ST-SHAP: A hierarchical and explainable attention network for emotional EEG representation learning and decoding
Emotion recognition using electroencephalogram (EEG) has become a research hotspot in the field of human–computer interaction, how to sufficiently learn complex spatial–temporal representations of emotional EEG data and obtain explainable model prediction results are still great challenges. In this...
Saved in:
Published in | Journal of neuroscience methods Vol. 414; p. 110317 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-0270 1872-678X 1872-678X |
DOI | 10.1016/j.jneumeth.2024.110317 |
Cover
Loading…
Abstract | Emotion recognition using electroencephalogram (EEG) has become a research hotspot in the field of human–computer interaction, how to sufficiently learn complex spatial–temporal representations of emotional EEG data and obtain explainable model prediction results are still great challenges.
In this study, a novel hierarchical and explainable attention network ST-SHAP which combines the Swin Transformer (ST) and SHapley Additive exPlanations (SHAP) technique is proposed for automatic emotional EEG classification. Firstly, a 3D spatial–temporal feature of emotional EEG data is generated via frequency band filtering, temporal segmentation, spatial mapping, and interpolation to fully preserve important spatial–temporal-frequency characteristics. Secondly, a hierarchical attention network is devised to sufficiently learn an abstract spatial–temporal representation of emotional EEG and perform classification. Concretely, in this decoding model, the W-MSA module is used for modeling correlations within local windows, the SW-MSA module allows for information interactions between different local windows, and the patch merging module further facilitates local-to-global multiscale modeling. Finally, the SHAP method is utilized to discover important brain regions for emotion processing and improve the explainability of the Swin Transformer model.
Two benchmark datasets, namely SEED and DREAMER, are used for classification performance evaluation. In the subject-dependent experiments, for SEED dataset, ST-SHAP achieves an average accuracy of 97.18%, while for DREAMER dataset, the average accuracy is 96.06% and 95.98% on arousal and valence dimension respectively. In addition, important brain regions that conform to prior knowledge of neurophysiology are discovered via a data-driven approach for both datasets.
In terms of subject-dependent and subject-independent emotional EEG decoding accuracies, our method outperforms several closely related existing methods.
These experimental results fully prove the effectiveness and superiority of our proposed algorithm.
•A novel hierarchical attention network is designed for emotional EEG recognition.•We utilize global and local relationships of EEG for accurate emotion recognition.•SHAP algorithm is used to detect critical brain regions in emotion processing.•Extensive experiments demonstrate the effectiveness of the proposed ST-SHAP. |
---|---|
AbstractList | Emotion recognition using electroencephalogram (EEG) has become a research hotspot in the field of human-computer interaction, how to sufficiently learn complex spatial-temporal representations of emotional EEG data and obtain explainable model prediction results are still great challenges.
In this study, a novel hierarchical and explainable attention network ST-SHAP which combines the Swin Transformer (ST) and SHapley Additive exPlanations (SHAP) technique is proposed for automatic emotional EEG classification. Firstly, a 3D spatial-temporal feature of emotional EEG data is generated via frequency band filtering, temporal segmentation, spatial mapping, and interpolation to fully preserve important spatial-temporal-frequency characteristics. Secondly, a hierarchical attention network is devised to sufficiently learn an abstract spatial-temporal representation of emotional EEG and perform classification. Concretely, in this decoding model, the W-MSA module is used for modeling correlations within local windows, the SW-MSA module allows for information interactions between different local windows, and the patch merging module further facilitates local-to-global multiscale modeling. Finally, the SHAP method is utilized to discover important brain regions for emotion processing and improve the explainability of the Swin Transformer model.
Two benchmark datasets, namely SEED and DREAMER, are used for classification performance evaluation. In the subject-dependent experiments, for SEED dataset, ST-SHAP achieves an average accuracy of 97.18%, while for DREAMER dataset, the average accuracy is 96.06% and 95.98% on arousal and valence dimension respectively. In addition, important brain regions that conform to prior knowledge of neurophysiology are discovered via a data-driven approach for both datasets.
In terms of subject-dependent and subject-independent emotional EEG decoding accuracies, our method outperforms several closely related existing methods.
These experimental results fully prove the effectiveness and superiority of our proposed algorithm. Emotion recognition using electroencephalogram (EEG) has become a research hotspot in the field of human-computer interaction, how to sufficiently learn complex spatial-temporal representations of emotional EEG data and obtain explainable model prediction results are still great challenges.BACKGROUNDEmotion recognition using electroencephalogram (EEG) has become a research hotspot in the field of human-computer interaction, how to sufficiently learn complex spatial-temporal representations of emotional EEG data and obtain explainable model prediction results are still great challenges.In this study, a novel hierarchical and explainable attention network ST-SHAP which combines the Swin Transformer (ST) and SHapley Additive exPlanations (SHAP) technique is proposed for automatic emotional EEG classification. Firstly, a 3D spatial-temporal feature of emotional EEG data is generated via frequency band filtering, temporal segmentation, spatial mapping, and interpolation to fully preserve important spatial-temporal-frequency characteristics. Secondly, a hierarchical attention network is devised to sufficiently learn an abstract spatial-temporal representation of emotional EEG and perform classification. Concretely, in this decoding model, the W-MSA module is used for modeling correlations within local windows, the SW-MSA module allows for information interactions between different local windows, and the patch merging module further facilitates local-to-global multiscale modeling. Finally, the SHAP method is utilized to discover important brain regions for emotion processing and improve the explainability of the Swin Transformer model.NEW METHODIn this study, a novel hierarchical and explainable attention network ST-SHAP which combines the Swin Transformer (ST) and SHapley Additive exPlanations (SHAP) technique is proposed for automatic emotional EEG classification. Firstly, a 3D spatial-temporal feature of emotional EEG data is generated via frequency band filtering, temporal segmentation, spatial mapping, and interpolation to fully preserve important spatial-temporal-frequency characteristics. Secondly, a hierarchical attention network is devised to sufficiently learn an abstract spatial-temporal representation of emotional EEG and perform classification. Concretely, in this decoding model, the W-MSA module is used for modeling correlations within local windows, the SW-MSA module allows for information interactions between different local windows, and the patch merging module further facilitates local-to-global multiscale modeling. Finally, the SHAP method is utilized to discover important brain regions for emotion processing and improve the explainability of the Swin Transformer model.Two benchmark datasets, namely SEED and DREAMER, are used for classification performance evaluation. In the subject-dependent experiments, for SEED dataset, ST-SHAP achieves an average accuracy of 97.18%, while for DREAMER dataset, the average accuracy is 96.06% and 95.98% on arousal and valence dimension respectively. In addition, important brain regions that conform to prior knowledge of neurophysiology are discovered via a data-driven approach for both datasets.RESULTSTwo benchmark datasets, namely SEED and DREAMER, are used for classification performance evaluation. In the subject-dependent experiments, for SEED dataset, ST-SHAP achieves an average accuracy of 97.18%, while for DREAMER dataset, the average accuracy is 96.06% and 95.98% on arousal and valence dimension respectively. In addition, important brain regions that conform to prior knowledge of neurophysiology are discovered via a data-driven approach for both datasets.In terms of subject-dependent and subject-independent emotional EEG decoding accuracies, our method outperforms several closely related existing methods.COMPARISON WITH EXISTING METHODSIn terms of subject-dependent and subject-independent emotional EEG decoding accuracies, our method outperforms several closely related existing methods.These experimental results fully prove the effectiveness and superiority of our proposed algorithm.CONCLUSIONThese experimental results fully prove the effectiveness and superiority of our proposed algorithm. Emotion recognition using electroencephalogram (EEG) has become a research hotspot in the field of human–computer interaction, how to sufficiently learn complex spatial–temporal representations of emotional EEG data and obtain explainable model prediction results are still great challenges. In this study, a novel hierarchical and explainable attention network ST-SHAP which combines the Swin Transformer (ST) and SHapley Additive exPlanations (SHAP) technique is proposed for automatic emotional EEG classification. Firstly, a 3D spatial–temporal feature of emotional EEG data is generated via frequency band filtering, temporal segmentation, spatial mapping, and interpolation to fully preserve important spatial–temporal-frequency characteristics. Secondly, a hierarchical attention network is devised to sufficiently learn an abstract spatial–temporal representation of emotional EEG and perform classification. Concretely, in this decoding model, the W-MSA module is used for modeling correlations within local windows, the SW-MSA module allows for information interactions between different local windows, and the patch merging module further facilitates local-to-global multiscale modeling. Finally, the SHAP method is utilized to discover important brain regions for emotion processing and improve the explainability of the Swin Transformer model. Two benchmark datasets, namely SEED and DREAMER, are used for classification performance evaluation. In the subject-dependent experiments, for SEED dataset, ST-SHAP achieves an average accuracy of 97.18%, while for DREAMER dataset, the average accuracy is 96.06% and 95.98% on arousal and valence dimension respectively. In addition, important brain regions that conform to prior knowledge of neurophysiology are discovered via a data-driven approach for both datasets. In terms of subject-dependent and subject-independent emotional EEG decoding accuracies, our method outperforms several closely related existing methods. These experimental results fully prove the effectiveness and superiority of our proposed algorithm. •A novel hierarchical attention network is designed for emotional EEG recognition.•We utilize global and local relationships of EEG for accurate emotion recognition.•SHAP algorithm is used to detect critical brain regions in emotion processing.•Extensive experiments demonstrate the effectiveness of the proposed ST-SHAP. |
ArticleNumber | 110317 |
Author | Miao, Minmin Xu, Baoguo Liang, Jin Sheng, Zhenzhen Liu, Wenzhe Hu, Wenjun |
Author_xml | – sequence: 1 givenname: Minmin orcidid: 0000-0002-8437-2412 surname: Miao fullname: Miao, Minmin email: 02746@zjhu.edu.cn organization: School of Information Engineering, Huzhou University, Huzhou 313000, China – sequence: 2 givenname: Jin surname: Liang fullname: Liang, Jin organization: School of Information Engineering, Huzhou University, Huzhou 313000, China – sequence: 3 givenname: Zhenzhen surname: Sheng fullname: Sheng, Zhenzhen organization: School of Information Engineering, Huzhou University, Huzhou 313000, China – sequence: 4 givenname: Wenzhe surname: Liu fullname: Liu, Wenzhe organization: School of Information Engineering, Huzhou University, Huzhou 313000, China – sequence: 5 givenname: Baoguo surname: Xu fullname: Xu, Baoguo organization: School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, China – sequence: 6 givenname: Wenjun surname: Hu fullname: Hu, Wenjun email: huwenjun@zjhu.edu.cn organization: School of Information Engineering, Huzhou University, Huzhou 313000, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39542109$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9PGzEQxa0KVAL0KyAfe9nU9v7z9tQIpVAJqUiAxM2atceN0117a29o--3rEOiV02hGv_ekee-UHPngkZALzpac8ebTdrn1uBtx3iwFE9WSc1by9h1ZcNmKomnl4xFZZLAumGjZCTlNacsYqzrWvCcnZVdXgrNuQaa7--LuenX7ma7oxmGEqDdOw0DBG4p_pgGch35ACvOMfnbBU4_z7xB_UhsixTHsb5lfr69oxCliyhg8gwNC9M7_ePYyqIPJyzk5tjAk_PAyz8jD1_X95XVx8_3q2-XqptAlr-ei6ivQUtu2FyhNbUTdWgG2451tuO564CUIo4E1pu2rquN1D31r82KsFGVZnpGPB98phl87TLMaXdI4DOAx7JIquZBSNJWUGb14QXf9iEZN0Y0Q_6rXlDLQHAAdQ0oR7X-EM7WvQ23Vax1qX4c61JGFXw5CzJ8-5XhV0g69RuMi6lmZ4N6y-AdAK5fS |
Cites_doi | 10.3390/brainsci11081006 10.1109/JSEN.2022.3144317 10.3390/math12081180 10.3390/s22239480 10.1109/JAS.2022.105686 10.1109/TETC.2021.3087174 10.3390/math11061424 10.1016/j.physa.2022.127700 10.24963/ijcai.2018/216 10.1109/TCDS.2016.2587290 10.1016/j.engappai.2020.103975 10.3390/s20072034 10.3390/math10152819 10.1109/TCDS.2021.3051465 10.1016/j.inffus.2022.03.009 10.1109/ICCV48922.2021.00986 10.3390/app14020702 10.1109/LGRS.2023.3251652 10.1088/1741-2552/acb79e 10.1038/s41598-021-89414-x 10.3390/s22062346 10.1016/j.compbiomed.2023.106537 10.1016/j.compbiomed.2021.104696 10.1016/j.jelectrocard.2024.153783 10.1109/TCDS.2020.2999337 10.1109/TNSRE.2022.3230250 10.1145/2939672.2939778 10.1016/j.future.2021.01.010 10.1109/TNSRE.2019.2938295 10.1109/ICCVW54120.2021.00210 10.1109/ICCV.2017.74 10.1016/j.compbiomed.2022.105303 10.1109/TAFFC.2018.2817622 10.1109/JBHI.2017.2688239 10.1016/j.neucom.2020.07.072 10.1109/JBHI.2020.2995767 10.1109/TAMD.2015.2431497 10.1109/TAFFC.2019.2922912 10.1145/3394171.3413724 10.1016/j.bspc.2023.105422 10.1016/j.asoc.2024.111338 10.1109/TAFFC.2020.2994159 10.3389/fnins.2023.1055445 10.3389/fnbot.2019.00037 10.3390/math10173131 10.3390/e23081046 10.3390/atmos15070748 10.1016/j.bspc.2023.104799 10.1109/TAFFC.2022.3169001 10.1109/TAFFC.2020.3013711 10.3390/toxics12030177 10.1016/j.cmpb.2023.107927 10.1007/s10489-022-04228-2 10.1109/TCDS.2021.3071170 10.1016/j.bspc.2022.104141 10.1109/JBHI.2024.3404664 10.1016/j.compbiomed.2022.106463 10.3390/brainsci14030268 10.1038/s41598-024-55743-w |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jneumeth.2024.110317 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
ExternalDocumentID | 39542109 10_1016_j_jneumeth_2024_110317 S0165027024002620 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .55 .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HVGLF HZ~ IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SNS SPCBC SSN SSZ T5K WUQ X7M ZGI ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c315t-4b4ac8cf7b2e8d5d257f2af919f61c9ba13a2dca06d7b44915bab7fd7bdf82333 |
IEDL.DBID | .~1 |
ISSN | 0165-0270 1872-678X |
IngestDate | Thu Jul 10 20:04:56 EDT 2025 Wed Feb 19 02:17:58 EST 2025 Tue Jul 01 02:57:19 EDT 2025 Sat Dec 21 16:00:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Emotion recognition Swin transformer Self attention Explainability EEG |
Language | English |
License | Copyright © 2024 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c315t-4b4ac8cf7b2e8d5d257f2af919f61c9ba13a2dca06d7b44915bab7fd7bdf82333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8437-2412 |
PMID | 39542109 |
PQID | 3128826488 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3128826488 pubmed_primary_39542109 crossref_primary_10_1016_j_jneumeth_2024_110317 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2024_110317 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2025 2025-02-00 2025-Feb 20250201 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Zhao, An, Zhao, Wang, Yan (b39) 2023; 85 Confalonieri, Coba, Wagner, Besold (b9) 2021; 11 Li, Yang, Li, Chen, Du (b29) 2020; 415 Sun, Wang, Zhao, Hao, Wang (b55) 2022; 10 Miao, Zheng, Xu, Yang, Hu (b42) 2023; 79 Jia, Ziyu, Lin, Youfang, Cai, Xiyang, Chen, Haobin, Gou, Haijun, Wang, Jing, 2020. SST-EmotionNet: Spatial-spectral-temporal based attention 3D dense network for EEG emotion recognition. In: Proceedings of the 28th ACM International Conference on Multimedia. pp. 2909–2917. Ahmed, Sinha, Phadikar, Ghaderpour (b1) 2022; 22 Liu, Fu (b35) 2021; 119 Zheng (b72) 2016; 9 Zhang, Cui, Zhong (b68) 2023; 11 Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly (b13) 2020 Zhong, Wang, Miao (b75) 2020; 13 Li, Yang, Zheng, Wenming, Cui, Zhen, Zhang, Tong, Zong, Yuan, 2018. A Novel Neural Network Model based on Cerebral Hemispheric Asymmetry for EEG Emotion Recognition. In: IJCAI. pp. 1561–1567. Peng, Zhao, Zhang, Xu, Kong (b45) 2023; 154 Awan, Usman, Khalid, Anwar, Alroobaea, Hussain, Almotiri, Ullah, Akram (b3) 2022; 22 Ke, Ma, Li, Lv, Zou (b24) 2024; 14 Li, Chai, Wang, Yang, Du (b25) 2021; 13 Katsigiannis, Ramzan (b23) 2017; 22 Papa, Russo, Amerini, Zhou (b44) 2024 Liang, Jingyun, Cao, Jiezhang, Sun, Guolei, Zhang, Kai, Van Gool, Luc, Timofte, Radu, 2021. Swinir: Image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 1833–1844. Lundberg, Lee (b40) 2017; vol. 30 Temenos, Temenos, Kaselimi, Doulamis, Doulamis (b56) 2023; 20 Song, Zheng, Liu, Gao (b52) 2022; 31 Li, Wang, Zhang, Liu, Song, Cheng, Chen (b27) 2022; 143 Hartikainen (b20) 2021; 11 Li, Li, Pan, Wang (b26) 2021; 15 Topic, Russo (b57) 2021; 24 Chen, Li, Wan, Xu, Bezerianos, Wang (b6) 2022; 71 Guo, Zhang, Fan, Shen, Peng (b19) 2024; 12 Liu, Yang (b38) 2021; 11 Ma, Tang, Fan, Huang, Mei, Ma (b41) 2022; 9 Fan, Xie, Tao, Li, Pei, Li, Lv (b15) 2024; 87 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b58) 2017; vol. 30 Mishra, Bhusnur, Mishra, Singh (b43) 2024 Wang, Nie, Lu (b59) 2011 Wang, Wang, Hu, Yin, Song (b61) 2022; 22 Guo, Cai, An, Chen, Ma, Wan, Gao (b18) 2022; 603 Liu, Qiu, Zheng, Lu (b37) 2021; 14 Islam, Andreev, Shusharina, Hramov (b21) 2022; 10 Xing, Li, Xu, Shu, Hu, Xu (b64) 2019; 13 Bărbulescu, Saliba (b4) 2024; 15 Selvaraju, Ramprasaath R., Cogswell, Michael, Das, Abhishek, Vedantam, Ramakrishna, Parikh, Devi, Batra, Dhruv, 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 618–626. Arakaki, Arechavala, Choy, Bautista, Bliss, Molloy, Wu, Shimojo, Jiang, Kleinman (b2) 2023; 17 Du, Ma, Zhang, Li, Lai, Zhao, Deng, Liu, Wang (b14) 2020; 13 Wei, Liu, Li, Cheng, Song, Chen (b62) 2023; 152 Zhong, Gu, Luo, Zeng, Liu (b74) 2023; 53 Song, Zheng, Liu, Zong, Cui, Li (b53) 2021; 10 Yao, Li, Ding, Wang, Zhao, Gong, Nan, Fu (b67) 2024; 14 Ding, Robinson, Zhang, Zeng, Guan (b11) 2022; 14 Wang, Song, Tao, Liotta, Yang, Li, Gao, Sun, Ge, Zhang (b60) 2022; 83 Budnik-Przybylska, Syty, Kaźmierczak, Przybylski, Doliński, Łabuda, Jasik, Kastrau, Di Fronso, Bertollo (b5) 2024; 14 Li, Wang, Zheng, Zong, Qi, Cui, Zhang, Song (b28) 2020; 13 Winter (b63) 2002; vol. 3 Zhao, Zhang, Zhu, You, Kuang, Sun (b71) 2019; 27 Devlin, Chang, Lee, Toutanova (b10) 2018 Li, Zhang, Wang, Wei, Dang (b31) 2023; 20 Cheng, Chen, Li, Liu, Song, Liu, Chen (b7) 2020; 25 Zhang, Wei, Zou, Fu (b69) 2020; 96 Yang, Wu, Fu, Chen (b66) 2018 Li, Zheng, Wang, Zong, Cui (b33) 2019; 13 Zheng, Lu (b73) 2015; 7 Cimtay, Ekmekcioglu (b8) 2020; 20 Zhao, Xu, He, Peng (b70) 2023 Raffel, Shazeer, Roberts, Lee, Narang, Matena, Zhou, Li, Liu (b46) 2020; 21 Saliba, Bărbulescu (b49) 2024; 12 Shen, Li, Liang, Zhao, Ma, Wu, Zhang, Zhang, Hu (b51) 2024; 28 Feutrill, Roughan (b16) 2021; 23 Ding, Tong, Zhang, Jiang, Li, Liang, Guan (b12) 2024 Xu, Pan, Zheng, Ouyang, Jia, Zeng (b65) 2024; 243 Garg, Verma, Singh (b17) 2024; 154 Liu, Ze, Lin, Yutong, Cao, Yue, Hu, Han, Wei, Yixuan, Zhang, Zheng, Lin, Stephen, Guo, Baining, 2021a. Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 10012–10022. Song, Zheng, Song, Cui (b54) 2018; 11 Li, Zhang, Cao, Timofte, Van Gool (b30) 2021 Rahman, Sarkar, Hossain, Hossain, Islam, Hossain, Quinn, Moni (b47) 2021; 136 Ribeiro, Marco Tulio, Singh, Sameer, Guestrin, Carlos, 2016. ” Why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 1135–1144. Yang (10.1016/j.jneumeth.2024.110317_b66) 2018 Awan (10.1016/j.jneumeth.2024.110317_b3) 2022; 22 Ding (10.1016/j.jneumeth.2024.110317_b12) 2024 10.1016/j.jneumeth.2024.110317_b32 Zhang (10.1016/j.jneumeth.2024.110317_b68) 2023; 11 10.1016/j.jneumeth.2024.110317_b34 10.1016/j.jneumeth.2024.110317_b36 Saliba (10.1016/j.jneumeth.2024.110317_b49) 2024; 12 Chen (10.1016/j.jneumeth.2024.110317_b6) 2022; 71 Li (10.1016/j.jneumeth.2024.110317_b28) 2020; 13 Li (10.1016/j.jneumeth.2024.110317_b33) 2019; 13 Zhang (10.1016/j.jneumeth.2024.110317_b69) 2020; 96 Zheng (10.1016/j.jneumeth.2024.110317_b73) 2015; 7 Papa (10.1016/j.jneumeth.2024.110317_b44) 2024 Wang (10.1016/j.jneumeth.2024.110317_b61) 2022; 22 Ding (10.1016/j.jneumeth.2024.110317_b11) 2022; 14 Zheng (10.1016/j.jneumeth.2024.110317_b72) 2016; 9 Islam (10.1016/j.jneumeth.2024.110317_b21) 2022; 10 Song (10.1016/j.jneumeth.2024.110317_b53) 2021; 10 Ahmed (10.1016/j.jneumeth.2024.110317_b1) 2022; 22 Xu (10.1016/j.jneumeth.2024.110317_b65) 2024; 243 Devlin (10.1016/j.jneumeth.2024.110317_b10) 2018 10.1016/j.jneumeth.2024.110317_b22 Li (10.1016/j.jneumeth.2024.110317_b30) 2021 Liu (10.1016/j.jneumeth.2024.110317_b38) 2021; 11 Cimtay (10.1016/j.jneumeth.2024.110317_b8) 2020; 20 Song (10.1016/j.jneumeth.2024.110317_b52) 2022; 31 Xing (10.1016/j.jneumeth.2024.110317_b64) 2019; 13 Li (10.1016/j.jneumeth.2024.110317_b26) 2021; 15 Yao (10.1016/j.jneumeth.2024.110317_b67) 2024; 14 Winter (10.1016/j.jneumeth.2024.110317_b63) 2002; vol. 3 Zhao (10.1016/j.jneumeth.2024.110317_b71) 2019; 27 Guo (10.1016/j.jneumeth.2024.110317_b18) 2022; 603 Bărbulescu (10.1016/j.jneumeth.2024.110317_b4) 2024; 15 Zhong (10.1016/j.jneumeth.2024.110317_b74) 2023; 53 Garg (10.1016/j.jneumeth.2024.110317_b17) 2024; 154 Guo (10.1016/j.jneumeth.2024.110317_b19) 2024; 12 Temenos (10.1016/j.jneumeth.2024.110317_b56) 2023; 20 Cheng (10.1016/j.jneumeth.2024.110317_b7) 2020; 25 Du (10.1016/j.jneumeth.2024.110317_b14) 2020; 13 Li (10.1016/j.jneumeth.2024.110317_b31) 2023; 20 Wang (10.1016/j.jneumeth.2024.110317_b60) 2022; 83 Zhong (10.1016/j.jneumeth.2024.110317_b75) 2020; 13 Wang (10.1016/j.jneumeth.2024.110317_b59) 2011 Ma (10.1016/j.jneumeth.2024.110317_b41) 2022; 9 Feutrill (10.1016/j.jneumeth.2024.110317_b16) 2021; 23 Hartikainen (10.1016/j.jneumeth.2024.110317_b20) 2021; 11 Liu (10.1016/j.jneumeth.2024.110317_b39) 2023; 85 10.1016/j.jneumeth.2024.110317_b50 Mishra (10.1016/j.jneumeth.2024.110317_b43) 2024 Song (10.1016/j.jneumeth.2024.110317_b54) 2018; 11 Li (10.1016/j.jneumeth.2024.110317_b27) 2022; 143 Miao (10.1016/j.jneumeth.2024.110317_b42) 2023; 79 Topic (10.1016/j.jneumeth.2024.110317_b57) 2021; 24 Katsigiannis (10.1016/j.jneumeth.2024.110317_b23) 2017; 22 Budnik-Przybylska (10.1016/j.jneumeth.2024.110317_b5) 2024; 14 Ke (10.1016/j.jneumeth.2024.110317_b24) 2024; 14 Liu (10.1016/j.jneumeth.2024.110317_b35) 2021; 119 Confalonieri (10.1016/j.jneumeth.2024.110317_b9) 2021; 11 Li (10.1016/j.jneumeth.2024.110317_b29) 2020; 415 Rahman (10.1016/j.jneumeth.2024.110317_b47) 2021; 136 Arakaki (10.1016/j.jneumeth.2024.110317_b2) 2023; 17 Sun (10.1016/j.jneumeth.2024.110317_b55) 2022; 10 Shen (10.1016/j.jneumeth.2024.110317_b51) 2024; 28 Zhao (10.1016/j.jneumeth.2024.110317_b70) 2023 Fan (10.1016/j.jneumeth.2024.110317_b15) 2024; 87 Liu (10.1016/j.jneumeth.2024.110317_b37) 2021; 14 Raffel (10.1016/j.jneumeth.2024.110317_b46) 2020; 21 Li (10.1016/j.jneumeth.2024.110317_b25) 2021; 13 Lundberg (10.1016/j.jneumeth.2024.110317_b40) 2017; vol. 30 Peng (10.1016/j.jneumeth.2024.110317_b45) 2023; 154 10.1016/j.jneumeth.2024.110317_b48 Dosovitskiy (10.1016/j.jneumeth.2024.110317_b13) 2020 Vaswani (10.1016/j.jneumeth.2024.110317_b58) 2017; vol. 30 Wei (10.1016/j.jneumeth.2024.110317_b62) 2023; 152 |
References_xml | – volume: 119 start-page: 1 year: 2021 end-page: 6 ident: b35 article-title: Emotion recognition by deeply learned multi-channel textual and EEG features publication-title: Future Gener. Comput. Syst. – volume: 22 start-page: 98 year: 2017 end-page: 107 ident: b23 article-title: DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices publication-title: IEEE J. Biomed. Health Inform. – volume: 85 year: 2023 ident: b39 article-title: GLFANet: A global to local feature aggregation network for EEG emotion recognition publication-title: Biomed. Signal Process. Control. – volume: 603 year: 2022 ident: b18 article-title: A transformer based neural network for emotion recognition and visualizations of crucial EEG channels publication-title: Phys. A – volume: 25 start-page: 453 year: 2020 end-page: 464 ident: b7 article-title: Emotion recognition from multi-channel EEG via deep forest publication-title: IEEE J. Biomed. Health Inf. – year: 2020 ident: b13 article-title: An image is worth 16x16 words: Transformers for image recognition at scale – volume: 21 start-page: 5485 year: 2020 end-page: 5551 ident: b46 article-title: Exploring the limits of transfer learning with a unified text-to-text transformer publication-title: J. Mach. Learn. Res. – volume: 13 start-page: 568 year: 2019 end-page: 578 ident: b33 article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 12 start-page: 177 year: 2024 ident: b49 article-title: Downscaling MERRA-2 reanalysis PM2. 5 series over the Arabian Gulf by inverse distance weighting, bicubic spline smoothing, and spatio-temporal kriging publication-title: Toxics – start-page: 734 year: 2011 end-page: 743 ident: b59 article-title: EEG-based emotion recognition using frequency domain features and support vector machines publication-title: Neural Information Processing: 18th International Conference, ICONIP 2011, Shanghai, China, November 13-17, 2011, Proceedings, Part I 18 – volume: 154 year: 2024 ident: b17 article-title: EEG-based emotion recognition using MobileNet recurrent neural network with time-frequency features publication-title: Appl. Soft Comput. – reference: Selvaraju, Ramprasaath R., Cogswell, Michael, Das, Abhishek, Vedantam, Ramakrishna, Parikh, Devi, Batra, Dhruv, 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 618–626. – volume: 152 year: 2023 ident: b62 article-title: TC-Net: A transformer capsule network for EEG-based emotion recognition publication-title: Comput. Biol. Med. – volume: 143 year: 2022 ident: b27 article-title: Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism publication-title: Comput. Biol. Med. – volume: 10 start-page: 1399 year: 2021 end-page: 1413 ident: b53 article-title: Graph-embedded convolutional neural network for image-based EEG emotion recognition publication-title: IEEE Trans. Emerg. Top. Comput. – volume: 53 start-page: 15278 year: 2023 end-page: 15294 ident: b74 article-title: Bi-hemisphere asymmetric attention network: Recognizing emotion from EEG signals based on the transformer publication-title: Appl. Intell. – volume: 9 start-page: 281 year: 2016 end-page: 290 ident: b72 article-title: Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis publication-title: IEEE Trans. Cogn. Dev. Syst. – reference: Li, Yang, Zheng, Wenming, Cui, Zhen, Zhang, Tong, Zong, Yuan, 2018. A Novel Neural Network Model based on Cerebral Hemispheric Asymmetry for EEG Emotion Recognition. In: IJCAI. pp. 1561–1567. – volume: 154 year: 2023 ident: b45 article-title: Temporal relative transformer encoding cooperating with channel attention for EEG emotion analysis publication-title: Comput. Biol. Med. – volume: 20 year: 2023 ident: b31 article-title: Emotion recognition using spatial-temporal EEG features through convolutional graph attention network publication-title: J. Neural Eng. – volume: 22 start-page: 9480 year: 2022 ident: b3 article-title: An ensemble learning method for emotion charting using multimodal physiological signals publication-title: Sensors – volume: 136 year: 2021 ident: b47 article-title: Recognition of human emotions using EEG signals: A review publication-title: Comput. Biol. Med. – volume: 14 start-page: 2238 year: 2022 end-page: 2250 ident: b11 article-title: Tsception: Capturing temporal dynamics and spatial asymmetry from EEG for emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 14 start-page: 702 year: 2024 ident: b24 article-title: Multi-region and multi-band electroencephalogram emotion recognition based on self-attention and capsule network publication-title: Appl. Sci. – volume: 31 start-page: 710 year: 2022 end-page: 719 ident: b52 article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 433 year: 2018 end-page: 443 ident: b66 article-title: Continuous convolutional neural network with 3D input for EEG-based emotion recognition publication-title: Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13–16, 2018, Proceedings, Part VII 25 – reference: Liang, Jingyun, Cao, Jiezhang, Sun, Guolei, Zhang, Kai, Van Gool, Luc, Timofte, Radu, 2021. Swinir: Image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 1833–1844. – volume: 10 start-page: 3131 year: 2022 ident: b55 article-title: Multi-channel EEG emotion recognition based on parallel transformer and 3D-convolutional neural network publication-title: Mathematics – volume: 22 start-page: 4359 year: 2022 end-page: 4368 ident: b61 article-title: Transformers for EEG-based emotion recognition: A hierarchical spatial information learning model publication-title: IEEE Sens. J. – volume: 71 start-page: 1 year: 2022 end-page: 15 ident: b6 article-title: Fusing frequency-domain features and brain connectivity features for cross-subject emotion recognition publication-title: IEEE Trans. Instrum. Meas. – volume: vol. 30 year: 2017 ident: b40 article-title: A unified approach to interpreting model predictions publication-title: Advances in Neural Information Processing Systems – volume: vol. 3 start-page: 2025 year: 2002 end-page: 2054 ident: b63 article-title: The shapley value – volume: 23 start-page: 1046 year: 2021 ident: b16 article-title: A review of Shannon and differential entropy rate estimation publication-title: Entropy – volume: 13 start-page: 1290 year: 2020 end-page: 1301 ident: b75 article-title: EEG-based emotion recognition using regularized graph neural networks publication-title: IEEE Trans. Affect. Comput. – reference: Ribeiro, Marco Tulio, Singh, Sameer, Guestrin, Carlos, 2016. ” Why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 1135–1144. – volume: vol. 30 year: 2017 ident: b58 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – year: 2023 ident: b70 article-title: Interpretable emotion classification using multi-domain feature of EEG signals publication-title: IEEE Sens. J. – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: b73 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. – year: 2021 ident: b30 article-title: Localvit: Bringing locality to vision transformers – volume: 11 start-page: 10758 year: 2021 ident: b38 article-title: A three-branch 3D convolutional neural network for EEG-based different hand movement stages classification publication-title: Sci. Rep. – volume: 17 year: 2023 ident: b2 article-title: The connection between heart rate variability (HRV), neurological health, and cognition: A literature review publication-title: Front. Neurosci. – volume: 22 start-page: 2346 year: 2022 ident: b1 article-title: Automated feature extraction on AsMap for emotion classification using EEG publication-title: Sensors – volume: 13 start-page: 354 year: 2020 end-page: 367 ident: b28 article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 87 year: 2024 ident: b15 article-title: ICaps-ResLSTM: Improved capsule network and residual LSTM for EEG emotion recognition publication-title: Biomed. Signal Process. Control – volume: 79 year: 2023 ident: b42 article-title: A multiple frequency bands parallel spatial–temporal 3D deep residual learning framework for EEG-based emotion recognition publication-title: Biomed. Signal Process. Control – volume: 15 year: 2021 ident: b26 article-title: Cross-subject EEG emotion recognition with self-organized graph neural network publication-title: Front. Neurosci. – volume: 14 start-page: 715 year: 2021 end-page: 729 ident: b37 article-title: Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 11 start-page: 1424 year: 2023 ident: b68 article-title: EEG-based emotion recognition via knowledge-integrated interpretable method publication-title: Mathematics – year: 2018 ident: b10 article-title: Bert: Pre-training of deep bidirectional transformers for language understanding – reference: Liu, Ze, Lin, Yutong, Cao, Yue, Hu, Han, Wei, Yixuan, Zhang, Zheng, Lin, Stephen, Guo, Baining, 2021a. Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 10012–10022. – volume: 243 year: 2024 ident: b65 article-title: EESCN: A novel spiking neural network method for EEG-based emotion recognition publication-title: Comput. Methods Programs Biomed. – volume: 10 start-page: 2819 year: 2022 ident: b21 article-title: Explainable machine learning methods for classification of brain states during visual perception publication-title: Mathematics – volume: 415 start-page: 225 year: 2020 end-page: 233 ident: b29 article-title: EEG-based intention recognition with deep recurrent-convolution neural network: Performance and channel selection by grad-CAM publication-title: Neurocomputing – volume: 27 start-page: 2164 year: 2019 end-page: 2177 ident: b71 article-title: A multi-branch 3D convolutional neural network for EEG-based motor imagery classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 2024 ident: b43 article-title: Comparative analysis of parametric B-spline and Hermite cubic spline based methods for accurate ECG signal modeling publication-title: J. Electrocardiol. – volume: 14 start-page: 5197 year: 2024 ident: b5 article-title: Psychophysiological strategies for enhancing performance through imagery–skin conductance level analysis in guided vs. self-produced imagery publication-title: Sci. Rep. – volume: 24 start-page: 1442 year: 2021 end-page: 1454 ident: b57 article-title: Emotion recognition based on EEG feature maps through deep learning network publication-title: Eng. Sci. Technol., Int. J. – volume: 14 year: 2024 ident: b67 article-title: Emotion classification based on transformer and CNN for EEG spatial–temporal feature learning publication-title: Brain Sci. – volume: 28 start-page: 5247 year: 2024 end-page: 5259 ident: b51 article-title: HEMAsNet: A hemisphere asymmetry network inspired by the brain for depression recognition from electroencephalogram signals publication-title: IEEE J. Biomed. Health Inf. – volume: 11 year: 2021 ident: b9 article-title: A historical perspective of explainable artificial intelligence publication-title: Wiley Interdiscipl. Rev.: Data Min. Knowl. Discov. – volume: 11 start-page: 532 year: 2018 end-page: 541 ident: b54 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affect. Comput. – year: 2024 ident: b12 article-title: Emt: A novel transformer for generalized cross-subject EEG emotion recognition – volume: 13 start-page: 1528 year: 2020 end-page: 1540 ident: b14 article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals publication-title: IEEE Trans. Affect. Comput. – volume: 12 year: 2024 ident: b19 article-title: A comprehensive interaction in multiscale multichannel EEG signals for emotion recognition publication-title: Mathematics – volume: 11 start-page: 1006 year: 2021 ident: b20 article-title: Emotion-attention interaction in the right hemisphere publication-title: Brain Sci. – volume: 20 start-page: 1 year: 2023 end-page: 5 ident: b56 article-title: Interpretable deep learning framework for land use and land cover classification in remote sensing using SHAP publication-title: IEEE Geosci. Remote Sens. Lett. – reference: Jia, Ziyu, Lin, Youfang, Cai, Xiyang, Chen, Haobin, Gou, Haijun, Wang, Jing, 2020. SST-EmotionNet: Spatial-spectral-temporal based attention 3D dense network for EEG emotion recognition. In: Proceedings of the 28th ACM International Conference on Multimedia. pp. 2909–2917. – volume: 15 start-page: 748 year: 2024 ident: b4 article-title: Sensitivity analysis of the inverse distance weighting and bicubic spline smoothing models for MERRA-2 reanalysis PM2. 5 series in the Persian Gulf region publication-title: Atmosphere – volume: 9 start-page: 1200 year: 2022 end-page: 1217 ident: b41 article-title: SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer publication-title: IEEE/CAA J. Autom. Sin. – volume: 83 start-page: 19 year: 2022 end-page: 52 ident: b60 article-title: A systematic review on affective computing: Emotion models, databases, and recent advances publication-title: Inf. Fusion – volume: 96 year: 2020 ident: b69 article-title: Automatic epileptic EEG classification based on differential entropy and attention model publication-title: Eng. Appl. Artif. Intell. – volume: 20 start-page: 2034 year: 2020 ident: b8 article-title: Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition publication-title: Sensors – start-page: 1 year: 2024 end-page: 20 ident: b44 article-title: A survey on efficient vision transformers: Algorithms, techniques, and performance benchmarking publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 13 start-page: 37 year: 2019 ident: b64 article-title: SAE+ LSTM: A new framework for emotion recognition from multi-channel EEG publication-title: Front. Neurorobot. – volume: 13 start-page: 885 year: 2021 end-page: 897 ident: b25 article-title: EEG emotion recognition based on 3-D feature representation and dilated fully convolutional networks publication-title: IEEE Trans. Cogn. Dev. Syst. – year: 2023 ident: 10.1016/j.jneumeth.2024.110317_b70 article-title: Interpretable emotion classification using multi-domain feature of EEG signals publication-title: IEEE Sens. J. – volume: 11 start-page: 1006 issue: 8 year: 2021 ident: 10.1016/j.jneumeth.2024.110317_b20 article-title: Emotion-attention interaction in the right hemisphere publication-title: Brain Sci. doi: 10.3390/brainsci11081006 – volume: 22 start-page: 4359 issue: 5 year: 2022 ident: 10.1016/j.jneumeth.2024.110317_b61 article-title: Transformers for EEG-based emotion recognition: A hierarchical spatial information learning model publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3144317 – volume: 12 issue: 8 year: 2024 ident: 10.1016/j.jneumeth.2024.110317_b19 article-title: A comprehensive interaction in multiscale multichannel EEG signals for emotion recognition publication-title: Mathematics doi: 10.3390/math12081180 – volume: 22 start-page: 9480 issue: 23 year: 2022 ident: 10.1016/j.jneumeth.2024.110317_b3 article-title: An ensemble learning method for emotion charting using multimodal physiological signals publication-title: Sensors doi: 10.3390/s22239480 – volume: 9 start-page: 1200 issue: 7 year: 2022 ident: 10.1016/j.jneumeth.2024.110317_b41 article-title: SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2022.105686 – volume: 10 start-page: 1399 issue: 3 year: 2021 ident: 10.1016/j.jneumeth.2024.110317_b53 article-title: Graph-embedded convolutional neural network for image-based EEG emotion recognition publication-title: IEEE Trans. Emerg. Top. Comput. doi: 10.1109/TETC.2021.3087174 – volume: 11 start-page: 1424 issue: 6 year: 2023 ident: 10.1016/j.jneumeth.2024.110317_b68 article-title: EEG-based emotion recognition via knowledge-integrated interpretable method publication-title: Mathematics doi: 10.3390/math11061424 – volume: 603 year: 2022 ident: 10.1016/j.jneumeth.2024.110317_b18 article-title: A transformer based neural network for emotion recognition and visualizations of crucial EEG channels publication-title: Phys. A doi: 10.1016/j.physa.2022.127700 – ident: 10.1016/j.jneumeth.2024.110317_b32 doi: 10.24963/ijcai.2018/216 – volume: 9 start-page: 281 issue: 3 year: 2016 ident: 10.1016/j.jneumeth.2024.110317_b72 article-title: Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2016.2587290 – volume: 96 year: 2020 ident: 10.1016/j.jneumeth.2024.110317_b69 article-title: Automatic epileptic EEG classification based on differential entropy and attention model publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103975 – volume: 20 start-page: 2034 issue: 7 year: 2020 ident: 10.1016/j.jneumeth.2024.110317_b8 article-title: Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition publication-title: Sensors doi: 10.3390/s20072034 – volume: 10 start-page: 2819 issue: 15 year: 2022 ident: 10.1016/j.jneumeth.2024.110317_b21 article-title: Explainable machine learning methods for classification of brain states during visual perception publication-title: Mathematics doi: 10.3390/math10152819 – volume: vol. 30 year: 2017 ident: 10.1016/j.jneumeth.2024.110317_b58 article-title: Attention is all you need – volume: 13 start-page: 885 issue: 4 year: 2021 ident: 10.1016/j.jneumeth.2024.110317_b25 article-title: EEG emotion recognition based on 3-D feature representation and dilated fully convolutional networks publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2021.3051465 – start-page: 1 year: 2024 ident: 10.1016/j.jneumeth.2024.110317_b44 article-title: A survey on efficient vision transformers: Algorithms, techniques, and performance benchmarking publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 83 start-page: 19 year: 2022 ident: 10.1016/j.jneumeth.2024.110317_b60 article-title: A systematic review on affective computing: Emotion models, databases, and recent advances publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.03.009 – ident: 10.1016/j.jneumeth.2024.110317_b36 doi: 10.1109/ICCV48922.2021.00986 – volume: 14 start-page: 702 issue: 2 year: 2024 ident: 10.1016/j.jneumeth.2024.110317_b24 article-title: Multi-region and multi-band electroencephalogram emotion recognition based on self-attention and capsule network publication-title: Appl. Sci. doi: 10.3390/app14020702 – volume: 20 start-page: 1 year: 2023 ident: 10.1016/j.jneumeth.2024.110317_b56 article-title: Interpretable deep learning framework for land use and land cover classification in remote sensing using SHAP publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2023.3251652 – volume: 20 issue: 1 year: 2023 ident: 10.1016/j.jneumeth.2024.110317_b31 article-title: Emotion recognition using spatial-temporal EEG features through convolutional graph attention network publication-title: J. Neural Eng. doi: 10.1088/1741-2552/acb79e – volume: 11 start-page: 10758 issue: 1 year: 2021 ident: 10.1016/j.jneumeth.2024.110317_b38 article-title: A three-branch 3D convolutional neural network for EEG-based different hand movement stages classification publication-title: Sci. Rep. doi: 10.1038/s41598-021-89414-x – volume: 22 start-page: 2346 issue: 6 year: 2022 ident: 10.1016/j.jneumeth.2024.110317_b1 article-title: Automated feature extraction on AsMap for emotion classification using EEG publication-title: Sensors doi: 10.3390/s22062346 – volume: 154 year: 2023 ident: 10.1016/j.jneumeth.2024.110317_b45 article-title: Temporal relative transformer encoding cooperating with channel attention for EEG emotion analysis publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.106537 – volume: vol. 30 year: 2017 ident: 10.1016/j.jneumeth.2024.110317_b40 article-title: A unified approach to interpreting model predictions – volume: 21 start-page: 5485 issue: 1 year: 2020 ident: 10.1016/j.jneumeth.2024.110317_b46 article-title: Exploring the limits of transfer learning with a unified text-to-text transformer publication-title: J. Mach. Learn. Res. – volume: 136 year: 2021 ident: 10.1016/j.jneumeth.2024.110317_b47 article-title: Recognition of human emotions using EEG signals: A review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104696 – year: 2024 ident: 10.1016/j.jneumeth.2024.110317_b43 article-title: Comparative analysis of parametric B-spline and Hermite cubic spline based methods for accurate ECG signal modeling publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2024.153783 – volume: 13 start-page: 354 issue: 2 year: 2020 ident: 10.1016/j.jneumeth.2024.110317_b28 article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2020.2999337 – volume: 31 start-page: 710 year: 2022 ident: 10.1016/j.jneumeth.2024.110317_b52 article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3230250 – ident: 10.1016/j.jneumeth.2024.110317_b48 doi: 10.1145/2939672.2939778 – volume: 119 start-page: 1 year: 2021 ident: 10.1016/j.jneumeth.2024.110317_b35 article-title: Emotion recognition by deeply learned multi-channel textual and EEG features publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.01.010 – volume: 27 start-page: 2164 issue: 10 year: 2019 ident: 10.1016/j.jneumeth.2024.110317_b71 article-title: A multi-branch 3D convolutional neural network for EEG-based motor imagery classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2938295 – ident: 10.1016/j.jneumeth.2024.110317_b34 doi: 10.1109/ICCVW54120.2021.00210 – ident: 10.1016/j.jneumeth.2024.110317_b50 doi: 10.1109/ICCV.2017.74 – volume: 143 year: 2022 ident: 10.1016/j.jneumeth.2024.110317_b27 article-title: Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105303 – volume: 11 start-page: 532 issue: 3 year: 2018 ident: 10.1016/j.jneumeth.2024.110317_b54 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2018.2817622 – volume: 22 start-page: 98 issue: 1 year: 2017 ident: 10.1016/j.jneumeth.2024.110317_b23 article-title: DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2688239 – year: 2018 ident: 10.1016/j.jneumeth.2024.110317_b10 – volume: 415 start-page: 225 year: 2020 ident: 10.1016/j.jneumeth.2024.110317_b29 article-title: EEG-based intention recognition with deep recurrent-convolution neural network: Performance and channel selection by grad-CAM publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.072 – volume: 25 start-page: 453 issue: 2 year: 2020 ident: 10.1016/j.jneumeth.2024.110317_b7 article-title: Emotion recognition from multi-channel EEG via deep forest publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2020.2995767 – volume: 71 start-page: 1 year: 2022 ident: 10.1016/j.jneumeth.2024.110317_b6 article-title: Fusing frequency-domain features and brain connectivity features for cross-subject emotion recognition publication-title: IEEE Trans. Instrum. Meas. – year: 2021 ident: 10.1016/j.jneumeth.2024.110317_b30 – volume: 7 start-page: 162 issue: 3 year: 2015 ident: 10.1016/j.jneumeth.2024.110317_b73 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – volume: 13 start-page: 568 issue: 2 year: 2019 ident: 10.1016/j.jneumeth.2024.110317_b33 article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2019.2922912 – year: 2024 ident: 10.1016/j.jneumeth.2024.110317_b12 – ident: 10.1016/j.jneumeth.2024.110317_b22 doi: 10.1145/3394171.3413724 – volume: 15 year: 2021 ident: 10.1016/j.jneumeth.2024.110317_b26 article-title: Cross-subject EEG emotion recognition with self-organized graph neural network publication-title: Front. Neurosci. – volume: 87 year: 2024 ident: 10.1016/j.jneumeth.2024.110317_b15 article-title: ICaps-ResLSTM: Improved capsule network and residual LSTM for EEG emotion recognition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.105422 – start-page: 433 year: 2018 ident: 10.1016/j.jneumeth.2024.110317_b66 article-title: Continuous convolutional neural network with 3D input for EEG-based emotion recognition – volume: 154 year: 2024 ident: 10.1016/j.jneumeth.2024.110317_b17 article-title: EEG-based emotion recognition using MobileNet recurrent neural network with time-frequency features publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111338 – volume: 13 start-page: 1290 issue: 3 year: 2020 ident: 10.1016/j.jneumeth.2024.110317_b75 article-title: EEG-based emotion recognition using regularized graph neural networks publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2020.2994159 – volume: 17 year: 2023 ident: 10.1016/j.jneumeth.2024.110317_b2 article-title: The connection between heart rate variability (HRV), neurological health, and cognition: A literature review publication-title: Front. Neurosci. doi: 10.3389/fnins.2023.1055445 – volume: 13 start-page: 37 year: 2019 ident: 10.1016/j.jneumeth.2024.110317_b64 article-title: SAE+ LSTM: A new framework for emotion recognition from multi-channel EEG publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2019.00037 – volume: 24 start-page: 1442 issue: 6 year: 2021 ident: 10.1016/j.jneumeth.2024.110317_b57 article-title: Emotion recognition based on EEG feature maps through deep learning network publication-title: Eng. Sci. Technol., Int. J. – volume: vol. 3 start-page: 2025 year: 2002 ident: 10.1016/j.jneumeth.2024.110317_b63 article-title: The shapley value – volume: 10 start-page: 3131 issue: 17 year: 2022 ident: 10.1016/j.jneumeth.2024.110317_b55 article-title: Multi-channel EEG emotion recognition based on parallel transformer and 3D-convolutional neural network publication-title: Mathematics doi: 10.3390/math10173131 – volume: 23 start-page: 1046 issue: 8 year: 2021 ident: 10.1016/j.jneumeth.2024.110317_b16 article-title: A review of Shannon and differential entropy rate estimation publication-title: Entropy doi: 10.3390/e23081046 – volume: 15 start-page: 748 issue: 7 year: 2024 ident: 10.1016/j.jneumeth.2024.110317_b4 article-title: Sensitivity analysis of the inverse distance weighting and bicubic spline smoothing models for MERRA-2 reanalysis PM2. 5 series in the Persian Gulf region publication-title: Atmosphere doi: 10.3390/atmos15070748 – volume: 85 year: 2023 ident: 10.1016/j.jneumeth.2024.110317_b39 article-title: GLFANet: A global to local feature aggregation network for EEG emotion recognition publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2023.104799 – volume: 14 start-page: 2238 issue: 3 year: 2022 ident: 10.1016/j.jneumeth.2024.110317_b11 article-title: Tsception: Capturing temporal dynamics and spatial asymmetry from EEG for emotion recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2022.3169001 – year: 2020 ident: 10.1016/j.jneumeth.2024.110317_b13 – volume: 11 issue: 1 year: 2021 ident: 10.1016/j.jneumeth.2024.110317_b9 article-title: A historical perspective of explainable artificial intelligence publication-title: Wiley Interdiscipl. Rev.: Data Min. Knowl. Discov. – volume: 13 start-page: 1528 issue: 3 year: 2020 ident: 10.1016/j.jneumeth.2024.110317_b14 article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2020.3013711 – volume: 12 start-page: 177 issue: 3 year: 2024 ident: 10.1016/j.jneumeth.2024.110317_b49 article-title: Downscaling MERRA-2 reanalysis PM2. 5 series over the Arabian Gulf by inverse distance weighting, bicubic spline smoothing, and spatio-temporal kriging publication-title: Toxics doi: 10.3390/toxics12030177 – volume: 243 year: 2024 ident: 10.1016/j.jneumeth.2024.110317_b65 article-title: EESCN: A novel spiking neural network method for EEG-based emotion recognition publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2023.107927 – volume: 53 start-page: 15278 issue: 12 year: 2023 ident: 10.1016/j.jneumeth.2024.110317_b74 article-title: Bi-hemisphere asymmetric attention network: Recognizing emotion from EEG signals based on the transformer publication-title: Appl. Intell. doi: 10.1007/s10489-022-04228-2 – volume: 14 start-page: 715 issue: 2 year: 2021 ident: 10.1016/j.jneumeth.2024.110317_b37 article-title: Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2021.3071170 – volume: 79 year: 2023 ident: 10.1016/j.jneumeth.2024.110317_b42 article-title: A multiple frequency bands parallel spatial–temporal 3D deep residual learning framework for EEG-based emotion recognition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104141 – volume: 28 start-page: 5247 issue: 9 year: 2024 ident: 10.1016/j.jneumeth.2024.110317_b51 article-title: HEMAsNet: A hemisphere asymmetry network inspired by the brain for depression recognition from electroencephalogram signals publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2024.3404664 – volume: 152 year: 2023 ident: 10.1016/j.jneumeth.2024.110317_b62 article-title: TC-Net: A transformer capsule network for EEG-based emotion recognition publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106463 – volume: 14 issue: 3 year: 2024 ident: 10.1016/j.jneumeth.2024.110317_b67 article-title: Emotion classification based on transformer and CNN for EEG spatial–temporal feature learning publication-title: Brain Sci. doi: 10.3390/brainsci14030268 – start-page: 734 year: 2011 ident: 10.1016/j.jneumeth.2024.110317_b59 article-title: EEG-based emotion recognition using frequency domain features and support vector machines – volume: 14 start-page: 5197 issue: 1 year: 2024 ident: 10.1016/j.jneumeth.2024.110317_b5 article-title: Psychophysiological strategies for enhancing performance through imagery–skin conductance level analysis in guided vs. self-produced imagery publication-title: Sci. Rep. doi: 10.1038/s41598-024-55743-w |
SSID | ssj0004906 |
Score | 2.4489202 |
Snippet | Emotion recognition using electroencephalogram (EEG) has become a research hotspot in the field of human–computer interaction, how to sufficiently learn... Emotion recognition using electroencephalogram (EEG) has become a research hotspot in the field of human-computer interaction, how to sufficiently learn... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 110317 |
SubjectTerms | Adult Attention - physiology Brain - physiology EEG Electroencephalography - methods Emotion recognition Emotions - physiology Explainability Humans Neural Networks, Computer Self attention Signal Processing, Computer-Assisted Swin transformer |
Title | ST-SHAP: A hierarchical and explainable attention network for emotional EEG representation learning and decoding |
URI | https://dx.doi.org/10.1016/j.jneumeth.2024.110317 https://www.ncbi.nlm.nih.gov/pubmed/39542109 https://www.proquest.com/docview/3128826488 |
Volume | 414 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9KBfFFauvH-VEiiG_b283HbeLbUq6eSotwLfQt5FN6aHrYO9AX_3Yz2V0_QPHBx12y2ZBJZuaX-U0G4EXILkMUIoMcr9qKO8oqE-u6sj5yb6Sva4NHA6dns8UFf3spLnfgeMyFQVrloPt7nV609fBmOszmdH11NV1iIk6N6VQcgQRF3M55i6v86NtPmgdXpb4mNsZ4Zf1LlvDqaJXCFis1Z5xIOTLiWSlc9kcD9TcHtBiikz24O3iQpOsHeQ92QtqHgy5l9PzpK3lJCqezHJbvw-3TIXR-AOvlebVcdO9fkY5g_esSQcgCIiZ5Er6sPw5pVAQv3CwUSJJ6ijjJfi0Jfbmf3H4-f03KVZhj2lIiQ-mJD6UvnwEtGsT7cHEyPz9eVEO5hcqxRmwqbrlx0sXW0iC98HkzR2qialScNU5Z0zBDvTP1zLeWc9UIa2wb84OPkjLGHsBuuk7hERDHmG1o61zMcCsIK6VqHHYlhVROsQlMxznW6_5WDT3SzVZ6lIpGqeheKhNQoyj0b-tDZ9X_z2-fj7LTefNgRMSkcL290SxbZ4kcPzmBh71Qf4yHKcEzHlaP_-PPT-AOxXrBheX9FHY3n7fhWXZiNvawrNJDuNW9ebc4-w7ehPJB |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLamTgJeJti4lKuREG-hSWw3Nm_R1JGxtUJqJ-3N8hWtAq8arQT_Hh_H4SKBeOAxkeNYPvbx-XwuH0KvXDQZPGMR5FjRFNTUpFC-LAttPbWK27JUcDUwX0y7C_r-kl3uoeMhFwbCKrPu73V60tb5zSTP5mRzdTVZQiJOCelUFIBEHXH7PlSnYiO0356edYuf6ZEiUWxCe3BZlr8kCq_frIPbAVlzhIo1haB4krjL_nhG_c0GTWfRyV10kI1I3PbjvIf2XDhER22IAPrzN_wap7DOdF9-iG7Ns_f8CG2Wq2LZtR_e4hYDBXZyIkQZYRUsdl83n3ImFYaamykKEoc-ShxH0xa7nvEntp_N3uFUDXPIXAo4s098TH3ZiGnhTLyPLk5mq-OuyIwLhSEV2xZUU2W48Y2uHbfMxv3sa-VFJfy0MkKriqjaGlVObaMpFRXTSjc-PljPa0LIAzQK18E9QtgQoqu6McZHxOWY5lxUBrrijAsjyBhNhjmWm76whhwiztZykIoEqcheKmMkBlHI35aIjNr_n9--HGQn4_4Bp4gK7nr3RZJ4QHMI8-Nj9LAX6o_xEMFohMTi8X_8-QW63a3m5_L8dHH2BN2pgT44BX0_RaPtzc49izbNVj_Pa_Y7KpX08g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ST-SHAP%3A+A+hierarchical+and+explainable+attention+network+for+emotional+EEG+representation+learning+and+decoding&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Miao%2C+Minmin&rft.au=Liang%2C+Jin&rft.au=Sheng%2C+Zhenzhen&rft.au=Liu%2C+Wenzhe&rft.date=2025-02-01&rft.eissn=1872-678X&rft.volume=414&rft.spage=110317&rft_id=info:doi/10.1016%2Fj.jneumeth.2024.110317&rft_id=info%3Apmid%2F39542109&rft.externalDocID=39542109 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |