrochemical performance of HCNFs@SnS2 mainly benefits from the synergistic contribution between HCNFs matrix and SnS2, and especially the specific 3D helical structure of HCNFs effectively improves the volumetric expansion and conductivity of SnS2 nanoparticles. This work provides some novel insights and references for developing other transition metal-oxide/sulfide-based anode materials with significantly practical application potential in energy storage areas.
[Display omitted] |
ArticleNumber | 143255 |
Author | Jin, Yongzhong Chen, Ge Jiang, Dongwei Zhang, Wenjun Zhang, Zhengquan |
Author_xml | – sequence: 1 givenname: Wenjun orcidid: 0000-0002-5282-3725 surname: Zhang fullname: Zhang, Wenjun organization: School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China – sequence: 2 givenname: Yongzhong orcidid: 0000-0002-6130-4513 surname: Jin fullname: Jin, Yongzhong email: jyzcd@163.com organization: School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China – sequence: 3 givenname: Zhengquan surname: Zhang fullname: Zhang, Zhengquan organization: Bazhong Yike Carbon Co. Ltd, Bazhong 636000, China – sequence: 4 givenname: Ge surname: Chen fullname: Chen, Ge organization: Sichuan Ruian New Material Technology Co, Ltd; Yaan 625000, China – sequence: 5 givenname: Dongwei surname: Jiang fullname: Jiang, Dongwei organization: School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China |
BookMark | eNqNkE9r3DAQxUVJoZukn6H6At5KlmU5h0LD0vyBkB6SnsVYHtezeKVF0gbScz545G7JoZcWBmYE7z30fqfsxAePjH2SYi2FbD9v1zijy1BmXYtarWWjaq3fsZXsjKpUpy9O2EoIqaqm7doP7DSlrRDCtEas2Mut54nygadnnydMlHgY-c3m_ip9ffAPNXdhtw9FgfyJgKcw01DtJ0jlfZgdePoFmYLnEcsPlmMMkU_0c6r2GMu9A--Qgw8DLskz5YkOu2pR9pAzRsJ0zt6PMCf8-GefsR9X3x43N9Xd9-vbzeVd5ZTUudIAY98oJxtnoNE4mAvXCQ1tjwZMo0tx0SsJQ2NAYoe9rpUR49C1sjFOozpj5pjrYkgp4mj3kXYQn60UdoFpt_YNpl1g2iPM4vzyl9NR_l08R6D5P_yXRz-Wek-E0SZHWMgMFIveDoH-mfEKbZKbNw |
CitedBy_id | crossref_primary_10_1016_j_surfcoat_2024_130622 crossref_primary_10_1016_j_diamond_2024_111146 crossref_primary_10_1039_D4QI01221F crossref_primary_10_1016_j_electacta_2024_143823 crossref_primary_10_1021_acs_langmuir_4c01760 crossref_primary_10_1021_acs_nanolett_4c01641 crossref_primary_10_1016_j_diamond_2024_110936 |
Cites_doi | 10.1016/j.colsurfa.2018.07.023 10.1016/j.electacta.2021.137936 10.1016/j.jechem.2022.01.021 10.1021/acsami.1c18268 10.1016/j.jelechem.2022.117098 10.1016/j.jcis.2021.01.079 10.1016/j.apsusc.2022.154938 10.1039/b904116h 10.1016/j.jallcom.2021.163029 10.1016/j.carbon.2020.12.010 10.1016/j.jpowsour.2013.03.048 10.1016/j.electacta.2019.04.019 10.1016/j.electacta.2020.136369 10.1016/j.jmst.2020.12.068 10.1016/j.electacta.2022.141453 10.1021/acs.energyfuels.2c00115 10.1016/j.apsusc.2014.10.107 10.1016/j.est.2022.106358 10.1016/j.ceramint.2018.12.190 10.1016/j.apsusc.2023.156673 10.1016/j.jallcom.2017.11.389 10.1021/am200933m 10.1016/j.electacta.2022.141725 10.1016/j.jcis.2020.03.063 10.1016/j.ensm.2022.06.047 10.1016/j.cej.2019.123722 10.1016/j.synthmet.2016.03.027 10.1039/D1DT00275A 10.1021/acs.langmuir.2c00912 10.1021/nn5027388 10.1021/acsami.5b07044 10.1016/j.cej.2023.141629 10.1016/j.jallcom.2020.154192 10.1016/j.electacta.2020.136730 10.1039/C7TA01936J 10.1039/C8DT03834A 10.1039/C7NR05556K 10.1016/j.ensm.2021.04.009 10.1002/smll.201700656 10.1016/j.jallcom.2020.153686 10.1016/j.carbon.2010.08.052 10.1002/smll.202102349 10.1016/j.jallcom.2022.167620 10.1016/j.materresbull.2013.09.005 10.1016/j.apsusc.2022.154633 10.1016/j.ijhydene.2010.12.139 10.1016/j.matlet.2021.129877 10.1016/j.electacta.2022.140898 10.1016/j.cej.2023.142289 10.1039/C8TA02695E 10.1016/j.jelechem.2021.115947 10.1016/j.electacta.2010.12.108 10.1002/adfm.202007419 10.1016/j.electacta.2022.141590 10.1016/j.nanoen.2016.12.051 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.electacta.2023.143255 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
ExternalDocumentID | 10_1016_j_electacta_2023_143255 S0013468623014275 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- RIG SC5 SCB SCH SSH T9H VH1 WUQ XOL ZY4 |
ID | FETCH-LOGICAL-c315t-5aafb43c14c7a45ed79c805a6be7a7451430b31ad47a1e8eb52370fd86147c5e3 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Tue Jul 01 03:58:20 EDT 2025 Thu Apr 24 23:05:52 EDT 2025 Fri Feb 23 02:34:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion batteries Tin disulfide Helical carbon nanofibers Electrochemical performance In-situ sulphuration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c315t-5aafb43c14c7a45ed79c805a6be7a7451430b31ad47a1e8eb52370fd86147c5e3 |
ORCID | 0000-0002-5282-3725 0000-0002-6130-4513 |
ParticipantIDs | crossref_primary_10_1016_j_electacta_2023_143255 crossref_citationtrail_10_1016_j_electacta_2023_143255 elsevier_sciencedirect_doi_10_1016_j_electacta_2023_143255 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-20 |
PublicationDateYYYYMMDD | 2023-11-20 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Electrochimica acta |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tang, Wan, Zhang, Cheng, Zhang, Li (bib0053) 2022; 38 Zhao, Fan, Zhang, Ma, Du, Yan, Li, Jiang (bib0006) 2020; 390 Sun, Goktas, Zhao, Adelhelm, Han (bib0009) 2020; 572 Huu, Le, Nguyen, Thi, Vo, Im (bib0048) 2021; 549 Ma, Yang, Xu, Che, Li, Liu, Chen, Zhang, Liu, Wu, Wang, Li (bib0002) 2022; 428 Ji, Zhou, Fu, Cao, Yang, Huang, Lin, Zhang, Liu, Guo, Fang, Xue, Tang (bib0007) 2020; 828 Liu, Li, Zai, Jin, Zhan, Huang, Tie, Qi, Qian (bib0036) 2019; 48 Landi, Ganter, Cress, DiLeo, Raffaelle (bib0026) 2009; 2 Zhang, Cao, Wu, Cheng, Kang, Xu (bib0043) 2020; 392 Chavez, Lodge, Alcoutlabi (bib0004) 2021; 266 Lei, Fan, Jia, Wu, Zhong, Wang (bib0012) 2022; 606 Jin, Chen, Fu, Li, Zhang, Gong (bib0029) 2015; 324 Gaber, Attia, Salem, Mohamed, Hout (bib0042) 2023; 59 Yang, He, Hou, Wang, Ren, Lei, Meng, Zhao (bib0051) 2022; 904 Din, Li, Zhang, Han, Li (bib0013) 2021; 21 Tan, Bao, Kong, Zheng, Xu, Hu, Liu, Wang, Xu (bib0020) 2021; 590 X. Y. Wang, X. F. Zhou, K. Yao, J. G. Zhang, Z. P. Liu. A SnO2/graphene composite as a high stability electrode for lithium ion batteries, Carbon 49 (1) 133–139, https://doi.org/10.1016/j.carbon.2010.08.052. Zhao, Ma, Zheng, Yue, Xu, Wang, Luo, Zheng, Sun, Alshehri, Sun, Tang (bib0017) 2023; 459 Li, Qing, Emori, Su, Zhao, Chen, Yu, Lin (bib0024) 2022; 36 Wang, Wen, Wang, Yang, Jiang (bib0054) 2021; 17 Shang, Fan, Chen, Dong, Wang (bib0003) 2023; 933 Qing, Liu, Jin, Chen, Min (bib0027) 2021; 50 Glibo, Eshraghi, Surace, Mautner, Flandorfer, Cupid (bib0001) 2023; 441 L. Zhan, X. S. Zhou, J. Luo, X. M. Ning. Binder-free multilayered SnO2/graphene on Ni foam as a high-performance lithium ion batteries anode, Ceram. Int, 45 (6) 6931–6936, https://doi.org/10.1016/j.ceramint.2018.12.190. Cheng, Huang, Qi, Cao, Yang, Xi, Luo, Yanagisawa, Li (bib0035) 2017; 13 Cupid, Rezqita, Glibo, Artner, Bauer, Hamid, Jahn, Flandorfer (bib0047) 2021; 375 Xiao, Zhao, Liu, Wang, Sui, Tan (bib0050) 2021; 296 Tang, Wang, Chen, Wang, Wang, Mao (bib0023) 2021; 174 Zhai, Du, Zhang, Yu, Yang (bib0058) 2011; 3 Gao, Zhang, Wang, Chen, Huang, Ma, Liu, Yu (bib0037) 2017; 32 Jin, Zhang, Qing, Chen, Zeng, Huang (bib0052) 2023; 929 Cheng, Huang, Qi, Cao, Luo, Li, Xu, Yang (bib0038) 2017; 9 Xu, Zhang, Sun, Zhou, Liu, Qiu, Wang, Yang, Zeng, Peng, Guo (bib0056) 2021; 33 Balogun, Qiu, Jian, Huang, Luo, Yang, Liang, Lu, Tong (bib0033) 2015; 7 Liu, Liu, Zhang (bib0005) 2023; 437 Zhang, Zhao, Wu, Yue, Mi (bib0031) 2018; 737 Li, Yan, Lin, Dai, Qu (bib0059) 2016; 217 Wu, Yang, Pu, Gao, Meng, Yang, Zhao (bib0040) 2020; 822 Wang, Yuan, Zhao, Wang, Zhu, Ma, Cao (bib0041) 2019; 308 Zuo, Xu, Zhang, Li, Du, Wang, Han, Arbiol, Llorca, Liu, Cabot (bib0049) 2020; 349 Deng, Luo, Conrad, Liu, Gong, Najmaei, Ajayan, Lou, Xu, Ye (bib0015) 2014; 8 Tomboc, Wang, Wang, Li, Lee (bib0014) 2021; 39 Lv, Tong, Wu, Gao, Zhou, Pan, Zhang, Zhou, Liao, Zhou, Sun, Li (bib0022) 2022; 51 Sun, Ahmad, Luo, Shi, Shen, Zhu (bib0060) 2014; 214 Song, Wang, Chen, Lu, Wen (bib0021) 2023; 463 Wang, Hao, Liu, Huang, Yu (bib0057) 2011; 56 Zhao, Song, Ding, Li, Wang, Jiang, Zhang (bib0016) 2020; 354 Wei, Wang, Zhuo, Ni, Wang, Ma (bib0008) 2018; 6 Liu, Hu, Chen, Hu, Jiang, Li (bib0010) 2022; 69 Wang, Li, Li, Li, Butenko, Milinevsky, Li, Han (bib0019) 2022; 605 Hu, Wang, Chang, Yang, Hu, Cao, Lu, Zhang, Ye (bib0018) 2021; 84 Wang, Zhang, Chen, Sun, Wang, Hou, Hu, Gao, Zhang (bib0032) 2022; 897 Raghubanshi, Hudson, Srivastava (bib0028) 2011; 36 Jiang, Yang, Zhu, Shen, Fan, Li (bib0034) 2013; 237 Liu, Wang, Lou, Zhou, Zhang, Yu, Zhang, Henkelman, Tang, Sun (bib0011) 2023; 618 Yuan, Hao, Zhang, Li (bib0030) 2018; 555 Liu, Chang, Sun, Guo, Cao, Ma, Liu, Liu, Fu, Liu, He (bib0046) 2022; 14 Hou, Chen, Qin, Guan, Wang, Zeng, Zhao (bib0025) 2023; 439 Tian, Lu, Yin, Li, Zhang, Song, Tan, Yao (bib0055) 2021; 31 Qin, Zhao, Shi, Liu, He, Ma, Li, Li, He (bib0045) 2017; 5 Qing (10.1016/j.electacta.2023.143255_bib0027) 2021; 50 Raghubanshi (10.1016/j.electacta.2023.143255_bib0028) 2011; 36 Gao (10.1016/j.electacta.2023.143255_bib0037) 2017; 32 Tang (10.1016/j.electacta.2023.143255_bib0053) 2022; 38 Tan (10.1016/j.electacta.2023.143255_bib0020) 2021; 590 Sun (10.1016/j.electacta.2023.143255_bib0060) 2014; 214 Liu (10.1016/j.electacta.2023.143255_bib0011) 2023; 618 Din (10.1016/j.electacta.2023.143255_bib0013) 2021; 21 Landi (10.1016/j.electacta.2023.143255_bib0026) 2009; 2 Li (10.1016/j.electacta.2023.143255_bib0024) 2022; 36 Tian (10.1016/j.electacta.2023.143255_bib0055) 2021; 31 Wang (10.1016/j.electacta.2023.143255_bib0041) 2019; 308 Xiao (10.1016/j.electacta.2023.143255_bib0050) 2021; 296 Liu (10.1016/j.electacta.2023.143255_bib0005) 2023; 437 Lv (10.1016/j.electacta.2023.143255_bib0022) 2022; 51 Cheng (10.1016/j.electacta.2023.143255_bib0035) 2017; 13 Liu (10.1016/j.electacta.2023.143255_bib0010) 2022; 69 Ji (10.1016/j.electacta.2023.143255_bib0007) 2020; 828 Liu (10.1016/j.electacta.2023.143255_bib0036) 2019; 48 Zhao (10.1016/j.electacta.2023.143255_bib0017) 2023; 459 Liu (10.1016/j.electacta.2023.143255_bib0046) 2022; 14 Wang (10.1016/j.electacta.2023.143255_bib0054) 2021; 17 Ma (10.1016/j.electacta.2023.143255_bib0002) 2022; 428 Wang (10.1016/j.electacta.2023.143255_bib0057) 2011; 56 Deng (10.1016/j.electacta.2023.143255_bib0015) 2014; 8 Xu (10.1016/j.electacta.2023.143255_bib0056) 2021; 33 Lei (10.1016/j.electacta.2023.143255_bib0012) 2022; 606 Cheng (10.1016/j.electacta.2023.143255_bib0038) 2017; 9 Huu (10.1016/j.electacta.2023.143255_bib0048) 2021; 549 Tomboc (10.1016/j.electacta.2023.143255_bib0014) 2021; 39 Yang (10.1016/j.electacta.2023.143255_bib0051) 2022; 904 Balogun (10.1016/j.electacta.2023.143255_bib0033) 2015; 7 Gaber (10.1016/j.electacta.2023.143255_bib0042) 2023; 59 Wang (10.1016/j.electacta.2023.143255_bib0019) 2022; 605 Song (10.1016/j.electacta.2023.143255_bib0021) 2023; 463 Hou (10.1016/j.electacta.2023.143255_bib0025) 2023; 439 Glibo (10.1016/j.electacta.2023.143255_bib0001) 2023; 441 Wei (10.1016/j.electacta.2023.143255_bib0008) 2018; 6 Jin (10.1016/j.electacta.2023.143255_bib0052) 2023; 929 Zhai (10.1016/j.electacta.2023.143255_bib0058) 2011; 3 Shang (10.1016/j.electacta.2023.143255_bib0003) 2023; 933 Yuan (10.1016/j.electacta.2023.143255_bib0030) 2018; 555 Zhang (10.1016/j.electacta.2023.143255_bib0043) 2020; 392 Hu (10.1016/j.electacta.2023.143255_bib0018) 2021; 84 Qin (10.1016/j.electacta.2023.143255_bib0045) 2017; 5 Cupid (10.1016/j.electacta.2023.143255_bib0047) 2021; 375 Tang (10.1016/j.electacta.2023.143255_bib0023) 2021; 174 Jiang (10.1016/j.electacta.2023.143255_bib0034) 2013; 237 10.1016/j.electacta.2023.143255_bib0044 Wang (10.1016/j.electacta.2023.143255_bib0032) 2022; 897 Zuo (10.1016/j.electacta.2023.143255_bib0049) 2020; 349 Zhang (10.1016/j.electacta.2023.143255_bib0031) 2018; 737 Jin (10.1016/j.electacta.2023.143255_bib0029) 2015; 324 Zhao (10.1016/j.electacta.2023.143255_bib0006) 2020; 390 Sun (10.1016/j.electacta.2023.143255_bib0009) 2020; 572 Zhao (10.1016/j.electacta.2023.143255_bib0016) 2020; 354 10.1016/j.electacta.2023.143255_bib0039 Wu (10.1016/j.electacta.2023.143255_bib0040) 2020; 822 Li (10.1016/j.electacta.2023.143255_bib0059) 2016; 217 Chavez (10.1016/j.electacta.2023.143255_bib0004) 2021; 266 |
References_xml | – volume: 308 start-page: 174 year: 2019 end-page: 184 ident: bib0041 article-title: Supported SnS publication-title: Electrochim. Acta – volume: 441 year: 2023 ident: bib0001 article-title: Comparative study of electrochemical properties of SnS and SnS publication-title: Electrochim. Acta – volume: 439 year: 2023 ident: bib0025 article-title: Constructing hierarchical SnS publication-title: Electrochim. Acta – volume: 59 year: 2023 ident: bib0042 article-title: Microwave-assisted fabrication of SnO publication-title: J. Energy Storage – volume: 904 year: 2022 ident: bib0051 article-title: In-situ growth engineering of nano-sheets SnS publication-title: J. Electroanal. Chem – volume: 933 year: 2023 ident: bib0003 article-title: Synergism between nitrogen vacancies and a unique electrons transfer pathway of Ag modified S-scheme g-C publication-title: J. Alloys Compd – volume: 13 year: 2017 ident: bib0035 article-title: Adjusting the chemical bonding of SnO publication-title: Small – volume: 929 year: 2023 ident: bib0052 article-title: Constructing 3D sandwich-like carbon coated Fe publication-title: J. Electroanal. Chem – volume: 590 start-page: 580 year: 2021 end-page: 590 ident: bib0020 article-title: Hierarchical goethite nanoparticle and tin dioxide quantum dot anchored on reduced graphene oxide for long life and high rate lithium-ion storage publication-title: J. Colloid Interface Sci – volume: 375 year: 2021 ident: bib0047 article-title: Understanding and modelling the thermodynamics and electrochemistry of lithiation of tin (IV) sulfide as an anode active material for lithium ion batteries publication-title: Electrochim. Acta – volume: 463 year: 2023 ident: bib0021 article-title: In situ three-dimensional cross-linked carbon nanotube-interspersed SnSb@CNF as freestanding anode for long-term cycling sodium-ion batteries publication-title: Chem. Eng. J – volume: 36 start-page: 4957 year: 2022 end-page: 4966 ident: bib0024 article-title: Ultrafine SnO publication-title: Energ. Fuel – volume: 31 year: 2021 ident: bib0055 article-title: Multiscale designed niobium titanium oxide anode for fast charging lithium ion batteries publication-title: Adv. Funct. Mater – volume: 2 start-page: 638 year: 2009 end-page: 654 ident: bib0026 article-title: Carbon nanotubes for lithium ion batteries publication-title: Energy Environ. Sci – volume: 349 year: 2020 ident: bib0049 article-title: SnS publication-title: Electrochim. Acta – volume: 737 start-page: 92 year: 2018 end-page: 98 ident: bib0031 article-title: One-pot solvothermal synthesis 2D SnS publication-title: J. Alloys Compd – volume: 32 start-page: 302 year: 2017 end-page: 309 ident: bib0037 article-title: In situ atomic-scale observation of reversible sodium ions migration in layered metal dichalcogenide SnS publication-title: Nano Energy – volume: 3 start-page: 4067 year: 2011 end-page: 4074 ident: bib0058 article-title: Multiwalled carbon nanotubes anchored with SnS publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 23205 year: 2015 end-page: 23215 ident: bib0033 article-title: Vanadium nitride nanowire supported SnS publication-title: ACS Appl. Mater. Interfaces – volume: 555 start-page: 795 year: 2018 end-page: 801 ident: bib0030 article-title: Sandwiched CNT@SnO publication-title: Colloid Surface A – volume: 174 start-page: 98 year: 2021 end-page: 109 ident: bib0023 article-title: PVP-assisted synthesis of g–C publication-title: Carbon – volume: 6 start-page: 12185 year: 2018 end-page: 12214 ident: bib0008 article-title: Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries publication-title: J. Mater. Chem. A – volume: 56 start-page: 4065 year: 2011 end-page: 4069 ident: bib0057 article-title: A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries publication-title: Electrochim. Acta – volume: 828 year: 2020 ident: bib0007 article-title: Enhanced Li publication-title: J. Alloys Compd – volume: 38 start-page: 7331 year: 2022 end-page: 7340 ident: bib0053 article-title: Microporous carbon nanospheres with fast sodium storage capability enabled by dominant capacitive behavior publication-title: Langmuir – volume: 354 year: 2020 ident: bib0016 article-title: Size-tunable SnS publication-title: Electrochim. Acta – volume: 549 year: 2021 ident: bib0048 article-title: Facile synthesis of SnS publication-title: Appl. Surf. Sci – volume: 618 year: 2023 ident: bib0011 article-title: Simple construction and reversible sequential evolution mechanism of nitrogen-doped mesoporous carbon/SnS publication-title: Appl. Surf. Sci – volume: 69 start-page: 450 year: 2022 end-page: 455 ident: bib0010 article-title: Confining ultrahigh oxygen vacancy SnO publication-title: J. Energy Chem – volume: 14 start-page: 11739 year: 2022 end-page: 11749 ident: bib0046 article-title: Sheet- like stacking SnS publication-title: ACS Appl. Mater. Interfaces – volume: 390 year: 2020 ident: bib0006 article-title: Simple electrodeposition of MoO publication-title: Chem. Eng. J – reference: L. Zhan, X. S. Zhou, J. Luo, X. M. Ning. Binder-free multilayered SnO2/graphene on Ni foam as a high-performance lithium ion batteries anode, Ceram. Int, 45 (6) 6931–6936, https://doi.org/10.1016/j.ceramint.2018.12.190. – volume: 237 start-page: 178 year: 2013 end-page: 186 ident: bib0034 article-title: In situ assembly of graphene sheets-supported SnS publication-title: J. Power Sources – volume: 21 year: 2021 ident: bib0013 article-title: Recent progress and challenges on the bismuth-based anode for sodium-ion batteries and potassium-ion batteries publication-title: Mater. Today Phys – volume: 5 start-page: 10946 year: 2017 end-page: 10956 ident: bib0045 article-title: Sandwiched C@SnO publication-title: J. Mater. Chem. A – volume: 217 start-page: 138 year: 2016 end-page: 143 ident: bib0059 article-title: Preparation and lithium ion batteries properties of SnS publication-title: Synth. Met – volume: 17 year: 2021 ident: bib0054 article-title: MOF-derived Fe publication-title: Small – volume: 214 start-page: 319 year: 2014 end-page: 324 ident: bib0060 article-title: SnS publication-title: Mater. Res. Bull – volume: 51 start-page: 361 year: 2022 end-page: 371 ident: bib0022 article-title: Disposing of excessive decomposition and destructive intercalation of solvated Li publication-title: Energy Storage Mater – volume: 437 year: 2023 ident: bib0005 article-title: Synergy of multi-means to improve SnO publication-title: Electrochim. Acta – volume: 296 year: 2021 ident: bib0050 article-title: Synthesis of hexahedron SnS publication-title: Mater. Lett – volume: 50 start-page: 5819 year: 2021 end-page: 5827 ident: bib0027 article-title: Helical carbon nanofibers modified with Fe publication-title: Dalton Trans – volume: 605 year: 2022 ident: bib0019 article-title: Bioconfined SnS publication-title: Appl. Surf. Sci – volume: 392 year: 2020 ident: bib0043 article-title: Phase transformation and sulfur vacancy modulation of 2D layered tin sulfide nanoplates as highly durable anodes for pseudocapacitive lithium storage publication-title: Chem. Eng. J – volume: 9 start-page: 18681 year: 2017 end-page: 18689 ident: bib0038 article-title: Controlling the Sn–C bonds content in SnO publication-title: Nanoscale – volume: 897 year: 2022 ident: bib0032 article-title: High-capacity and cycling-stable anode for sodium ion batteries constructed from SnS publication-title: J. Alloys Compd – volume: 48 start-page: 833 year: 2019 end-page: 838 ident: bib0036 article-title: Flower-like SnS publication-title: Dalton Trans – volume: 266 year: 2021 ident: bib0004 article-title: Recent developments in centrifugally spun composite fibers and their performance as anode materials for lithium-ion and sodium-ion batteries publication-title: Mater. Sci. Eng. B-Adv – reference: X. Y. Wang, X. F. Zhou, K. Yao, J. G. Zhang, Z. P. Liu. A SnO2/graphene composite as a high stability electrode for lithium ion batteries, Carbon 49 (1) 133–139, https://doi.org/10.1016/j.carbon.2010.08.052. – volume: 572 start-page: 122 year: 2020 end-page: 132 ident: bib0009 article-title: Ultrafine SnO publication-title: J. Colloid Interface Sci – volume: 8 start-page: 8292 year: 2014 end-page: 8299 ident: bib0015 article-title: Black phosphorus–monolayer MoS publication-title: ACS Nano – volume: 84 start-page: 191 year: 2021 end-page: 199 ident: bib0018 article-title: Effects of annealing temperature on electrochemical performance of SnS publication-title: J. Mater. Sci. Technol – volume: 33 year: 2021 ident: bib0056 article-title: Orthorhombic cobalt ditelluride with Te vacancy defects anchoring on elastic MXene enables efficient potassium-ion storage publication-title: Adv. Mater. – volume: 428 year: 2022 ident: bib0002 article-title: Nitrogen-doped porous carbon embedded Sn/SnO nanoparticles as high-performance lithium-ion battery anode publication-title: Electrochim. Acta – volume: 39 start-page: 21 year: 2021 end-page: 44 ident: bib0014 article-title: Sn-based metal oxides and sulfides anode materials for Na ion battery publication-title: Energy Storage Mater – volume: 36 start-page: 4482 year: 2011 end-page: 4490 ident: bib0028 article-title: Synthesis of helical carbon nanofibres and its application in hydrogen desorption publication-title: Int. J. Hydrogen Energy – volume: 324 start-page: 438 year: 2015 end-page: 442 ident: bib0029 article-title: Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition publication-title: Appl. Surf. Sci – volume: 822 year: 2020 ident: bib0040 article-title: SnS publication-title: J. Alloys Compd – volume: 606 year: 2022 ident: bib0012 article-title: Ultrafast charge-transfer at interfaces between 2D graphitic carbon nitride thin film and carbon fiber towards enhanced photocatalytic hydrogen evolution publication-title: Appl. Surf. Sci – volume: 459 year: 2023 ident: bib0017 article-title: Hierarchical wormlike engineering: self-assembled SnS publication-title: Chem. Eng. J – volume: 555 start-page: 795 year: 2018 ident: 10.1016/j.electacta.2023.143255_bib0030 article-title: Sandwiched CNT@SnO2@PPy nanocomposites enhancing sodium storage publication-title: Colloid Surface A doi: 10.1016/j.colsurfa.2018.07.023 – volume: 375 year: 2021 ident: 10.1016/j.electacta.2023.143255_bib0047 article-title: Understanding and modelling the thermodynamics and electrochemistry of lithiation of tin (IV) sulfide as an anode active material for lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.137936 – volume: 69 start-page: 450 year: 2022 ident: 10.1016/j.electacta.2023.143255_bib0010 article-title: Confining ultrahigh oxygen vacancy SnO2 nanocrystals into nitrogen-doped carbon for enhanced Li-ion storage kinetics and reversibility publication-title: J. Energy Chem doi: 10.1016/j.jechem.2022.01.021 – volume: 14 start-page: 11739 issue: 9 year: 2022 ident: 10.1016/j.electacta.2023.143255_bib0046 article-title: Sheet- like stacking SnS2/rGO heterostructures as ultrastable anodes for lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c18268 – volume: 549 year: 2021 ident: 10.1016/j.electacta.2023.143255_bib0048 article-title: Facile synthesis of SnS2@g-C3N4 composites as high performance anodes for lithium ion batteries publication-title: Appl. Surf. Sci – volume: 929 year: 2023 ident: 10.1016/j.electacta.2023.143255_bib0052 article-title: Constructing 3D sandwich-like carbon coated Fe2O3/helical carbon nanofibers composite as a superior lithium-ion batteries anode publication-title: J. Electroanal. Chem doi: 10.1016/j.jelechem.2022.117098 – volume: 590 start-page: 580 year: 2021 ident: 10.1016/j.electacta.2023.143255_bib0020 article-title: Hierarchical goethite nanoparticle and tin dioxide quantum dot anchored on reduced graphene oxide for long life and high rate lithium-ion storage publication-title: J. Colloid Interface Sci doi: 10.1016/j.jcis.2021.01.079 – volume: 606 year: 2022 ident: 10.1016/j.electacta.2023.143255_bib0012 article-title: Ultrafast charge-transfer at interfaces between 2D graphitic carbon nitride thin film and carbon fiber towards enhanced photocatalytic hydrogen evolution publication-title: Appl. Surf. Sci doi: 10.1016/j.apsusc.2022.154938 – volume: 2 start-page: 638 year: 2009 ident: 10.1016/j.electacta.2023.143255_bib0026 article-title: Carbon nanotubes for lithium ion batteries publication-title: Energy Environ. Sci doi: 10.1039/b904116h – volume: 897 year: 2022 ident: 10.1016/j.electacta.2023.143255_bib0032 article-title: High-capacity and cycling-stable anode for sodium ion batteries constructed from SnS2/MWCNTs nanocomposites publication-title: J. Alloys Compd doi: 10.1016/j.jallcom.2021.163029 – volume: 266 year: 2021 ident: 10.1016/j.electacta.2023.143255_bib0004 article-title: Recent developments in centrifugally spun composite fibers and their performance as anode materials for lithium-ion and sodium-ion batteries publication-title: Mater. Sci. Eng. B-Adv – volume: 174 start-page: 98 year: 2021 ident: 10.1016/j.electacta.2023.143255_bib0023 article-title: PVP-assisted synthesis of g–C3N4–derived N-doped graphene with tunable interplanar spacing as high-performance lithium/sodium ions battery anodes publication-title: Carbon doi: 10.1016/j.carbon.2020.12.010 – volume: 237 start-page: 178 year: 2013 ident: 10.1016/j.electacta.2023.143255_bib0034 article-title: In situ assembly of graphene sheets-supported SnS2 nanoplates into 3D macroporous aerogels for high-performance lithium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.03.048 – volume: 308 start-page: 174 year: 2019 ident: 10.1016/j.electacta.2023.143255_bib0041 article-title: Supported SnS2 nanosheet array as binder-free anode for sodium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.04.019 – volume: 349 year: 2020 ident: 10.1016/j.electacta.2023.143255_bib0049 article-title: SnS2/g-C3N4/graphite nanocomposites as durable lithium-ion battery anode with high pseudocapacitance contribution publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136369 – volume: 84 start-page: 191 year: 2021 ident: 10.1016/j.electacta.2023.143255_bib0018 article-title: Effects of annealing temperature on electrochemical performance of SnSx embedded in hierarchical porous carbon with N-carbon coating by in-situ structural phase transformation as anodes for lithium ion batteries publication-title: J. Mater. Sci. Technol doi: 10.1016/j.jmst.2020.12.068 – volume: 437 year: 2023 ident: 10.1016/j.electacta.2023.143255_bib0005 article-title: Synergy of multi-means to improve SnO2 lithium storage performance achieved by one-pot solvothermal method publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.141453 – volume: 36 start-page: 4957 issue: 9 year: 2022 ident: 10.1016/j.electacta.2023.143255_bib0024 article-title: Ultrafine SnO2 nanoparticles decorated on N-doped highly structurally connected carbon nanospheres as anode materials for high-performance sodium-ion batteries publication-title: Energ. Fuel doi: 10.1021/acs.energyfuels.2c00115 – volume: 324 start-page: 438 year: 2015 ident: 10.1016/j.electacta.2023.143255_bib0029 article-title: Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition publication-title: Appl. Surf. Sci doi: 10.1016/j.apsusc.2014.10.107 – volume: 59 year: 2023 ident: 10.1016/j.electacta.2023.143255_bib0042 article-title: Microwave-assisted fabrication of SnO2 nanostructures as electrode for high-performance pseudocapacitors publication-title: J. Energy Storage doi: 10.1016/j.est.2022.106358 – volume: 33 year: 2021 ident: 10.1016/j.electacta.2023.143255_bib0056 article-title: Orthorhombic cobalt ditelluride with Te vacancy defects anchoring on elastic MXene enables efficient potassium-ion storage publication-title: Adv. Mater. – ident: 10.1016/j.electacta.2023.143255_bib0039 doi: 10.1016/j.ceramint.2018.12.190 – volume: 618 year: 2023 ident: 10.1016/j.electacta.2023.143255_bib0011 article-title: Simple construction and reversible sequential evolution mechanism of nitrogen-doped mesoporous carbon/SnS2 nanosheets in lithium-ion batteries publication-title: Appl. Surf. Sci doi: 10.1016/j.apsusc.2023.156673 – volume: 737 start-page: 92 year: 2018 ident: 10.1016/j.electacta.2023.143255_bib0031 article-title: One-pot solvothermal synthesis 2D SnS2/CNTs hybrid as a superior anode material for sodium-ion batteries publication-title: J. Alloys Compd doi: 10.1016/j.jallcom.2017.11.389 – volume: 3 start-page: 4067 issue: 10 year: 2011 ident: 10.1016/j.electacta.2023.143255_bib0058 article-title: Multiwalled carbon nanotubes anchored with SnS2 nanosheets as high-performance anode materials of lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am200933m – volume: 441 year: 2023 ident: 10.1016/j.electacta.2023.143255_bib0001 article-title: Comparative study of electrochemical properties of SnS and SnS2 as anode materials in lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.141725 – volume: 572 start-page: 122 year: 2020 ident: 10.1016/j.electacta.2023.143255_bib0009 article-title: Ultrafine SnO2 nanoparticles anchored on N, P-doped porous carbon as anodes for high performance lithium-ion and sodium-ion batteries publication-title: J. Colloid Interface Sci doi: 10.1016/j.jcis.2020.03.063 – volume: 51 start-page: 361 year: 2022 ident: 10.1016/j.electacta.2023.143255_bib0022 article-title: Disposing of excessive decomposition and destructive intercalation of solvated Li+ in CNT-based flexible 3D Si anode of flexible battery publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2022.06.047 – volume: 392 year: 2020 ident: 10.1016/j.electacta.2023.143255_bib0043 article-title: Phase transformation and sulfur vacancy modulation of 2D layered tin sulfide nanoplates as highly durable anodes for pseudocapacitive lithium storage publication-title: Chem. Eng. J doi: 10.1016/j.cej.2019.123722 – volume: 217 start-page: 138 year: 2016 ident: 10.1016/j.electacta.2023.143255_bib0059 article-title: Preparation and lithium ion batteries properties of SnS2 nanoparticle/reduced graphene oxide nanosheet nanocomposites using supercritical carbon dioxide publication-title: Synth. Met doi: 10.1016/j.synthmet.2016.03.027 – volume: 50 start-page: 5819 issue: 17 year: 2021 ident: 10.1016/j.electacta.2023.143255_bib0027 article-title: Helical carbon nanofibers modified with Fe2O3 as a high performance anode material for lithium-ion batteries publication-title: Dalton Trans doi: 10.1039/D1DT00275A – volume: 38 start-page: 7331 issue: 23 year: 2022 ident: 10.1016/j.electacta.2023.143255_bib0053 article-title: Microporous carbon nanospheres with fast sodium storage capability enabled by dominant capacitive behavior publication-title: Langmuir doi: 10.1021/acs.langmuir.2c00912 – volume: 8 start-page: 8292 issue: 8 year: 2014 ident: 10.1016/j.electacta.2023.143255_bib0015 article-title: Black phosphorus–monolayer MoS2 van der waals heterojunction p–n diode publication-title: ACS Nano doi: 10.1021/nn5027388 – volume: 7 start-page: 23205 issue: 41 year: 2015 ident: 10.1016/j.electacta.2023.143255_bib0033 article-title: Vanadium nitride nanowire supported SnS2 nanosheets with high reversible capacity as anode material for lithium ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07044 – volume: 459 year: 2023 ident: 10.1016/j.electacta.2023.143255_bib0017 article-title: Hierarchical wormlike engineering: self-assembled SnS2 nanoflake arrays decorated on hexagonal FeS2@C nano-spindles enables stable and fast sodium storage publication-title: Chem. Eng. J doi: 10.1016/j.cej.2023.141629 – volume: 828 year: 2020 ident: 10.1016/j.electacta.2023.143255_bib0007 article-title: Enhanced Li+ storage through highly hybridized networks of self-assembled SnS2/rGO aerogels publication-title: J. Alloys Compd doi: 10.1016/j.jallcom.2020.154192 – volume: 354 year: 2020 ident: 10.1016/j.electacta.2023.143255_bib0016 article-title: Size-tunable SnS2 nanoparticles assembled on graphene as anodes for high performance lithium/sodium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136730 – volume: 5 start-page: 10946 year: 2017 ident: 10.1016/j.electacta.2023.143255_bib0045 article-title: Sandwiched C@SnO2@C hollow nanostructures as an ultralong-lifespan high-rate anode material for lithium-ion and sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01936J – volume: 48 start-page: 833 year: 2019 ident: 10.1016/j.electacta.2023.143255_bib0036 article-title: Flower-like SnS2 composite with 3D pyrolyzed bacterial cellulose as the anode for lithium-ion batteries with ultralong cycle life and superior rate capability publication-title: Dalton Trans doi: 10.1039/C8DT03834A – volume: 9 start-page: 18681 year: 2017 ident: 10.1016/j.electacta.2023.143255_bib0038 article-title: Controlling the Sn–C bonds content in SnO2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics publication-title: Nanoscale doi: 10.1039/C7NR05556K – volume: 39 start-page: 21 year: 2021 ident: 10.1016/j.electacta.2023.143255_bib0014 article-title: Sn-based metal oxides and sulfides anode materials for Na ion battery publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2021.04.009 – volume: 13 issue: 31 year: 2017 ident: 10.1016/j.electacta.2023.143255_bib0035 article-title: Adjusting the chemical bonding of SnO2@CNT composite for enhanced conversion reaction kinetics publication-title: Small doi: 10.1002/smll.201700656 – volume: 390 issue: 15 year: 2020 ident: 10.1016/j.electacta.2023.143255_bib0006 article-title: Simple electrodeposition of MoO3 film on carbon cloth for high-performance aqueous symmetric supercapacitors publication-title: Chem. Eng. J – volume: 822 year: 2020 ident: 10.1016/j.electacta.2023.143255_bib0040 article-title: SnS2 nanoparticle-integrated graphene nanosheets as high-performance and cycle-stable anodes for lithium and sodium storage publication-title: J. Alloys Compd doi: 10.1016/j.jallcom.2020.153686 – ident: 10.1016/j.electacta.2023.143255_bib0044 doi: 10.1016/j.carbon.2010.08.052 – volume: 17 issue: 38 year: 2021 ident: 10.1016/j.electacta.2023.143255_bib0054 article-title: MOF-derived Fe7S8 nanoparticles/N-doped carbon nanofibers as an ultra-stable anode for sodium-ion batteries publication-title: Small doi: 10.1002/smll.202102349 – volume: 933 year: 2023 ident: 10.1016/j.electacta.2023.143255_bib0003 article-title: Synergism between nitrogen vacancies and a unique electrons transfer pathway of Ag modified S-scheme g-C3N4/CdS heterojunction for efficient H2 evolution publication-title: J. Alloys Compd doi: 10.1016/j.jallcom.2022.167620 – volume: 214 start-page: 319 year: 2014 ident: 10.1016/j.electacta.2023.143255_bib0060 article-title: SnS2 nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries publication-title: Mater. Res. Bull doi: 10.1016/j.materresbull.2013.09.005 – volume: 605 year: 2022 ident: 10.1016/j.electacta.2023.143255_bib0019 article-title: Bioconfined SnS2 N-doped carbon fibers with multiwall robust structure for boosting sodium storage publication-title: Appl. Surf. Sci doi: 10.1016/j.apsusc.2022.154633 – volume: 36 start-page: 4482 issue: 7 year: 2011 ident: 10.1016/j.electacta.2023.143255_bib0028 article-title: Synthesis of helical carbon nanofibres and its application in hydrogen desorption publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.12.139 – volume: 296 year: 2021 ident: 10.1016/j.electacta.2023.143255_bib0050 article-title: Synthesis of hexahedron SnS2/C derived from tin metal-organic frameworks (Sn-MOF) as a promising anode for lithium-ion batteries publication-title: Mater. Lett doi: 10.1016/j.matlet.2021.129877 – volume: 21 year: 2021 ident: 10.1016/j.electacta.2023.143255_bib0013 article-title: Recent progress and challenges on the bismuth-based anode for sodium-ion batteries and potassium-ion batteries publication-title: Mater. Today Phys – volume: 428 year: 2022 ident: 10.1016/j.electacta.2023.143255_bib0002 article-title: Nitrogen-doped porous carbon embedded Sn/SnO nanoparticles as high-performance lithium-ion battery anode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.140898 – volume: 463 year: 2023 ident: 10.1016/j.electacta.2023.143255_bib0021 article-title: In situ three-dimensional cross-linked carbon nanotube-interspersed SnSb@CNF as freestanding anode for long-term cycling sodium-ion batteries publication-title: Chem. Eng. J doi: 10.1016/j.cej.2023.142289 – volume: 6 start-page: 12185 issue: 26 year: 2018 ident: 10.1016/j.electacta.2023.143255_bib0008 article-title: Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02695E – volume: 904 year: 2022 ident: 10.1016/j.electacta.2023.143255_bib0051 article-title: In-situ growth engineering of nano-sheets SnS2 on S-doped reduced graphene oxide for high lithium/sodium storage capacity publication-title: J. Electroanal. Chem doi: 10.1016/j.jelechem.2021.115947 – volume: 56 start-page: 4065 issue: 11 year: 2011 ident: 10.1016/j.electacta.2023.143255_bib0057 article-title: A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.12.108 – volume: 31 year: 2021 ident: 10.1016/j.electacta.2023.143255_bib0055 article-title: Multiscale designed niobium titanium oxide anode for fast charging lithium ion batteries publication-title: Adv. Funct. Mater doi: 10.1002/adfm.202007419 – volume: 439 year: 2023 ident: 10.1016/j.electacta.2023.143255_bib0025 article-title: Constructing hierarchical SnS2 hollow micron cages anchored on S-doped graphene as anodes for superior performance alkali-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.141590 – volume: 32 start-page: 302 year: 2017 ident: 10.1016/j.electacta.2023.143255_bib0037 article-title: In situ atomic-scale observation of reversible sodium ions migration in layered metal dichalcogenide SnS2 nanostructures publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.051 |
SSID | ssj0007670 |
Score | 2.486959 |
Snippet | •Novel HCNFs@SnS2 anode materials were first synthesized by a simple and controllable two-step method.•HCNFs@SnS2 composite exhibits the excellent reversible... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 143255 |
SubjectTerms | Electrochemical performance Helical carbon nanofibers In-situ sulphuration Lithium-ion batteries Tin disulfide |
Title | In situ synthesis of HCNFs@SnS2 composite via solid-phase vulcanization reaction for high-performance anode of lithium-ion batteries |
URI | https://dx.doi.org/10.1016/j.electacta.2023.143255 |
Volume | 469 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwELUQHNoeEIWiQgvyoVeDEztxllPRitXSqnsBJG7R2B6LIJpdNbtIXDjx4fVkkwWkShwq5eLIE0We0cyzNO8NY98C-ATAgECwSmiQVgCmXrggAU3AxKdETv41ycdX-sd1dr3Ghj0Xhtoqu9y_zOlttu7eHHeneTyrKuL4JkoTwYFuBakhornWhqL86PG5zcPkRvZTDGj3qx6vdtQMxOeIpojHrKFS4vz9q0K9qDqjLbbZwUV-uvyjj2wN6232bthPadtmH14ICu6wp_OaN9V8wZuHOiK7pmr4NPDxcDJqvl_UFymnDnJq00J-XwGPcVd5MbuJlYzfL-7cipXJI5RsCQ88YlpOksZi9sww4FBPPdKXI4a_qRa_Be20rVJnvHh_Ylejs8vhWHRzFoRTSTYXGUCwWrlEOwM6Q28GrpAZ5BYNGE2QSlqVgNcGEizQxsurkcEXsbQbl6HaZev1tMbPjJtQZJiixBwHJDBqfRgAqAyT4Ipg1B7L-7MtXSdCTrMw7sq-2-y2XDmlJKeUS6fsMbkynC11ON42OemdV74KqTJWi7eM9__H-At7TyuiLKbyK1uf_1ngQcQuc3vYBuch2zg9_zme_AUmkvM5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKORQOCAqI8ukDV7dObMdZTqAVqy20e2kr9RaN7bGaqmRXZLcSF078cDzZZNtKSD0g5ZR4osgzmXmW5s1j7GOEkAFYEAhOCQ3SCcA8CB8loI2YhZzIycezYnqmv52b8y02Hrgw1FbZ5_51Tu-ydX_noN_Ng0VdE8c3U5oIDnQqyK15wB7q9PuSjMH-75s-D1tYOcgY0PI7TV6d1gyka59kxFPaUDmR_v5Vom6VnclT9qTHi_zL-pOesS1sdtnOeJBp22WPb00UfM7-HDa8rZcr3v5qErRr65bPI5-OZ5P280lzknNqIac-LeTXNfAUeHUQi4tUyvj16spvaJk8YcmO8cATqOU001gsbigGHJp5QHpzAvEX9eqHoJWuG9WZTt4v2Nnk6-l4KnqhBeFVZpbCAESnlc-0t6ANBjvypTRQOLRgNWEq6VQGQVvIsESXTq9WxlCm2m69QfWSbTfzBl8xbmNpMEeJBY5owqgLcQSgDGbRl9GqPVYMe1v5fgo5iWFcVUO72WW1cUpFTqnWTtljcmO4WA_iuN_k0-C86k5MValc3Gf8-n-MP7Cd6enxUXV0OPv-hj2iJ8RfzOVbtr38ucJ3Ccgs3fsuUP8CtWD0xw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+synthesis+of+HCNFs%40SnS2+composite+via+solid-phase+vulcanization+reaction+for+high-performance+anode+of+lithium-ion+batteries&rft.jtitle=Electrochimica+acta&rft.au=Zhang%2C+Wenjun&rft.au=Jin%2C+Yongzhong&rft.au=Zhang%2C+Zhengquan&rft.au=Chen%2C+Ge&rft.date=2023-11-20&rft.pub=Elsevier+Ltd&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=469&rft_id=info:doi/10.1016%2Fj.electacta.2023.143255&rft.externalDocID=S0013468623014275 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |