Significance of chlorite hyperspectral and geochemical characteristics in exploration: A case study of the giant Qulong porphyry Cu-Mo deposit in collisional orogen, Southern Tibet

[Display omitted] •Chlorite at Qulong includes three types of chlorite veins and disseminated chlorite.•The chlorite co-existing with Cu mineralization is high Fe with long wavelength.•The ore fluid evolved to be more acidic and higher silica activity over time.•SWIR and chlorite geochemistry can be...

Full description

Saved in:
Bibliographic Details
Published inOre geology reviews Vol. 134; p. 104156
Main Authors Xue, Qingwen, Wang, Rui, Liu, Siyu, Shi, Weixin, Tong, Xuesong, Li, Yuyao, Sun, Fei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2021
Subjects
Online AccessGet full text
ISSN0169-1368
1872-7360
DOI10.1016/j.oregeorev.2021.104156

Cover

Loading…
Abstract [Display omitted] •Chlorite at Qulong includes three types of chlorite veins and disseminated chlorite.•The chlorite co-existing with Cu mineralization is high Fe with long wavelength.•The ore fluid evolved to be more acidic and higher silica activity over time.•SWIR and chlorite geochemistry can be combined for porphyry exploration in orogen. The genetic mechanism and exploration model for porphyry deposits in subduction zones has been comprehensively and systematically investigated; in contrast, our understanding for porphyry mineralization in collisional orogeny is limited. Qulong porphyry Cu-Mo deposit, a typical porphyry Cu deposit (PCD) developed in the collisional setting, was chosen as the subject of this study. The study is mainly focused on interpretation of short-wave infrared (SWIR) spectroscopy combined with mineral geochemistry of chlorite from Qulong deposit to guide exploration in future. Hydrothermal alteration in Qulong mineralization system can be divided into three zones, which are the inner potassic alteration zone, the outside propylitic alteration zone and phyllic alteration. Phyllic alteration can be intensively superimposed on the early potassic and prophylitic alteration zones. Chlorite is widely distributed in both of the propylitic and phyllic zones. Four types of chlorite were observed in Qulong deposit, including three stages of vein-related chlorite (Chl-I, Chl-II, Chl-III) and one type of disseminated chlorite (Chl-D). Mineral assemblage of Chl-I stage includes chlorite–anhydrite–pyrite. Minerals in Chl-II stage consist of chlorite–epidote–pyrite–chalcopyrite. Mineral assemblage of Chl-III stage is composed of chlorite–sericite–quartz–chalcopyrite, which is later than both Chl-I and Chl-II. Chl-D was developed mainly by alteration of primary biotite phenocryst. Chl-I, Chl-II and Chl-D were formed along with the propylitic alteration; however, Chl-III is from the phyllic alteration. Chl-II and Chl-III are both closely related with Cu mineralization. The major element compositions of chlorite show a regular variation of Mg# with fluid evolution. Transition from shorter wavelength chlorite (Fe feature around 2250 nm) to longer wavelength goes with the decrease of Mg#, except for Chl-D. In summary, chlorite associated with Cu mineralization in Qulong is mainly occurred in veins and has low Mg# ratios and longer wavelength. Such chlorite is the indicator for Cu mineralization and should be the target in future exploration. In addition to chlorite, sericite in Qulong also shows systematic change from early-stage phengite to late-stage muscovite. In combination of mineral geochemistry and thermodynamic modelling, we suggest that ore-forming fluid gradually evolved to be more acidic with higher silica activity over time.
AbstractList [Display omitted] •Chlorite at Qulong includes three types of chlorite veins and disseminated chlorite.•The chlorite co-existing with Cu mineralization is high Fe with long wavelength.•The ore fluid evolved to be more acidic and higher silica activity over time.•SWIR and chlorite geochemistry can be combined for porphyry exploration in orogen. The genetic mechanism and exploration model for porphyry deposits in subduction zones has been comprehensively and systematically investigated; in contrast, our understanding for porphyry mineralization in collisional orogeny is limited. Qulong porphyry Cu-Mo deposit, a typical porphyry Cu deposit (PCD) developed in the collisional setting, was chosen as the subject of this study. The study is mainly focused on interpretation of short-wave infrared (SWIR) spectroscopy combined with mineral geochemistry of chlorite from Qulong deposit to guide exploration in future. Hydrothermal alteration in Qulong mineralization system can be divided into three zones, which are the inner potassic alteration zone, the outside propylitic alteration zone and phyllic alteration. Phyllic alteration can be intensively superimposed on the early potassic and prophylitic alteration zones. Chlorite is widely distributed in both of the propylitic and phyllic zones. Four types of chlorite were observed in Qulong deposit, including three stages of vein-related chlorite (Chl-I, Chl-II, Chl-III) and one type of disseminated chlorite (Chl-D). Mineral assemblage of Chl-I stage includes chlorite–anhydrite–pyrite. Minerals in Chl-II stage consist of chlorite–epidote–pyrite–chalcopyrite. Mineral assemblage of Chl-III stage is composed of chlorite–sericite–quartz–chalcopyrite, which is later than both Chl-I and Chl-II. Chl-D was developed mainly by alteration of primary biotite phenocryst. Chl-I, Chl-II and Chl-D were formed along with the propylitic alteration; however, Chl-III is from the phyllic alteration. Chl-II and Chl-III are both closely related with Cu mineralization. The major element compositions of chlorite show a regular variation of Mg# with fluid evolution. Transition from shorter wavelength chlorite (Fe feature around 2250 nm) to longer wavelength goes with the decrease of Mg#, except for Chl-D. In summary, chlorite associated with Cu mineralization in Qulong is mainly occurred in veins and has low Mg# ratios and longer wavelength. Such chlorite is the indicator for Cu mineralization and should be the target in future exploration. In addition to chlorite, sericite in Qulong also shows systematic change from early-stage phengite to late-stage muscovite. In combination of mineral geochemistry and thermodynamic modelling, we suggest that ore-forming fluid gradually evolved to be more acidic with higher silica activity over time.
ArticleNumber 104156
Author Sun, Fei
Shi, Weixin
Liu, Siyu
Tong, Xuesong
Li, Yuyao
Xue, Qingwen
Wang, Rui
Author_xml – sequence: 1
  givenname: Qingwen
  surname: Xue
  fullname: Xue, Qingwen
  organization: State Key Laboratory of Geological Processes and Mineral Resources, and Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China
– sequence: 2
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
  email: rw@cugb.edu.cn
  organization: State Key Laboratory of Geological Processes and Mineral Resources, and Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China
– sequence: 3
  givenname: Siyu
  surname: Liu
  fullname: Liu, Siyu
  organization: State Key Laboratory of Geological Processes and Mineral Resources, and Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China
– sequence: 4
  givenname: Weixin
  surname: Shi
  fullname: Shi, Weixin
  organization: Core and Samples Center of Land and Resources, China Geological Survey, Sanhe 065201, Hebei, China
– sequence: 5
  givenname: Xuesong
  surname: Tong
  fullname: Tong, Xuesong
  organization: State Key Laboratory of Geological Processes and Mineral Resources, and Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China
– sequence: 6
  givenname: Yuyao
  surname: Li
  fullname: Li, Yuyao
  organization: State Key Laboratory of Geological Processes and Mineral Resources, and Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China
– sequence: 7
  givenname: Fei
  surname: Sun
  fullname: Sun, Fei
  organization: State Key Laboratory of Geological Processes and Mineral Resources, and Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China
BookMark eNqNkc1q3DAURkVIIZM0zxA9QD2VLFu2A10MQ_oDKSEkWQtZvrbv4EhG0oT6vfqA1XRCF9k0GwnE952Lzj0np9ZZIOSKszVnXH7erZ2HAdLxss5ZztNrwUt5Qla8rvKsEpKdklVKNhkXsj4j5yHsGGOSMb4ivx9wsNij0dYAdT014-Q8RqDjMoMPM5jo9US17WgaYkZ4TtkpxbTXJoLHENEEipbCrzlVdURnr-mGGh2AhrjvlgM2jkAH1DbS-_3k7EBn5-dx8Qvd7rOfjnYwu4DxwDFumjAkShrjvBvAfqIPbp8I3tJHbCF-JB96PQW4fL0vyNPXm8ft9-z27tuP7eY2M4KXMSvr2tSdbKAoBG-bMq9zEMlJwUwnOOvLTopCVrLRZV-JFlibV0UlhOiFbrloxAWpjlzjXQgeejV7fNZ-UZypg3y1U__kq4N8dZSfml_eNA3Gv2qSTZze0d8c-5C-94LgVTAIaUUd-rQR1Tn8L-MPMPesoA
CitedBy_id crossref_primary_10_1007_s10661_023_11303_9
crossref_primary_10_1016_j_oregeorev_2023_105437
crossref_primary_10_1111_1755_6724_14809
crossref_primary_10_1007_s11053_022_10111_1
crossref_primary_10_3390_min13080997
crossref_primary_10_1130_B37086_1
crossref_primary_10_1016_j_clay_2025_107762
crossref_primary_10_1144_geochem2024_004
crossref_primary_10_3390_min13020256
crossref_primary_10_1016_j_oregeorev_2022_104889
crossref_primary_10_1016_j_saa_2024_125010
crossref_primary_10_3390_min12101280
Cites_doi 10.1016/j.gexplo.2011.01.001
10.1016/j.oregeorev.2017.04.036
10.1155/2018/6958260
10.1144/SP315.2
10.2113/econgeo.111.5.1223
10.1016/S0375-6505(00)00004-3
10.1180/claymin.2008.043.1.03
10.2113/gsecongeo.93.4.373
10.1111/j.1751-3928.2011.00179.x
10.1016/j.lithos.2015.03.003
10.1016/j.chemgeo.2017.01.010
10.1016/j.jseaes.2013.03.029
10.2113/econgeo.110.4.925
10.1016/S0012-821X(04)00007-X
10.1190/1.1440721
10.1038/srep17236
10.1002/gj.3028
10.1038/s41467-019-11445-w
10.1038/307017a0
10.1093/petroj/38.12.1741
10.1127/0935-1221/2012/0024-2233
10.1016/j.gexplo.2015.01.005
10.2113/econgeo.109.5.1315
10.1016/j.gexplo.2017.10.019
10.2113/econgeo.111.5.1187
10.1016/j.oregeorev.2010.09.002
10.1016/j.epsl.2005.02.038
10.1016/j.oregeorev.2009.03.003
10.1016/j.lithos.2016.07.021
10.1007/s00410-016-1272-6
10.1180/claymin.1990.025.1.09
10.1111/j.1745-7254.2008.00764.x
10.1007/s00410-012-0832-7
10.1093/petrology/egu076
10.2113/gsecongeo.70.5.857
10.1111/j.1751-3928.2011.00177.x
10.1130/L682.1
10.1016/j.earscirev.2004.05.001
10.1146/annurev.earth.28.1.211
10.1016/B978-0-08-095975-7.01116-5
10.12677/AG.2016.63028
10.1038/ngeo1920
10.2113/gsecongeo.100.2.273
10.5382/econgeo.2017.4515
10.18654/1000-0569/2019.02.01
10.1016/0012-821X(86)90186-X
10.1016/j.oregeorev.2009.05.001
10.2113/gsecongeo.65.4.373
10.1016/j.clay.2020.105585
10.1130/G25451A.1
10.1007/s11430-019-9609-0
10.1016/j.earscirev.2018.02.019
10.1180/minmag.1997.061.409.05
10.2113/gsecongeo.105.1.3
10.1016/j.gr.2015.10.007
10.1016/j.earscirev.2015.07.003
10.1016/j.chemgeo.2020.119604
10.1016/j.gr.2015.07.005
10.1144/GSL.SP.1986.019.01.04
10.1016/j.jseaes.2013.10.004
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.oregeorev.2021.104156
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1872-7360
ExternalDocumentID 10_1016_j_oregeorev_2021_104156
S0169136821001815
GroupedDBID --K
--M
.~1
0R~
0SF
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c315t-588c8d69e4431b95282e387240cd310f5d6346769a5f73be0b2747333f3ab1393
IEDL.DBID AIKHN
ISSN 0169-1368
IngestDate Thu Apr 24 22:59:09 EDT 2025
Tue Jul 01 01:26:34 EDT 2025
Fri Feb 23 02:45:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Porphyry
Major element
Trace element
Hydrothermal evolution
SWIR
Chlorite
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-588c8d69e4431b95282e387240cd310f5d6346769a5f73be0b2747333f3ab1393
ParticipantIDs crossref_primary_10_1016_j_oregeorev_2021_104156
crossref_citationtrail_10_1016_j_oregeorev_2021_104156
elsevier_sciencedirect_doi_10_1016_j_oregeorev_2021_104156
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Ore geology reviews
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Richards (b0240) 2013; 6
Hou, Cook (b0085) 2009; 36
Xiao, Qin, Li, Li, Xia, Chen, Zhao (b0340) 2012; 62
Scott, K.M., Yang, K., and Huntington, J.F., 1998, The application of spectral reflectance studies of chlorite in exploration. CSIRO Division of Exploration and Mining, AMIRA Project P435A.
Bishop, Lane, Dyar, Brown (b0010) 2008; 43
Cooke, Hollings, Wilkinson, Tosdal (b0035) 2014; 13
Deer, Howie, Iussman (b0045) 1962
Xiao, Chen (b0350) 2020; 543
Coulon, Maluski, Bollinger, Wang (b0040) 1986; 79
Sillitoe (b0255) 2010; 105
Laakso, Peter, Rivard (b0135) 2016; 111
Metcalfe (b0195) 2009; 315
Mo, Pan (b0200) 2006; 13
Hou, Gao, Qu, Rui, Mo (b0100) 2004; 220
Wang, Richards, Zhou, Hou, Stern, Creaser, Zhu (b0290) 2015; 150
Wang, Ding, Zhang, Kapp, Pullen, Yue (b0280) 2016; 262
Pan, Mo, Hou, Zhu, Wang, Li, Zhao, Ceng, Liao (b0225) 2006; 22
Herrmann, Blake, Doyle, Huston, Kamprad, Merry, Pontual (b0080) 2001; 96
Qin, Xia, Li, Xiao, Duo, Jiang, Zhao (b0230) 2014
Kamps, Ruitenbeek, Mason, Meer (b0220) 2018; 8
Tafti, R., 2011, Metallogeny, geochronology and tectonic setting of the Gangdese belt, southern Tibet, China: Unpublished Ph.D. thesis, University of British Columbia, Canada, 451 p.
Zane, Fyfe (b0410) 1995; 30
Mo, Zhao, Deng, Dong, Zhou, Guo, Zhang, Wang (b0205) 2003; 10
Yang, Huntington, Browne, Ma (b0360) 2000; 29
Yang, Hou, White, Chang, Li, Song (b0390) 2009; 36
Zhang, Zheng, Gong, Gao, Qu, Pang, Shi, Yan (b0415) 2008; 24
Hedenquist, Arribas, Reynolds (b0075) 1998; 93
Yin, Harrison (b0400) 2000; 28
Tian, Leng, Zhang, Tian, Zhang, Guo (b0270) 2019; 44
Ma, Meert, Xu, Yi (b0170) 2018; 10
Lowell, Guilbert (b0165) 1970; 65
Wang, Collins, Weinberg, Li, Li, He, Richards, Hou, Zhou (b0300) 2016; 171
Gustafson, Hunt (b0060) 1975; 70
Mcleod, R.L., Gabell, A.R., Green, A., Gardavsky, V., 1987. Chlorite infrared spectral data as proximity indicators of volcanogenic massive sulphide mineralization.
Hou, Zhang (b0090) 2015; 88
Yang, Lu, Hou, Chang (b0395) 2015; 56
Liu, Zhang, Zhang (b0160) 2016; 6
Harris, Pearce, Tindle (b0070) 1986; 19
Xiao, Chen, Hollings, Zhang, Feng, Chen (b0345) 2020; 190
Yang, Ye, Han, Ren, Han, Zhang (b0375) 2018
Wang, Tafti, Hou, Shen, Guo, Evans, Jeon, Li, Li (b0310) 2017; 451
Hou, Zheng, Yang, Yang (b0110) 2012; 4
Yang, Cooke (b0380) 2019; 22
Yang, Huntingon, Gemmell (b0370) 2011; 108
Lang, Wang, Tang, Deng, Cui, Yin, Xie (b0145) 2017; 53
Inoue (b0125) 1995
Mohammadi, Lentz., McFarlane, Yang (b0180) 2021; 105926
Wilkinson, Chang, Cooke, Baker, Wilkinson, Inglis, Chen, Gemmell (b0335) 2015; 152
Mo, Dong, Zhao, Zhou, Wang, Qiu, Zhang (b0210) 2005; 11
Richards (b0235) 2009; 37
Chung, Chu, Zhang, Xie, Lo, Lee, Lan, Li, Zhang, Wang (b0030) 2005; 68
Leech, Singh, Jain, Klemperer, Manickavasagam (b0150) 2005; 234
Allégre, Courtillot, Taponnier, Hirn, Mattauer, Coulon, Jaeger, Achache, Schärer, Marcoux, Burg, Girardeau, Armijo, Gaiety, Göpel, Li, Xiao, Chang, Li, Lin, Teng, Wang, Chen, Han, Wang, Den, Sheng, Gao, Zhou, Qiu, Bao, Wang, Wang, Zhou, Xu (b0005) 1984; 307
Ying, Wang, Tang, Wang, Qu, Li (b0405) 2014; 79
Wiewióra, Weiss (b0330) 1990; 25
Bourdelle, Parra, Chopin, Beyssac (b0015) 2013; 165
Wang, Richards, Hou, An, Creaser (b0295) 2015; 224–225
Xu, Hou, Zheng, Wang, He, Zhou, Wang, He, Zhou, Yang (b0355) 2017; 90
Wang, Weinberg, Collins, Richards, Zhu (b0315) 2018; 181
Zhu, Wang, Chung, Cawood, Zhao (b0460) 2018
Zhang, Zheng, Huang, Li, Sun, Li, Fu, Liang (b0425) 2012; 31
Doublier, Roache, Potel, Laukamp (b0050) 2012; 24
Hou, Wang (b0095) 2019; 10
Hunt (b0120) 1977; 42
Laakso, Rivard, Peter (b0140) 2015; 110
Zhang, Ding, Dong, Tian (b0435) 2019; 35
Zheng, Sun, Gao, Zhao, Zhang, Wu, You, Li (b0450) 2014; 79
Guo, Liu, Tang, Zheng, Huang, Shi, Fu, Tang, Wang (b0055) 2018; 37
Hou, Zhang, Pan, Yang (b0105) 2011; 39
Li, Selby, Condon, Tapster (b0155) 2017; 112
Wang, Richards, Hou, Yang, Dufrane (b0285) 2014; 195
Zhang, Hou, Yang (b0420) 2010; 29
Zhao, Zhu, Dong, Mo, DePaolo, Jia, Hu, Yuan (b0445) 2011; 27
Yang, Hou, Song, Li, Xia, Pan (b0385) 2008; 27
Mao, Rukhlov, Rowins, Spence, Coogan (b0175) 2016; 111
Zhang, Chen, Zhang, Zhang, Xu, Han, Chen (b0430) 2017; 36
Tang, J.X., Dorji., Hong, F., Lang, X.H., Zhang, J.S., Zheng, W.B., and Ying, L.J., 2012. Minerogenetic series of ore deposits in the east part of the Gangdese Metallogenic Belt. Diqiu Xuebao 33, 393–410 (in Chinese with English abstract).
Zhao, Qin, Xiao, McInnes, Li, Evans, Cao, Li (b0440) 2016; 36
Tischendorf (b0275) 1997; 61
Shinohara, Hedenquist (b0250) 1997; 38
Wang, Cudahy, Laukamp, Walshe, Bath, Mei, Young (b0305) 2017; 112
Chen, Qin, Li, Li, Xiao, Jiang, Zhao, Fan, Jiang (b0025) 2012; 31
Jones, Herrmann, Gemmell (b0130) 2005; 100
Chen, Qin, Li, Xiao, Li, Zhao, Fan (b0020) 2011; 62
Neal, Wilkinson, Mason, Chang (b0215) 2018; 184
Halley, Dilles, Tosdal (b0065) 2015; 100
Meng, Xu, Santosh, Ma, Chen, Guo, Liu (b0190) 2016; 37
Wang, Zhu, Wang, Hou, Yang, Zhao, Mo (b0320) 2020; 63
Zhu, Wang, Zhao, Chung, Cawood, Niu, Liu, Wu, Mo (b0455) 2015; 5
Huang, Zheng, Zhang, Li, Sun, Li, Liang, Fu, Hou (b0115) 2012; 31
Kamps (10.1016/j.oregeorev.2021.104156_b0220) 2018; 8
Xiao (10.1016/j.oregeorev.2021.104156_b0345) 2020; 190
Hou (10.1016/j.oregeorev.2021.104156_b0085) 2009; 36
Harris (10.1016/j.oregeorev.2021.104156_b0070) 1986; 19
Xu (10.1016/j.oregeorev.2021.104156_b0355) 2017; 90
Wang (10.1016/j.oregeorev.2021.104156_b0290) 2015; 150
Xiao (10.1016/j.oregeorev.2021.104156_b0350) 2020; 543
Laakso (10.1016/j.oregeorev.2021.104156_b0135) 2016; 111
Pan (10.1016/j.oregeorev.2021.104156_b0225) 2006; 22
Wang (10.1016/j.oregeorev.2021.104156_b0305) 2017; 112
Mo (10.1016/j.oregeorev.2021.104156_b0200) 2006; 13
Chen (10.1016/j.oregeorev.2021.104156_b0025) 2012; 31
Zhang (10.1016/j.oregeorev.2021.104156_b0425) 2012; 31
Richards (10.1016/j.oregeorev.2021.104156_b0235) 2009; 37
Wang (10.1016/j.oregeorev.2021.104156_b0285) 2014; 195
Gustafson (10.1016/j.oregeorev.2021.104156_b0060) 1975; 70
Ma (10.1016/j.oregeorev.2021.104156_b0170) 2018; 10
Yang (10.1016/j.oregeorev.2021.104156_b0395) 2015; 56
Yin (10.1016/j.oregeorev.2021.104156_b0400) 2000; 28
Wang (10.1016/j.oregeorev.2021.104156_b0310) 2017; 451
Hedenquist (10.1016/j.oregeorev.2021.104156_b0075) 1998; 93
Yang (10.1016/j.oregeorev.2021.104156_b0370) 2011; 108
Lang (10.1016/j.oregeorev.2021.104156_b0145) 2017; 53
Zhang (10.1016/j.oregeorev.2021.104156_b0420) 2010; 29
Tischendorf (10.1016/j.oregeorev.2021.104156_b0275) 1997; 61
Yang (10.1016/j.oregeorev.2021.104156_b0385) 2008; 27
Hou (10.1016/j.oregeorev.2021.104156_b0110) 2012; 4
Hunt (10.1016/j.oregeorev.2021.104156_b0120) 1977; 42
Wiewióra (10.1016/j.oregeorev.2021.104156_b0330) 1990; 25
Hou (10.1016/j.oregeorev.2021.104156_b0100) 2004; 220
Coulon (10.1016/j.oregeorev.2021.104156_b0040) 1986; 79
Jones (10.1016/j.oregeorev.2021.104156_b0130) 2005; 100
Xiao (10.1016/j.oregeorev.2021.104156_b0340) 2012; 62
Zane (10.1016/j.oregeorev.2021.104156_b0410) 1995; 30
Chung (10.1016/j.oregeorev.2021.104156_b0030) 2005; 68
Chen (10.1016/j.oregeorev.2021.104156_b0020) 2011; 62
Zhang (10.1016/j.oregeorev.2021.104156_b0430) 2017; 36
10.1016/j.oregeorev.2021.104156_b0265
Ying (10.1016/j.oregeorev.2021.104156_b0405) 2014; 79
Mohammadi (10.1016/j.oregeorev.2021.104156_b0180) 2021; 105926
10.1016/j.oregeorev.2021.104156_b0185
Wang (10.1016/j.oregeorev.2021.104156_b0300) 2016; 171
Shinohara (10.1016/j.oregeorev.2021.104156_b0250) 1997; 38
10.1016/j.oregeorev.2021.104156_b0260
Bishop (10.1016/j.oregeorev.2021.104156_b0010) 2008; 43
Metcalfe (10.1016/j.oregeorev.2021.104156_b0195) 2009; 315
Neal (10.1016/j.oregeorev.2021.104156_b0215) 2018; 184
Wilkinson (10.1016/j.oregeorev.2021.104156_b0335) 2015; 152
Halley (10.1016/j.oregeorev.2021.104156_b0065) 2015; 100
Tian (10.1016/j.oregeorev.2021.104156_b0270) 2019; 44
Zhang (10.1016/j.oregeorev.2021.104156_b0435) 2019; 35
Zhao (10.1016/j.oregeorev.2021.104156_b0445) 2011; 27
Cooke (10.1016/j.oregeorev.2021.104156_b0035) 2014; 13
Laakso (10.1016/j.oregeorev.2021.104156_b0140) 2015; 110
Wang (10.1016/j.oregeorev.2021.104156_b0280) 2016; 262
Qin (10.1016/j.oregeorev.2021.104156_b0230) 2014
Yang (10.1016/j.oregeorev.2021.104156_b0390) 2009; 36
Yang (10.1016/j.oregeorev.2021.104156_b0375) 2018
Inoue (10.1016/j.oregeorev.2021.104156_b0125) 1995
Hou (10.1016/j.oregeorev.2021.104156_b0095) 2019; 10
Zhu (10.1016/j.oregeorev.2021.104156_b0460) 2018
Deer (10.1016/j.oregeorev.2021.104156_b0045) 1962
Zhao (10.1016/j.oregeorev.2021.104156_b0440) 2016; 36
Sillitoe (10.1016/j.oregeorev.2021.104156_b0255) 2010; 105
Wang (10.1016/j.oregeorev.2021.104156_b0315) 2018; 181
Zhu (10.1016/j.oregeorev.2021.104156_b0455) 2015; 5
Yang (10.1016/j.oregeorev.2021.104156_b0380) 2019; 22
Wang (10.1016/j.oregeorev.2021.104156_b0320) 2020; 63
Bourdelle (10.1016/j.oregeorev.2021.104156_b0015) 2013; 165
Allégre (10.1016/j.oregeorev.2021.104156_b0005) 1984; 307
Huang (10.1016/j.oregeorev.2021.104156_b0115) 2012; 31
Hou (10.1016/j.oregeorev.2021.104156_b0105) 2011; 39
Doublier (10.1016/j.oregeorev.2021.104156_b0050) 2012; 24
Hou (10.1016/j.oregeorev.2021.104156_b0090) 2015; 88
Leech (10.1016/j.oregeorev.2021.104156_b0150) 2005; 234
Mo (10.1016/j.oregeorev.2021.104156_b0210) 2005; 11
Zhang (10.1016/j.oregeorev.2021.104156_b0415) 2008; 24
Zheng (10.1016/j.oregeorev.2021.104156_b0450) 2014; 79
10.1016/j.oregeorev.2021.104156_b0245
Meng (10.1016/j.oregeorev.2021.104156_b0190) 2016; 37
Yang (10.1016/j.oregeorev.2021.104156_b0360) 2000; 29
Guo (10.1016/j.oregeorev.2021.104156_b0055) 2018; 37
Liu (10.1016/j.oregeorev.2021.104156_b0160) 2016; 6
Lowell (10.1016/j.oregeorev.2021.104156_b0165) 1970; 65
Richards (10.1016/j.oregeorev.2021.104156_b0240) 2013; 6
Li (10.1016/j.oregeorev.2021.104156_b0155) 2017; 112
Mao (10.1016/j.oregeorev.2021.104156_b0175) 2016; 111
Herrmann (10.1016/j.oregeorev.2021.104156_b0080) 2001; 96
Mo (10.1016/j.oregeorev.2021.104156_b0205) 2003; 10
Wang (10.1016/j.oregeorev.2021.104156_b0295) 2015; 224–225
References_xml – volume: 68
  start-page: 173
  year: 2005
  end-page: 196
  ident: b0030
  article-title: Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism
  publication-title: Earth Sci. Rev.
– volume: 195
  start-page: 1315
  year: 2014
  end-page: 1339
  ident: b0285
  article-title: Increased magmatic water content–the key to Oligo-Miocene porphyry Cu-Mo±Au formation in the eastern Gangdese belt, Tibet
  publication-title: Econ. Geol.
– volume: 13
  start-page: 43
  year: 2006
  end-page: 51
  ident: b0200
  article-title: From the Tethys to the formation of the Qinghai Tibet plateau: constrained by tectono-magmatic events
  publication-title: Earth Sci. Front.
– volume: 65
  start-page: 373
  year: 1970
  end-page: 408
  ident: b0165
  article-title: Lateral and vertical alteration-mineralization zoning in porphyry ore deposits
  publication-title: Econ. Geol.
– volume: 24
  start-page: 891
  year: 2012
  end-page: 902
  ident: b0050
  article-title: Short-wavelength infrared spectroscopy of chlorite can be used to determine very low metamorphic grades
  publication-title: Eur. J. Mineral.
– volume: 307
  start-page: 17
  year: 1984
  end-page: 22
  ident: b0005
  article-title: Structure and evolution of the Himalayan-Tibet orogenic belt
  publication-title: Nature
– volume: 25
  start-page: 83
  year: 1990
  end-page: 92
  ident: b0330
  article-title: Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition. II The chlorite group
  publication-title: Clay Mineral
– volume: 53
  start-page: 1973
  year: 2017
  end-page: 1993
  ident: b0145
  article-title: Composition and age of Jurassic diabase dikes in the Xiongcun porphyry copper-gold district, southern margin of the Lhasa terrane,Tibet, China: Petrogenesis and tectonic setting
  publication-title: Geol. J.
– volume: 224–225
  start-page: 179
  year: 2015
  end-page: 194
  ident: b0295
  article-title: Zircon U-Pb age and Sr-Nd-Hf-O isotope geochemistry of the Paleocene-Eocene igneous rocks in western Gangdese: Evidence for the timing of Neo-Tethyan slab breakoff
  publication-title: Lithos
– volume: 5
  year: 2015
  ident: b0455
  article-title: Magmatic record of India-Asia collision
  publication-title: Sci. Rep.
– volume: 29
  start-page: 113
  year: 2010
  end-page: 133
  ident: b0420
  article-title: Metallogenesis and geodynamics of Tethyan metallogenic domain: A review
  publication-title: Mineral Deposits
– volume: 10
  start-page: 135
  year: 2003
  end-page: 148
  ident: b0205
  article-title: Response of volcanism to the India-Asia collision
  publication-title: Earth Sci. Front.
– volume: 61
  start-page: 809
  year: 1997
  end-page: 834
  ident: b0275
  article-title: On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation
  publication-title: Mineral. Mag.
– volume: 90
  start-page: 1063
  year: 2017
  end-page: 1077
  ident: b0355
  article-title: In situ elemental and isotopic study of diorite intrusions: Implication for Jurassic arc magmatism and porphyry Cu-Au mineralisation in southern Tibet
  publication-title: Ore Geol. Rev.
– volume: 6
  start-page: 264
  year: 2016
  end-page: 282
  ident: b0160
  article-title: Advances on mineral genesis of chlorite: A review
  publication-title: Adv. Geosci.
– start-page: 316
  year: 2014
  ident: b0230
  article-title: Qulong porphyry-skarn type Cu-Mo deposit
– volume: 165
  start-page: 723
  year: 2013
  end-page: 735
  ident: b0015
  article-title: A New Chlorite Geothermometer for Diagenetic to Low-Grade Metamorphic Conditions
  publication-title: Contrib. Miner. Petrol.
– volume: 37
  start-page: 556
  year: 2018
  end-page: 570
  ident: b0055
  article-title: Characteristics of alteration minerals and prospecting model revealed by shortwave infrared technique: Take Sinongduo Ag-Pb-Zn deposit as an example
  publication-title: Mineral Deposits
– start-page: 270
  year: 1962
  ident: b0045
  article-title: Rock-Forming Minerals: Sheet Silicates
– volume: 42
  start-page: 501
  year: 1977
  end-page: 513
  ident: b0120
  article-title: Spectral signature of particulate minerals in the visible and near infrared
  publication-title: Geophysics
– volume: 79
  start-page: 497
  year: 2014
  end-page: 506
  ident: b0405
  article-title: Re-Os systematics of sulfides (chalcopyrite, bornite, pyrite and pyrrhotite) from the Jima Cu-Mo deposit of Tibet, China
  publication-title: J. Asian Earth Sci.
– volume: 27
  start-page: 3513
  year: 2011
  end-page: 3524
  ident: b0445
  article-title: The ~54 Ma gabbro-granite intrusive in southern Dangxung area, Tibet: Petrogenesis and implications
  publication-title: Acta Petrol. Sin.
– volume: 112
  start-page: 1419
  year: 2017
  end-page: 1440
  ident: b0155
  article-title: Cyclic Magmatic-Hydrothermal Evolution in Porphyry Systems: High-Precision U-Pb and Re-Os Geochronology Constraints on the Tibetan Qulong Porphyry Cu-Mo Deposit
  publication-title: Econ. Geol.
– volume: 112
  start-page: 1153
  year: 2017
  end-page: 1176
  ident: b0305
  article-title: White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits
  publication-title: Western Australia: Econ. Geol.
– volume: 184
  start-page: 179
  year: 2018
  end-page: 198
  ident: b0215
  article-title: Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits
  publication-title: J. Geochem. Explor.
– volume: 11
  start-page: 281
  year: 2005
  end-page: 290
  ident: b0210
  article-title: Spatial and temporal distribution and characteristics of granitoids in the Gangdese Tibet and implication for crustal growth andevolution
  publication-title: Geological Journal of China Universities
– volume: 543
  year: 2020
  ident: b0350
  article-title: Elemental behavior during chlorite alteration: New insights from a combined EMPA and LA-ICPMS study in porphyry Cu systems
  publication-title: Chem. Geol.
– volume: 36
  start-page: 1263
  year: 2017
  end-page: 1288
  ident: b0430
  article-title: Application of short wavelength infrared (SWIR) technique to exploration of skarn deposit: A case study of Tonglvshan Cu-Fe-Au deposit, Edongnan (southeast Hubei) ore concentration area
  publication-title: Mineral Deposits
– volume: 62
  start-page: 4
  year: 2012
  end-page: 18
  ident: b0340
  article-title: Highly Oxidized Magma and Fluid Evolution of Miocene Qulong Giant Porphyry Cu-Mo Deposit Southern Tibet, China
  publication-title: Resour. Geol.
– volume: 43
  start-page: 35
  year: 2008
  end-page: 54
  ident: b0010
  article-title: Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas
  publication-title: Clay Miner.
– volume: 37
  start-page: 449
  year: 2016
  end-page: 464
  ident: b0190
  article-title: Late Triassic crustal growth in southern Tibet: Evidence from the Gangdese magmatic belt
  publication-title: Gondwana Res.
– reference: Scott, K.M., Yang, K., and Huntington, J.F., 1998, The application of spectral reflectance studies of chlorite in exploration. CSIRO Division of Exploration and Mining, AMIRA Project P435A.
– volume: 181
  start-page: 122
  year: 2018
  end-page: 143
  ident: b0315
  article-title: Origin of post-collisional magmas and formation of porphyry Cu deposits in southern Tibet
  publication-title: Earth Sci. Rev.
– volume: 105926
  year: 2021
  ident: b0180
  article-title: Biotite composition as a tool for exploration: An example from Sn-W-Mo-bearing Mount Douglas Granite, New Brunswick, Canada
  publication-title: Lithos
– volume: 315
  start-page: 7
  year: 2009
  end-page: 23
  ident: b0195
  article-title: Late Paleozoic and Mesozoic tectonic and palaeogeographical evolution of SE Asia
  publication-title: Geological Society London Special Publications
– year: 2018
  ident: b0375
  article-title: Near-Infrared Spectroscopic Study of Chlorite Minerals
  publication-title: J. Spectrosc.
– volume: 27
  start-page: 279
  year: 2008
  end-page: 318
  ident: b0385
  article-title: Qulong superlarge porphyry Cu deposit in Tibet: Geology, alteration and mineralization
  publication-title: Mineral Deposits
– volume: 36
  start-page: 2
  year: 2009
  end-page: 24
  ident: b0085
  article-title: Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue
  publication-title: Ore Geol. Rev.
– start-page: 268
  year: 1995
  end-page: 329
  ident: b0125
  article-title: Formation of clay minerals in hydrothermal environments
  publication-title: Berlin Heidelberg Springer
– volume: 110
  start-page: 925
  year: 2015
  end-page: 941
  ident: b0140
  article-title: Application of Airborne, Laboratory, and Field Hyperspectral Methods to Mineral Exploration in the Canadian Arctic: Recognition and Characterization of Volcanogenic Massive Sulfide-Associated Hydrothermal Alteration in the Izok Lake Deposit Area, Nunavut, Canada
  publication-title: Econ. Geol.
– volume: 234
  start-page: 83
  year: 2005
  end-page: 97
  ident: b0150
  article-title: The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya
  publication-title: Earth Planet. Sci. Lett.
– volume: 29
  start-page: 377
  year: 2000
  end-page: 392
  ident: b0360
  article-title: An infrared spectral reflectance study of hydrothermal alteration minerals from the Te Mihi sector of the Wairakei geothermal system, New Zealand
  publication-title: Geothermics
– volume: 8
  year: 2018
  ident: b0220
  article-title: Near-Infrared Spectroscopy of Hydrothermal versus Low-Grade Metamorphic Chlorites
  publication-title: Mineral
– volume: 93
  start-page: 373
  year: 1998
  end-page: 404
  ident: b0075
  article-title: Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines
  publication-title: Econ. Geol.
– volume: 79
  start-page: 842
  year: 2014
  end-page: 857
  ident: b0450
  article-title: Multiple mineralization events at the Jiru porphyry copper deposit, southern Tibet: Implications for Eocene and Miocene magma sources and resource potential
  publication-title: J. Asian Earth Sci.
– volume: 22
  start-page: 133
  year: 2019
  end-page: 187
  ident: b0380
  article-title: Porphyry Copper Deposits in China
  publication-title: Society of Economic Geologist Special Publications
– volume: 36
  start-page: 390
  year: 2016
  end-page: 409
  ident: b0440
  article-title: Thermal history of the giant Qulong Cu-Mo deposit, Gangdese metallogenic belt, Tibet: Constraints on magmatic-hydrothermal evolution and exhumation
  publication-title: Gondwana Res.
– volume: 10
  start-page: 3510
  year: 2019
  ident: b0095
  article-title: Fingerprinting metal transfer from mantle
  publication-title: Nat. Commun.
– volume: 150
  start-page: 68
  year: 2015
  end-page: 94
  ident: b0290
  article-title: The Role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo±Au deposits in the Gangdese belt, southern Tibet
  publication-title: Earth Sci. Rev.
– volume: 39
  start-page: 21
  year: 2011
  end-page: 45
  ident: b0105
  article-title: Porphyry Cu(-Mo-Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain
  publication-title: Ore Geol. Rev.
– volume: 111
  start-page: 1223
  year: 2016
  end-page: 1239
  ident: b0135
  article-title: Short-Wave Infrared Spectral and Geochemical Characteristics of Hydrothermal Alteration at the Archean Izok Lake Zn-Cu-Pb-Ag Volcanogenic Massive Sulfide Deposit, Nunavut, Canada: Application in Exploration Target Vectoring
  publication-title: Econ. Geol.
– volume: 100
  start-page: 1
  year: 2015
  end-page: 29
  ident: b0065
  article-title: Footprints: Hydrothermal alteration and geochemical dispersion around porphyry copper deposits
  publication-title: Society of Economic Geology Newsletter
– volume: 31
  start-page: 348
  year: 2012
  end-page: 360
  ident: b0115
  article-title: LA-ICP-MS zircon U-Pb dating of two types of porphyry in the Yaguila mining area, Tibet
  publication-title: Acta Petrologica et Mineralogica
– volume: 100
  start-page: 273
  year: 2005
  end-page: 294
  ident: b0130
  article-title: Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp Vancouver Island, British Columbia, Canada
  publication-title: Econ. Geol.
– volume: 36
  start-page: 133
  year: 2009
  end-page: 159
  ident: b0390
  article-title: Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet
  publication-title: Ore Geol. Rev.
– volume: 28
  start-page: 211
  year: 2000
  end-page: 280
  ident: b0400
  article-title: Geologic evolution of the Himalayan-Tibetan orogen
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 4
  start-page: 647
  year: 2012
  end-page: 670
  ident: b0110
  article-title: Metallogenesis of continental collision setting: Part Ⅰ Gangdese Cenozoic porphyry Cu-Mo systems in Tibet
  publication-title: Mineral Deposits
– volume: 6
  start-page: 911
  year: 2013
  end-page: 916
  ident: b0240
  article-title: Giant ore deposits formed by optimal alignments and combinations of geological processes
  publication-title: Nat. Geosci.
– volume: 152
  start-page: 10
  year: 2015
  end-page: 26
  ident: b0335
  article-title: The chlorite proximitor: a new tool for detecting porphyry ore deposits
  publication-title: J. Geochem. Explor.
– volume: 13
  start-page: 357
  year: 2014
  end-page: 381
  ident: b0035
  article-title: Geochemistry of Porphyry Deposits
  publication-title: Treatise on Geochemistry
– volume: 262
  start-page: 320
  year: 2016
  end-page: 333
  ident: b0280
  article-title: Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere
  publication-title: Lithos
– volume: 190
  year: 2020
  ident: b0345
  article-title: Chlorite alteration in porphyry Cu systems: New insights from mineralogy and mineral chemistry
  publication-title: Appl. Clay Sci.
– volume: 30
  start-page: 30
  year: 1995
  end-page: 38
  ident: b0410
  article-title: Chloritization of the Hydrothermally Altered Bedrock at the Igarapé Bahia Gold Deposit Carajás, Brazil
  publication-title: Miner. Deposita
– volume: 108
  start-page: 143
  year: 2011
  end-page: 156
  ident: b0370
  article-title: Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer Tasmania, as revealed by infrared reflectance spectroscopy
  publication-title: J. Geochem. Explor.
– volume: 19
  start-page: 67
  year: 1986
  end-page: 81
  ident: b0070
  article-title: Geochemical characteristics of collisional-zone magmatism
  publication-title: London Geological Society, Special Publications
– volume: 31
  start-page: 337
  year: 2012
  end-page: 346
  ident: b0425
  article-title: Re-Os dating of molybdenite from Nuri Cu-W-Mo deposit and its geological significance
  publication-title: Mineral deposits
– volume: 111
  start-page: 1187
  year: 2016
  end-page: 1222
  ident: b0175
  article-title: Apatite trace element compositions: a robust new tool for mineral exploration
  publication-title: Econ. Geol.
– volume: 35
  start-page: 275
  year: 2019
  end-page: 294
  ident: b0435
  article-title: Formation and evolution of the Gangdese magmatic arc
  publication-title: Acta Petrol. Sin.
– volume: 22
  start-page: 521
  year: 2006
  end-page: 533
  ident: b0225
  article-title: Spatial-temporal framework of the Gangdese orogenic belt and its evolution
  publication-title: Acta Petrol. Sin.
– volume: 38
  start-page: 1741
  year: 1997
  end-page: 1752
  ident: b0250
  article-title: Constraints on magma degassing beneath the Far Southeast porphyry Cu-Au deposit. Philippines
  publication-title: J. Petrol.
– volume: 96
  start-page: 939
  year: 2001
  end-page: 955
  ident: b0080
  article-title: Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebury and Western Tharsis Tasmania, and Highway-Reward, Queensland
  publication-title: Econ. Geol.
– volume: 63
  start-page: 2042
  year: 2020
  end-page: 2067
  ident: b0320
  article-title: Porphyry mineralization in Tethyan orogen
  publication-title: Science China Earth Sciences
– volume: 31
  start-page: 417
  year: 2012
  end-page: 437
  ident: b0025
  article-title: Geological and skarn mineral characteristics of Nuri Cu-W-Mo deposit in southern Gangdese, Tibet
  publication-title: Mineral Deposits
– volume: 10
  start-page: 545
  year: 2018
  end-page: 565
  ident: b0170
  article-title: Late Triassic intra-oceanic arc system with in Neo-Tethys: Evidence from cumulate appinite in the Gangdese belt, southern Tibet
  publication-title: Lithosphere
– volume: 70
  start-page: 857
  year: 1975
  end-page: 912
  ident: b0060
  article-title: The porphyry copper deposits at El Salvador, Chile
  publication-title: Econ. Geol.
– reference: Mcleod, R.L., Gabell, A.R., Green, A., Gardavsky, V., 1987. Chlorite infrared spectral data as proximity indicators of volcanogenic massive sulphide mineralization.
– volume: 37
  start-page: 247
  year: 2009
  end-page: 250
  ident: b0235
  article-title: Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere
  publication-title: Geology
– volume: 56
  start-page: 227
  year: 2015
  end-page: 254
  ident: b0395
  article-title: High-Mg Diorite from Qulong in Southern Tibet: Implications for the Genesis of Adakite-like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens
  publication-title: J. Petrol.
– volume: 24
  start-page: 473
  year: 2008
  end-page: 479
  ident: b0415
  article-title: Geochronologic constraints on magmatic intrusions and mineralization of the Jiru porphyry copper deposit Tibet, associated with continent-continent collisional process
  publication-title: Acta Petrol. Sin.
– volume: 44
  start-page: 2143
  year: 2019
  end-page: 2156
  ident: b0270
  article-title: Application of short-wave infrared spectroscopy in Gangjiang porphyry Cu-Mo Deposit in Nimu ore field, Tibet
  publication-title: Mineral Deposits
– volume: 88
  start-page: 903
  year: 2015
  end-page: 904
  ident: b0090
  article-title: Geodynamics and metallogenesis of the east Tethyan metallogenic domain
  publication-title: Acta Petrol. Sin.
– start-page: 483
  year: 2018
  ident: b0460
  article-title: Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma
  publication-title: Himalayan Tectonics: A Modern Synthesis
– volume: 62
  start-page: 42
  year: 2011
  end-page: 62
  ident: b0020
  article-title: Fluid Inclusion and hydrogen, oxygen, sulfur isotopes of Nuri Cu-W-Mo deposit in the southern Gangdese, Tibet
  publication-title: Resour. Geol.
– reference: Tang, J.X., Dorji., Hong, F., Lang, X.H., Zhang, J.S., Zheng, W.B., and Ying, L.J., 2012. Minerogenetic series of ore deposits in the east part of the Gangdese Metallogenic Belt. Diqiu Xuebao 33, 393–410 (in Chinese with English abstract).
– volume: 171
  start-page: 1
  year: 2016
  end-page: 19
  ident: b0300
  article-title: Xenoliths in ultrapotassic volcanic rocks in the Lhasa Block: direct evidence for crust-mantle mixing and metamorphism in the deep crust
  publication-title: Contrib. Miner. Petrol.
– volume: 451
  start-page: 116
  year: 2017
  end-page: 134
  ident: b0310
  article-title: Across-arc geochemical variation in the Jurassic magmatic zone, Southern Tibet: Implication for continental arc-related porphyry Cu-Au mineralization
  publication-title: Chem. Geol.
– reference: Tafti, R., 2011, Metallogeny, geochronology and tectonic setting of the Gangdese belt, southern Tibet, China: Unpublished Ph.D. thesis, University of British Columbia, Canada, 451 p.
– volume: 79
  start-page: 281
  year: 1986
  end-page: 302
  ident: b0040
  article-title: Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:
  publication-title: Earth Planet. Sci. Lett.
– volume: 105
  start-page: 3
  year: 2010
  end-page: 41
  ident: b0255
  article-title: Porphyry Copper Systems
  publication-title: Econ. Geol.
– volume: 220
  start-page: 139
  year: 2004
  end-page: 155
  ident: b0100
  article-title: Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet
  publication-title: Earth Planet. Sci. Lett.
– volume: 108
  start-page: 143
  year: 2011
  ident: 10.1016/j.oregeorev.2021.104156_b0370
  article-title: Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer Tasmania, as revealed by infrared reflectance spectroscopy
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2011.01.001
– volume: 90
  start-page: 1063
  year: 2017
  ident: 10.1016/j.oregeorev.2021.104156_b0355
  article-title: In situ elemental and isotopic study of diorite intrusions: Implication for Jurassic arc magmatism and porphyry Cu-Au mineralisation in southern Tibet
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2017.04.036
– year: 2018
  ident: 10.1016/j.oregeorev.2021.104156_b0375
  article-title: Near-Infrared Spectroscopic Study of Chlorite Minerals
  publication-title: J. Spectrosc.
  doi: 10.1155/2018/6958260
– volume: 315
  start-page: 7
  year: 2009
  ident: 10.1016/j.oregeorev.2021.104156_b0195
  article-title: Late Paleozoic and Mesozoic tectonic and palaeogeographical evolution of SE Asia
  publication-title: Geological Society London Special Publications
  doi: 10.1144/SP315.2
– volume: 112
  start-page: 1153
  year: 2017
  ident: 10.1016/j.oregeorev.2021.104156_b0305
  article-title: White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits
  publication-title: Western Australia: Econ. Geol.
– volume: 111
  start-page: 1223
  year: 2016
  ident: 10.1016/j.oregeorev.2021.104156_b0135
  article-title: Short-Wave Infrared Spectral and Geochemical Characteristics of Hydrothermal Alteration at the Archean Izok Lake Zn-Cu-Pb-Ag Volcanogenic Massive Sulfide Deposit, Nunavut, Canada: Application in Exploration Target Vectoring
  publication-title: Econ. Geol.
  doi: 10.2113/econgeo.111.5.1223
– volume: 29
  start-page: 377
  year: 2000
  ident: 10.1016/j.oregeorev.2021.104156_b0360
  article-title: An infrared spectral reflectance study of hydrothermal alteration minerals from the Te Mihi sector of the Wairakei geothermal system, New Zealand
  publication-title: Geothermics
  doi: 10.1016/S0375-6505(00)00004-3
– volume: 43
  start-page: 35
  year: 2008
  ident: 10.1016/j.oregeorev.2021.104156_b0010
  article-title: Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas
  publication-title: Clay Miner.
  doi: 10.1180/claymin.2008.043.1.03
– volume: 93
  start-page: 373
  year: 1998
  ident: 10.1016/j.oregeorev.2021.104156_b0075
  article-title: Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.93.4.373
– volume: 62
  start-page: 42
  year: 2011
  ident: 10.1016/j.oregeorev.2021.104156_b0020
  article-title: Fluid Inclusion and hydrogen, oxygen, sulfur isotopes of Nuri Cu-W-Mo deposit in the southern Gangdese, Tibet
  publication-title: Resour. Geol.
  doi: 10.1111/j.1751-3928.2011.00179.x
– volume: 224–225
  start-page: 179
  year: 2015
  ident: 10.1016/j.oregeorev.2021.104156_b0295
  article-title: Zircon U-Pb age and Sr-Nd-Hf-O isotope geochemistry of the Paleocene-Eocene igneous rocks in western Gangdese: Evidence for the timing of Neo-Tethyan slab breakoff
  publication-title: Lithos
  doi: 10.1016/j.lithos.2015.03.003
– ident: 10.1016/j.oregeorev.2021.104156_b0265
– volume: 451
  start-page: 116
  year: 2017
  ident: 10.1016/j.oregeorev.2021.104156_b0310
  article-title: Across-arc geochemical variation in the Jurassic magmatic zone, Southern Tibet: Implication for continental arc-related porphyry Cu-Au mineralization
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2017.01.010
– volume: 11
  start-page: 281
  year: 2005
  ident: 10.1016/j.oregeorev.2021.104156_b0210
  article-title: Spatial and temporal distribution and characteristics of granitoids in the Gangdese Tibet and implication for crustal growth andevolution
  publication-title: Geological Journal of China Universities
– volume: 29
  start-page: 113
  year: 2010
  ident: 10.1016/j.oregeorev.2021.104156_b0420
  article-title: Metallogenesis and geodynamics of Tethyan metallogenic domain: A review
  publication-title: Mineral Deposits
– volume: 31
  start-page: 337
  year: 2012
  ident: 10.1016/j.oregeorev.2021.104156_b0425
  article-title: Re-Os dating of molybdenite from Nuri Cu-W-Mo deposit and its geological significance
  publication-title: Mineral deposits
– volume: 79
  start-page: 842
  year: 2014
  ident: 10.1016/j.oregeorev.2021.104156_b0450
  article-title: Multiple mineralization events at the Jiru porphyry copper deposit, southern Tibet: Implications for Eocene and Miocene magma sources and resource potential
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2013.03.029
– volume: 110
  start-page: 925
  year: 2015
  ident: 10.1016/j.oregeorev.2021.104156_b0140
  publication-title: Econ. Geol.
  doi: 10.2113/econgeo.110.4.925
– volume: 220
  start-page: 139
  year: 2004
  ident: 10.1016/j.oregeorev.2021.104156_b0100
  article-title: Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/S0012-821X(04)00007-X
– volume: 13
  start-page: 43
  year: 2006
  ident: 10.1016/j.oregeorev.2021.104156_b0200
  article-title: From the Tethys to the formation of the Qinghai Tibet plateau: constrained by tectono-magmatic events
  publication-title: Earth Sci. Front.
– volume: 42
  start-page: 501
  year: 1977
  ident: 10.1016/j.oregeorev.2021.104156_b0120
  article-title: Spectral signature of particulate minerals in the visible and near infrared
  publication-title: Geophysics
  doi: 10.1190/1.1440721
– volume: 5
  year: 2015
  ident: 10.1016/j.oregeorev.2021.104156_b0455
  article-title: Magmatic record of India-Asia collision
  publication-title: Sci. Rep.
  doi: 10.1038/srep17236
– volume: 53
  start-page: 1973
  year: 2017
  ident: 10.1016/j.oregeorev.2021.104156_b0145
  article-title: Composition and age of Jurassic diabase dikes in the Xiongcun porphyry copper-gold district, southern margin of the Lhasa terrane,Tibet, China: Petrogenesis and tectonic setting
  publication-title: Geol. J.
  doi: 10.1002/gj.3028
– volume: 10
  start-page: 3510
  year: 2019
  ident: 10.1016/j.oregeorev.2021.104156_b0095
  article-title: Fingerprinting metal transfer from mantle
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11445-w
– volume: 307
  start-page: 17
  year: 1984
  ident: 10.1016/j.oregeorev.2021.104156_b0005
  article-title: Structure and evolution of the Himalayan-Tibet orogenic belt
  publication-title: Nature
  doi: 10.1038/307017a0
– ident: 10.1016/j.oregeorev.2021.104156_b0245
– volume: 38
  start-page: 1741
  year: 1997
  ident: 10.1016/j.oregeorev.2021.104156_b0250
  article-title: Constraints on magma degassing beneath the Far Southeast porphyry Cu-Au deposit. Philippines
  publication-title: J. Petrol.
  doi: 10.1093/petroj/38.12.1741
– volume: 24
  start-page: 891
  year: 2012
  ident: 10.1016/j.oregeorev.2021.104156_b0050
  article-title: Short-wavelength infrared spectroscopy of chlorite can be used to determine very low metamorphic grades
  publication-title: Eur. J. Mineral.
  doi: 10.1127/0935-1221/2012/0024-2233
– volume: 152
  start-page: 10
  year: 2015
  ident: 10.1016/j.oregeorev.2021.104156_b0335
  article-title: The chlorite proximitor: a new tool for detecting porphyry ore deposits
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2015.01.005
– volume: 195
  start-page: 1315
  year: 2014
  ident: 10.1016/j.oregeorev.2021.104156_b0285
  article-title: Increased magmatic water content–the key to Oligo-Miocene porphyry Cu-Mo±Au formation in the eastern Gangdese belt, Tibet
  publication-title: Econ. Geol.
  doi: 10.2113/econgeo.109.5.1315
– start-page: 316
  year: 2014
  ident: 10.1016/j.oregeorev.2021.104156_b0230
– volume: 184
  start-page: 179
  year: 2018
  ident: 10.1016/j.oregeorev.2021.104156_b0215
  article-title: Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2017.10.019
– volume: 27
  start-page: 279
  year: 2008
  ident: 10.1016/j.oregeorev.2021.104156_b0385
  article-title: Qulong superlarge porphyry Cu deposit in Tibet: Geology, alteration and mineralization
  publication-title: Mineral Deposits
– volume: 96
  start-page: 939
  year: 2001
  ident: 10.1016/j.oregeorev.2021.104156_b0080
  article-title: Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebury and Western Tharsis Tasmania, and Highway-Reward, Queensland
  publication-title: Econ. Geol.
– volume: 111
  start-page: 1187
  year: 2016
  ident: 10.1016/j.oregeorev.2021.104156_b0175
  article-title: Apatite trace element compositions: a robust new tool for mineral exploration
  publication-title: Econ. Geol.
  doi: 10.2113/econgeo.111.5.1187
– volume: 39
  start-page: 21
  year: 2011
  ident: 10.1016/j.oregeorev.2021.104156_b0105
  article-title: Porphyry Cu(-Mo-Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2010.09.002
– volume: 234
  start-page: 83
  year: 2005
  ident: 10.1016/j.oregeorev.2021.104156_b0150
  article-title: The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2005.02.038
– volume: 36
  start-page: 133
  year: 2009
  ident: 10.1016/j.oregeorev.2021.104156_b0390
  article-title: Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2009.03.003
– volume: 262
  start-page: 320
  year: 2016
  ident: 10.1016/j.oregeorev.2021.104156_b0280
  article-title: Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere
  publication-title: Lithos
  doi: 10.1016/j.lithos.2016.07.021
– volume: 10
  start-page: 135
  year: 2003
  ident: 10.1016/j.oregeorev.2021.104156_b0205
  article-title: Response of volcanism to the India-Asia collision
  publication-title: Earth Sci. Front.
– volume: 30
  start-page: 30
  year: 1995
  ident: 10.1016/j.oregeorev.2021.104156_b0410
  article-title: Chloritization of the Hydrothermally Altered Bedrock at the Igarapé Bahia Gold Deposit Carajás, Brazil
  publication-title: Miner. Deposita
– ident: 10.1016/j.oregeorev.2021.104156_b0185
– volume: 8
  year: 2018
  ident: 10.1016/j.oregeorev.2021.104156_b0220
  article-title: Near-Infrared Spectroscopy of Hydrothermal versus Low-Grade Metamorphic Chlorites
  publication-title: Mineral
– volume: 171
  start-page: 1
  year: 2016
  ident: 10.1016/j.oregeorev.2021.104156_b0300
  article-title: Xenoliths in ultrapotassic volcanic rocks in the Lhasa Block: direct evidence for crust-mantle mixing and metamorphism in the deep crust
  publication-title: Contrib. Miner. Petrol.
  doi: 10.1007/s00410-016-1272-6
– volume: 25
  start-page: 83
  year: 1990
  ident: 10.1016/j.oregeorev.2021.104156_b0330
  article-title: Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition. II The chlorite group
  publication-title: Clay Mineral
  doi: 10.1180/claymin.1990.025.1.09
– volume: 44
  start-page: 2143
  year: 2019
  ident: 10.1016/j.oregeorev.2021.104156_b0270
  article-title: Application of short-wave infrared spectroscopy in Gangjiang porphyry Cu-Mo Deposit in Nimu ore field, Tibet
  publication-title: Mineral Deposits
– volume: 22
  start-page: 133
  year: 2019
  ident: 10.1016/j.oregeorev.2021.104156_b0380
  article-title: Porphyry Copper Deposits in China
  publication-title: Society of Economic Geologist Special Publications
– volume: 24
  start-page: 473
  year: 2008
  ident: 10.1016/j.oregeorev.2021.104156_b0415
  article-title: Geochronologic constraints on magmatic intrusions and mineralization of the Jiru porphyry copper deposit Tibet, associated with continent-continent collisional process
  publication-title: Acta Petrol. Sin.
  doi: 10.1111/j.1745-7254.2008.00764.x
– volume: 165
  start-page: 723
  year: 2013
  ident: 10.1016/j.oregeorev.2021.104156_b0015
  article-title: A New Chlorite Geothermometer for Diagenetic to Low-Grade Metamorphic Conditions
  publication-title: Contrib. Miner. Petrol.
  doi: 10.1007/s00410-012-0832-7
– volume: 31
  start-page: 348
  year: 2012
  ident: 10.1016/j.oregeorev.2021.104156_b0115
  article-title: LA-ICP-MS zircon U-Pb dating of two types of porphyry in the Yaguila mining area, Tibet
  publication-title: Acta Petrologica et Mineralogica
– volume: 56
  start-page: 227
  year: 2015
  ident: 10.1016/j.oregeorev.2021.104156_b0395
  article-title: High-Mg Diorite from Qulong in Southern Tibet: Implications for the Genesis of Adakite-like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens
  publication-title: J. Petrol.
  doi: 10.1093/petrology/egu076
– volume: 70
  start-page: 857
  year: 1975
  ident: 10.1016/j.oregeorev.2021.104156_b0060
  article-title: The porphyry copper deposits at El Salvador, Chile
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.70.5.857
– start-page: 270
  year: 1962
  ident: 10.1016/j.oregeorev.2021.104156_b0045
– volume: 62
  start-page: 4
  year: 2012
  ident: 10.1016/j.oregeorev.2021.104156_b0340
  article-title: Highly Oxidized Magma and Fluid Evolution of Miocene Qulong Giant Porphyry Cu-Mo Deposit Southern Tibet, China
  publication-title: Resour. Geol.
  doi: 10.1111/j.1751-3928.2011.00177.x
– volume: 10
  start-page: 545
  year: 2018
  ident: 10.1016/j.oregeorev.2021.104156_b0170
  article-title: Late Triassic intra-oceanic arc system with in Neo-Tethys: Evidence from cumulate appinite in the Gangdese belt, southern Tibet
  publication-title: Lithosphere
  doi: 10.1130/L682.1
– volume: 22
  start-page: 521
  year: 2006
  ident: 10.1016/j.oregeorev.2021.104156_b0225
  article-title: Spatial-temporal framework of the Gangdese orogenic belt and its evolution
  publication-title: Acta Petrol. Sin.
– volume: 105926
  year: 2021
  ident: 10.1016/j.oregeorev.2021.104156_b0180
  article-title: Biotite composition as a tool for exploration: An example from Sn-W-Mo-bearing Mount Douglas Granite, New Brunswick, Canada
  publication-title: Lithos
– start-page: 268
  year: 1995
  ident: 10.1016/j.oregeorev.2021.104156_b0125
  article-title: Formation of clay minerals in hydrothermal environments
  publication-title: Berlin Heidelberg Springer
– volume: 88
  start-page: 903
  year: 2015
  ident: 10.1016/j.oregeorev.2021.104156_b0090
  article-title: Geodynamics and metallogenesis of the east Tethyan metallogenic domain
  publication-title: Acta Petrol. Sin.
– ident: 10.1016/j.oregeorev.2021.104156_b0260
– volume: 68
  start-page: 173
  year: 2005
  ident: 10.1016/j.oregeorev.2021.104156_b0030
  article-title: Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2004.05.001
– volume: 28
  start-page: 211
  year: 2000
  ident: 10.1016/j.oregeorev.2021.104156_b0400
  article-title: Geologic evolution of the Himalayan-Tibetan orogen
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev.earth.28.1.211
– volume: 13
  start-page: 357
  year: 2014
  ident: 10.1016/j.oregeorev.2021.104156_b0035
  article-title: Geochemistry of Porphyry Deposits
  publication-title: Treatise on Geochemistry
  doi: 10.1016/B978-0-08-095975-7.01116-5
– volume: 6
  start-page: 264
  year: 2016
  ident: 10.1016/j.oregeorev.2021.104156_b0160
  article-title: Advances on mineral genesis of chlorite: A review
  publication-title: Adv. Geosci.
  doi: 10.12677/AG.2016.63028
– volume: 36
  start-page: 1263
  year: 2017
  ident: 10.1016/j.oregeorev.2021.104156_b0430
  article-title: Application of short wavelength infrared (SWIR) technique to exploration of skarn deposit: A case study of Tonglvshan Cu-Fe-Au deposit, Edongnan (southeast Hubei) ore concentration area
  publication-title: Mineral Deposits
– volume: 6
  start-page: 911
  year: 2013
  ident: 10.1016/j.oregeorev.2021.104156_b0240
  article-title: Giant ore deposits formed by optimal alignments and combinations of geological processes
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1920
– volume: 27
  start-page: 3513
  year: 2011
  ident: 10.1016/j.oregeorev.2021.104156_b0445
  article-title: The ~54 Ma gabbro-granite intrusive in southern Dangxung area, Tibet: Petrogenesis and implications
  publication-title: Acta Petrol. Sin.
– volume: 100
  start-page: 273
  year: 2005
  ident: 10.1016/j.oregeorev.2021.104156_b0130
  article-title: Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp Vancouver Island, British Columbia, Canada
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.100.2.273
– volume: 112
  start-page: 1419
  year: 2017
  ident: 10.1016/j.oregeorev.2021.104156_b0155
  article-title: Cyclic Magmatic-Hydrothermal Evolution in Porphyry Systems: High-Precision U-Pb and Re-Os Geochronology Constraints on the Tibetan Qulong Porphyry Cu-Mo Deposit
  publication-title: Econ. Geol.
  doi: 10.5382/econgeo.2017.4515
– volume: 35
  start-page: 275
  year: 2019
  ident: 10.1016/j.oregeorev.2021.104156_b0435
  article-title: Formation and evolution of the Gangdese magmatic arc
  publication-title: Acta Petrol. Sin.
  doi: 10.18654/1000-0569/2019.02.01
– volume: 100
  start-page: 1
  year: 2015
  ident: 10.1016/j.oregeorev.2021.104156_b0065
  article-title: Footprints: Hydrothermal alteration and geochemical dispersion around porphyry copper deposits
  publication-title: Society of Economic Geology Newsletter
– volume: 79
  start-page: 281
  year: 1986
  ident: 10.1016/j.oregeorev.2021.104156_b0040
  article-title: Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrological characteristics and geodynamical significance
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/0012-821X(86)90186-X
– start-page: 483
  year: 2018
  ident: 10.1016/j.oregeorev.2021.104156_b0460
  article-title: Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma
– volume: 36
  start-page: 2
  year: 2009
  ident: 10.1016/j.oregeorev.2021.104156_b0085
  article-title: Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2009.05.001
– volume: 65
  start-page: 373
  year: 1970
  ident: 10.1016/j.oregeorev.2021.104156_b0165
  article-title: Lateral and vertical alteration-mineralization zoning in porphyry ore deposits
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.65.4.373
– volume: 190
  year: 2020
  ident: 10.1016/j.oregeorev.2021.104156_b0345
  article-title: Chlorite alteration in porphyry Cu systems: New insights from mineralogy and mineral chemistry
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2020.105585
– volume: 37
  start-page: 247
  year: 2009
  ident: 10.1016/j.oregeorev.2021.104156_b0235
  article-title: Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere
  publication-title: Geology
  doi: 10.1130/G25451A.1
– volume: 63
  start-page: 2042
  year: 2020
  ident: 10.1016/j.oregeorev.2021.104156_b0320
  article-title: Porphyry mineralization in Tethyan orogen
  publication-title: Science China Earth Sciences
  doi: 10.1007/s11430-019-9609-0
– volume: 4
  start-page: 647
  year: 2012
  ident: 10.1016/j.oregeorev.2021.104156_b0110
  article-title: Metallogenesis of continental collision setting: Part Ⅰ Gangdese Cenozoic porphyry Cu-Mo systems in Tibet
  publication-title: Mineral Deposits
– volume: 181
  start-page: 122
  year: 2018
  ident: 10.1016/j.oregeorev.2021.104156_b0315
  article-title: Origin of post-collisional magmas and formation of porphyry Cu deposits in southern Tibet
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2018.02.019
– volume: 61
  start-page: 809
  year: 1997
  ident: 10.1016/j.oregeorev.2021.104156_b0275
  article-title: On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation
  publication-title: Mineral. Mag.
  doi: 10.1180/minmag.1997.061.409.05
– volume: 105
  start-page: 3
  year: 2010
  ident: 10.1016/j.oregeorev.2021.104156_b0255
  article-title: Porphyry Copper Systems
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.105.1.3
– volume: 31
  start-page: 417
  year: 2012
  ident: 10.1016/j.oregeorev.2021.104156_b0025
  article-title: Geological and skarn mineral characteristics of Nuri Cu-W-Mo deposit in southern Gangdese, Tibet
  publication-title: Mineral Deposits
– volume: 37
  start-page: 449
  year: 2016
  ident: 10.1016/j.oregeorev.2021.104156_b0190
  article-title: Late Triassic crustal growth in southern Tibet: Evidence from the Gangdese magmatic belt
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2015.10.007
– volume: 150
  start-page: 68
  year: 2015
  ident: 10.1016/j.oregeorev.2021.104156_b0290
  article-title: The Role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo±Au deposits in the Gangdese belt, southern Tibet
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2015.07.003
– volume: 543
  year: 2020
  ident: 10.1016/j.oregeorev.2021.104156_b0350
  article-title: Elemental behavior during chlorite alteration: New insights from a combined EMPA and LA-ICPMS study in porphyry Cu systems
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2020.119604
– volume: 36
  start-page: 390
  year: 2016
  ident: 10.1016/j.oregeorev.2021.104156_b0440
  article-title: Thermal history of the giant Qulong Cu-Mo deposit, Gangdese metallogenic belt, Tibet: Constraints on magmatic-hydrothermal evolution and exhumation
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2015.07.005
– volume: 37
  start-page: 556
  year: 2018
  ident: 10.1016/j.oregeorev.2021.104156_b0055
  article-title: Characteristics of alteration minerals and prospecting model revealed by shortwave infrared technique: Take Sinongduo Ag-Pb-Zn deposit as an example
  publication-title: Mineral Deposits
– volume: 19
  start-page: 67
  year: 1986
  ident: 10.1016/j.oregeorev.2021.104156_b0070
  article-title: Geochemical characteristics of collisional-zone magmatism
  publication-title: London Geological Society, Special Publications
  doi: 10.1144/GSL.SP.1986.019.01.04
– volume: 79
  start-page: 497
  year: 2014
  ident: 10.1016/j.oregeorev.2021.104156_b0405
  article-title: Re-Os systematics of sulfides (chalcopyrite, bornite, pyrite and pyrrhotite) from the Jima Cu-Mo deposit of Tibet, China
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2013.10.004
SSID ssj0006001
Score 2.3966892
Snippet [Display omitted] •Chlorite at Qulong includes three types of chlorite veins and disseminated chlorite.•The chlorite co-existing with Cu mineralization is high...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104156
SubjectTerms Chlorite
Hydrothermal evolution
Major element
Porphyry
SWIR
Trace element
Title Significance of chlorite hyperspectral and geochemical characteristics in exploration: A case study of the giant Qulong porphyry Cu-Mo deposit in collisional orogen, Southern Tibet
URI https://dx.doi.org/10.1016/j.oregeorev.2021.104156
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20IuhB_MRv5uDR2DabrKm3UqxVUZC24C1kP1IjkkhID178Vf5AZ5K0WBA8eExgliVvmHlL3r4BONOebrlRpB2issLxXKMcxdPcjWc8KVWs_PIuzMOjHIy9u2f_eQl6s7swLKusa39V08tqXb9p1l-z-Z4kzSH7iLSFDFy2EQr4ovmKKzrSb8BK9_Z-8DgvyNzTK4vvjsMBCzKvLKfTecbzXlxqd_zLs83DrH9rUj8aT38TNmrGiN1qU1uwZNNtWP_hI7gNqzflfN6PHfgaJpOU1T8MJmYx6heW2BUWX-jAWd2rzGm1KDVIG9K1XQDqRd9mTFK0pTqvBO4Ku6ip3WFpRsvLEm3ECWVWgU_TtyydINF4Aiz_wN7UecjQ2FINxutwpiWV9wdmeUYJe47l4D6bpzhKlC12Ydy_HvUGTj2YwdGi7ReOHwQ6MLJjPaIfBC0d26wILokcaEN0MfaNFB5rZyM_vhTKthSffYUQsYgUUU6xB400S-0-oC80cThNPNWlfmqlUsJSySDW4sbSKHMAcoZEqGvXch6e8RbO5Gmv4RzCkCEMKwgPoDUPfK-MO_4OuZpBHS7kYEjt5a_gw_8EH8EaP1Uy4GNoFPnUnhDZKdQpLF98tk_rlP4G4nkCUw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF2KIupB_MRv5-DR2DabbFNvUqxVW0Gs4C1kP1IjkkhID734q_yBzmzSakHw4DXJLiFvmHlD3r5h7FR5quFGkXKQynLHc7V0JE1z1572hJCx9O1ZmMG96D15t8_-c411pmdhSFZZ5f4yp9tsXV2pV1-z_p4k9UfyEWlyEbhkIxTQQfNFz-ct0vWdf3zrPKiilwbfbYcenxN5ZTn25hlNe3Gx2NEPzyaNsv6tRP0oO911tlbxRbgsX2mD1Uy6yVZ_uAhusqVrO513ssU-H5NRStofghKyGNQLCewKAy_YbpanKnPcLUo14AupyiwA1LxrMyQpGKvNs7BdwCUoLHZgrWhpWySNMMK4KuBh_JalI0ASj3DlE-iMnUEG2lgtGO1DcZaUzh-Q5RmG6xnYsX0mT2GYSFNss6fu1bDTc6qxDI7iTb9w_CBQgRZt4yH5QGCxaTM8aCE1UBrJYuxrwT1SzkZ-3OLSNCR1vpzzmEcSCSffYQtplppdBj5XyOAUslQXq6kRUnKDCQM5ixsLLfUeE1MkQlV5ltPojLdwKk57DWcQhgRhWEK4xxqzhe-lbcffSy6mUIdzERhicflr8f5_Fp-w5d5w0A_7N_d3B2yF7pSC4EO2UORjc4S0p5DHNqy_ABoqAx4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Significance+of+chlorite+hyperspectral+and+geochemical+characteristics+in+exploration%3A+A+case+study+of+the+giant+Qulong+porphyry+Cu-Mo+deposit+in+collisional+orogen%2C+Southern+Tibet&rft.jtitle=Ore+geology+reviews&rft.au=Xue%2C+Qingwen&rft.au=Wang%2C+Rui&rft.au=Liu%2C+Siyu&rft.au=Shi%2C+Weixin&rft.date=2021-07-01&rft.issn=0169-1368&rft.volume=134&rft.spage=104156&rft_id=info:doi/10.1016%2Fj.oregeorev.2021.104156&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oregeorev_2021_104156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1368&client=summon