Significance of chlorite hyperspectral and geochemical characteristics in exploration: A case study of the giant Qulong porphyry Cu-Mo deposit in collisional orogen, Southern Tibet
[Display omitted] •Chlorite at Qulong includes three types of chlorite veins and disseminated chlorite.•The chlorite co-existing with Cu mineralization is high Fe with long wavelength.•The ore fluid evolved to be more acidic and higher silica activity over time.•SWIR and chlorite geochemistry can be...
Saved in:
Published in | Ore geology reviews Vol. 134; p. 104156 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-1368 1872-7360 |
DOI | 10.1016/j.oregeorev.2021.104156 |
Cover
Loading…
Abstract | [Display omitted]
•Chlorite at Qulong includes three types of chlorite veins and disseminated chlorite.•The chlorite co-existing with Cu mineralization is high Fe with long wavelength.•The ore fluid evolved to be more acidic and higher silica activity over time.•SWIR and chlorite geochemistry can be combined for porphyry exploration in orogen.
The genetic mechanism and exploration model for porphyry deposits in subduction zones has been comprehensively and systematically investigated; in contrast, our understanding for porphyry mineralization in collisional orogeny is limited. Qulong porphyry Cu-Mo deposit, a typical porphyry Cu deposit (PCD) developed in the collisional setting, was chosen as the subject of this study. The study is mainly focused on interpretation of short-wave infrared (SWIR) spectroscopy combined with mineral geochemistry of chlorite from Qulong deposit to guide exploration in future. Hydrothermal alteration in Qulong mineralization system can be divided into three zones, which are the inner potassic alteration zone, the outside propylitic alteration zone and phyllic alteration. Phyllic alteration can be intensively superimposed on the early potassic and prophylitic alteration zones. Chlorite is widely distributed in both of the propylitic and phyllic zones. Four types of chlorite were observed in Qulong deposit, including three stages of vein-related chlorite (Chl-I, Chl-II, Chl-III) and one type of disseminated chlorite (Chl-D). Mineral assemblage of Chl-I stage includes chlorite–anhydrite–pyrite. Minerals in Chl-II stage consist of chlorite–epidote–pyrite–chalcopyrite. Mineral assemblage of Chl-III stage is composed of chlorite–sericite–quartz–chalcopyrite, which is later than both Chl-I and Chl-II. Chl-D was developed mainly by alteration of primary biotite phenocryst. Chl-I, Chl-II and Chl-D were formed along with the propylitic alteration; however, Chl-III is from the phyllic alteration. Chl-II and Chl-III are both closely related with Cu mineralization. The major element compositions of chlorite show a regular variation of Mg# with fluid evolution. Transition from shorter wavelength chlorite (Fe feature around 2250 nm) to longer wavelength goes with the decrease of Mg#, except for Chl-D. In summary, chlorite associated with Cu mineralization in Qulong is mainly occurred in veins and has low Mg# ratios and longer wavelength. Such chlorite is the indicator for Cu mineralization and should be the target in future exploration. In addition to chlorite, sericite in Qulong also shows systematic change from early-stage phengite to late-stage muscovite. In combination of mineral geochemistry and thermodynamic modelling, we suggest that ore-forming fluid gradually evolved to be more acidic with higher silica activity over time. |
---|---|
AbstractList | [Display omitted]
•Chlorite at Qulong includes three types of chlorite veins and disseminated chlorite.•The chlorite co-existing with Cu mineralization is high Fe with long wavelength.•The ore fluid evolved to be more acidic and higher silica activity over time.•SWIR and chlorite geochemistry can be combined for porphyry exploration in orogen.
The genetic mechanism and exploration model for porphyry deposits in subduction zones has been comprehensively and systematically investigated; in contrast, our understanding for porphyry mineralization in collisional orogeny is limited. Qulong porphyry Cu-Mo deposit, a typical porphyry Cu deposit (PCD) developed in the collisional setting, was chosen as the subject of this study. The study is mainly focused on interpretation of short-wave infrared (SWIR) spectroscopy combined with mineral geochemistry of chlorite from Qulong deposit to guide exploration in future. Hydrothermal alteration in Qulong mineralization system can be divided into three zones, which are the inner potassic alteration zone, the outside propylitic alteration zone and phyllic alteration. Phyllic alteration can be intensively superimposed on the early potassic and prophylitic alteration zones. Chlorite is widely distributed in both of the propylitic and phyllic zones. Four types of chlorite were observed in Qulong deposit, including three stages of vein-related chlorite (Chl-I, Chl-II, Chl-III) and one type of disseminated chlorite (Chl-D). Mineral assemblage of Chl-I stage includes chlorite–anhydrite–pyrite. Minerals in Chl-II stage consist of chlorite–epidote–pyrite–chalcopyrite. Mineral assemblage of Chl-III stage is composed of chlorite–sericite–quartz–chalcopyrite, which is later than both Chl-I and Chl-II. Chl-D was developed mainly by alteration of primary biotite phenocryst. Chl-I, Chl-II and Chl-D were formed along with the propylitic alteration; however, Chl-III is from the phyllic alteration. Chl-II and Chl-III are both closely related with Cu mineralization. The major element compositions of chlorite show a regular variation of Mg# with fluid evolution. Transition from shorter wavelength chlorite (Fe feature around 2250 nm) to longer wavelength goes with the decrease of Mg#, except for Chl-D. In summary, chlorite associated with Cu mineralization in Qulong is mainly occurred in veins and has low Mg# ratios and longer wavelength. Such chlorite is the indicator for Cu mineralization and should be the target in future exploration. In addition to chlorite, sericite in Qulong also shows systematic change from early-stage phengite to late-stage muscovite. In combination of mineral geochemistry and thermodynamic modelling, we suggest that ore-forming fluid gradually evolved to be more acidic with higher silica activity over time. |
ArticleNumber | 104156 |
Author | Sun, Fei Shi, Weixin Liu, Siyu Tong, Xuesong Li, Yuyao Xue, Qingwen Wang, Rui |
Author_xml | – sequence: 1 givenname: Qingwen surname: Xue fullname: Xue, Qingwen organization: State Key Laboratory of Geological Processes and Mineral Resources, and Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China – sequence: 2 givenname: Rui surname: Wang fullname: Wang, Rui email: rw@cugb.edu.cn organization: State Key Laboratory of Geological Processes and Mineral Resources, and Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China – sequence: 3 givenname: Siyu surname: Liu fullname: Liu, Siyu organization: State Key Laboratory of Geological Processes and Mineral Resources, and Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China – sequence: 4 givenname: Weixin surname: Shi fullname: Shi, Weixin organization: Core and Samples Center of Land and Resources, China Geological Survey, Sanhe 065201, Hebei, China – sequence: 5 givenname: Xuesong surname: Tong fullname: Tong, Xuesong organization: State Key Laboratory of Geological Processes and Mineral Resources, and Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China – sequence: 6 givenname: Yuyao surname: Li fullname: Li, Yuyao organization: State Key Laboratory of Geological Processes and Mineral Resources, and Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China – sequence: 7 givenname: Fei surname: Sun fullname: Sun, Fei organization: State Key Laboratory of Geological Processes and Mineral Resources, and Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China |
BookMark | eNqNkc1q3DAURkVIIZM0zxA9QD2VLFu2A10MQ_oDKSEkWQtZvrbv4EhG0oT6vfqA1XRCF9k0GwnE952Lzj0np9ZZIOSKszVnXH7erZ2HAdLxss5ZztNrwUt5Qla8rvKsEpKdklVKNhkXsj4j5yHsGGOSMb4ivx9wsNij0dYAdT014-Q8RqDjMoMPM5jo9US17WgaYkZ4TtkpxbTXJoLHENEEipbCrzlVdURnr-mGGh2AhrjvlgM2jkAH1DbS-_3k7EBn5-dx8Qvd7rOfjnYwu4DxwDFumjAkShrjvBvAfqIPbp8I3tJHbCF-JB96PQW4fL0vyNPXm8ft9-z27tuP7eY2M4KXMSvr2tSdbKAoBG-bMq9zEMlJwUwnOOvLTopCVrLRZV-JFlibV0UlhOiFbrloxAWpjlzjXQgeejV7fNZ-UZypg3y1U__kq4N8dZSfml_eNA3Gv2qSTZze0d8c-5C-94LgVTAIaUUd-rQR1Tn8L-MPMPesoA |
CitedBy_id | crossref_primary_10_1007_s10661_023_11303_9 crossref_primary_10_1016_j_oregeorev_2023_105437 crossref_primary_10_1111_1755_6724_14809 crossref_primary_10_1007_s11053_022_10111_1 crossref_primary_10_3390_min13080997 crossref_primary_10_1130_B37086_1 crossref_primary_10_1016_j_clay_2025_107762 crossref_primary_10_1144_geochem2024_004 crossref_primary_10_3390_min13020256 crossref_primary_10_1016_j_oregeorev_2022_104889 crossref_primary_10_1016_j_saa_2024_125010 crossref_primary_10_3390_min12101280 |
Cites_doi | 10.1016/j.gexplo.2011.01.001 10.1016/j.oregeorev.2017.04.036 10.1155/2018/6958260 10.1144/SP315.2 10.2113/econgeo.111.5.1223 10.1016/S0375-6505(00)00004-3 10.1180/claymin.2008.043.1.03 10.2113/gsecongeo.93.4.373 10.1111/j.1751-3928.2011.00179.x 10.1016/j.lithos.2015.03.003 10.1016/j.chemgeo.2017.01.010 10.1016/j.jseaes.2013.03.029 10.2113/econgeo.110.4.925 10.1016/S0012-821X(04)00007-X 10.1190/1.1440721 10.1038/srep17236 10.1002/gj.3028 10.1038/s41467-019-11445-w 10.1038/307017a0 10.1093/petroj/38.12.1741 10.1127/0935-1221/2012/0024-2233 10.1016/j.gexplo.2015.01.005 10.2113/econgeo.109.5.1315 10.1016/j.gexplo.2017.10.019 10.2113/econgeo.111.5.1187 10.1016/j.oregeorev.2010.09.002 10.1016/j.epsl.2005.02.038 10.1016/j.oregeorev.2009.03.003 10.1016/j.lithos.2016.07.021 10.1007/s00410-016-1272-6 10.1180/claymin.1990.025.1.09 10.1111/j.1745-7254.2008.00764.x 10.1007/s00410-012-0832-7 10.1093/petrology/egu076 10.2113/gsecongeo.70.5.857 10.1111/j.1751-3928.2011.00177.x 10.1130/L682.1 10.1016/j.earscirev.2004.05.001 10.1146/annurev.earth.28.1.211 10.1016/B978-0-08-095975-7.01116-5 10.12677/AG.2016.63028 10.1038/ngeo1920 10.2113/gsecongeo.100.2.273 10.5382/econgeo.2017.4515 10.18654/1000-0569/2019.02.01 10.1016/0012-821X(86)90186-X 10.1016/j.oregeorev.2009.05.001 10.2113/gsecongeo.65.4.373 10.1016/j.clay.2020.105585 10.1130/G25451A.1 10.1007/s11430-019-9609-0 10.1016/j.earscirev.2018.02.019 10.1180/minmag.1997.061.409.05 10.2113/gsecongeo.105.1.3 10.1016/j.gr.2015.10.007 10.1016/j.earscirev.2015.07.003 10.1016/j.chemgeo.2020.119604 10.1016/j.gr.2015.07.005 10.1144/GSL.SP.1986.019.01.04 10.1016/j.jseaes.2013.10.004 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oregeorev.2021.104156 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1872-7360 |
ExternalDocumentID | 10_1016_j_oregeorev_2021_104156 S0169136821001815 |
GroupedDBID | --K --M .~1 0R~ 0SF 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSZ T5K WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c315t-588c8d69e4431b95282e387240cd310f5d6346769a5f73be0b2747333f3ab1393 |
IEDL.DBID | AIKHN |
ISSN | 0169-1368 |
IngestDate | Thu Apr 24 22:59:09 EDT 2025 Tue Jul 01 01:26:34 EDT 2025 Fri Feb 23 02:45:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Porphyry Major element Trace element Hydrothermal evolution SWIR Chlorite |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c315t-588c8d69e4431b95282e387240cd310f5d6346769a5f73be0b2747333f3ab1393 |
ParticipantIDs | crossref_primary_10_1016_j_oregeorev_2021_104156 crossref_citationtrail_10_1016_j_oregeorev_2021_104156 elsevier_sciencedirect_doi_10_1016_j_oregeorev_2021_104156 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationTitle | Ore geology reviews |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Richards (b0240) 2013; 6 Hou, Cook (b0085) 2009; 36 Xiao, Qin, Li, Li, Xia, Chen, Zhao (b0340) 2012; 62 Scott, K.M., Yang, K., and Huntington, J.F., 1998, The application of spectral reflectance studies of chlorite in exploration. CSIRO Division of Exploration and Mining, AMIRA Project P435A. Bishop, Lane, Dyar, Brown (b0010) 2008; 43 Cooke, Hollings, Wilkinson, Tosdal (b0035) 2014; 13 Deer, Howie, Iussman (b0045) 1962 Xiao, Chen (b0350) 2020; 543 Coulon, Maluski, Bollinger, Wang (b0040) 1986; 79 Sillitoe (b0255) 2010; 105 Laakso, Peter, Rivard (b0135) 2016; 111 Metcalfe (b0195) 2009; 315 Mo, Pan (b0200) 2006; 13 Hou, Gao, Qu, Rui, Mo (b0100) 2004; 220 Wang, Richards, Zhou, Hou, Stern, Creaser, Zhu (b0290) 2015; 150 Wang, Ding, Zhang, Kapp, Pullen, Yue (b0280) 2016; 262 Pan, Mo, Hou, Zhu, Wang, Li, Zhao, Ceng, Liao (b0225) 2006; 22 Herrmann, Blake, Doyle, Huston, Kamprad, Merry, Pontual (b0080) 2001; 96 Qin, Xia, Li, Xiao, Duo, Jiang, Zhao (b0230) 2014 Kamps, Ruitenbeek, Mason, Meer (b0220) 2018; 8 Tafti, R., 2011, Metallogeny, geochronology and tectonic setting of the Gangdese belt, southern Tibet, China: Unpublished Ph.D. thesis, University of British Columbia, Canada, 451 p. Zane, Fyfe (b0410) 1995; 30 Mo, Zhao, Deng, Dong, Zhou, Guo, Zhang, Wang (b0205) 2003; 10 Yang, Huntington, Browne, Ma (b0360) 2000; 29 Yang, Hou, White, Chang, Li, Song (b0390) 2009; 36 Zhang, Zheng, Gong, Gao, Qu, Pang, Shi, Yan (b0415) 2008; 24 Hedenquist, Arribas, Reynolds (b0075) 1998; 93 Yin, Harrison (b0400) 2000; 28 Tian, Leng, Zhang, Tian, Zhang, Guo (b0270) 2019; 44 Ma, Meert, Xu, Yi (b0170) 2018; 10 Lowell, Guilbert (b0165) 1970; 65 Wang, Collins, Weinberg, Li, Li, He, Richards, Hou, Zhou (b0300) 2016; 171 Gustafson, Hunt (b0060) 1975; 70 Mcleod, R.L., Gabell, A.R., Green, A., Gardavsky, V., 1987. Chlorite infrared spectral data as proximity indicators of volcanogenic massive sulphide mineralization. Hou, Zhang (b0090) 2015; 88 Yang, Lu, Hou, Chang (b0395) 2015; 56 Liu, Zhang, Zhang (b0160) 2016; 6 Harris, Pearce, Tindle (b0070) 1986; 19 Xiao, Chen, Hollings, Zhang, Feng, Chen (b0345) 2020; 190 Yang, Ye, Han, Ren, Han, Zhang (b0375) 2018 Wang, Tafti, Hou, Shen, Guo, Evans, Jeon, Li, Li (b0310) 2017; 451 Hou, Zheng, Yang, Yang (b0110) 2012; 4 Yang, Cooke (b0380) 2019; 22 Yang, Huntingon, Gemmell (b0370) 2011; 108 Lang, Wang, Tang, Deng, Cui, Yin, Xie (b0145) 2017; 53 Inoue (b0125) 1995 Mohammadi, Lentz., McFarlane, Yang (b0180) 2021; 105926 Wilkinson, Chang, Cooke, Baker, Wilkinson, Inglis, Chen, Gemmell (b0335) 2015; 152 Mo, Dong, Zhao, Zhou, Wang, Qiu, Zhang (b0210) 2005; 11 Richards (b0235) 2009; 37 Chung, Chu, Zhang, Xie, Lo, Lee, Lan, Li, Zhang, Wang (b0030) 2005; 68 Leech, Singh, Jain, Klemperer, Manickavasagam (b0150) 2005; 234 Allégre, Courtillot, Taponnier, Hirn, Mattauer, Coulon, Jaeger, Achache, Schärer, Marcoux, Burg, Girardeau, Armijo, Gaiety, Göpel, Li, Xiao, Chang, Li, Lin, Teng, Wang, Chen, Han, Wang, Den, Sheng, Gao, Zhou, Qiu, Bao, Wang, Wang, Zhou, Xu (b0005) 1984; 307 Ying, Wang, Tang, Wang, Qu, Li (b0405) 2014; 79 Wiewióra, Weiss (b0330) 1990; 25 Bourdelle, Parra, Chopin, Beyssac (b0015) 2013; 165 Wang, Richards, Hou, An, Creaser (b0295) 2015; 224–225 Xu, Hou, Zheng, Wang, He, Zhou, Wang, He, Zhou, Yang (b0355) 2017; 90 Wang, Weinberg, Collins, Richards, Zhu (b0315) 2018; 181 Zhu, Wang, Chung, Cawood, Zhao (b0460) 2018 Zhang, Zheng, Huang, Li, Sun, Li, Fu, Liang (b0425) 2012; 31 Doublier, Roache, Potel, Laukamp (b0050) 2012; 24 Hou, Wang (b0095) 2019; 10 Hunt (b0120) 1977; 42 Laakso, Rivard, Peter (b0140) 2015; 110 Zhang, Ding, Dong, Tian (b0435) 2019; 35 Zheng, Sun, Gao, Zhao, Zhang, Wu, You, Li (b0450) 2014; 79 Guo, Liu, Tang, Zheng, Huang, Shi, Fu, Tang, Wang (b0055) 2018; 37 Hou, Zhang, Pan, Yang (b0105) 2011; 39 Li, Selby, Condon, Tapster (b0155) 2017; 112 Wang, Richards, Hou, Yang, Dufrane (b0285) 2014; 195 Zhang, Hou, Yang (b0420) 2010; 29 Zhao, Zhu, Dong, Mo, DePaolo, Jia, Hu, Yuan (b0445) 2011; 27 Yang, Hou, Song, Li, Xia, Pan (b0385) 2008; 27 Mao, Rukhlov, Rowins, Spence, Coogan (b0175) 2016; 111 Zhang, Chen, Zhang, Zhang, Xu, Han, Chen (b0430) 2017; 36 Tang, J.X., Dorji., Hong, F., Lang, X.H., Zhang, J.S., Zheng, W.B., and Ying, L.J., 2012. Minerogenetic series of ore deposits in the east part of the Gangdese Metallogenic Belt. Diqiu Xuebao 33, 393–410 (in Chinese with English abstract). Zhao, Qin, Xiao, McInnes, Li, Evans, Cao, Li (b0440) 2016; 36 Tischendorf (b0275) 1997; 61 Shinohara, Hedenquist (b0250) 1997; 38 Wang, Cudahy, Laukamp, Walshe, Bath, Mei, Young (b0305) 2017; 112 Chen, Qin, Li, Li, Xiao, Jiang, Zhao, Fan, Jiang (b0025) 2012; 31 Jones, Herrmann, Gemmell (b0130) 2005; 100 Chen, Qin, Li, Xiao, Li, Zhao, Fan (b0020) 2011; 62 Neal, Wilkinson, Mason, Chang (b0215) 2018; 184 Halley, Dilles, Tosdal (b0065) 2015; 100 Meng, Xu, Santosh, Ma, Chen, Guo, Liu (b0190) 2016; 37 Wang, Zhu, Wang, Hou, Yang, Zhao, Mo (b0320) 2020; 63 Zhu, Wang, Zhao, Chung, Cawood, Niu, Liu, Wu, Mo (b0455) 2015; 5 Huang, Zheng, Zhang, Li, Sun, Li, Liang, Fu, Hou (b0115) 2012; 31 Kamps (10.1016/j.oregeorev.2021.104156_b0220) 2018; 8 Xiao (10.1016/j.oregeorev.2021.104156_b0345) 2020; 190 Hou (10.1016/j.oregeorev.2021.104156_b0085) 2009; 36 Harris (10.1016/j.oregeorev.2021.104156_b0070) 1986; 19 Xu (10.1016/j.oregeorev.2021.104156_b0355) 2017; 90 Wang (10.1016/j.oregeorev.2021.104156_b0290) 2015; 150 Xiao (10.1016/j.oregeorev.2021.104156_b0350) 2020; 543 Laakso (10.1016/j.oregeorev.2021.104156_b0135) 2016; 111 Pan (10.1016/j.oregeorev.2021.104156_b0225) 2006; 22 Wang (10.1016/j.oregeorev.2021.104156_b0305) 2017; 112 Mo (10.1016/j.oregeorev.2021.104156_b0200) 2006; 13 Chen (10.1016/j.oregeorev.2021.104156_b0025) 2012; 31 Zhang (10.1016/j.oregeorev.2021.104156_b0425) 2012; 31 Richards (10.1016/j.oregeorev.2021.104156_b0235) 2009; 37 Wang (10.1016/j.oregeorev.2021.104156_b0285) 2014; 195 Gustafson (10.1016/j.oregeorev.2021.104156_b0060) 1975; 70 Ma (10.1016/j.oregeorev.2021.104156_b0170) 2018; 10 Yang (10.1016/j.oregeorev.2021.104156_b0395) 2015; 56 Yin (10.1016/j.oregeorev.2021.104156_b0400) 2000; 28 Wang (10.1016/j.oregeorev.2021.104156_b0310) 2017; 451 Hedenquist (10.1016/j.oregeorev.2021.104156_b0075) 1998; 93 Yang (10.1016/j.oregeorev.2021.104156_b0370) 2011; 108 Lang (10.1016/j.oregeorev.2021.104156_b0145) 2017; 53 Zhang (10.1016/j.oregeorev.2021.104156_b0420) 2010; 29 Tischendorf (10.1016/j.oregeorev.2021.104156_b0275) 1997; 61 Yang (10.1016/j.oregeorev.2021.104156_b0385) 2008; 27 Hou (10.1016/j.oregeorev.2021.104156_b0110) 2012; 4 Hunt (10.1016/j.oregeorev.2021.104156_b0120) 1977; 42 Wiewióra (10.1016/j.oregeorev.2021.104156_b0330) 1990; 25 Hou (10.1016/j.oregeorev.2021.104156_b0100) 2004; 220 Coulon (10.1016/j.oregeorev.2021.104156_b0040) 1986; 79 Jones (10.1016/j.oregeorev.2021.104156_b0130) 2005; 100 Xiao (10.1016/j.oregeorev.2021.104156_b0340) 2012; 62 Zane (10.1016/j.oregeorev.2021.104156_b0410) 1995; 30 Chung (10.1016/j.oregeorev.2021.104156_b0030) 2005; 68 Chen (10.1016/j.oregeorev.2021.104156_b0020) 2011; 62 Zhang (10.1016/j.oregeorev.2021.104156_b0430) 2017; 36 10.1016/j.oregeorev.2021.104156_b0265 Ying (10.1016/j.oregeorev.2021.104156_b0405) 2014; 79 Mohammadi (10.1016/j.oregeorev.2021.104156_b0180) 2021; 105926 10.1016/j.oregeorev.2021.104156_b0185 Wang (10.1016/j.oregeorev.2021.104156_b0300) 2016; 171 Shinohara (10.1016/j.oregeorev.2021.104156_b0250) 1997; 38 10.1016/j.oregeorev.2021.104156_b0260 Bishop (10.1016/j.oregeorev.2021.104156_b0010) 2008; 43 Metcalfe (10.1016/j.oregeorev.2021.104156_b0195) 2009; 315 Neal (10.1016/j.oregeorev.2021.104156_b0215) 2018; 184 Wilkinson (10.1016/j.oregeorev.2021.104156_b0335) 2015; 152 Halley (10.1016/j.oregeorev.2021.104156_b0065) 2015; 100 Tian (10.1016/j.oregeorev.2021.104156_b0270) 2019; 44 Zhang (10.1016/j.oregeorev.2021.104156_b0435) 2019; 35 Zhao (10.1016/j.oregeorev.2021.104156_b0445) 2011; 27 Cooke (10.1016/j.oregeorev.2021.104156_b0035) 2014; 13 Laakso (10.1016/j.oregeorev.2021.104156_b0140) 2015; 110 Wang (10.1016/j.oregeorev.2021.104156_b0280) 2016; 262 Qin (10.1016/j.oregeorev.2021.104156_b0230) 2014 Yang (10.1016/j.oregeorev.2021.104156_b0390) 2009; 36 Yang (10.1016/j.oregeorev.2021.104156_b0375) 2018 Inoue (10.1016/j.oregeorev.2021.104156_b0125) 1995 Hou (10.1016/j.oregeorev.2021.104156_b0095) 2019; 10 Zhu (10.1016/j.oregeorev.2021.104156_b0460) 2018 Deer (10.1016/j.oregeorev.2021.104156_b0045) 1962 Zhao (10.1016/j.oregeorev.2021.104156_b0440) 2016; 36 Sillitoe (10.1016/j.oregeorev.2021.104156_b0255) 2010; 105 Wang (10.1016/j.oregeorev.2021.104156_b0315) 2018; 181 Zhu (10.1016/j.oregeorev.2021.104156_b0455) 2015; 5 Yang (10.1016/j.oregeorev.2021.104156_b0380) 2019; 22 Wang (10.1016/j.oregeorev.2021.104156_b0320) 2020; 63 Bourdelle (10.1016/j.oregeorev.2021.104156_b0015) 2013; 165 Allégre (10.1016/j.oregeorev.2021.104156_b0005) 1984; 307 Huang (10.1016/j.oregeorev.2021.104156_b0115) 2012; 31 Hou (10.1016/j.oregeorev.2021.104156_b0105) 2011; 39 Doublier (10.1016/j.oregeorev.2021.104156_b0050) 2012; 24 Hou (10.1016/j.oregeorev.2021.104156_b0090) 2015; 88 Leech (10.1016/j.oregeorev.2021.104156_b0150) 2005; 234 Mo (10.1016/j.oregeorev.2021.104156_b0210) 2005; 11 Zhang (10.1016/j.oregeorev.2021.104156_b0415) 2008; 24 Zheng (10.1016/j.oregeorev.2021.104156_b0450) 2014; 79 10.1016/j.oregeorev.2021.104156_b0245 Meng (10.1016/j.oregeorev.2021.104156_b0190) 2016; 37 Yang (10.1016/j.oregeorev.2021.104156_b0360) 2000; 29 Guo (10.1016/j.oregeorev.2021.104156_b0055) 2018; 37 Liu (10.1016/j.oregeorev.2021.104156_b0160) 2016; 6 Lowell (10.1016/j.oregeorev.2021.104156_b0165) 1970; 65 Richards (10.1016/j.oregeorev.2021.104156_b0240) 2013; 6 Li (10.1016/j.oregeorev.2021.104156_b0155) 2017; 112 Mao (10.1016/j.oregeorev.2021.104156_b0175) 2016; 111 Herrmann (10.1016/j.oregeorev.2021.104156_b0080) 2001; 96 Mo (10.1016/j.oregeorev.2021.104156_b0205) 2003; 10 Wang (10.1016/j.oregeorev.2021.104156_b0295) 2015; 224–225 |
References_xml | – volume: 68 start-page: 173 year: 2005 end-page: 196 ident: b0030 article-title: Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism publication-title: Earth Sci. Rev. – volume: 195 start-page: 1315 year: 2014 end-page: 1339 ident: b0285 article-title: Increased magmatic water content–the key to Oligo-Miocene porphyry Cu-Mo±Au formation in the eastern Gangdese belt, Tibet publication-title: Econ. Geol. – volume: 13 start-page: 43 year: 2006 end-page: 51 ident: b0200 article-title: From the Tethys to the formation of the Qinghai Tibet plateau: constrained by tectono-magmatic events publication-title: Earth Sci. Front. – volume: 65 start-page: 373 year: 1970 end-page: 408 ident: b0165 article-title: Lateral and vertical alteration-mineralization zoning in porphyry ore deposits publication-title: Econ. Geol. – volume: 24 start-page: 891 year: 2012 end-page: 902 ident: b0050 article-title: Short-wavelength infrared spectroscopy of chlorite can be used to determine very low metamorphic grades publication-title: Eur. J. Mineral. – volume: 307 start-page: 17 year: 1984 end-page: 22 ident: b0005 article-title: Structure and evolution of the Himalayan-Tibet orogenic belt publication-title: Nature – volume: 25 start-page: 83 year: 1990 end-page: 92 ident: b0330 article-title: Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition. II The chlorite group publication-title: Clay Mineral – volume: 53 start-page: 1973 year: 2017 end-page: 1993 ident: b0145 article-title: Composition and age of Jurassic diabase dikes in the Xiongcun porphyry copper-gold district, southern margin of the Lhasa terrane,Tibet, China: Petrogenesis and tectonic setting publication-title: Geol. J. – volume: 224–225 start-page: 179 year: 2015 end-page: 194 ident: b0295 article-title: Zircon U-Pb age and Sr-Nd-Hf-O isotope geochemistry of the Paleocene-Eocene igneous rocks in western Gangdese: Evidence for the timing of Neo-Tethyan slab breakoff publication-title: Lithos – volume: 5 year: 2015 ident: b0455 article-title: Magmatic record of India-Asia collision publication-title: Sci. Rep. – volume: 29 start-page: 113 year: 2010 end-page: 133 ident: b0420 article-title: Metallogenesis and geodynamics of Tethyan metallogenic domain: A review publication-title: Mineral Deposits – volume: 10 start-page: 135 year: 2003 end-page: 148 ident: b0205 article-title: Response of volcanism to the India-Asia collision publication-title: Earth Sci. Front. – volume: 61 start-page: 809 year: 1997 end-page: 834 ident: b0275 article-title: On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation publication-title: Mineral. Mag. – volume: 90 start-page: 1063 year: 2017 end-page: 1077 ident: b0355 article-title: In situ elemental and isotopic study of diorite intrusions: Implication for Jurassic arc magmatism and porphyry Cu-Au mineralisation in southern Tibet publication-title: Ore Geol. Rev. – volume: 6 start-page: 264 year: 2016 end-page: 282 ident: b0160 article-title: Advances on mineral genesis of chlorite: A review publication-title: Adv. Geosci. – start-page: 316 year: 2014 ident: b0230 article-title: Qulong porphyry-skarn type Cu-Mo deposit – volume: 165 start-page: 723 year: 2013 end-page: 735 ident: b0015 article-title: A New Chlorite Geothermometer for Diagenetic to Low-Grade Metamorphic Conditions publication-title: Contrib. Miner. Petrol. – volume: 37 start-page: 556 year: 2018 end-page: 570 ident: b0055 article-title: Characteristics of alteration minerals and prospecting model revealed by shortwave infrared technique: Take Sinongduo Ag-Pb-Zn deposit as an example publication-title: Mineral Deposits – start-page: 270 year: 1962 ident: b0045 article-title: Rock-Forming Minerals: Sheet Silicates – volume: 42 start-page: 501 year: 1977 end-page: 513 ident: b0120 article-title: Spectral signature of particulate minerals in the visible and near infrared publication-title: Geophysics – volume: 79 start-page: 497 year: 2014 end-page: 506 ident: b0405 article-title: Re-Os systematics of sulfides (chalcopyrite, bornite, pyrite and pyrrhotite) from the Jima Cu-Mo deposit of Tibet, China publication-title: J. Asian Earth Sci. – volume: 27 start-page: 3513 year: 2011 end-page: 3524 ident: b0445 article-title: The ~54 Ma gabbro-granite intrusive in southern Dangxung area, Tibet: Petrogenesis and implications publication-title: Acta Petrol. Sin. – volume: 112 start-page: 1419 year: 2017 end-page: 1440 ident: b0155 article-title: Cyclic Magmatic-Hydrothermal Evolution in Porphyry Systems: High-Precision U-Pb and Re-Os Geochronology Constraints on the Tibetan Qulong Porphyry Cu-Mo Deposit publication-title: Econ. Geol. – volume: 112 start-page: 1153 year: 2017 end-page: 1176 ident: b0305 article-title: White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits publication-title: Western Australia: Econ. Geol. – volume: 184 start-page: 179 year: 2018 end-page: 198 ident: b0215 article-title: Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits publication-title: J. Geochem. Explor. – volume: 11 start-page: 281 year: 2005 end-page: 290 ident: b0210 article-title: Spatial and temporal distribution and characteristics of granitoids in the Gangdese Tibet and implication for crustal growth andevolution publication-title: Geological Journal of China Universities – volume: 543 year: 2020 ident: b0350 article-title: Elemental behavior during chlorite alteration: New insights from a combined EMPA and LA-ICPMS study in porphyry Cu systems publication-title: Chem. Geol. – volume: 36 start-page: 1263 year: 2017 end-page: 1288 ident: b0430 article-title: Application of short wavelength infrared (SWIR) technique to exploration of skarn deposit: A case study of Tonglvshan Cu-Fe-Au deposit, Edongnan (southeast Hubei) ore concentration area publication-title: Mineral Deposits – volume: 62 start-page: 4 year: 2012 end-page: 18 ident: b0340 article-title: Highly Oxidized Magma and Fluid Evolution of Miocene Qulong Giant Porphyry Cu-Mo Deposit Southern Tibet, China publication-title: Resour. Geol. – volume: 43 start-page: 35 year: 2008 end-page: 54 ident: b0010 article-title: Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas publication-title: Clay Miner. – volume: 37 start-page: 449 year: 2016 end-page: 464 ident: b0190 article-title: Late Triassic crustal growth in southern Tibet: Evidence from the Gangdese magmatic belt publication-title: Gondwana Res. – reference: Scott, K.M., Yang, K., and Huntington, J.F., 1998, The application of spectral reflectance studies of chlorite in exploration. CSIRO Division of Exploration and Mining, AMIRA Project P435A. – volume: 181 start-page: 122 year: 2018 end-page: 143 ident: b0315 article-title: Origin of post-collisional magmas and formation of porphyry Cu deposits in southern Tibet publication-title: Earth Sci. Rev. – volume: 105926 year: 2021 ident: b0180 article-title: Biotite composition as a tool for exploration: An example from Sn-W-Mo-bearing Mount Douglas Granite, New Brunswick, Canada publication-title: Lithos – volume: 315 start-page: 7 year: 2009 end-page: 23 ident: b0195 article-title: Late Paleozoic and Mesozoic tectonic and palaeogeographical evolution of SE Asia publication-title: Geological Society London Special Publications – year: 2018 ident: b0375 article-title: Near-Infrared Spectroscopic Study of Chlorite Minerals publication-title: J. Spectrosc. – volume: 27 start-page: 279 year: 2008 end-page: 318 ident: b0385 article-title: Qulong superlarge porphyry Cu deposit in Tibet: Geology, alteration and mineralization publication-title: Mineral Deposits – volume: 36 start-page: 2 year: 2009 end-page: 24 ident: b0085 article-title: Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue publication-title: Ore Geol. Rev. – start-page: 268 year: 1995 end-page: 329 ident: b0125 article-title: Formation of clay minerals in hydrothermal environments publication-title: Berlin Heidelberg Springer – volume: 110 start-page: 925 year: 2015 end-page: 941 ident: b0140 article-title: Application of Airborne, Laboratory, and Field Hyperspectral Methods to Mineral Exploration in the Canadian Arctic: Recognition and Characterization of Volcanogenic Massive Sulfide-Associated Hydrothermal Alteration in the Izok Lake Deposit Area, Nunavut, Canada publication-title: Econ. Geol. – volume: 234 start-page: 83 year: 2005 end-page: 97 ident: b0150 article-title: The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya publication-title: Earth Planet. Sci. Lett. – volume: 29 start-page: 377 year: 2000 end-page: 392 ident: b0360 article-title: An infrared spectral reflectance study of hydrothermal alteration minerals from the Te Mihi sector of the Wairakei geothermal system, New Zealand publication-title: Geothermics – volume: 8 year: 2018 ident: b0220 article-title: Near-Infrared Spectroscopy of Hydrothermal versus Low-Grade Metamorphic Chlorites publication-title: Mineral – volume: 93 start-page: 373 year: 1998 end-page: 404 ident: b0075 article-title: Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines publication-title: Econ. Geol. – volume: 79 start-page: 842 year: 2014 end-page: 857 ident: b0450 article-title: Multiple mineralization events at the Jiru porphyry copper deposit, southern Tibet: Implications for Eocene and Miocene magma sources and resource potential publication-title: J. Asian Earth Sci. – volume: 22 start-page: 133 year: 2019 end-page: 187 ident: b0380 article-title: Porphyry Copper Deposits in China publication-title: Society of Economic Geologist Special Publications – volume: 36 start-page: 390 year: 2016 end-page: 409 ident: b0440 article-title: Thermal history of the giant Qulong Cu-Mo deposit, Gangdese metallogenic belt, Tibet: Constraints on magmatic-hydrothermal evolution and exhumation publication-title: Gondwana Res. – volume: 10 start-page: 3510 year: 2019 ident: b0095 article-title: Fingerprinting metal transfer from mantle publication-title: Nat. Commun. – volume: 150 start-page: 68 year: 2015 end-page: 94 ident: b0290 article-title: The Role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo±Au deposits in the Gangdese belt, southern Tibet publication-title: Earth Sci. Rev. – volume: 39 start-page: 21 year: 2011 end-page: 45 ident: b0105 article-title: Porphyry Cu(-Mo-Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain publication-title: Ore Geol. Rev. – volume: 111 start-page: 1223 year: 2016 end-page: 1239 ident: b0135 article-title: Short-Wave Infrared Spectral and Geochemical Characteristics of Hydrothermal Alteration at the Archean Izok Lake Zn-Cu-Pb-Ag Volcanogenic Massive Sulfide Deposit, Nunavut, Canada: Application in Exploration Target Vectoring publication-title: Econ. Geol. – volume: 100 start-page: 1 year: 2015 end-page: 29 ident: b0065 article-title: Footprints: Hydrothermal alteration and geochemical dispersion around porphyry copper deposits publication-title: Society of Economic Geology Newsletter – volume: 31 start-page: 348 year: 2012 end-page: 360 ident: b0115 article-title: LA-ICP-MS zircon U-Pb dating of two types of porphyry in the Yaguila mining area, Tibet publication-title: Acta Petrologica et Mineralogica – volume: 100 start-page: 273 year: 2005 end-page: 294 ident: b0130 article-title: Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp Vancouver Island, British Columbia, Canada publication-title: Econ. Geol. – volume: 36 start-page: 133 year: 2009 end-page: 159 ident: b0390 article-title: Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet publication-title: Ore Geol. Rev. – volume: 28 start-page: 211 year: 2000 end-page: 280 ident: b0400 article-title: Geologic evolution of the Himalayan-Tibetan orogen publication-title: Annu. Rev. Earth Planet. Sci. – volume: 4 start-page: 647 year: 2012 end-page: 670 ident: b0110 article-title: Metallogenesis of continental collision setting: Part Ⅰ Gangdese Cenozoic porphyry Cu-Mo systems in Tibet publication-title: Mineral Deposits – volume: 6 start-page: 911 year: 2013 end-page: 916 ident: b0240 article-title: Giant ore deposits formed by optimal alignments and combinations of geological processes publication-title: Nat. Geosci. – volume: 152 start-page: 10 year: 2015 end-page: 26 ident: b0335 article-title: The chlorite proximitor: a new tool for detecting porphyry ore deposits publication-title: J. Geochem. Explor. – volume: 13 start-page: 357 year: 2014 end-page: 381 ident: b0035 article-title: Geochemistry of Porphyry Deposits publication-title: Treatise on Geochemistry – volume: 262 start-page: 320 year: 2016 end-page: 333 ident: b0280 article-title: Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere publication-title: Lithos – volume: 190 year: 2020 ident: b0345 article-title: Chlorite alteration in porphyry Cu systems: New insights from mineralogy and mineral chemistry publication-title: Appl. Clay Sci. – volume: 30 start-page: 30 year: 1995 end-page: 38 ident: b0410 article-title: Chloritization of the Hydrothermally Altered Bedrock at the Igarapé Bahia Gold Deposit Carajás, Brazil publication-title: Miner. Deposita – volume: 108 start-page: 143 year: 2011 end-page: 156 ident: b0370 article-title: Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer Tasmania, as revealed by infrared reflectance spectroscopy publication-title: J. Geochem. Explor. – volume: 19 start-page: 67 year: 1986 end-page: 81 ident: b0070 article-title: Geochemical characteristics of collisional-zone magmatism publication-title: London Geological Society, Special Publications – volume: 31 start-page: 337 year: 2012 end-page: 346 ident: b0425 article-title: Re-Os dating of molybdenite from Nuri Cu-W-Mo deposit and its geological significance publication-title: Mineral deposits – volume: 111 start-page: 1187 year: 2016 end-page: 1222 ident: b0175 article-title: Apatite trace element compositions: a robust new tool for mineral exploration publication-title: Econ. Geol. – volume: 35 start-page: 275 year: 2019 end-page: 294 ident: b0435 article-title: Formation and evolution of the Gangdese magmatic arc publication-title: Acta Petrol. Sin. – volume: 22 start-page: 521 year: 2006 end-page: 533 ident: b0225 article-title: Spatial-temporal framework of the Gangdese orogenic belt and its evolution publication-title: Acta Petrol. Sin. – volume: 38 start-page: 1741 year: 1997 end-page: 1752 ident: b0250 article-title: Constraints on magma degassing beneath the Far Southeast porphyry Cu-Au deposit. Philippines publication-title: J. Petrol. – volume: 96 start-page: 939 year: 2001 end-page: 955 ident: b0080 article-title: Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebury and Western Tharsis Tasmania, and Highway-Reward, Queensland publication-title: Econ. Geol. – volume: 63 start-page: 2042 year: 2020 end-page: 2067 ident: b0320 article-title: Porphyry mineralization in Tethyan orogen publication-title: Science China Earth Sciences – volume: 31 start-page: 417 year: 2012 end-page: 437 ident: b0025 article-title: Geological and skarn mineral characteristics of Nuri Cu-W-Mo deposit in southern Gangdese, Tibet publication-title: Mineral Deposits – volume: 10 start-page: 545 year: 2018 end-page: 565 ident: b0170 article-title: Late Triassic intra-oceanic arc system with in Neo-Tethys: Evidence from cumulate appinite in the Gangdese belt, southern Tibet publication-title: Lithosphere – volume: 70 start-page: 857 year: 1975 end-page: 912 ident: b0060 article-title: The porphyry copper deposits at El Salvador, Chile publication-title: Econ. Geol. – reference: Mcleod, R.L., Gabell, A.R., Green, A., Gardavsky, V., 1987. Chlorite infrared spectral data as proximity indicators of volcanogenic massive sulphide mineralization. – volume: 37 start-page: 247 year: 2009 end-page: 250 ident: b0235 article-title: Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere publication-title: Geology – volume: 56 start-page: 227 year: 2015 end-page: 254 ident: b0395 article-title: High-Mg Diorite from Qulong in Southern Tibet: Implications for the Genesis of Adakite-like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens publication-title: J. Petrol. – volume: 24 start-page: 473 year: 2008 end-page: 479 ident: b0415 article-title: Geochronologic constraints on magmatic intrusions and mineralization of the Jiru porphyry copper deposit Tibet, associated with continent-continent collisional process publication-title: Acta Petrol. Sin. – volume: 44 start-page: 2143 year: 2019 end-page: 2156 ident: b0270 article-title: Application of short-wave infrared spectroscopy in Gangjiang porphyry Cu-Mo Deposit in Nimu ore field, Tibet publication-title: Mineral Deposits – volume: 88 start-page: 903 year: 2015 end-page: 904 ident: b0090 article-title: Geodynamics and metallogenesis of the east Tethyan metallogenic domain publication-title: Acta Petrol. Sin. – start-page: 483 year: 2018 ident: b0460 article-title: Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma publication-title: Himalayan Tectonics: A Modern Synthesis – volume: 62 start-page: 42 year: 2011 end-page: 62 ident: b0020 article-title: Fluid Inclusion and hydrogen, oxygen, sulfur isotopes of Nuri Cu-W-Mo deposit in the southern Gangdese, Tibet publication-title: Resour. Geol. – reference: Tang, J.X., Dorji., Hong, F., Lang, X.H., Zhang, J.S., Zheng, W.B., and Ying, L.J., 2012. Minerogenetic series of ore deposits in the east part of the Gangdese Metallogenic Belt. Diqiu Xuebao 33, 393–410 (in Chinese with English abstract). – volume: 171 start-page: 1 year: 2016 end-page: 19 ident: b0300 article-title: Xenoliths in ultrapotassic volcanic rocks in the Lhasa Block: direct evidence for crust-mantle mixing and metamorphism in the deep crust publication-title: Contrib. Miner. Petrol. – volume: 451 start-page: 116 year: 2017 end-page: 134 ident: b0310 article-title: Across-arc geochemical variation in the Jurassic magmatic zone, Southern Tibet: Implication for continental arc-related porphyry Cu-Au mineralization publication-title: Chem. Geol. – reference: Tafti, R., 2011, Metallogeny, geochronology and tectonic setting of the Gangdese belt, southern Tibet, China: Unpublished Ph.D. thesis, University of British Columbia, Canada, 451 p. – volume: 79 start-page: 281 year: 1986 end-page: 302 ident: b0040 article-title: Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: publication-title: Earth Planet. Sci. Lett. – volume: 105 start-page: 3 year: 2010 end-page: 41 ident: b0255 article-title: Porphyry Copper Systems publication-title: Econ. Geol. – volume: 220 start-page: 139 year: 2004 end-page: 155 ident: b0100 article-title: Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet publication-title: Earth Planet. Sci. Lett. – volume: 108 start-page: 143 year: 2011 ident: 10.1016/j.oregeorev.2021.104156_b0370 article-title: Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer Tasmania, as revealed by infrared reflectance spectroscopy publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2011.01.001 – volume: 90 start-page: 1063 year: 2017 ident: 10.1016/j.oregeorev.2021.104156_b0355 article-title: In situ elemental and isotopic study of diorite intrusions: Implication for Jurassic arc magmatism and porphyry Cu-Au mineralisation in southern Tibet publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2017.04.036 – year: 2018 ident: 10.1016/j.oregeorev.2021.104156_b0375 article-title: Near-Infrared Spectroscopic Study of Chlorite Minerals publication-title: J. Spectrosc. doi: 10.1155/2018/6958260 – volume: 315 start-page: 7 year: 2009 ident: 10.1016/j.oregeorev.2021.104156_b0195 article-title: Late Paleozoic and Mesozoic tectonic and palaeogeographical evolution of SE Asia publication-title: Geological Society London Special Publications doi: 10.1144/SP315.2 – volume: 112 start-page: 1153 year: 2017 ident: 10.1016/j.oregeorev.2021.104156_b0305 article-title: White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits publication-title: Western Australia: Econ. Geol. – volume: 111 start-page: 1223 year: 2016 ident: 10.1016/j.oregeorev.2021.104156_b0135 article-title: Short-Wave Infrared Spectral and Geochemical Characteristics of Hydrothermal Alteration at the Archean Izok Lake Zn-Cu-Pb-Ag Volcanogenic Massive Sulfide Deposit, Nunavut, Canada: Application in Exploration Target Vectoring publication-title: Econ. Geol. doi: 10.2113/econgeo.111.5.1223 – volume: 29 start-page: 377 year: 2000 ident: 10.1016/j.oregeorev.2021.104156_b0360 article-title: An infrared spectral reflectance study of hydrothermal alteration minerals from the Te Mihi sector of the Wairakei geothermal system, New Zealand publication-title: Geothermics doi: 10.1016/S0375-6505(00)00004-3 – volume: 43 start-page: 35 year: 2008 ident: 10.1016/j.oregeorev.2021.104156_b0010 article-title: Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas publication-title: Clay Miner. doi: 10.1180/claymin.2008.043.1.03 – volume: 93 start-page: 373 year: 1998 ident: 10.1016/j.oregeorev.2021.104156_b0075 article-title: Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines publication-title: Econ. Geol. doi: 10.2113/gsecongeo.93.4.373 – volume: 62 start-page: 42 year: 2011 ident: 10.1016/j.oregeorev.2021.104156_b0020 article-title: Fluid Inclusion and hydrogen, oxygen, sulfur isotopes of Nuri Cu-W-Mo deposit in the southern Gangdese, Tibet publication-title: Resour. Geol. doi: 10.1111/j.1751-3928.2011.00179.x – volume: 224–225 start-page: 179 year: 2015 ident: 10.1016/j.oregeorev.2021.104156_b0295 article-title: Zircon U-Pb age and Sr-Nd-Hf-O isotope geochemistry of the Paleocene-Eocene igneous rocks in western Gangdese: Evidence for the timing of Neo-Tethyan slab breakoff publication-title: Lithos doi: 10.1016/j.lithos.2015.03.003 – ident: 10.1016/j.oregeorev.2021.104156_b0265 – volume: 451 start-page: 116 year: 2017 ident: 10.1016/j.oregeorev.2021.104156_b0310 article-title: Across-arc geochemical variation in the Jurassic magmatic zone, Southern Tibet: Implication for continental arc-related porphyry Cu-Au mineralization publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2017.01.010 – volume: 11 start-page: 281 year: 2005 ident: 10.1016/j.oregeorev.2021.104156_b0210 article-title: Spatial and temporal distribution and characteristics of granitoids in the Gangdese Tibet and implication for crustal growth andevolution publication-title: Geological Journal of China Universities – volume: 29 start-page: 113 year: 2010 ident: 10.1016/j.oregeorev.2021.104156_b0420 article-title: Metallogenesis and geodynamics of Tethyan metallogenic domain: A review publication-title: Mineral Deposits – volume: 31 start-page: 337 year: 2012 ident: 10.1016/j.oregeorev.2021.104156_b0425 article-title: Re-Os dating of molybdenite from Nuri Cu-W-Mo deposit and its geological significance publication-title: Mineral deposits – volume: 79 start-page: 842 year: 2014 ident: 10.1016/j.oregeorev.2021.104156_b0450 article-title: Multiple mineralization events at the Jiru porphyry copper deposit, southern Tibet: Implications for Eocene and Miocene magma sources and resource potential publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2013.03.029 – volume: 110 start-page: 925 year: 2015 ident: 10.1016/j.oregeorev.2021.104156_b0140 publication-title: Econ. Geol. doi: 10.2113/econgeo.110.4.925 – volume: 220 start-page: 139 year: 2004 ident: 10.1016/j.oregeorev.2021.104156_b0100 article-title: Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(04)00007-X – volume: 13 start-page: 43 year: 2006 ident: 10.1016/j.oregeorev.2021.104156_b0200 article-title: From the Tethys to the formation of the Qinghai Tibet plateau: constrained by tectono-magmatic events publication-title: Earth Sci. Front. – volume: 42 start-page: 501 year: 1977 ident: 10.1016/j.oregeorev.2021.104156_b0120 article-title: Spectral signature of particulate minerals in the visible and near infrared publication-title: Geophysics doi: 10.1190/1.1440721 – volume: 5 year: 2015 ident: 10.1016/j.oregeorev.2021.104156_b0455 article-title: Magmatic record of India-Asia collision publication-title: Sci. Rep. doi: 10.1038/srep17236 – volume: 53 start-page: 1973 year: 2017 ident: 10.1016/j.oregeorev.2021.104156_b0145 article-title: Composition and age of Jurassic diabase dikes in the Xiongcun porphyry copper-gold district, southern margin of the Lhasa terrane,Tibet, China: Petrogenesis and tectonic setting publication-title: Geol. J. doi: 10.1002/gj.3028 – volume: 10 start-page: 3510 year: 2019 ident: 10.1016/j.oregeorev.2021.104156_b0095 article-title: Fingerprinting metal transfer from mantle publication-title: Nat. Commun. doi: 10.1038/s41467-019-11445-w – volume: 307 start-page: 17 year: 1984 ident: 10.1016/j.oregeorev.2021.104156_b0005 article-title: Structure and evolution of the Himalayan-Tibet orogenic belt publication-title: Nature doi: 10.1038/307017a0 – ident: 10.1016/j.oregeorev.2021.104156_b0245 – volume: 38 start-page: 1741 year: 1997 ident: 10.1016/j.oregeorev.2021.104156_b0250 article-title: Constraints on magma degassing beneath the Far Southeast porphyry Cu-Au deposit. Philippines publication-title: J. Petrol. doi: 10.1093/petroj/38.12.1741 – volume: 24 start-page: 891 year: 2012 ident: 10.1016/j.oregeorev.2021.104156_b0050 article-title: Short-wavelength infrared spectroscopy of chlorite can be used to determine very low metamorphic grades publication-title: Eur. J. Mineral. doi: 10.1127/0935-1221/2012/0024-2233 – volume: 152 start-page: 10 year: 2015 ident: 10.1016/j.oregeorev.2021.104156_b0335 article-title: The chlorite proximitor: a new tool for detecting porphyry ore deposits publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2015.01.005 – volume: 195 start-page: 1315 year: 2014 ident: 10.1016/j.oregeorev.2021.104156_b0285 article-title: Increased magmatic water content–the key to Oligo-Miocene porphyry Cu-Mo±Au formation in the eastern Gangdese belt, Tibet publication-title: Econ. Geol. doi: 10.2113/econgeo.109.5.1315 – start-page: 316 year: 2014 ident: 10.1016/j.oregeorev.2021.104156_b0230 – volume: 184 start-page: 179 year: 2018 ident: 10.1016/j.oregeorev.2021.104156_b0215 article-title: Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2017.10.019 – volume: 27 start-page: 279 year: 2008 ident: 10.1016/j.oregeorev.2021.104156_b0385 article-title: Qulong superlarge porphyry Cu deposit in Tibet: Geology, alteration and mineralization publication-title: Mineral Deposits – volume: 96 start-page: 939 year: 2001 ident: 10.1016/j.oregeorev.2021.104156_b0080 article-title: Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebury and Western Tharsis Tasmania, and Highway-Reward, Queensland publication-title: Econ. Geol. – volume: 111 start-page: 1187 year: 2016 ident: 10.1016/j.oregeorev.2021.104156_b0175 article-title: Apatite trace element compositions: a robust new tool for mineral exploration publication-title: Econ. Geol. doi: 10.2113/econgeo.111.5.1187 – volume: 39 start-page: 21 year: 2011 ident: 10.1016/j.oregeorev.2021.104156_b0105 article-title: Porphyry Cu(-Mo-Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2010.09.002 – volume: 234 start-page: 83 year: 2005 ident: 10.1016/j.oregeorev.2021.104156_b0150 article-title: The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2005.02.038 – volume: 36 start-page: 133 year: 2009 ident: 10.1016/j.oregeorev.2021.104156_b0390 article-title: Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2009.03.003 – volume: 262 start-page: 320 year: 2016 ident: 10.1016/j.oregeorev.2021.104156_b0280 article-title: Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere publication-title: Lithos doi: 10.1016/j.lithos.2016.07.021 – volume: 10 start-page: 135 year: 2003 ident: 10.1016/j.oregeorev.2021.104156_b0205 article-title: Response of volcanism to the India-Asia collision publication-title: Earth Sci. Front. – volume: 30 start-page: 30 year: 1995 ident: 10.1016/j.oregeorev.2021.104156_b0410 article-title: Chloritization of the Hydrothermally Altered Bedrock at the Igarapé Bahia Gold Deposit Carajás, Brazil publication-title: Miner. Deposita – ident: 10.1016/j.oregeorev.2021.104156_b0185 – volume: 8 year: 2018 ident: 10.1016/j.oregeorev.2021.104156_b0220 article-title: Near-Infrared Spectroscopy of Hydrothermal versus Low-Grade Metamorphic Chlorites publication-title: Mineral – volume: 171 start-page: 1 year: 2016 ident: 10.1016/j.oregeorev.2021.104156_b0300 article-title: Xenoliths in ultrapotassic volcanic rocks in the Lhasa Block: direct evidence for crust-mantle mixing and metamorphism in the deep crust publication-title: Contrib. Miner. Petrol. doi: 10.1007/s00410-016-1272-6 – volume: 25 start-page: 83 year: 1990 ident: 10.1016/j.oregeorev.2021.104156_b0330 article-title: Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition. II The chlorite group publication-title: Clay Mineral doi: 10.1180/claymin.1990.025.1.09 – volume: 44 start-page: 2143 year: 2019 ident: 10.1016/j.oregeorev.2021.104156_b0270 article-title: Application of short-wave infrared spectroscopy in Gangjiang porphyry Cu-Mo Deposit in Nimu ore field, Tibet publication-title: Mineral Deposits – volume: 22 start-page: 133 year: 2019 ident: 10.1016/j.oregeorev.2021.104156_b0380 article-title: Porphyry Copper Deposits in China publication-title: Society of Economic Geologist Special Publications – volume: 24 start-page: 473 year: 2008 ident: 10.1016/j.oregeorev.2021.104156_b0415 article-title: Geochronologic constraints on magmatic intrusions and mineralization of the Jiru porphyry copper deposit Tibet, associated with continent-continent collisional process publication-title: Acta Petrol. Sin. doi: 10.1111/j.1745-7254.2008.00764.x – volume: 165 start-page: 723 year: 2013 ident: 10.1016/j.oregeorev.2021.104156_b0015 article-title: A New Chlorite Geothermometer for Diagenetic to Low-Grade Metamorphic Conditions publication-title: Contrib. Miner. Petrol. doi: 10.1007/s00410-012-0832-7 – volume: 31 start-page: 348 year: 2012 ident: 10.1016/j.oregeorev.2021.104156_b0115 article-title: LA-ICP-MS zircon U-Pb dating of two types of porphyry in the Yaguila mining area, Tibet publication-title: Acta Petrologica et Mineralogica – volume: 56 start-page: 227 year: 2015 ident: 10.1016/j.oregeorev.2021.104156_b0395 article-title: High-Mg Diorite from Qulong in Southern Tibet: Implications for the Genesis of Adakite-like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens publication-title: J. Petrol. doi: 10.1093/petrology/egu076 – volume: 70 start-page: 857 year: 1975 ident: 10.1016/j.oregeorev.2021.104156_b0060 article-title: The porphyry copper deposits at El Salvador, Chile publication-title: Econ. Geol. doi: 10.2113/gsecongeo.70.5.857 – start-page: 270 year: 1962 ident: 10.1016/j.oregeorev.2021.104156_b0045 – volume: 62 start-page: 4 year: 2012 ident: 10.1016/j.oregeorev.2021.104156_b0340 article-title: Highly Oxidized Magma and Fluid Evolution of Miocene Qulong Giant Porphyry Cu-Mo Deposit Southern Tibet, China publication-title: Resour. Geol. doi: 10.1111/j.1751-3928.2011.00177.x – volume: 10 start-page: 545 year: 2018 ident: 10.1016/j.oregeorev.2021.104156_b0170 article-title: Late Triassic intra-oceanic arc system with in Neo-Tethys: Evidence from cumulate appinite in the Gangdese belt, southern Tibet publication-title: Lithosphere doi: 10.1130/L682.1 – volume: 22 start-page: 521 year: 2006 ident: 10.1016/j.oregeorev.2021.104156_b0225 article-title: Spatial-temporal framework of the Gangdese orogenic belt and its evolution publication-title: Acta Petrol. Sin. – volume: 105926 year: 2021 ident: 10.1016/j.oregeorev.2021.104156_b0180 article-title: Biotite composition as a tool for exploration: An example from Sn-W-Mo-bearing Mount Douglas Granite, New Brunswick, Canada publication-title: Lithos – start-page: 268 year: 1995 ident: 10.1016/j.oregeorev.2021.104156_b0125 article-title: Formation of clay minerals in hydrothermal environments publication-title: Berlin Heidelberg Springer – volume: 88 start-page: 903 year: 2015 ident: 10.1016/j.oregeorev.2021.104156_b0090 article-title: Geodynamics and metallogenesis of the east Tethyan metallogenic domain publication-title: Acta Petrol. Sin. – ident: 10.1016/j.oregeorev.2021.104156_b0260 – volume: 68 start-page: 173 year: 2005 ident: 10.1016/j.oregeorev.2021.104156_b0030 article-title: Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2004.05.001 – volume: 28 start-page: 211 year: 2000 ident: 10.1016/j.oregeorev.2021.104156_b0400 article-title: Geologic evolution of the Himalayan-Tibetan orogen publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev.earth.28.1.211 – volume: 13 start-page: 357 year: 2014 ident: 10.1016/j.oregeorev.2021.104156_b0035 article-title: Geochemistry of Porphyry Deposits publication-title: Treatise on Geochemistry doi: 10.1016/B978-0-08-095975-7.01116-5 – volume: 6 start-page: 264 year: 2016 ident: 10.1016/j.oregeorev.2021.104156_b0160 article-title: Advances on mineral genesis of chlorite: A review publication-title: Adv. Geosci. doi: 10.12677/AG.2016.63028 – volume: 36 start-page: 1263 year: 2017 ident: 10.1016/j.oregeorev.2021.104156_b0430 article-title: Application of short wavelength infrared (SWIR) technique to exploration of skarn deposit: A case study of Tonglvshan Cu-Fe-Au deposit, Edongnan (southeast Hubei) ore concentration area publication-title: Mineral Deposits – volume: 6 start-page: 911 year: 2013 ident: 10.1016/j.oregeorev.2021.104156_b0240 article-title: Giant ore deposits formed by optimal alignments and combinations of geological processes publication-title: Nat. Geosci. doi: 10.1038/ngeo1920 – volume: 27 start-page: 3513 year: 2011 ident: 10.1016/j.oregeorev.2021.104156_b0445 article-title: The ~54 Ma gabbro-granite intrusive in southern Dangxung area, Tibet: Petrogenesis and implications publication-title: Acta Petrol. Sin. – volume: 100 start-page: 273 year: 2005 ident: 10.1016/j.oregeorev.2021.104156_b0130 article-title: Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp Vancouver Island, British Columbia, Canada publication-title: Econ. Geol. doi: 10.2113/gsecongeo.100.2.273 – volume: 112 start-page: 1419 year: 2017 ident: 10.1016/j.oregeorev.2021.104156_b0155 article-title: Cyclic Magmatic-Hydrothermal Evolution in Porphyry Systems: High-Precision U-Pb and Re-Os Geochronology Constraints on the Tibetan Qulong Porphyry Cu-Mo Deposit publication-title: Econ. Geol. doi: 10.5382/econgeo.2017.4515 – volume: 35 start-page: 275 year: 2019 ident: 10.1016/j.oregeorev.2021.104156_b0435 article-title: Formation and evolution of the Gangdese magmatic arc publication-title: Acta Petrol. Sin. doi: 10.18654/1000-0569/2019.02.01 – volume: 100 start-page: 1 year: 2015 ident: 10.1016/j.oregeorev.2021.104156_b0065 article-title: Footprints: Hydrothermal alteration and geochemical dispersion around porphyry copper deposits publication-title: Society of Economic Geology Newsletter – volume: 79 start-page: 281 year: 1986 ident: 10.1016/j.oregeorev.2021.104156_b0040 article-title: Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrological characteristics and geodynamical significance publication-title: Earth Planet. Sci. Lett. doi: 10.1016/0012-821X(86)90186-X – start-page: 483 year: 2018 ident: 10.1016/j.oregeorev.2021.104156_b0460 article-title: Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma – volume: 36 start-page: 2 year: 2009 ident: 10.1016/j.oregeorev.2021.104156_b0085 article-title: Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2009.05.001 – volume: 65 start-page: 373 year: 1970 ident: 10.1016/j.oregeorev.2021.104156_b0165 article-title: Lateral and vertical alteration-mineralization zoning in porphyry ore deposits publication-title: Econ. Geol. doi: 10.2113/gsecongeo.65.4.373 – volume: 190 year: 2020 ident: 10.1016/j.oregeorev.2021.104156_b0345 article-title: Chlorite alteration in porphyry Cu systems: New insights from mineralogy and mineral chemistry publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2020.105585 – volume: 37 start-page: 247 year: 2009 ident: 10.1016/j.oregeorev.2021.104156_b0235 article-title: Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere publication-title: Geology doi: 10.1130/G25451A.1 – volume: 63 start-page: 2042 year: 2020 ident: 10.1016/j.oregeorev.2021.104156_b0320 article-title: Porphyry mineralization in Tethyan orogen publication-title: Science China Earth Sciences doi: 10.1007/s11430-019-9609-0 – volume: 4 start-page: 647 year: 2012 ident: 10.1016/j.oregeorev.2021.104156_b0110 article-title: Metallogenesis of continental collision setting: Part Ⅰ Gangdese Cenozoic porphyry Cu-Mo systems in Tibet publication-title: Mineral Deposits – volume: 181 start-page: 122 year: 2018 ident: 10.1016/j.oregeorev.2021.104156_b0315 article-title: Origin of post-collisional magmas and formation of porphyry Cu deposits in southern Tibet publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2018.02.019 – volume: 61 start-page: 809 year: 1997 ident: 10.1016/j.oregeorev.2021.104156_b0275 article-title: On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation publication-title: Mineral. Mag. doi: 10.1180/minmag.1997.061.409.05 – volume: 105 start-page: 3 year: 2010 ident: 10.1016/j.oregeorev.2021.104156_b0255 article-title: Porphyry Copper Systems publication-title: Econ. Geol. doi: 10.2113/gsecongeo.105.1.3 – volume: 31 start-page: 417 year: 2012 ident: 10.1016/j.oregeorev.2021.104156_b0025 article-title: Geological and skarn mineral characteristics of Nuri Cu-W-Mo deposit in southern Gangdese, Tibet publication-title: Mineral Deposits – volume: 37 start-page: 449 year: 2016 ident: 10.1016/j.oregeorev.2021.104156_b0190 article-title: Late Triassic crustal growth in southern Tibet: Evidence from the Gangdese magmatic belt publication-title: Gondwana Res. doi: 10.1016/j.gr.2015.10.007 – volume: 150 start-page: 68 year: 2015 ident: 10.1016/j.oregeorev.2021.104156_b0290 article-title: The Role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo±Au deposits in the Gangdese belt, southern Tibet publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2015.07.003 – volume: 543 year: 2020 ident: 10.1016/j.oregeorev.2021.104156_b0350 article-title: Elemental behavior during chlorite alteration: New insights from a combined EMPA and LA-ICPMS study in porphyry Cu systems publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2020.119604 – volume: 36 start-page: 390 year: 2016 ident: 10.1016/j.oregeorev.2021.104156_b0440 article-title: Thermal history of the giant Qulong Cu-Mo deposit, Gangdese metallogenic belt, Tibet: Constraints on magmatic-hydrothermal evolution and exhumation publication-title: Gondwana Res. doi: 10.1016/j.gr.2015.07.005 – volume: 37 start-page: 556 year: 2018 ident: 10.1016/j.oregeorev.2021.104156_b0055 article-title: Characteristics of alteration minerals and prospecting model revealed by shortwave infrared technique: Take Sinongduo Ag-Pb-Zn deposit as an example publication-title: Mineral Deposits – volume: 19 start-page: 67 year: 1986 ident: 10.1016/j.oregeorev.2021.104156_b0070 article-title: Geochemical characteristics of collisional-zone magmatism publication-title: London Geological Society, Special Publications doi: 10.1144/GSL.SP.1986.019.01.04 – volume: 79 start-page: 497 year: 2014 ident: 10.1016/j.oregeorev.2021.104156_b0405 article-title: Re-Os systematics of sulfides (chalcopyrite, bornite, pyrite and pyrrhotite) from the Jima Cu-Mo deposit of Tibet, China publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2013.10.004 |
SSID | ssj0006001 |
Score | 2.3966892 |
Snippet | [Display omitted]
•Chlorite at Qulong includes three types of chlorite veins and disseminated chlorite.•The chlorite co-existing with Cu mineralization is high... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104156 |
SubjectTerms | Chlorite Hydrothermal evolution Major element Porphyry SWIR Trace element |
Title | Significance of chlorite hyperspectral and geochemical characteristics in exploration: A case study of the giant Qulong porphyry Cu-Mo deposit in collisional orogen, Southern Tibet |
URI | https://dx.doi.org/10.1016/j.oregeorev.2021.104156 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20IuhB_MRv5uDR2DabrKm3UqxVUZC24C1kP1IjkkhID178Vf5AZ5K0WBA8eExgliVvmHlL3r4BONOebrlRpB2issLxXKMcxdPcjWc8KVWs_PIuzMOjHIy9u2f_eQl6s7swLKusa39V08tqXb9p1l-z-Z4kzSH7iLSFDFy2EQr4ovmKKzrSb8BK9_Z-8DgvyNzTK4vvjsMBCzKvLKfTecbzXlxqd_zLs83DrH9rUj8aT38TNmrGiN1qU1uwZNNtWP_hI7gNqzflfN6PHfgaJpOU1T8MJmYx6heW2BUWX-jAWd2rzGm1KDVIG9K1XQDqRd9mTFK0pTqvBO4Ku6ip3WFpRsvLEm3ECWVWgU_TtyydINF4Aiz_wN7UecjQ2FINxutwpiWV9wdmeUYJe47l4D6bpzhKlC12Ydy_HvUGTj2YwdGi7ReOHwQ6MLJjPaIfBC0d26wILokcaEN0MfaNFB5rZyM_vhTKthSffYUQsYgUUU6xB400S-0-oC80cThNPNWlfmqlUsJSySDW4sbSKHMAcoZEqGvXch6e8RbO5Gmv4RzCkCEMKwgPoDUPfK-MO_4OuZpBHS7kYEjt5a_gw_8EH8EaP1Uy4GNoFPnUnhDZKdQpLF98tk_rlP4G4nkCUw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF2KIupB_MRv5-DR2DabbFNvUqxVW0Gs4C1kP1IjkkhID734q_yBzmzSakHw4DXJLiFvmHlD3r5h7FR5quFGkXKQynLHc7V0JE1z1572hJCx9O1ZmMG96D15t8_-c411pmdhSFZZ5f4yp9tsXV2pV1-z_p4k9UfyEWlyEbhkIxTQQfNFz-ct0vWdf3zrPKiilwbfbYcenxN5ZTn25hlNe3Gx2NEPzyaNsv6tRP0oO911tlbxRbgsX2mD1Uy6yVZ_uAhusqVrO513ssU-H5NRStofghKyGNQLCewKAy_YbpanKnPcLUo14AupyiwA1LxrMyQpGKvNs7BdwCUoLHZgrWhpWySNMMK4KuBh_JalI0ASj3DlE-iMnUEG2lgtGO1DcZaUzh-Q5RmG6xnYsX0mT2GYSFNss6fu1bDTc6qxDI7iTb9w_CBQgRZt4yH5QGCxaTM8aCE1UBrJYuxrwT1SzkZ-3OLSNCR1vpzzmEcSCSffYQtplppdBj5XyOAUslQXq6kRUnKDCQM5ixsLLfUeE1MkQlV5ltPojLdwKk57DWcQhgRhWEK4xxqzhe-lbcffSy6mUIdzERhicflr8f5_Fp-w5d5w0A_7N_d3B2yF7pSC4EO2UORjc4S0p5DHNqy_ABoqAx4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Significance+of+chlorite+hyperspectral+and+geochemical+characteristics+in+exploration%3A+A+case+study+of+the+giant+Qulong+porphyry+Cu-Mo+deposit+in+collisional+orogen%2C+Southern+Tibet&rft.jtitle=Ore+geology+reviews&rft.au=Xue%2C+Qingwen&rft.au=Wang%2C+Rui&rft.au=Liu%2C+Siyu&rft.au=Shi%2C+Weixin&rft.date=2021-07-01&rft.issn=0169-1368&rft.volume=134&rft.spage=104156&rft_id=info:doi/10.1016%2Fj.oregeorev.2021.104156&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oregeorev_2021_104156 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1368&client=summon |