In situ synthesis of HCNFs@SnS2 composite via solid-phase vulcanization reaction for high-performance anode of lithium-ion batteries

•Novel HCNFs@SnS2 anode materials were first synthesized by a simple and controllable two-step method.•HCNFs@SnS2 composite exhibits the excellent reversible capacity of 901.6 mAh/g, about seven times as many as HCNFs@SnO2.•High performance of HCNFs@SnS2 benefits from the synergistic contribution be...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 469; p. 143255
Main Authors Zhang, Wenjun, Jin, Yongzhong, Zhang, Zhengquan, Chen, Ge, Jiang, Dongwei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 20.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Novel HCNFs@SnS2 anode materials were first synthesized by a simple and controllable two-step method.•HCNFs@SnS2 composite exhibits the excellent reversible capacity of 901.6 mAh/g, about seven times as many as HCNFs@SnO2.•High performance of HCNFs@SnS2 benefits from the synergistic contribution between coiled carbon and SnS2 nanoparticles. Tin-based oxides or sulfides are regarded as prospective anode materials for lithium-ion batteries owing to their high theoretical specific capacity, low-cost, and low insertion/extraction potential. However, their practical application is limited duo to the poor intrinsic conductivity and tremendous volume expansion/shrinkage during Li+ intercalation/deintercalation. In this study, a simple and controllable two-step method was used to design and prepare the novel SnS2@helical carbon nanofibers (HCNFs@SnS2) anode composite, in which the size and content of SnS2 nanoparticles are about 10 nm and 62.67%, respectively. The HCNFs@SnS2 anode exhibits a superior reversible discharge specific capacity of 901.6 mAh/g (about seven times as many as HCNFs@SnO2), higher capacity retention rate of 69.1 % after 100 cycles at 200 mA/g, and an excellent ultra-long cycle capacity of 470.9 mAh/g at 2000 mA/g after 1000 cycles. The outstanding electrochemical performance of HCNFs@SnS2 mainly benefits from the synergistic contribution between HCNFs matrix and SnS2, and especially the specific 3D helical structure of HCNFs effectively improves the volumetric expansion and conductivity of SnS2 nanoparticles. This work provides some novel insights and references for developing other transition metal-oxide/sulfide-based anode materials with significantly practical application potential in energy storage areas. [Display omitted]
AbstractList •Novel HCNFs@SnS2 anode materials were first synthesized by a simple and controllable two-step method.•HCNFs@SnS2 composite exhibits the excellent reversible capacity of 901.6 mAh/g, about seven times as many as HCNFs@SnO2.•High performance of HCNFs@SnS2 benefits from the synergistic contribution between coiled carbon and SnS2 nanoparticles. Tin-based oxides or sulfides are regarded as prospective anode materials for lithium-ion batteries owing to their high theoretical specific capacity, low-cost, and low insertion/extraction potential. However, their practical application is limited duo to the poor intrinsic conductivity and tremendous volume expansion/shrinkage during Li+ intercalation/deintercalation. In this study, a simple and controllable two-step method was used to design and prepare the novel SnS2@helical carbon nanofibers (HCNFs@SnS2) anode composite, in which the size and content of SnS2 nanoparticles are about 10 nm and 62.67%, respectively. The HCNFs@SnS2 anode exhibits a superior reversible discharge specific capacity of 901.6 mAh/g (about seven times as many as HCNFs@SnO2), higher capacity retention rate of 69.1 % after 100 cycles at 200 mA/g, and an excellent ultra-long cycle capacity of 470.9 mAh/g at 2000 mA/g after 1000 cycles. The outstanding electrochemical performance of HCNFs@SnS2 mainly benefits from the synergistic contribution between HCNFs matrix and SnS2, and especially the specific 3D helical structure of HCNFs effectively improves the volumetric expansion and conductivity of SnS2 nanoparticles. This work provides some novel insights and references for developing other transition metal-oxide/sulfide-based anode materials with significantly practical application potential in energy storage areas. [Display omitted]
ArticleNumber 143255
Author Jin, Yongzhong
Chen, Ge
Jiang, Dongwei
Zhang, Wenjun
Zhang, Zhengquan
Author_xml – sequence: 1
  givenname: Wenjun
  orcidid: 0000-0002-5282-3725
  surname: Zhang
  fullname: Zhang, Wenjun
  organization: School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
– sequence: 2
  givenname: Yongzhong
  orcidid: 0000-0002-6130-4513
  surname: Jin
  fullname: Jin, Yongzhong
  email: jyzcd@163.com
  organization: School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
– sequence: 3
  givenname: Zhengquan
  surname: Zhang
  fullname: Zhang, Zhengquan
  organization: Bazhong Yike Carbon Co. Ltd, Bazhong 636000, China
– sequence: 4
  givenname: Ge
  surname: Chen
  fullname: Chen, Ge
  organization: Sichuan Ruian New Material Technology Co, Ltd; Yaan 625000, China
– sequence: 5
  givenname: Dongwei
  surname: Jiang
  fullname: Jiang, Dongwei
  organization: School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
BookMark eNqNkE9r3DAQxUVJoZukn6H6At5KlmU5h0LD0vyBkB6SnsVYHtezeKVF0gbScz545G7JoZcWBmYE7z30fqfsxAePjH2SYi2FbD9v1zijy1BmXYtarWWjaq3fsZXsjKpUpy9O2EoIqaqm7doP7DSlrRDCtEas2Mut54nygadnnydMlHgY-c3m_ip9ffAPNXdhtw9FgfyJgKcw01DtJ0jlfZgdePoFmYLnEcsPlmMMkU_0c6r2GMu9A--Qgw8DLskz5YkOu2pR9pAzRsJ0zt6PMCf8-GefsR9X3x43N9Xd9-vbzeVd5ZTUudIAY98oJxtnoNE4mAvXCQ1tjwZMo0tx0SsJQ2NAYoe9rpUR49C1sjFOozpj5pjrYkgp4mj3kXYQn60UdoFpt_YNpl1g2iPM4vzyl9NR_l08R6D5P_yXRz-Wek-E0SZHWMgMFIveDoH-mfEKbZKbNw
CitedBy_id crossref_primary_10_1016_j_surfcoat_2024_130622
crossref_primary_10_1016_j_diamond_2024_111146
crossref_primary_10_1039_D4QI01221F
crossref_primary_10_1016_j_electacta_2024_143823
crossref_primary_10_1021_acs_langmuir_4c01760
crossref_primary_10_1021_acs_nanolett_4c01641
crossref_primary_10_1016_j_diamond_2024_110936
Cites_doi 10.1016/j.colsurfa.2018.07.023
10.1016/j.electacta.2021.137936
10.1016/j.jechem.2022.01.021
10.1021/acsami.1c18268
10.1016/j.jelechem.2022.117098
10.1016/j.jcis.2021.01.079
10.1016/j.apsusc.2022.154938
10.1039/b904116h
10.1016/j.jallcom.2021.163029
10.1016/j.carbon.2020.12.010
10.1016/j.jpowsour.2013.03.048
10.1016/j.electacta.2019.04.019
10.1016/j.electacta.2020.136369
10.1016/j.jmst.2020.12.068
10.1016/j.electacta.2022.141453
10.1021/acs.energyfuels.2c00115
10.1016/j.apsusc.2014.10.107
10.1016/j.est.2022.106358
10.1016/j.ceramint.2018.12.190
10.1016/j.apsusc.2023.156673
10.1016/j.jallcom.2017.11.389
10.1021/am200933m
10.1016/j.electacta.2022.141725
10.1016/j.jcis.2020.03.063
10.1016/j.ensm.2022.06.047
10.1016/j.cej.2019.123722
10.1016/j.synthmet.2016.03.027
10.1039/D1DT00275A
10.1021/acs.langmuir.2c00912
10.1021/nn5027388
10.1021/acsami.5b07044
10.1016/j.cej.2023.141629
10.1016/j.jallcom.2020.154192
10.1016/j.electacta.2020.136730
10.1039/C7TA01936J
10.1039/C8DT03834A
10.1039/C7NR05556K
10.1016/j.ensm.2021.04.009
10.1002/smll.201700656
10.1016/j.jallcom.2020.153686
10.1016/j.carbon.2010.08.052
10.1002/smll.202102349
10.1016/j.jallcom.2022.167620
10.1016/j.materresbull.2013.09.005
10.1016/j.apsusc.2022.154633
10.1016/j.ijhydene.2010.12.139
10.1016/j.matlet.2021.129877
10.1016/j.electacta.2022.140898
10.1016/j.cej.2023.142289
10.1039/C8TA02695E
10.1016/j.jelechem.2021.115947
10.1016/j.electacta.2010.12.108
10.1002/adfm.202007419
10.1016/j.electacta.2022.141590
10.1016/j.nanoen.2016.12.051
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.electacta.2023.143255
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
ExternalDocumentID 10_1016_j_electacta_2023_143255
S0013468623014275
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
RIG
SC5
SCB
SCH
SSH
T9H
VH1
WUQ
XOL
ZY4
ID FETCH-LOGICAL-c315t-5aafb43c14c7a45ed79c805a6be7a7451430b31ad47a1e8eb52370fd86147c5e3
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Tue Jul 01 03:58:20 EDT 2025
Thu Apr 24 23:05:52 EDT 2025
Fri Feb 23 02:34:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion batteries
Tin disulfide
Helical carbon nanofibers
Electrochemical performance
In-situ sulphuration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-5aafb43c14c7a45ed79c805a6be7a7451430b31ad47a1e8eb52370fd86147c5e3
ORCID 0000-0002-5282-3725
0000-0002-6130-4513
ParticipantIDs crossref_primary_10_1016_j_electacta_2023_143255
crossref_citationtrail_10_1016_j_electacta_2023_143255
elsevier_sciencedirect_doi_10_1016_j_electacta_2023_143255
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-20
PublicationDateYYYYMMDD 2023-11-20
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-20
  day: 20
PublicationDecade 2020
PublicationTitle Electrochimica acta
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tang, Wan, Zhang, Cheng, Zhang, Li (bib0053) 2022; 38
Zhao, Fan, Zhang, Ma, Du, Yan, Li, Jiang (bib0006) 2020; 390
Sun, Goktas, Zhao, Adelhelm, Han (bib0009) 2020; 572
Huu, Le, Nguyen, Thi, Vo, Im (bib0048) 2021; 549
Ma, Yang, Xu, Che, Li, Liu, Chen, Zhang, Liu, Wu, Wang, Li (bib0002) 2022; 428
Ji, Zhou, Fu, Cao, Yang, Huang, Lin, Zhang, Liu, Guo, Fang, Xue, Tang (bib0007) 2020; 828
Liu, Li, Zai, Jin, Zhan, Huang, Tie, Qi, Qian (bib0036) 2019; 48
Landi, Ganter, Cress, DiLeo, Raffaelle (bib0026) 2009; 2
Zhang, Cao, Wu, Cheng, Kang, Xu (bib0043) 2020; 392
Chavez, Lodge, Alcoutlabi (bib0004) 2021; 266
Lei, Fan, Jia, Wu, Zhong, Wang (bib0012) 2022; 606
Jin, Chen, Fu, Li, Zhang, Gong (bib0029) 2015; 324
Gaber, Attia, Salem, Mohamed, Hout (bib0042) 2023; 59
Yang, He, Hou, Wang, Ren, Lei, Meng, Zhao (bib0051) 2022; 904
Din, Li, Zhang, Han, Li (bib0013) 2021; 21
Tan, Bao, Kong, Zheng, Xu, Hu, Liu, Wang, Xu (bib0020) 2021; 590
X. Y. Wang, X. F. Zhou, K. Yao, J. G. Zhang, Z. P. Liu. A SnO2/graphene composite as a high stability electrode for lithium ion batteries, Carbon 49 (1) 133–139, https://doi.org/10.1016/j.carbon.2010.08.052.
Zhao, Ma, Zheng, Yue, Xu, Wang, Luo, Zheng, Sun, Alshehri, Sun, Tang (bib0017) 2023; 459
Li, Qing, Emori, Su, Zhao, Chen, Yu, Lin (bib0024) 2022; 36
Wang, Wen, Wang, Yang, Jiang (bib0054) 2021; 17
Shang, Fan, Chen, Dong, Wang (bib0003) 2023; 933
Qing, Liu, Jin, Chen, Min (bib0027) 2021; 50
Glibo, Eshraghi, Surace, Mautner, Flandorfer, Cupid (bib0001) 2023; 441
L. Zhan, X. S. Zhou, J. Luo, X. M. Ning. Binder-free multilayered SnO2/graphene on Ni foam as a high-performance lithium ion batteries anode, Ceram. Int, 45 (6) 6931–6936, https://doi.org/10.1016/j.ceramint.2018.12.190.
Cheng, Huang, Qi, Cao, Yang, Xi, Luo, Yanagisawa, Li (bib0035) 2017; 13
Cupid, Rezqita, Glibo, Artner, Bauer, Hamid, Jahn, Flandorfer (bib0047) 2021; 375
Xiao, Zhao, Liu, Wang, Sui, Tan (bib0050) 2021; 296
Tang, Wang, Chen, Wang, Wang, Mao (bib0023) 2021; 174
Zhai, Du, Zhang, Yu, Yang (bib0058) 2011; 3
Gao, Zhang, Wang, Chen, Huang, Ma, Liu, Yu (bib0037) 2017; 32
Jin, Zhang, Qing, Chen, Zeng, Huang (bib0052) 2023; 929
Cheng, Huang, Qi, Cao, Luo, Li, Xu, Yang (bib0038) 2017; 9
Xu, Zhang, Sun, Zhou, Liu, Qiu, Wang, Yang, Zeng, Peng, Guo (bib0056) 2021; 33
Balogun, Qiu, Jian, Huang, Luo, Yang, Liang, Lu, Tong (bib0033) 2015; 7
Liu, Liu, Zhang (bib0005) 2023; 437
Zhang, Zhao, Wu, Yue, Mi (bib0031) 2018; 737
Li, Yan, Lin, Dai, Qu (bib0059) 2016; 217
Wu, Yang, Pu, Gao, Meng, Yang, Zhao (bib0040) 2020; 822
Wang, Yuan, Zhao, Wang, Zhu, Ma, Cao (bib0041) 2019; 308
Zuo, Xu, Zhang, Li, Du, Wang, Han, Arbiol, Llorca, Liu, Cabot (bib0049) 2020; 349
Deng, Luo, Conrad, Liu, Gong, Najmaei, Ajayan, Lou, Xu, Ye (bib0015) 2014; 8
Tomboc, Wang, Wang, Li, Lee (bib0014) 2021; 39
Lv, Tong, Wu, Gao, Zhou, Pan, Zhang, Zhou, Liao, Zhou, Sun, Li (bib0022) 2022; 51
Sun, Ahmad, Luo, Shi, Shen, Zhu (bib0060) 2014; 214
Song, Wang, Chen, Lu, Wen (bib0021) 2023; 463
Wang, Hao, Liu, Huang, Yu (bib0057) 2011; 56
Zhao, Song, Ding, Li, Wang, Jiang, Zhang (bib0016) 2020; 354
Wei, Wang, Zhuo, Ni, Wang, Ma (bib0008) 2018; 6
Liu, Hu, Chen, Hu, Jiang, Li (bib0010) 2022; 69
Wang, Li, Li, Li, Butenko, Milinevsky, Li, Han (bib0019) 2022; 605
Hu, Wang, Chang, Yang, Hu, Cao, Lu, Zhang, Ye (bib0018) 2021; 84
Wang, Zhang, Chen, Sun, Wang, Hou, Hu, Gao, Zhang (bib0032) 2022; 897
Raghubanshi, Hudson, Srivastava (bib0028) 2011; 36
Jiang, Yang, Zhu, Shen, Fan, Li (bib0034) 2013; 237
Liu, Wang, Lou, Zhou, Zhang, Yu, Zhang, Henkelman, Tang, Sun (bib0011) 2023; 618
Yuan, Hao, Zhang, Li (bib0030) 2018; 555
Liu, Chang, Sun, Guo, Cao, Ma, Liu, Liu, Fu, Liu, He (bib0046) 2022; 14
Hou, Chen, Qin, Guan, Wang, Zeng, Zhao (bib0025) 2023; 439
Tian, Lu, Yin, Li, Zhang, Song, Tan, Yao (bib0055) 2021; 31
Qin, Zhao, Shi, Liu, He, Ma, Li, Li, He (bib0045) 2017; 5
Qing (10.1016/j.electacta.2023.143255_bib0027) 2021; 50
Raghubanshi (10.1016/j.electacta.2023.143255_bib0028) 2011; 36
Gao (10.1016/j.electacta.2023.143255_bib0037) 2017; 32
Tang (10.1016/j.electacta.2023.143255_bib0053) 2022; 38
Tan (10.1016/j.electacta.2023.143255_bib0020) 2021; 590
Sun (10.1016/j.electacta.2023.143255_bib0060) 2014; 214
Liu (10.1016/j.electacta.2023.143255_bib0011) 2023; 618
Din (10.1016/j.electacta.2023.143255_bib0013) 2021; 21
Landi (10.1016/j.electacta.2023.143255_bib0026) 2009; 2
Li (10.1016/j.electacta.2023.143255_bib0024) 2022; 36
Tian (10.1016/j.electacta.2023.143255_bib0055) 2021; 31
Wang (10.1016/j.electacta.2023.143255_bib0041) 2019; 308
Xiao (10.1016/j.electacta.2023.143255_bib0050) 2021; 296
Liu (10.1016/j.electacta.2023.143255_bib0005) 2023; 437
Lv (10.1016/j.electacta.2023.143255_bib0022) 2022; 51
Cheng (10.1016/j.electacta.2023.143255_bib0035) 2017; 13
Liu (10.1016/j.electacta.2023.143255_bib0010) 2022; 69
Ji (10.1016/j.electacta.2023.143255_bib0007) 2020; 828
Liu (10.1016/j.electacta.2023.143255_bib0036) 2019; 48
Zhao (10.1016/j.electacta.2023.143255_bib0017) 2023; 459
Liu (10.1016/j.electacta.2023.143255_bib0046) 2022; 14
Wang (10.1016/j.electacta.2023.143255_bib0054) 2021; 17
Ma (10.1016/j.electacta.2023.143255_bib0002) 2022; 428
Wang (10.1016/j.electacta.2023.143255_bib0057) 2011; 56
Deng (10.1016/j.electacta.2023.143255_bib0015) 2014; 8
Xu (10.1016/j.electacta.2023.143255_bib0056) 2021; 33
Lei (10.1016/j.electacta.2023.143255_bib0012) 2022; 606
Cheng (10.1016/j.electacta.2023.143255_bib0038) 2017; 9
Huu (10.1016/j.electacta.2023.143255_bib0048) 2021; 549
Tomboc (10.1016/j.electacta.2023.143255_bib0014) 2021; 39
Yang (10.1016/j.electacta.2023.143255_bib0051) 2022; 904
Balogun (10.1016/j.electacta.2023.143255_bib0033) 2015; 7
Gaber (10.1016/j.electacta.2023.143255_bib0042) 2023; 59
Wang (10.1016/j.electacta.2023.143255_bib0019) 2022; 605
Song (10.1016/j.electacta.2023.143255_bib0021) 2023; 463
Hou (10.1016/j.electacta.2023.143255_bib0025) 2023; 439
Glibo (10.1016/j.electacta.2023.143255_bib0001) 2023; 441
Wei (10.1016/j.electacta.2023.143255_bib0008) 2018; 6
Jin (10.1016/j.electacta.2023.143255_bib0052) 2023; 929
Zhai (10.1016/j.electacta.2023.143255_bib0058) 2011; 3
Shang (10.1016/j.electacta.2023.143255_bib0003) 2023; 933
Yuan (10.1016/j.electacta.2023.143255_bib0030) 2018; 555
Zhang (10.1016/j.electacta.2023.143255_bib0043) 2020; 392
Hu (10.1016/j.electacta.2023.143255_bib0018) 2021; 84
Qin (10.1016/j.electacta.2023.143255_bib0045) 2017; 5
Cupid (10.1016/j.electacta.2023.143255_bib0047) 2021; 375
Tang (10.1016/j.electacta.2023.143255_bib0023) 2021; 174
Jiang (10.1016/j.electacta.2023.143255_bib0034) 2013; 237
10.1016/j.electacta.2023.143255_bib0044
Wang (10.1016/j.electacta.2023.143255_bib0032) 2022; 897
Zuo (10.1016/j.electacta.2023.143255_bib0049) 2020; 349
Zhang (10.1016/j.electacta.2023.143255_bib0031) 2018; 737
Jin (10.1016/j.electacta.2023.143255_bib0029) 2015; 324
Zhao (10.1016/j.electacta.2023.143255_bib0006) 2020; 390
Sun (10.1016/j.electacta.2023.143255_bib0009) 2020; 572
Zhao (10.1016/j.electacta.2023.143255_bib0016) 2020; 354
10.1016/j.electacta.2023.143255_bib0039
Wu (10.1016/j.electacta.2023.143255_bib0040) 2020; 822
Li (10.1016/j.electacta.2023.143255_bib0059) 2016; 217
Chavez (10.1016/j.electacta.2023.143255_bib0004) 2021; 266
References_xml – volume: 308
  start-page: 174
  year: 2019
  end-page: 184
  ident: bib0041
  article-title: Supported SnS
  publication-title: Electrochim. Acta
– volume: 441
  year: 2023
  ident: bib0001
  article-title: Comparative study of electrochemical properties of SnS and SnS
  publication-title: Electrochim. Acta
– volume: 439
  year: 2023
  ident: bib0025
  article-title: Constructing hierarchical SnS
  publication-title: Electrochim. Acta
– volume: 59
  year: 2023
  ident: bib0042
  article-title: Microwave-assisted fabrication of SnO
  publication-title: J. Energy Storage
– volume: 904
  year: 2022
  ident: bib0051
  article-title: In-situ growth engineering of nano-sheets SnS
  publication-title: J. Electroanal. Chem
– volume: 933
  year: 2023
  ident: bib0003
  article-title: Synergism between nitrogen vacancies and a unique electrons transfer pathway of Ag modified S-scheme g-C
  publication-title: J. Alloys Compd
– volume: 13
  year: 2017
  ident: bib0035
  article-title: Adjusting the chemical bonding of SnO
  publication-title: Small
– volume: 929
  year: 2023
  ident: bib0052
  article-title: Constructing 3D sandwich-like carbon coated Fe
  publication-title: J. Electroanal. Chem
– volume: 590
  start-page: 580
  year: 2021
  end-page: 590
  ident: bib0020
  article-title: Hierarchical goethite nanoparticle and tin dioxide quantum dot anchored on reduced graphene oxide for long life and high rate lithium-ion storage
  publication-title: J. Colloid Interface Sci
– volume: 375
  year: 2021
  ident: bib0047
  article-title: Understanding and modelling the thermodynamics and electrochemistry of lithiation of tin (IV) sulfide as an anode active material for lithium ion batteries
  publication-title: Electrochim. Acta
– volume: 463
  year: 2023
  ident: bib0021
  article-title: In situ three-dimensional cross-linked carbon nanotube-interspersed SnSb@CNF as freestanding anode for long-term cycling sodium-ion batteries
  publication-title: Chem. Eng. J
– volume: 36
  start-page: 4957
  year: 2022
  end-page: 4966
  ident: bib0024
  article-title: Ultrafine SnO
  publication-title: Energ. Fuel
– volume: 31
  year: 2021
  ident: bib0055
  article-title: Multiscale designed niobium titanium oxide anode for fast charging lithium ion batteries
  publication-title: Adv. Funct. Mater
– volume: 2
  start-page: 638
  year: 2009
  end-page: 654
  ident: bib0026
  article-title: Carbon nanotubes for lithium ion batteries
  publication-title: Energy Environ. Sci
– volume: 349
  year: 2020
  ident: bib0049
  article-title: SnS
  publication-title: Electrochim. Acta
– volume: 737
  start-page: 92
  year: 2018
  end-page: 98
  ident: bib0031
  article-title: One-pot solvothermal synthesis 2D SnS
  publication-title: J. Alloys Compd
– volume: 32
  start-page: 302
  year: 2017
  end-page: 309
  ident: bib0037
  article-title: In situ atomic-scale observation of reversible sodium ions migration in layered metal dichalcogenide SnS
  publication-title: Nano Energy
– volume: 3
  start-page: 4067
  year: 2011
  end-page: 4074
  ident: bib0058
  article-title: Multiwalled carbon nanotubes anchored with SnS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 23205
  year: 2015
  end-page: 23215
  ident: bib0033
  article-title: Vanadium nitride nanowire supported SnS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 555
  start-page: 795
  year: 2018
  end-page: 801
  ident: bib0030
  article-title: Sandwiched CNT@SnO
  publication-title: Colloid Surface A
– volume: 174
  start-page: 98
  year: 2021
  end-page: 109
  ident: bib0023
  article-title: PVP-assisted synthesis of g–C
  publication-title: Carbon
– volume: 6
  start-page: 12185
  year: 2018
  end-page: 12214
  ident: bib0008
  article-title: Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 56
  start-page: 4065
  year: 2011
  end-page: 4069
  ident: bib0057
  article-title: A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries
  publication-title: Electrochim. Acta
– volume: 828
  year: 2020
  ident: bib0007
  article-title: Enhanced Li
  publication-title: J. Alloys Compd
– volume: 38
  start-page: 7331
  year: 2022
  end-page: 7340
  ident: bib0053
  article-title: Microporous carbon nanospheres with fast sodium storage capability enabled by dominant capacitive behavior
  publication-title: Langmuir
– volume: 354
  year: 2020
  ident: bib0016
  article-title: Size-tunable SnS
  publication-title: Electrochim. Acta
– volume: 549
  year: 2021
  ident: bib0048
  article-title: Facile synthesis of SnS
  publication-title: Appl. Surf. Sci
– volume: 618
  year: 2023
  ident: bib0011
  article-title: Simple construction and reversible sequential evolution mechanism of nitrogen-doped mesoporous carbon/SnS
  publication-title: Appl. Surf. Sci
– volume: 69
  start-page: 450
  year: 2022
  end-page: 455
  ident: bib0010
  article-title: Confining ultrahigh oxygen vacancy SnO
  publication-title: J. Energy Chem
– volume: 14
  start-page: 11739
  year: 2022
  end-page: 11749
  ident: bib0046
  article-title: Sheet- like stacking SnS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 390
  year: 2020
  ident: bib0006
  article-title: Simple electrodeposition of MoO
  publication-title: Chem. Eng. J
– reference: L. Zhan, X. S. Zhou, J. Luo, X. M. Ning. Binder-free multilayered SnO2/graphene on Ni foam as a high-performance lithium ion batteries anode, Ceram. Int, 45 (6) 6931–6936, https://doi.org/10.1016/j.ceramint.2018.12.190.
– volume: 237
  start-page: 178
  year: 2013
  end-page: 186
  ident: bib0034
  article-title: In situ assembly of graphene sheets-supported SnS
  publication-title: J. Power Sources
– volume: 21
  year: 2021
  ident: bib0013
  article-title: Recent progress and challenges on the bismuth-based anode for sodium-ion batteries and potassium-ion batteries
  publication-title: Mater. Today Phys
– volume: 5
  start-page: 10946
  year: 2017
  end-page: 10956
  ident: bib0045
  article-title: Sandwiched C@SnO
  publication-title: J. Mater. Chem. A
– volume: 217
  start-page: 138
  year: 2016
  end-page: 143
  ident: bib0059
  article-title: Preparation and lithium ion batteries properties of SnS
  publication-title: Synth. Met
– volume: 17
  year: 2021
  ident: bib0054
  article-title: MOF-derived Fe
  publication-title: Small
– volume: 214
  start-page: 319
  year: 2014
  end-page: 324
  ident: bib0060
  article-title: SnS
  publication-title: Mater. Res. Bull
– volume: 51
  start-page: 361
  year: 2022
  end-page: 371
  ident: bib0022
  article-title: Disposing of excessive decomposition and destructive intercalation of solvated Li
  publication-title: Energy Storage Mater
– volume: 437
  year: 2023
  ident: bib0005
  article-title: Synergy of multi-means to improve SnO
  publication-title: Electrochim. Acta
– volume: 296
  year: 2021
  ident: bib0050
  article-title: Synthesis of hexahedron SnS
  publication-title: Mater. Lett
– volume: 50
  start-page: 5819
  year: 2021
  end-page: 5827
  ident: bib0027
  article-title: Helical carbon nanofibers modified with Fe
  publication-title: Dalton Trans
– volume: 605
  year: 2022
  ident: bib0019
  article-title: Bioconfined SnS
  publication-title: Appl. Surf. Sci
– volume: 392
  year: 2020
  ident: bib0043
  article-title: Phase transformation and sulfur vacancy modulation of 2D layered tin sulfide nanoplates as highly durable anodes for pseudocapacitive lithium storage
  publication-title: Chem. Eng. J
– volume: 9
  start-page: 18681
  year: 2017
  end-page: 18689
  ident: bib0038
  article-title: Controlling the Sn–C bonds content in SnO
  publication-title: Nanoscale
– volume: 897
  year: 2022
  ident: bib0032
  article-title: High-capacity and cycling-stable anode for sodium ion batteries constructed from SnS
  publication-title: J. Alloys Compd
– volume: 48
  start-page: 833
  year: 2019
  end-page: 838
  ident: bib0036
  article-title: Flower-like SnS
  publication-title: Dalton Trans
– volume: 266
  year: 2021
  ident: bib0004
  article-title: Recent developments in centrifugally spun composite fibers and their performance as anode materials for lithium-ion and sodium-ion batteries
  publication-title: Mater. Sci. Eng. B-Adv
– reference: X. Y. Wang, X. F. Zhou, K. Yao, J. G. Zhang, Z. P. Liu. A SnO2/graphene composite as a high stability electrode for lithium ion batteries, Carbon 49 (1) 133–139, https://doi.org/10.1016/j.carbon.2010.08.052.
– volume: 572
  start-page: 122
  year: 2020
  end-page: 132
  ident: bib0009
  article-title: Ultrafine SnO
  publication-title: J. Colloid Interface Sci
– volume: 8
  start-page: 8292
  year: 2014
  end-page: 8299
  ident: bib0015
  article-title: Black phosphorus–monolayer MoS
  publication-title: ACS Nano
– volume: 84
  start-page: 191
  year: 2021
  end-page: 199
  ident: bib0018
  article-title: Effects of annealing temperature on electrochemical performance of SnS
  publication-title: J. Mater. Sci. Technol
– volume: 33
  year: 2021
  ident: bib0056
  article-title: Orthorhombic cobalt ditelluride with Te vacancy defects anchoring on elastic MXene enables efficient potassium-ion storage
  publication-title: Adv. Mater.
– volume: 428
  year: 2022
  ident: bib0002
  article-title: Nitrogen-doped porous carbon embedded Sn/SnO nanoparticles as high-performance lithium-ion battery anode
  publication-title: Electrochim. Acta
– volume: 39
  start-page: 21
  year: 2021
  end-page: 44
  ident: bib0014
  article-title: Sn-based metal oxides and sulfides anode materials for Na ion battery
  publication-title: Energy Storage Mater
– volume: 36
  start-page: 4482
  year: 2011
  end-page: 4490
  ident: bib0028
  article-title: Synthesis of helical carbon nanofibres and its application in hydrogen desorption
  publication-title: Int. J. Hydrogen Energy
– volume: 324
  start-page: 438
  year: 2015
  end-page: 442
  ident: bib0029
  article-title: Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition
  publication-title: Appl. Surf. Sci
– volume: 822
  year: 2020
  ident: bib0040
  article-title: SnS
  publication-title: J. Alloys Compd
– volume: 606
  year: 2022
  ident: bib0012
  article-title: Ultrafast charge-transfer at interfaces between 2D graphitic carbon nitride thin film and carbon fiber towards enhanced photocatalytic hydrogen evolution
  publication-title: Appl. Surf. Sci
– volume: 459
  year: 2023
  ident: bib0017
  article-title: Hierarchical wormlike engineering: self-assembled SnS
  publication-title: Chem. Eng. J
– volume: 555
  start-page: 795
  year: 2018
  ident: 10.1016/j.electacta.2023.143255_bib0030
  article-title: Sandwiched CNT@SnO2@PPy nanocomposites enhancing sodium storage
  publication-title: Colloid Surface A
  doi: 10.1016/j.colsurfa.2018.07.023
– volume: 375
  year: 2021
  ident: 10.1016/j.electacta.2023.143255_bib0047
  article-title: Understanding and modelling the thermodynamics and electrochemistry of lithiation of tin (IV) sulfide as an anode active material for lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.137936
– volume: 69
  start-page: 450
  year: 2022
  ident: 10.1016/j.electacta.2023.143255_bib0010
  article-title: Confining ultrahigh oxygen vacancy SnO2 nanocrystals into nitrogen-doped carbon for enhanced Li-ion storage kinetics and reversibility
  publication-title: J. Energy Chem
  doi: 10.1016/j.jechem.2022.01.021
– volume: 14
  start-page: 11739
  issue: 9
  year: 2022
  ident: 10.1016/j.electacta.2023.143255_bib0046
  article-title: Sheet- like stacking SnS2/rGO heterostructures as ultrastable anodes for lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c18268
– volume: 549
  year: 2021
  ident: 10.1016/j.electacta.2023.143255_bib0048
  article-title: Facile synthesis of SnS2@g-C3N4 composites as high performance anodes for lithium ion batteries
  publication-title: Appl. Surf. Sci
– volume: 929
  year: 2023
  ident: 10.1016/j.electacta.2023.143255_bib0052
  article-title: Constructing 3D sandwich-like carbon coated Fe2O3/helical carbon nanofibers composite as a superior lithium-ion batteries anode
  publication-title: J. Electroanal. Chem
  doi: 10.1016/j.jelechem.2022.117098
– volume: 590
  start-page: 580
  year: 2021
  ident: 10.1016/j.electacta.2023.143255_bib0020
  article-title: Hierarchical goethite nanoparticle and tin dioxide quantum dot anchored on reduced graphene oxide for long life and high rate lithium-ion storage
  publication-title: J. Colloid Interface Sci
  doi: 10.1016/j.jcis.2021.01.079
– volume: 606
  year: 2022
  ident: 10.1016/j.electacta.2023.143255_bib0012
  article-title: Ultrafast charge-transfer at interfaces between 2D graphitic carbon nitride thin film and carbon fiber towards enhanced photocatalytic hydrogen evolution
  publication-title: Appl. Surf. Sci
  doi: 10.1016/j.apsusc.2022.154938
– volume: 2
  start-page: 638
  year: 2009
  ident: 10.1016/j.electacta.2023.143255_bib0026
  article-title: Carbon nanotubes for lithium ion batteries
  publication-title: Energy Environ. Sci
  doi: 10.1039/b904116h
– volume: 897
  year: 2022
  ident: 10.1016/j.electacta.2023.143255_bib0032
  article-title: High-capacity and cycling-stable anode for sodium ion batteries constructed from SnS2/MWCNTs nanocomposites
  publication-title: J. Alloys Compd
  doi: 10.1016/j.jallcom.2021.163029
– volume: 266
  year: 2021
  ident: 10.1016/j.electacta.2023.143255_bib0004
  article-title: Recent developments in centrifugally spun composite fibers and their performance as anode materials for lithium-ion and sodium-ion batteries
  publication-title: Mater. Sci. Eng. B-Adv
– volume: 174
  start-page: 98
  year: 2021
  ident: 10.1016/j.electacta.2023.143255_bib0023
  article-title: PVP-assisted synthesis of g–C3N4–derived N-doped graphene with tunable interplanar spacing as high-performance lithium/sodium ions battery anodes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.12.010
– volume: 237
  start-page: 178
  year: 2013
  ident: 10.1016/j.electacta.2023.143255_bib0034
  article-title: In situ assembly of graphene sheets-supported SnS2 nanoplates into 3D macroporous aerogels for high-performance lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.03.048
– volume: 308
  start-page: 174
  year: 2019
  ident: 10.1016/j.electacta.2023.143255_bib0041
  article-title: Supported SnS2 nanosheet array as binder-free anode for sodium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.04.019
– volume: 349
  year: 2020
  ident: 10.1016/j.electacta.2023.143255_bib0049
  article-title: SnS2/g-C3N4/graphite nanocomposites as durable lithium-ion battery anode with high pseudocapacitance contribution
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136369
– volume: 84
  start-page: 191
  year: 2021
  ident: 10.1016/j.electacta.2023.143255_bib0018
  article-title: Effects of annealing temperature on electrochemical performance of SnSx embedded in hierarchical porous carbon with N-carbon coating by in-situ structural phase transformation as anodes for lithium ion batteries
  publication-title: J. Mater. Sci. Technol
  doi: 10.1016/j.jmst.2020.12.068
– volume: 437
  year: 2023
  ident: 10.1016/j.electacta.2023.143255_bib0005
  article-title: Synergy of multi-means to improve SnO2 lithium storage performance achieved by one-pot solvothermal method
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.141453
– volume: 36
  start-page: 4957
  issue: 9
  year: 2022
  ident: 10.1016/j.electacta.2023.143255_bib0024
  article-title: Ultrafine SnO2 nanoparticles decorated on N-doped highly structurally connected carbon nanospheres as anode materials for high-performance sodium-ion batteries
  publication-title: Energ. Fuel
  doi: 10.1021/acs.energyfuels.2c00115
– volume: 324
  start-page: 438
  year: 2015
  ident: 10.1016/j.electacta.2023.143255_bib0029
  article-title: Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition
  publication-title: Appl. Surf. Sci
  doi: 10.1016/j.apsusc.2014.10.107
– volume: 59
  year: 2023
  ident: 10.1016/j.electacta.2023.143255_bib0042
  article-title: Microwave-assisted fabrication of SnO2 nanostructures as electrode for high-performance pseudocapacitors
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.106358
– volume: 33
  year: 2021
  ident: 10.1016/j.electacta.2023.143255_bib0056
  article-title: Orthorhombic cobalt ditelluride with Te vacancy defects anchoring on elastic MXene enables efficient potassium-ion storage
  publication-title: Adv. Mater.
– ident: 10.1016/j.electacta.2023.143255_bib0039
  doi: 10.1016/j.ceramint.2018.12.190
– volume: 618
  year: 2023
  ident: 10.1016/j.electacta.2023.143255_bib0011
  article-title: Simple construction and reversible sequential evolution mechanism of nitrogen-doped mesoporous carbon/SnS2 nanosheets in lithium-ion batteries
  publication-title: Appl. Surf. Sci
  doi: 10.1016/j.apsusc.2023.156673
– volume: 737
  start-page: 92
  year: 2018
  ident: 10.1016/j.electacta.2023.143255_bib0031
  article-title: One-pot solvothermal synthesis 2D SnS2/CNTs hybrid as a superior anode material for sodium-ion batteries
  publication-title: J. Alloys Compd
  doi: 10.1016/j.jallcom.2017.11.389
– volume: 3
  start-page: 4067
  issue: 10
  year: 2011
  ident: 10.1016/j.electacta.2023.143255_bib0058
  article-title: Multiwalled carbon nanotubes anchored with SnS2 nanosheets as high-performance anode materials of lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am200933m
– volume: 441
  year: 2023
  ident: 10.1016/j.electacta.2023.143255_bib0001
  article-title: Comparative study of electrochemical properties of SnS and SnS2 as anode materials in lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.141725
– volume: 572
  start-page: 122
  year: 2020
  ident: 10.1016/j.electacta.2023.143255_bib0009
  article-title: Ultrafine SnO2 nanoparticles anchored on N, P-doped porous carbon as anodes for high performance lithium-ion and sodium-ion batteries
  publication-title: J. Colloid Interface Sci
  doi: 10.1016/j.jcis.2020.03.063
– volume: 51
  start-page: 361
  year: 2022
  ident: 10.1016/j.electacta.2023.143255_bib0022
  article-title: Disposing of excessive decomposition and destructive intercalation of solvated Li+ in CNT-based flexible 3D Si anode of flexible battery
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2022.06.047
– volume: 392
  year: 2020
  ident: 10.1016/j.electacta.2023.143255_bib0043
  article-title: Phase transformation and sulfur vacancy modulation of 2D layered tin sulfide nanoplates as highly durable anodes for pseudocapacitive lithium storage
  publication-title: Chem. Eng. J
  doi: 10.1016/j.cej.2019.123722
– volume: 217
  start-page: 138
  year: 2016
  ident: 10.1016/j.electacta.2023.143255_bib0059
  article-title: Preparation and lithium ion batteries properties of SnS2 nanoparticle/reduced graphene oxide nanosheet nanocomposites using supercritical carbon dioxide
  publication-title: Synth. Met
  doi: 10.1016/j.synthmet.2016.03.027
– volume: 50
  start-page: 5819
  issue: 17
  year: 2021
  ident: 10.1016/j.electacta.2023.143255_bib0027
  article-title: Helical carbon nanofibers modified with Fe2O3 as a high performance anode material for lithium-ion batteries
  publication-title: Dalton Trans
  doi: 10.1039/D1DT00275A
– volume: 38
  start-page: 7331
  issue: 23
  year: 2022
  ident: 10.1016/j.electacta.2023.143255_bib0053
  article-title: Microporous carbon nanospheres with fast sodium storage capability enabled by dominant capacitive behavior
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.2c00912
– volume: 8
  start-page: 8292
  issue: 8
  year: 2014
  ident: 10.1016/j.electacta.2023.143255_bib0015
  article-title: Black phosphorus–monolayer MoS2 van der waals heterojunction p–n diode
  publication-title: ACS Nano
  doi: 10.1021/nn5027388
– volume: 7
  start-page: 23205
  issue: 41
  year: 2015
  ident: 10.1016/j.electacta.2023.143255_bib0033
  article-title: Vanadium nitride nanowire supported SnS2 nanosheets with high reversible capacity as anode material for lithium ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07044
– volume: 459
  year: 2023
  ident: 10.1016/j.electacta.2023.143255_bib0017
  article-title: Hierarchical wormlike engineering: self-assembled SnS2 nanoflake arrays decorated on hexagonal FeS2@C nano-spindles enables stable and fast sodium storage
  publication-title: Chem. Eng. J
  doi: 10.1016/j.cej.2023.141629
– volume: 828
  year: 2020
  ident: 10.1016/j.electacta.2023.143255_bib0007
  article-title: Enhanced Li+ storage through highly hybridized networks of self-assembled SnS2/rGO aerogels
  publication-title: J. Alloys Compd
  doi: 10.1016/j.jallcom.2020.154192
– volume: 354
  year: 2020
  ident: 10.1016/j.electacta.2023.143255_bib0016
  article-title: Size-tunable SnS2 nanoparticles assembled on graphene as anodes for high performance lithium/sodium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136730
– volume: 5
  start-page: 10946
  year: 2017
  ident: 10.1016/j.electacta.2023.143255_bib0045
  article-title: Sandwiched C@SnO2@C hollow nanostructures as an ultralong-lifespan high-rate anode material for lithium-ion and sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01936J
– volume: 48
  start-page: 833
  year: 2019
  ident: 10.1016/j.electacta.2023.143255_bib0036
  article-title: Flower-like SnS2 composite with 3D pyrolyzed bacterial cellulose as the anode for lithium-ion batteries with ultralong cycle life and superior rate capability
  publication-title: Dalton Trans
  doi: 10.1039/C8DT03834A
– volume: 9
  start-page: 18681
  year: 2017
  ident: 10.1016/j.electacta.2023.143255_bib0038
  article-title: Controlling the Sn–C bonds content in SnO2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics
  publication-title: Nanoscale
  doi: 10.1039/C7NR05556K
– volume: 39
  start-page: 21
  year: 2021
  ident: 10.1016/j.electacta.2023.143255_bib0014
  article-title: Sn-based metal oxides and sulfides anode materials for Na ion battery
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2021.04.009
– volume: 13
  issue: 31
  year: 2017
  ident: 10.1016/j.electacta.2023.143255_bib0035
  article-title: Adjusting the chemical bonding of SnO2@CNT composite for enhanced conversion reaction kinetics
  publication-title: Small
  doi: 10.1002/smll.201700656
– volume: 390
  issue: 15
  year: 2020
  ident: 10.1016/j.electacta.2023.143255_bib0006
  article-title: Simple electrodeposition of MoO3 film on carbon cloth for high-performance aqueous symmetric supercapacitors
  publication-title: Chem. Eng. J
– volume: 822
  year: 2020
  ident: 10.1016/j.electacta.2023.143255_bib0040
  article-title: SnS2 nanoparticle-integrated graphene nanosheets as high-performance and cycle-stable anodes for lithium and sodium storage
  publication-title: J. Alloys Compd
  doi: 10.1016/j.jallcom.2020.153686
– ident: 10.1016/j.electacta.2023.143255_bib0044
  doi: 10.1016/j.carbon.2010.08.052
– volume: 17
  issue: 38
  year: 2021
  ident: 10.1016/j.electacta.2023.143255_bib0054
  article-title: MOF-derived Fe7S8 nanoparticles/N-doped carbon nanofibers as an ultra-stable anode for sodium-ion batteries
  publication-title: Small
  doi: 10.1002/smll.202102349
– volume: 933
  year: 2023
  ident: 10.1016/j.electacta.2023.143255_bib0003
  article-title: Synergism between nitrogen vacancies and a unique electrons transfer pathway of Ag modified S-scheme g-C3N4/CdS heterojunction for efficient H2 evolution
  publication-title: J. Alloys Compd
  doi: 10.1016/j.jallcom.2022.167620
– volume: 214
  start-page: 319
  year: 2014
  ident: 10.1016/j.electacta.2023.143255_bib0060
  article-title: SnS2 nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries
  publication-title: Mater. Res. Bull
  doi: 10.1016/j.materresbull.2013.09.005
– volume: 605
  year: 2022
  ident: 10.1016/j.electacta.2023.143255_bib0019
  article-title: Bioconfined SnS2 N-doped carbon fibers with multiwall robust structure for boosting sodium storage
  publication-title: Appl. Surf. Sci
  doi: 10.1016/j.apsusc.2022.154633
– volume: 36
  start-page: 4482
  issue: 7
  year: 2011
  ident: 10.1016/j.electacta.2023.143255_bib0028
  article-title: Synthesis of helical carbon nanofibres and its application in hydrogen desorption
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.12.139
– volume: 296
  year: 2021
  ident: 10.1016/j.electacta.2023.143255_bib0050
  article-title: Synthesis of hexahedron SnS2/C derived from tin metal-organic frameworks (Sn-MOF) as a promising anode for lithium-ion batteries
  publication-title: Mater. Lett
  doi: 10.1016/j.matlet.2021.129877
– volume: 21
  year: 2021
  ident: 10.1016/j.electacta.2023.143255_bib0013
  article-title: Recent progress and challenges on the bismuth-based anode for sodium-ion batteries and potassium-ion batteries
  publication-title: Mater. Today Phys
– volume: 428
  year: 2022
  ident: 10.1016/j.electacta.2023.143255_bib0002
  article-title: Nitrogen-doped porous carbon embedded Sn/SnO nanoparticles as high-performance lithium-ion battery anode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.140898
– volume: 463
  year: 2023
  ident: 10.1016/j.electacta.2023.143255_bib0021
  article-title: In situ three-dimensional cross-linked carbon nanotube-interspersed SnSb@CNF as freestanding anode for long-term cycling sodium-ion batteries
  publication-title: Chem. Eng. J
  doi: 10.1016/j.cej.2023.142289
– volume: 6
  start-page: 12185
  issue: 26
  year: 2018
  ident: 10.1016/j.electacta.2023.143255_bib0008
  article-title: Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02695E
– volume: 904
  year: 2022
  ident: 10.1016/j.electacta.2023.143255_bib0051
  article-title: In-situ growth engineering of nano-sheets SnS2 on S-doped reduced graphene oxide for high lithium/sodium storage capacity
  publication-title: J. Electroanal. Chem
  doi: 10.1016/j.jelechem.2021.115947
– volume: 56
  start-page: 4065
  issue: 11
  year: 2011
  ident: 10.1016/j.electacta.2023.143255_bib0057
  article-title: A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.12.108
– volume: 31
  year: 2021
  ident: 10.1016/j.electacta.2023.143255_bib0055
  article-title: Multiscale designed niobium titanium oxide anode for fast charging lithium ion batteries
  publication-title: Adv. Funct. Mater
  doi: 10.1002/adfm.202007419
– volume: 439
  year: 2023
  ident: 10.1016/j.electacta.2023.143255_bib0025
  article-title: Constructing hierarchical SnS2 hollow micron cages anchored on S-doped graphene as anodes for superior performance alkali-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.141590
– volume: 32
  start-page: 302
  year: 2017
  ident: 10.1016/j.electacta.2023.143255_bib0037
  article-title: In situ atomic-scale observation of reversible sodium ions migration in layered metal dichalcogenide SnS2 nanostructures
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.051
SSID ssj0007670
Score 2.486959
Snippet •Novel HCNFs@SnS2 anode materials were first synthesized by a simple and controllable two-step method.•HCNFs@SnS2 composite exhibits the excellent reversible...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 143255
SubjectTerms Electrochemical performance
Helical carbon nanofibers
In-situ sulphuration
Lithium-ion batteries
Tin disulfide
Title In situ synthesis of HCNFs@SnS2 composite via solid-phase vulcanization reaction for high-performance anode of lithium-ion batteries
URI https://dx.doi.org/10.1016/j.electacta.2023.143255
Volume 469
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwELUQHNoeEIWiQgvyoVeDEztxllPRitXSqnsBJG7R2B6LIJpdNbtIXDjx4fVkkwWkShwq5eLIE0We0cyzNO8NY98C-ATAgECwSmiQVgCmXrggAU3AxKdETv41ycdX-sd1dr3Ghj0Xhtoqu9y_zOlttu7eHHeneTyrKuL4JkoTwYFuBakhornWhqL86PG5zcPkRvZTDGj3qx6vdtQMxOeIpojHrKFS4vz9q0K9qDqjLbbZwUV-uvyjj2wN6232bthPadtmH14ICu6wp_OaN9V8wZuHOiK7pmr4NPDxcDJqvl_UFymnDnJq00J-XwGPcVd5MbuJlYzfL-7cipXJI5RsCQ88YlpOksZi9sww4FBPPdKXI4a_qRa_Be20rVJnvHh_Ylejs8vhWHRzFoRTSTYXGUCwWrlEOwM6Q28GrpAZ5BYNGE2QSlqVgNcGEizQxsurkcEXsbQbl6HaZev1tMbPjJtQZJiixBwHJDBqfRgAqAyT4Ipg1B7L-7MtXSdCTrMw7sq-2-y2XDmlJKeUS6fsMbkynC11ON42OemdV74KqTJWi7eM9__H-At7TyuiLKbyK1uf_1ngQcQuc3vYBuch2zg9_zme_AUmkvM5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKORQOCAqI8ukDV7dObMdZTqAVqy20e2kr9RaN7bGaqmRXZLcSF078cDzZZNtKSD0g5ZR4osgzmXmW5s1j7GOEkAFYEAhOCQ3SCcA8CB8loI2YhZzIycezYnqmv52b8y02Hrgw1FbZ5_51Tu-ydX_noN_Ng0VdE8c3U5oIDnQqyK15wB7q9PuSjMH-75s-D1tYOcgY0PI7TV6d1gyka59kxFPaUDmR_v5Vom6VnclT9qTHi_zL-pOesS1sdtnOeJBp22WPb00UfM7-HDa8rZcr3v5qErRr65bPI5-OZ5P280lzknNqIac-LeTXNfAUeHUQi4tUyvj16spvaJk8YcmO8cATqOU001gsbigGHJp5QHpzAvEX9eqHoJWuG9WZTt4v2Nnk6-l4KnqhBeFVZpbCAESnlc-0t6ANBjvypTRQOLRgNWEq6VQGQVvIsESXTq9WxlCm2m69QfWSbTfzBl8xbmNpMEeJBY5owqgLcQSgDGbRl9GqPVYMe1v5fgo5iWFcVUO72WW1cUpFTqnWTtljcmO4WA_iuN_k0-C86k5MValc3Gf8-n-MP7Cd6enxUXV0OPv-hj2iJ8RfzOVbtr38ucJ3Ccgs3fsuUP8CtWD0xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+synthesis+of+HCNFs%40SnS2+composite+via+solid-phase+vulcanization+reaction+for+high-performance+anode+of+lithium-ion+batteries&rft.jtitle=Electrochimica+acta&rft.au=Zhang%2C+Wenjun&rft.au=Jin%2C+Yongzhong&rft.au=Zhang%2C+Zhengquan&rft.au=Chen%2C+Ge&rft.date=2023-11-20&rft.pub=Elsevier+Ltd&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=469&rft_id=info:doi/10.1016%2Fj.electacta.2023.143255&rft.externalDocID=S0013468623014275
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon