Central fixation detection with an open-frame retinal birefringence scanning system: Optics, optomechanics, polarization balancing aspects, computer modeling and simulation
•Retinal imaging systems rarely incorporate technology for foveal tracking.•Retinal Birefringence Scanning (RBS) allows fast detection of central fixation.•RBS can be used conjointly with any imaging technology and guide it.•RBS is polarization sensitive and not trivial to integrate with.•Mueller-ma...
Saved in:
Published in | Optics and laser technology Vol. 163; p. 109388 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0030-3992 1879-2545 |
DOI | 10.1016/j.optlastec.2023.109388 |
Cover
Loading…
Abstract | •Retinal imaging systems rarely incorporate technology for foveal tracking.•Retinal Birefringence Scanning (RBS) allows fast detection of central fixation.•RBS can be used conjointly with any imaging technology and guide it.•RBS is polarization sensitive and not trivial to integrate with.•Mueller-matrix-based computer model may optimize polarization-sensitive systems.
There is a growing need to add a fast fixation-detection system or even an eye-tracking system to various diagnostic and some therapeutic ophthalmic technologies. For example, this would enable registration of stable images of the fovea. In recent years we have developed rapid technologies that detect the location of the fovea using retinal birefringence scanning (RBS). Yet, combining it with ophthalmic imaging technologies is not trivial, mainly because RBS employs polarized light and polarization-sensitive optics, while most ophthalmic imaging systems do not. Therefore, integrating these two types of systems optically poses a significant challenge, especially to the RBS system. Using principles from polarization optics and Mueller-matrix-based computer modeling for optimization, we developed a prototype of an open-frame RBS system as a potential adjunct fixation monitoring technology, with a promise to reduce the interference created by eye movements in advanced ophthalmic imaging technologies, such as optical coherence tomography, fluorescein angiography, scanning laser ophthalmoscopy, and others. Our technology is fast, does not need calibration, and uses true anatomical information from the retina for fixation detection. It enables adding fixation monitoring capabilities without having to modify the main imaging system, and has the potential to facilitate imaging without anesthesia in otherwise challenging subjects and/or patients, such as young children. |
---|---|
AbstractList | •Retinal imaging systems rarely incorporate technology for foveal tracking.•Retinal Birefringence Scanning (RBS) allows fast detection of central fixation.•RBS can be used conjointly with any imaging technology and guide it.•RBS is polarization sensitive and not trivial to integrate with.•Mueller-matrix-based computer model may optimize polarization-sensitive systems.
There is a growing need to add a fast fixation-detection system or even an eye-tracking system to various diagnostic and some therapeutic ophthalmic technologies. For example, this would enable registration of stable images of the fovea. In recent years we have developed rapid technologies that detect the location of the fovea using retinal birefringence scanning (RBS). Yet, combining it with ophthalmic imaging technologies is not trivial, mainly because RBS employs polarized light and polarization-sensitive optics, while most ophthalmic imaging systems do not. Therefore, integrating these two types of systems optically poses a significant challenge, especially to the RBS system. Using principles from polarization optics and Mueller-matrix-based computer modeling for optimization, we developed a prototype of an open-frame RBS system as a potential adjunct fixation monitoring technology, with a promise to reduce the interference created by eye movements in advanced ophthalmic imaging technologies, such as optical coherence tomography, fluorescein angiography, scanning laser ophthalmoscopy, and others. Our technology is fast, does not need calibration, and uses true anatomical information from the retina for fixation detection. It enables adding fixation monitoring capabilities without having to modify the main imaging system, and has the potential to facilitate imaging without anesthesia in otherwise challenging subjects and/or patients, such as young children. |
ArticleNumber | 109388 |
Author | Gramatikov, Boris I. Irsch, Kristina Guyton, David L. |
Author_xml | – sequence: 1 givenname: Boris I. orcidid: 0000-0002-3287-6192 surname: Gramatikov fullname: Gramatikov, Boris I. email: bgramat@jhmi.edu – sequence: 2 givenname: Kristina orcidid: 0000-0003-2525-4288 surname: Irsch fullname: Irsch, Kristina email: kristina.irsch@inserm.fr – sequence: 3 givenname: David L. surname: Guyton fullname: Guyton, David L. email: dguyton@jhmi.edu |
BookMark | eNqNkMtOAyEUQImpia36DfIBToWh8zJx0TS-kiZudE0YuKM0MzABqtZv8iNlpsaFG10B93Lu48zQxFgDCJ1RMqeE5hebue1DK3wAOU9JymK0YmV5gKa0LKokzRbZBE0JYSRhVZUeoZn3G0LIIs_YFH2uwAQnWtzodxG0NVhBrDTe3nR4wcJg24NJGic6wA6CNvF3rR00TptnMBKwl8KY-MB-F8foLvFDH7T055EMtgP5Isz47G0rnP7Y96lFK4wcKOH72DHmpe36bQCHO6ugHVNGYa-7bTsyJ-iwEa2H0-_zGD3dXD-u7pL1w-39arlOJKNZSBaLRlCoC2CsZLlkSpYUSJQ1xGXNVF6xGgpaSKgJACVNViogilZVTstUsWNU7OtKZ72Pm_Le6U64HaeED9L5hv9I54N0vpceyatfpNRhnD1K1u0_-OWeh7jeqwbHvdSDYxWFy8CV1X_W-AL_Jqx2 |
CitedBy_id | crossref_primary_10_3390_s25010165 |
Cites_doi | 10.1016/j.media.2017.02.002 10.1364/OE.10.001542 10.1364/OE.22.007972 10.1109/TBME.1981.324734 10.1117/1.JBO.17.8.086001 10.1097/ICU.0000000000000524 10.1364/JOSAA.24.001468 10.1117/1.1805560 10.1364/BOE.8.001838 10.1016/S1350-9462(02)00063-0 10.1117/1.JBO.19.10.106014 10.1364/AO.38.001273 10.1186/1475-925X-12-41 10.1186/s12938-016-0128-7 10.1371/journal.pone.0169926 10.1007/s10439-013-0818-2 10.1038/s41598-019-42324-5 10.1016/j.visres.2008.04.031 10.1167/tvst.10.10.10 10.1364/JOSAA.13.001106 10.1016/j.medengphy.2016.05.004 10.1186/1475-925X-13-52 10.1364/OPEX.13.010217 10.1117/1.2209003 10.1364/AO.26.001492 10.1364/AO.42.004621 10.1097/IAE.0b013e318164a907 10.1167/iovs.12-9705 10.1016/S0002-9394(14)70221-1 10.1016/j.medengphy.2015.06.007 10.1016/j.pacs.2016.05.001 10.1145/3314111.3322877 10.1364/OL.41.004891 10.1364/BOE.5.001391 10.1016/j.preteyeres.2014.03.004 10.1038/sj.eye.6702203 10.1038/sj.neo.7900071 10.1097/00006982-199212030-00003 10.1016/j.ijleo.2020.164474 10.1080/03091902.2017.1281357 10.1371/journal.pone.0044026 10.1364/OE.10.000405 10.1364/AO.21.003811 10.1126/science.1957169 10.21037/aes-20-127 10.1117/1.JBO.19.6.067004 10.1364/AO.31.006676 10.1364/OL.35.000270 10.1364/FIO.2014.FW1F.2 10.1016/j.compbiomed.2020.103672 10.1364/BOE.3.002611 10.1364/AO.26.001500 10.1161/01.CIR.24.1.82 10.1364/BOE.2.001955 10.1117/1.1629308 10.1167/tvst.6.5.12 10.1364/JOSAA.16.002103 10.1117/12.803344 10.1016/j.ijleo.2019.163474 10.1364/AO.46.001809 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.optlastec.2023.109388 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-2545 |
ExternalDocumentID | 10_1016_j_optlastec_2023_109388 S0030399223002815 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K TN5 UHS WH7 WUQ XFK ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c315t-44fa1eb7e33836c3dc81e01014fa1cb3d693be717ceb0ee10f58de0d1996182d3 |
IEDL.DBID | .~1 |
ISSN | 0030-3992 |
IngestDate | Thu Apr 24 23:12:35 EDT 2025 Tue Jul 01 01:38:54 EDT 2025 Fri Feb 23 02:38:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Computer modeling of polarization-sensitive systems Ophthalmic optics Retinal birefringence Fast central fixation detection Conjoined ophthalmic systems Polarization-responsive retinal scanning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c315t-44fa1eb7e33836c3dc81e01014fa1cb3d693be717ceb0ee10f58de0d1996182d3 |
ORCID | 0000-0002-3287-6192 0000-0003-2525-4288 |
ParticipantIDs | crossref_primary_10_1016_j_optlastec_2023_109388 crossref_citationtrail_10_1016_j_optlastec_2023_109388 elsevier_sciencedirect_doi_10_1016_j_optlastec_2023_109388 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationTitle | Optics and laser technology |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | de Boer, Hitzenberger, Yasuno (b0120) 2017; 8 L. Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1, 2014. Yamanari, Nagase, Fukuda, Ishii, Tanaka, Yasui, Oshika, Miura, Yasuno (b0400) 2014; 5 Knighton, Huang (b0275) 2002; 43 McBrien, Gentle (b0380) 2003; 22 J. Park, A. Shin, J. Demer, Optical Birefringence Correlates with Tensile Properties of Human Sclera, in: ARVO Annual Meeting, published in Investigative Ophthalmology & Visual Science, 2017, pp. 3165. D.L. Guyton, D.G. Hunter, S.N. Patel, J.C. Sandruck, R.L. Fry, Eye Fixation Monitor and Tracker, U.S. Patent No. 6,027,216, 2000. Collett (b0310) 2005 Hunter, Patel, Guyton (b0010) 1999; 38 Leitgeb, Werkmeister, Blatter, Schmetterer (b0105) 2014; 41 Elsner, Weber, Cheney, VanNasdale, Miura (b0340) 2007; 24 McBrien, Cornell, Gentle (b0375) 2001; 42 Qian, Carrasco-Zevallos, Mangalesh, Sarin, Vajzovic, Farsiu, Izatt, Toth (b0335) 2017; 6 Weinreb, Shakiba, Zangwill (b0090) 1995; 119 Pijanka, Coudrillier, Ziegler, Sorensen, Meek, Nguyen, Quigley, Boote (b0385) 2012; 53 Gramatikov, Zalloum, Wu, Hunter, Guyton (b0020) 2007; 46 Baghaie, Yu, D'Souza (b0215) 2017; 37 Shurcliff (b0225) 1962 Yannuzzi, Slakter, Sorenson, Guyer, Orlock (b0135) 1992; 12 B.I. Gramatikov, D.L. Guyton, K. Irsch, Eye tracking and gaze fixation detection systems, components and methods using polarized light. U.S. Patent No. 9,737,209 B2 (August 22, 2017). Webb, Hughes, Delori (b0075) 1987; 26 K. Irsch, B.I. Gramatikov, Y.K. Wu, D.L. Guyton, Spinning wave plate design for retinal birefringence scanning, in: Proc SPIE, Advanced Biomedical and Clinical Diagnostic Systems VII, 7169 (2009). Gramatikov, Irsch, Mullenbroich, Frindt, Qu, Gutmark, Wu, Guyton (b0045) 2013; 41 Gramatikov (b0065) 2014 Gramatikov, Rangarajan, Irsch, Guyton (b0060) 2016; 38 Hochheimer, Kues (b0360) 1982; 21 Hogan, Alverado, Weddell (b0365) 1971 Chipman, Lam, Young (b0270) 2019 Webb, Hughes (b0070) 1981; 28 Fujimoto, Pitris, Boppart, Brezinski (b0100) 2000; 2 de la Zerda, Paulus, Teed, Bodapati, Dollberg, Khuri-Yakub, Blumenkranz, Moshfeghi, Gambhir (b0145) 2010; 35 Lu, Chipman (b0295) 1996; 13 Wornson, Hughes, Webb (b0080) 1987; 26 N.R. Bowers, A. Gibaldi, E. Alexander, M.S. Banks, A. Roorda, High-resolution eye tracking using scanning laser ophthalmoscopy, in: 2019 Symposium on Eye Tracking Research and Applications (ETRA ’19), Association for Computing Machinery (ACM), Denver, CO, June 25–28, 2019. Nesper, Scarinci, Fawzi (b0180) 2017; 12 de Carlo, Romano, Waheed, Duker (b0125) 2015; 1 Nguyen, Li, Henry, Qian, Zhang, Wang, Paulus (b0175) 2021; 10 Collett, Schaeffer (b0230) 2012 Leitgeb, Baumann (b0165) 2018; 6 Goldstein (b0290) 1992; 31 Gotzinger, Pircher, Sticker, Fercher, Hitzenberger (b0110) 2004; 9 Gramatikov (b0255) 2020; 207 J.J. Gil, R. Ossikovski, Nondepolarizing media: retarders, diattenuators, and serial decompositions, in: Polarized Light and the Mueller Matrix Approach, CRC Press, Taylor and Francis Group, Boca Raton, London, New York, 2016. Novotny, Alvis (b0130) 1961; 24 Gotzinger, Pircher, Hitzenberger (b0115) 2005; 13 Irsch, Gramatikov, Wu, Guyton (b0030) 2014; 19 Gramatikov (b0220) 2020; 119 Yamanari, Ishii, Fukuda, Lim, Duan, Makita, Miura, Oshika, Yasuno (b0390) 2012; 7 Gramatikov (b0055) 2015; 37 Carrasco-Zevallos, Qian, Gahm, Migacz, Toth, Izatt (b0330) 2016; 41 Gramatikov, Irsch, Guyton (b0350) 2014; 19 Gramatikov (b0050) 2013; 12 Sheehy, Yang, Arathorn, Tiruveedhula, de Boer, Roorda (b0200) 2012; 3 Huang, Swanson, Lin, Schuman, Stinson, Chang, Hee, Flotte, Gregory, Puliafito, Fujimoto (b0095) 1991; 254 Gramatikov (b0280) 2020; 201 Hunter, Nassif, Piskun, Winsor, Gramatikov, Guyton (b0025) 2004; 9 M. Born, E. Wolf, Principles of Optics, 7th (expanded) edition ed., Pergamon Press/Cambridge University Press, New York/Cambridge, 1959 (first edition). Hunter, Sandruck, Sau, Patel, Guyton (b0005) 1999; 16 Nguyen, Li, Qian, Liu, Tian, Zhang, Huang, Ponduri, Tarnowski, Wang, Paulus (b0170) 2019; 9 Irsch, Gramatikov, Wu, Guyton (b0245) 2014; 22 Gramatikov, Irsch, Wu, Guyton (b0040) 2016; 15 Roorda, Romero-Borja, Donnelly Iii, Queener, Hebert, Campbell (b0085) 2002; 10 Irsch, Gramatikov, Wu, Guyton (b0315) 2011; 2 Gramatikov, Guyton (b0240) 2017; 41 Gil, Ossikovski (b0305) 2016 Schmitz-Valckenberg, Holz, Bird, Spaide (b0140) 2008; 28 Hammer, Ferguson, Magill, Elsner, Webb (b0190) 2002; 43 Goldstein (b0265) 2003 B.I. Gramatikov, D.L. Guyton, K. Irsch, C. Toth, O. Carrasco-Zevallos, J. Izatt, Method and System for Improving Aiming during Optical Coherence Tomography on Young Children by Synchronization with Retinal Birefringence Scanning, U.S. Patent No. 10,004,397 B2 (June 26, 2018). Brosseau (b0285) 1988 Irsch, Shah (b0355) 2012; 17 Liu, Zhang (b0150) 2016; 4 Tran, Pakzad-Vaezi (b0160) 2018; 29 Elsner, Weber, Cheney, Vannasdale (b0260) 2008; 48 Weber, Elsner, Miura, Kompa, Cheney (b0345) 2007; 21 Di Carlo, Augustin (b0155) 2018 Hammer, Ferguson, Magill, White, Elsner, Webb (b0185) 2002; 10 Kozak, Rahm (b0210) 2021; 6 Gramatikov, Zalloum, Wu, Hunter, Guyton (b0235) 2006; 11 Hammer, Ferguson, Magill, White, Elsner, Webb (b0195) 2003; 42 Hammer (10.1016/j.optlastec.2023.109388_b0190) 2002; 43 Knighton (10.1016/j.optlastec.2023.109388_b0275) 2002; 43 Novotny (10.1016/j.optlastec.2023.109388_b0130) 1961; 24 Gramatikov (10.1016/j.optlastec.2023.109388_b0255) 2020; 207 Gramatikov (10.1016/j.optlastec.2023.109388_b0065) 2014 Carrasco-Zevallos (10.1016/j.optlastec.2023.109388_b0330) 2016; 41 Gramatikov (10.1016/j.optlastec.2023.109388_b0220) 2020; 119 Hogan (10.1016/j.optlastec.2023.109388_b0365) 1971 Irsch (10.1016/j.optlastec.2023.109388_b0030) 2014; 19 Qian (10.1016/j.optlastec.2023.109388_b0335) 2017; 6 Sheehy (10.1016/j.optlastec.2023.109388_b0200) 2012; 3 de Carlo (10.1016/j.optlastec.2023.109388_b0125) 2015; 1 Tran (10.1016/j.optlastec.2023.109388_b0160) 2018; 29 Gil (10.1016/j.optlastec.2023.109388_b0305) 2016 Goldstein (10.1016/j.optlastec.2023.109388_b0290) 1992; 31 10.1016/j.optlastec.2023.109388_b0395 Gramatikov (10.1016/j.optlastec.2023.109388_b0050) 2013; 12 Collett (10.1016/j.optlastec.2023.109388_b0230) 2012 10.1016/j.optlastec.2023.109388_b0035 Gramatikov (10.1016/j.optlastec.2023.109388_b0280) 2020; 201 Shurcliff (10.1016/j.optlastec.2023.109388_b0225) 1962 Yamanari (10.1016/j.optlastec.2023.109388_b0390) 2012; 7 Liu (10.1016/j.optlastec.2023.109388_b0150) 2016; 4 Elsner (10.1016/j.optlastec.2023.109388_b0340) 2007; 24 Gotzinger (10.1016/j.optlastec.2023.109388_b0115) 2005; 13 Hunter (10.1016/j.optlastec.2023.109388_b0005) 1999; 16 Gotzinger (10.1016/j.optlastec.2023.109388_b0110) 2004; 9 de la Zerda (10.1016/j.optlastec.2023.109388_b0145) 2010; 35 Roorda (10.1016/j.optlastec.2023.109388_b0085) 2002; 10 Nesper (10.1016/j.optlastec.2023.109388_b0180) 2017; 12 Hunter (10.1016/j.optlastec.2023.109388_b0025) 2004; 9 Collett (10.1016/j.optlastec.2023.109388_b0310) 2005 Chipman (10.1016/j.optlastec.2023.109388_b0270) 2019 10.1016/j.optlastec.2023.109388_b0300 Hunter (10.1016/j.optlastec.2023.109388_b0010) 1999; 38 Irsch (10.1016/j.optlastec.2023.109388_b0245) 2014; 22 Nguyen (10.1016/j.optlastec.2023.109388_b0175) 2021; 10 Hammer (10.1016/j.optlastec.2023.109388_b0195) 2003; 42 Hammer (10.1016/j.optlastec.2023.109388_b0185) 2002; 10 Di Carlo (10.1016/j.optlastec.2023.109388_b0155) 2018 Yannuzzi (10.1016/j.optlastec.2023.109388_b0135) 1992; 12 Gramatikov (10.1016/j.optlastec.2023.109388_b0235) 2006; 11 McBrien (10.1016/j.optlastec.2023.109388_b0380) 2003; 22 Yamanari (10.1016/j.optlastec.2023.109388_b0400) 2014; 5 Kozak (10.1016/j.optlastec.2023.109388_b0210) 2021; 6 Lu (10.1016/j.optlastec.2023.109388_b0295) 1996; 13 Gramatikov (10.1016/j.optlastec.2023.109388_b0060) 2016; 38 Pijanka (10.1016/j.optlastec.2023.109388_b0385) 2012; 53 10.1016/j.optlastec.2023.109388_b0015 McBrien (10.1016/j.optlastec.2023.109388_b0375) 2001; 42 Leitgeb (10.1016/j.optlastec.2023.109388_b0165) 2018; 6 Elsner (10.1016/j.optlastec.2023.109388_b0260) 2008; 48 Irsch (10.1016/j.optlastec.2023.109388_b0355) 2012; 17 10.1016/j.optlastec.2023.109388_b0370 10.1016/j.optlastec.2023.109388_b0250 Weinreb (10.1016/j.optlastec.2023.109388_b0090) 1995; 119 Irsch (10.1016/j.optlastec.2023.109388_b0315) 2011; 2 Huang (10.1016/j.optlastec.2023.109388_b0095) 1991; 254 Gramatikov (10.1016/j.optlastec.2023.109388_b0020) 2007; 46 Gramatikov (10.1016/j.optlastec.2023.109388_b0045) 2013; 41 Schmitz-Valckenberg (10.1016/j.optlastec.2023.109388_b0140) 2008; 28 Gramatikov (10.1016/j.optlastec.2023.109388_b0055) 2015; 37 Nguyen (10.1016/j.optlastec.2023.109388_b0170) 2019; 9 Webb (10.1016/j.optlastec.2023.109388_b0070) 1981; 28 de Boer (10.1016/j.optlastec.2023.109388_b0120) 2017; 8 Wornson (10.1016/j.optlastec.2023.109388_b0080) 1987; 26 Gramatikov (10.1016/j.optlastec.2023.109388_b0240) 2017; 41 10.1016/j.optlastec.2023.109388_b0325 10.1016/j.optlastec.2023.109388_b0205 Fujimoto (10.1016/j.optlastec.2023.109388_b0100) 2000; 2 Leitgeb (10.1016/j.optlastec.2023.109388_b0105) 2014; 41 Hochheimer (10.1016/j.optlastec.2023.109388_b0360) 1982; 21 Weber (10.1016/j.optlastec.2023.109388_b0345) 2007; 21 Gramatikov (10.1016/j.optlastec.2023.109388_b0040) 2016; 15 Webb (10.1016/j.optlastec.2023.109388_b0075) 1987; 26 Brosseau (10.1016/j.optlastec.2023.109388_b0285) 1988 Gramatikov (10.1016/j.optlastec.2023.109388_b0350) 2014; 19 Baghaie (10.1016/j.optlastec.2023.109388_b0215) 2017; 37 Goldstein (10.1016/j.optlastec.2023.109388_b0265) 2003 10.1016/j.optlastec.2023.109388_b0320 |
References_xml | – volume: 46 start-page: 1809 year: 2007 end-page: 1818 ident: b0020 article-title: Directional eye fixation sensor using birefringence-based foveal detection publication-title: Appl. Opt. – volume: 19 year: 2014 ident: b0030 article-title: New pediatric vision screener employing polarization-modulated, retinal-birefringence-scanning-based strabismus detection and bull's eye focus detection with an improved target system: opto-mechanical design and operation publication-title: J. Biomed. Opt. – volume: 7 start-page: e44026 year: 2012 ident: b0390 article-title: Optical rheology of porcine sclera by birefringence imaging publication-title: PLoS ONE – volume: 38 start-page: 818 year: 2016 end-page: 821 ident: b0060 article-title: Attention attraction in an ophthalmic diagnostic device using sound-modulated fixation targets publication-title: Med. Eng. Phys. – year: 2019 ident: b0270 article-title: Polarized Light and Optical Systems – volume: 42 start-page: 4621 year: 2003 end-page: 4632 ident: b0195 article-title: Compact scanning laser ophthalmoscope with high-speed retinal tracker publication-title: Appl. Opt. – volume: 24 start-page: 1468 year: 2007 end-page: 1480 ident: b0340 article-title: Imaging polarimetry in patients with neovascular age-related macular degeneration publication-title: J. Opt. Soc. Am. A Opt. Image Sci. Vis. – volume: 9 start-page: 94 year: 2004 end-page: 102 ident: b0110 article-title: Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography publication-title: J. Biomed. Opt. – volume: 9 start-page: 1363 year: 2004 end-page: 1368 ident: b0025 article-title: Pediatric vision screener 1: instrument design and operation publication-title: J. Biomed. Opt. – volume: 53 start-page: 5258 year: 2012 end-page: 5270 ident: b0385 article-title: Quantitative mapping of collagen fiber orientation in non-glaucoma and glaucoma posterior human sclerae publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 12 start-page: 191 year: 1992 end-page: 223 ident: b0135 article-title: Digital indocyanine green videoangiography and choroidal neovascularization publication-title: Retina – volume: 12 start-page: 41 year: 2013 ident: b0050 article-title: Detecting fixation on a target using time-frequency distributions of a retinal birefringence scanning signal publication-title: Biomed. Eng. Online – volume: 119 year: 2020 ident: b0220 article-title: Computer-aided fixation detection using retinal birefringence in multi-modal ophthalmic systems: Computer, electronics, algorithms publication-title: Comput. Biol. Med. – volume: 13 start-page: 10217 year: 2005 end-page: 10229 ident: b0115 article-title: High speed spectral domain polarization sensitive optical coherence tomography of the human retina publication-title: Opt. Express – volume: 8 start-page: 1838 year: 2017 end-page: 1873 ident: b0120 article-title: Polarization sensitive optical coherence tomography – a review [Invited] publication-title: Biomed. Opt. Express – volume: 22 start-page: 7972 year: 2014 end-page: 7988 ident: b0245 article-title: Improved eye-fixation detection using polarization-modulated retinal birefringence scanning, immune to corneal birefringence publication-title: Opt. Express – volume: 43 start-page: U1260 year: 2002 ident: b0190 article-title: Tracking scanning laser ophthalmoscope (TSLO): Initial human subject testing publication-title: Invest. Ophth. Vis. Sci. – volume: 3 start-page: 2611 year: 2012 end-page: 2622 ident: b0200 article-title: High-speed, image-based eye tracking with a scanning laser ophthalmoscope publication-title: Biomed. Opt. Express – reference: J. Park, A. Shin, J. Demer, Optical Birefringence Correlates with Tensile Properties of Human Sclera, in: ARVO Annual Meeting, published in Investigative Ophthalmology & Visual Science, 2017, pp. 3165. – year: 1962 ident: b0225 article-title: Polarized Light: Production and Use – volume: 9 start-page: 5945 year: 2019 ident: b0170 article-title: Contrast agent enhanced multimodal photoacoustic microscopy and optical coherence tomography for imaging of rabbit choroidal and retinal vessels in vivo publication-title: Sci. Rep. – volume: 37 start-page: 905 year: 2015 end-page: 910 ident: b0055 article-title: Detection of central fixation using short-time autoregressive spectral estimation during retinal birefringence scanning publication-title: Med. Eng. Phys. – volume: 38 start-page: 1273 year: 1999 end-page: 1279 ident: b0010 article-title: Automated detection of foveal fixation by use of retinal birefringence scanning publication-title: Appl. Opt. – volume: 2 start-page: 9 year: 2000 end-page: 25 ident: b0100 article-title: Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy publication-title: Neoplasia – volume: 41 start-page: 26 year: 2014 end-page: 43 ident: b0105 article-title: Doppler optical coherence tomography publication-title: Prog. Retin. Eye Res. – volume: 16 start-page: 2103 year: 1999 end-page: 2111 ident: b0005 article-title: Mathematical modeling of retinal birefringence scanning publication-title: J. Opt. Soc. Am. A – reference: D.L. Guyton, D.G. Hunter, S.N. Patel, J.C. Sandruck, R.L. Fry, Eye Fixation Monitor and Tracker, U.S. Patent No. 6,027,216, 2000. – volume: 31 start-page: 6676 year: 1992 end-page: 6683 ident: b0290 article-title: Mueller matrix dual-rotating retarder polarimeter publication-title: Appl. Opt. – volume: 41 start-page: 1968 year: 2013 end-page: 1978 ident: b0045 article-title: A device for continuous monitoring of true central fixation based on foveal birefringence publication-title: Ann. Biomed. Eng. – volume: 10 start-page: 405 year: 2002 end-page: 412 ident: b0085 article-title: Adaptive optics scanning laser ophthalmoscopy publication-title: Opt. Express – volume: 10 start-page: 1542 year: 2002 end-page: 1549 ident: b0185 article-title: Image stabilization for scanning laser ophthalmoscopy publication-title: Opt. Express – reference: N.R. Bowers, A. Gibaldi, E. Alexander, M.S. Banks, A. Roorda, High-resolution eye tracking using scanning laser ophthalmoscopy, in: 2019 Symposium on Eye Tracking Research and Applications (ETRA ’19), Association for Computing Machinery (ACM), Denver, CO, June 25–28, 2019. – start-page: 52 year: 2014 ident: b0065 article-title: Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer publication-title: Biomed. Eng. Online 13 – year: 1988 ident: b0285 article-title: Fundamentals of Polarized Light. A Statistical Optics Approach – volume: 15 start-page: 15 year: 2016 ident: b0040 article-title: New pediatric vision screener, part II: electronics, software, signal processing and validation publication-title: Biomed. Eng. Online – volume: 43 start-page: 82 year: 2002 end-page: 86 ident: b0275 article-title: Linear birefringence of the central human cornea publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 12 start-page: e0169926 year: 2017 ident: b0180 article-title: Adaptive optics reveals photoreceptor abnormalities in diabetic macular ischemia publication-title: PLoS One – volume: 37 start-page: 129 year: 2017 end-page: 145 ident: b0215 article-title: Involuntary eye motion correction in retinal optical coherence tomography: hardware or software solution? publication-title: Med. Image Anal. – reference: B.I. Gramatikov, D.L. Guyton, K. Irsch, Eye tracking and gaze fixation detection systems, components and methods using polarized light. U.S. Patent No. 9,737,209 B2 (August 22, 2017). – reference: K. Irsch, B.I. Gramatikov, Y.K. Wu, D.L. Guyton, Spinning wave plate design for retinal birefringence scanning, in: Proc SPIE, Advanced Biomedical and Clinical Diagnostic Systems VII, 7169 (2009). – volume: 48 start-page: 2578 year: 2008 end-page: 2585 ident: b0260 article-title: Spatial distribution of macular birefringence associated with the Henle fibers publication-title: Vision Res. – year: 2012 ident: b0230 article-title: Polarized Light for Scientists and Engineers – volume: 201 start-page: 1 year: 2020 end-page: 7 ident: b0280 article-title: A method of calculating compensators in polarization-sensitive optical systems publication-title: Optik – volume: 26 start-page: 1492 year: 1987 end-page: 1499 ident: b0075 article-title: Confocal scanning laser ophthalmoscope publication-title: Appl. Opt. – volume: 35 start-page: 270 year: 2010 end-page: 272 ident: b0145 article-title: Photoacoustic ocular imaging publication-title: Opt. Lett. – volume: 207 start-page: 1 year: 2020 end-page: 10 ident: b0255 article-title: A Mueller matrix approach to flat gold mirror analysis and polarization balancing for use in retinal birefringence scanning systems publication-title: Optik – year: 2016 ident: b0305 article-title: Physical Quantities in a Mueller Matrix, Polarized Light and the Mueller Matrix Approach – volume: 17 year: 2012 ident: b0355 article-title: Birefringence of the central cornea in children assessed with scanning laser polarimetry publication-title: J. Biomed. Opt. – reference: B.I. Gramatikov, D.L. Guyton, K. Irsch, C. Toth, O. Carrasco-Zevallos, J. Izatt, Method and System for Improving Aiming during Optical Coherence Tomography on Young Children by Synchronization with Retinal Birefringence Scanning, U.S. Patent No. 10,004,397 B2 (June 26, 2018). – volume: 19 year: 2014 ident: b0350 article-title: Optimal timing of retinal scanning during dark adaptation, in the presence of fixation on a target: the role of pupil size dynamics publication-title: J. Biomed. Opt. – volume: 6 start-page: 12 year: 2017 ident: b0335 article-title: Characterization of long working distance optical coherence tomography for imaging of pediatric retinal pathology publication-title: Transl. Vis. Sci. Technol. – volume: 119 start-page: 627 year: 1995 end-page: 636 ident: b0090 article-title: Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes publication-title: Am. J. Ophthalmol. – volume: 254 start-page: 1178 year: 1991 end-page: 1181 ident: b0095 article-title: Optical coherence tomography publication-title: Science – volume: 28 start-page: 385 year: 2008 end-page: 409 ident: b0140 article-title: Fundus autofluorescence imaging: review and perspectives publication-title: Retina – volume: 11 year: 2006 ident: b0235 article-title: Birefringence-based eye fixation monitor with no moving parts publication-title: J. Biomed. Opt. – volume: 42 start-page: 2179 year: 2001 end-page: 2187 ident: b0375 article-title: Structural and ultrastructural changes to the sclera in a mammalian model of high myopia publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 28 start-page: 488 year: 1981 end-page: 492 ident: b0070 article-title: Scanning laser ophthalmoscope publication-title: IEEE Trans. Biomed. Eng. – volume: 2 start-page: 1955 year: 2011 end-page: 1968 ident: b0315 article-title: Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection publication-title: Biomed. Opt. Express – year: 2003 ident: b0265 article-title: Polarized Light – volume: 21 start-page: 3811 year: 1982 end-page: 3818 ident: b0360 article-title: Retinal polarization effects publication-title: Appl. Opt. – reference: M. Born, E. Wolf, Principles of Optics, 7th (expanded) edition ed., Pergamon Press/Cambridge University Press, New York/Cambridge, 1959 (first edition). – volume: 41 start-page: 249 year: 2017 end-page: 256 ident: b0240 article-title: A no-moving-parts sensor for the detection of eye fixation using polarised light and retinal birefringence information publication-title: J. Med. Eng. Technol. – volume: 6 start-page: 1 year: 2021 end-page: 13 ident: b0210 article-title: Navigation technology/eye-tracking in ophthalmology: principles, applications and benefits—a narrative review publication-title: Ann. Eye Sci. – volume: 41 start-page: 4891 year: 2016 end-page: 4894 ident: b0330 article-title: Long working distance OCT with a compact 2f retinal scanning configuration for pediatric imaging publication-title: Opt. Lett. – volume: 5 start-page: 1391 year: 2014 end-page: 1402 ident: b0400 article-title: Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo publication-title: Biomed. Opt. Express – year: 1971 ident: b0365 article-title: Histology of the Human Eye – volume: 6 year: 2018 ident: b0165 article-title: Multimodal optical medical imaging concepts based on optical coherence tomography publication-title: Front. Phys.-Lausanne – volume: 21 start-page: 353 year: 2007 end-page: 361 ident: b0345 article-title: Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration publication-title: Eye – volume: 10 start-page: 10 year: 2021 ident: b0175 article-title: In vivo subretinal ARPE-19 cell tracking using indocyanine green contrast-enhanced multimodality photoacoustic microscopy, optical coherence tomography, and fluorescence imaging for regenerative medicine publication-title: Transl. Vis. Sci. Technol. – volume: 13 start-page: 1106 year: 1996 end-page: 1113 ident: b0295 article-title: Interpretation of Mueller matrices based on polar decomposition publication-title: J. Opt. Soc. Am. A – Opt. Image Sci. Vis. – volume: 22 start-page: 307 year: 2003 end-page: 338 ident: b0380 article-title: Role of the sclera in the development and pathological complications of myopia publication-title: Prog. Retin. Eye Res. – volume: 26 start-page: 1500 year: 1987 end-page: 1504 ident: b0080 article-title: Fundus tracking with the scanning laser ophthalmoscope publication-title: Appl. Opt. – volume: 4 start-page: 112 year: 2016 end-page: 123 ident: b0150 article-title: Photoacoustic imaging of the eye: a mini review publication-title: Photoacoustics – year: 2018 ident: b0155 article-title: The emergence of multimodal imaging in ophthalmology publication-title: Ophthalmol. Times Europe (online) – volume: 24 start-page: 82 year: 1961 end-page: 86 ident: b0130 article-title: A method of photographing fluorescence in circulating blood in the human retina publication-title: Circulation – volume: 1 year: 2015 ident: b0125 article-title: A review of optical coherence tomography angiography (OCTA) publication-title: Int. J. Retina Vitreous (BioMed. Central) – year: 2005 ident: b0310 article-title: Field Guide to Polarization – reference: L. Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1, 2014. – reference: J.J. Gil, R. Ossikovski, Nondepolarizing media: retarders, diattenuators, and serial decompositions, in: Polarized Light and the Mueller Matrix Approach, CRC Press, Taylor and Francis Group, Boca Raton, London, New York, 2016. – volume: 29 start-page: 566 year: 2018 end-page: 575 ident: b0160 article-title: Multimodal imaging of diabetic retinopathy publication-title: Curr. Opin. Ophthalmol. – volume: 37 start-page: 129 year: 2017 ident: 10.1016/j.optlastec.2023.109388_b0215 article-title: Involuntary eye motion correction in retinal optical coherence tomography: hardware or software solution? publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.02.002 – year: 2018 ident: 10.1016/j.optlastec.2023.109388_b0155 article-title: The emergence of multimodal imaging in ophthalmology publication-title: Ophthalmol. Times Europe (online) – volume: 10 start-page: 1542 year: 2002 ident: 10.1016/j.optlastec.2023.109388_b0185 article-title: Image stabilization for scanning laser ophthalmoscopy publication-title: Opt. Express doi: 10.1364/OE.10.001542 – volume: 22 start-page: 7972 year: 2014 ident: 10.1016/j.optlastec.2023.109388_b0245 article-title: Improved eye-fixation detection using polarization-modulated retinal birefringence scanning, immune to corneal birefringence publication-title: Opt. Express doi: 10.1364/OE.22.007972 – ident: 10.1016/j.optlastec.2023.109388_b0325 – volume: 28 start-page: 488 year: 1981 ident: 10.1016/j.optlastec.2023.109388_b0070 article-title: Scanning laser ophthalmoscope publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1981.324734 – volume: 17 year: 2012 ident: 10.1016/j.optlastec.2023.109388_b0355 article-title: Birefringence of the central cornea in children assessed with scanning laser polarimetry publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.17.8.086001 – volume: 29 start-page: 566 year: 2018 ident: 10.1016/j.optlastec.2023.109388_b0160 article-title: Multimodal imaging of diabetic retinopathy publication-title: Curr. Opin. Ophthalmol. doi: 10.1097/ICU.0000000000000524 – volume: 24 start-page: 1468 year: 2007 ident: 10.1016/j.optlastec.2023.109388_b0340 article-title: Imaging polarimetry in patients with neovascular age-related macular degeneration publication-title: J. Opt. Soc. Am. A Opt. Image Sci. Vis. doi: 10.1364/JOSAA.24.001468 – volume: 9 start-page: 1363 year: 2004 ident: 10.1016/j.optlastec.2023.109388_b0025 article-title: Pediatric vision screener 1: instrument design and operation publication-title: J. Biomed. Opt. doi: 10.1117/1.1805560 – volume: 8 start-page: 1838 year: 2017 ident: 10.1016/j.optlastec.2023.109388_b0120 article-title: Polarization sensitive optical coherence tomography – a review [Invited] publication-title: Biomed. Opt. Express doi: 10.1364/BOE.8.001838 – volume: 22 start-page: 307 year: 2003 ident: 10.1016/j.optlastec.2023.109388_b0380 article-title: Role of the sclera in the development and pathological complications of myopia publication-title: Prog. Retin. Eye Res. doi: 10.1016/S1350-9462(02)00063-0 – volume: 19 year: 2014 ident: 10.1016/j.optlastec.2023.109388_b0350 article-title: Optimal timing of retinal scanning during dark adaptation, in the presence of fixation on a target: the role of pupil size dynamics publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.19.10.106014 – volume: 38 start-page: 1273 year: 1999 ident: 10.1016/j.optlastec.2023.109388_b0010 article-title: Automated detection of foveal fixation by use of retinal birefringence scanning publication-title: Appl. Opt. doi: 10.1364/AO.38.001273 – year: 2012 ident: 10.1016/j.optlastec.2023.109388_b0230 – year: 2003 ident: 10.1016/j.optlastec.2023.109388_b0265 – volume: 12 start-page: 41 year: 2013 ident: 10.1016/j.optlastec.2023.109388_b0050 article-title: Detecting fixation on a target using time-frequency distributions of a retinal birefringence scanning signal publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-12-41 – volume: 15 start-page: 15 year: 2016 ident: 10.1016/j.optlastec.2023.109388_b0040 article-title: New pediatric vision screener, part II: electronics, software, signal processing and validation publication-title: Biomed. Eng. Online doi: 10.1186/s12938-016-0128-7 – year: 1988 ident: 10.1016/j.optlastec.2023.109388_b0285 – volume: 12 start-page: e0169926 year: 2017 ident: 10.1016/j.optlastec.2023.109388_b0180 article-title: Adaptive optics reveals photoreceptor abnormalities in diabetic macular ischemia publication-title: PLoS One doi: 10.1371/journal.pone.0169926 – volume: 43 start-page: U1260 year: 2002 ident: 10.1016/j.optlastec.2023.109388_b0190 article-title: Tracking scanning laser ophthalmoscope (TSLO): Initial human subject testing publication-title: Invest. Ophth. Vis. Sci. – volume: 42 start-page: 2179 year: 2001 ident: 10.1016/j.optlastec.2023.109388_b0375 article-title: Structural and ultrastructural changes to the sclera in a mammalian model of high myopia publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 41 start-page: 1968 year: 2013 ident: 10.1016/j.optlastec.2023.109388_b0045 article-title: A device for continuous monitoring of true central fixation based on foveal birefringence publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-013-0818-2 – volume: 9 start-page: 5945 year: 2019 ident: 10.1016/j.optlastec.2023.109388_b0170 article-title: Contrast agent enhanced multimodal photoacoustic microscopy and optical coherence tomography for imaging of rabbit choroidal and retinal vessels in vivo publication-title: Sci. Rep. doi: 10.1038/s41598-019-42324-5 – volume: 48 start-page: 2578 year: 2008 ident: 10.1016/j.optlastec.2023.109388_b0260 article-title: Spatial distribution of macular birefringence associated with the Henle fibers publication-title: Vision Res. doi: 10.1016/j.visres.2008.04.031 – ident: 10.1016/j.optlastec.2023.109388_b0370 – volume: 10 start-page: 10 year: 2021 ident: 10.1016/j.optlastec.2023.109388_b0175 article-title: In vivo subretinal ARPE-19 cell tracking using indocyanine green contrast-enhanced multimodality photoacoustic microscopy, optical coherence tomography, and fluorescence imaging for regenerative medicine publication-title: Transl. Vis. Sci. Technol. doi: 10.1167/tvst.10.10.10 – ident: 10.1016/j.optlastec.2023.109388_b0395 – volume: 13 start-page: 1106 year: 1996 ident: 10.1016/j.optlastec.2023.109388_b0295 article-title: Interpretation of Mueller matrices based on polar decomposition publication-title: J. Opt. Soc. Am. A – Opt. Image Sci. Vis. doi: 10.1364/JOSAA.13.001106 – year: 1971 ident: 10.1016/j.optlastec.2023.109388_b0365 – volume: 38 start-page: 818 year: 2016 ident: 10.1016/j.optlastec.2023.109388_b0060 article-title: Attention attraction in an ophthalmic diagnostic device using sound-modulated fixation targets publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2016.05.004 – start-page: 52 year: 2014 ident: 10.1016/j.optlastec.2023.109388_b0065 article-title: Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer publication-title: Biomed. Eng. Online 13 doi: 10.1186/1475-925X-13-52 – volume: 1 year: 2015 ident: 10.1016/j.optlastec.2023.109388_b0125 article-title: A review of optical coherence tomography angiography (OCTA) publication-title: Int. J. Retina Vitreous (BioMed. Central) – volume: 13 start-page: 10217 year: 2005 ident: 10.1016/j.optlastec.2023.109388_b0115 article-title: High speed spectral domain polarization sensitive optical coherence tomography of the human retina publication-title: Opt. Express doi: 10.1364/OPEX.13.010217 – volume: 11 year: 2006 ident: 10.1016/j.optlastec.2023.109388_b0235 article-title: Birefringence-based eye fixation monitor with no moving parts publication-title: J. Biomed. Opt. doi: 10.1117/1.2209003 – ident: 10.1016/j.optlastec.2023.109388_b0015 – volume: 26 start-page: 1492 year: 1987 ident: 10.1016/j.optlastec.2023.109388_b0075 article-title: Confocal scanning laser ophthalmoscope publication-title: Appl. Opt. doi: 10.1364/AO.26.001492 – volume: 42 start-page: 4621 year: 2003 ident: 10.1016/j.optlastec.2023.109388_b0195 article-title: Compact scanning laser ophthalmoscope with high-speed retinal tracker publication-title: Appl. Opt. doi: 10.1364/AO.42.004621 – volume: 28 start-page: 385 year: 2008 ident: 10.1016/j.optlastec.2023.109388_b0140 article-title: Fundus autofluorescence imaging: review and perspectives publication-title: Retina doi: 10.1097/IAE.0b013e318164a907 – year: 1962 ident: 10.1016/j.optlastec.2023.109388_b0225 – volume: 53 start-page: 5258 year: 2012 ident: 10.1016/j.optlastec.2023.109388_b0385 article-title: Quantitative mapping of collagen fiber orientation in non-glaucoma and glaucoma posterior human sclerae publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.12-9705 – volume: 119 start-page: 627 year: 1995 ident: 10.1016/j.optlastec.2023.109388_b0090 article-title: Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes publication-title: Am. J. Ophthalmol. doi: 10.1016/S0002-9394(14)70221-1 – volume: 37 start-page: 905 year: 2015 ident: 10.1016/j.optlastec.2023.109388_b0055 article-title: Detection of central fixation using short-time autoregressive spectral estimation during retinal birefringence scanning publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2015.06.007 – volume: 4 start-page: 112 year: 2016 ident: 10.1016/j.optlastec.2023.109388_b0150 article-title: Photoacoustic imaging of the eye: a mini review publication-title: Photoacoustics doi: 10.1016/j.pacs.2016.05.001 – year: 2005 ident: 10.1016/j.optlastec.2023.109388_b0310 – ident: 10.1016/j.optlastec.2023.109388_b0300 – ident: 10.1016/j.optlastec.2023.109388_b0205 doi: 10.1145/3314111.3322877 – volume: 41 start-page: 4891 year: 2016 ident: 10.1016/j.optlastec.2023.109388_b0330 article-title: Long working distance OCT with a compact 2f retinal scanning configuration for pediatric imaging publication-title: Opt. Lett. doi: 10.1364/OL.41.004891 – volume: 5 start-page: 1391 year: 2014 ident: 10.1016/j.optlastec.2023.109388_b0400 article-title: Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo publication-title: Biomed. Opt. Express doi: 10.1364/BOE.5.001391 – volume: 43 start-page: 82 year: 2002 ident: 10.1016/j.optlastec.2023.109388_b0275 article-title: Linear birefringence of the central human cornea publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 41 start-page: 26 year: 2014 ident: 10.1016/j.optlastec.2023.109388_b0105 article-title: Doppler optical coherence tomography publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2014.03.004 – volume: 21 start-page: 353 year: 2007 ident: 10.1016/j.optlastec.2023.109388_b0345 article-title: Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration publication-title: Eye doi: 10.1038/sj.eye.6702203 – volume: 2 start-page: 9 year: 2000 ident: 10.1016/j.optlastec.2023.109388_b0100 article-title: Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy publication-title: Neoplasia doi: 10.1038/sj.neo.7900071 – volume: 12 start-page: 191 year: 1992 ident: 10.1016/j.optlastec.2023.109388_b0135 article-title: Digital indocyanine green videoangiography and choroidal neovascularization publication-title: Retina doi: 10.1097/00006982-199212030-00003 – volume: 207 start-page: 1 year: 2020 ident: 10.1016/j.optlastec.2023.109388_b0255 article-title: A Mueller matrix approach to flat gold mirror analysis and polarization balancing for use in retinal birefringence scanning systems publication-title: Optik doi: 10.1016/j.ijleo.2020.164474 – volume: 41 start-page: 249 year: 2017 ident: 10.1016/j.optlastec.2023.109388_b0240 article-title: A no-moving-parts sensor for the detection of eye fixation using polarised light and retinal birefringence information publication-title: J. Med. Eng. Technol. doi: 10.1080/03091902.2017.1281357 – year: 2016 ident: 10.1016/j.optlastec.2023.109388_b0305 – volume: 7 start-page: e44026 year: 2012 ident: 10.1016/j.optlastec.2023.109388_b0390 article-title: Optical rheology of porcine sclera by birefringence imaging publication-title: PLoS ONE doi: 10.1371/journal.pone.0044026 – volume: 10 start-page: 405 year: 2002 ident: 10.1016/j.optlastec.2023.109388_b0085 article-title: Adaptive optics scanning laser ophthalmoscopy publication-title: Opt. Express doi: 10.1364/OE.10.000405 – volume: 21 start-page: 3811 year: 1982 ident: 10.1016/j.optlastec.2023.109388_b0360 article-title: Retinal polarization effects publication-title: Appl. Opt. doi: 10.1364/AO.21.003811 – ident: 10.1016/j.optlastec.2023.109388_b0035 – volume: 254 start-page: 1178 year: 1991 ident: 10.1016/j.optlastec.2023.109388_b0095 article-title: Optical coherence tomography publication-title: Science doi: 10.1126/science.1957169 – volume: 6 start-page: 1 year: 2021 ident: 10.1016/j.optlastec.2023.109388_b0210 article-title: Navigation technology/eye-tracking in ophthalmology: principles, applications and benefits—a narrative review publication-title: Ann. Eye Sci. doi: 10.21037/aes-20-127 – volume: 19 year: 2014 ident: 10.1016/j.optlastec.2023.109388_b0030 article-title: New pediatric vision screener employing polarization-modulated, retinal-birefringence-scanning-based strabismus detection and bull's eye focus detection with an improved target system: opto-mechanical design and operation publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.19.6.067004 – volume: 31 start-page: 6676 year: 1992 ident: 10.1016/j.optlastec.2023.109388_b0290 article-title: Mueller matrix dual-rotating retarder polarimeter publication-title: Appl. Opt. doi: 10.1364/AO.31.006676 – volume: 35 start-page: 270 year: 2010 ident: 10.1016/j.optlastec.2023.109388_b0145 article-title: Photoacoustic ocular imaging publication-title: Opt. Lett. doi: 10.1364/OL.35.000270 – ident: 10.1016/j.optlastec.2023.109388_b0320 doi: 10.1364/FIO.2014.FW1F.2 – volume: 119 year: 2020 ident: 10.1016/j.optlastec.2023.109388_b0220 article-title: Computer-aided fixation detection using retinal birefringence in multi-modal ophthalmic systems: Computer, electronics, algorithms publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103672 – volume: 6 year: 2018 ident: 10.1016/j.optlastec.2023.109388_b0165 article-title: Multimodal optical medical imaging concepts based on optical coherence tomography publication-title: Front. Phys.-Lausanne – volume: 3 start-page: 2611 year: 2012 ident: 10.1016/j.optlastec.2023.109388_b0200 article-title: High-speed, image-based eye tracking with a scanning laser ophthalmoscope publication-title: Biomed. Opt. Express doi: 10.1364/BOE.3.002611 – volume: 26 start-page: 1500 year: 1987 ident: 10.1016/j.optlastec.2023.109388_b0080 article-title: Fundus tracking with the scanning laser ophthalmoscope publication-title: Appl. Opt. doi: 10.1364/AO.26.001500 – volume: 24 start-page: 82 year: 1961 ident: 10.1016/j.optlastec.2023.109388_b0130 article-title: A method of photographing fluorescence in circulating blood in the human retina publication-title: Circulation doi: 10.1161/01.CIR.24.1.82 – volume: 2 start-page: 1955 year: 2011 ident: 10.1016/j.optlastec.2023.109388_b0315 article-title: Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection publication-title: Biomed. Opt. Express doi: 10.1364/BOE.2.001955 – volume: 9 start-page: 94 year: 2004 ident: 10.1016/j.optlastec.2023.109388_b0110 article-title: Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography publication-title: J. Biomed. Opt. doi: 10.1117/1.1629308 – volume: 6 start-page: 12 year: 2017 ident: 10.1016/j.optlastec.2023.109388_b0335 article-title: Characterization of long working distance optical coherence tomography for imaging of pediatric retinal pathology publication-title: Transl. Vis. Sci. Technol. doi: 10.1167/tvst.6.5.12 – volume: 16 start-page: 2103 year: 1999 ident: 10.1016/j.optlastec.2023.109388_b0005 article-title: Mathematical modeling of retinal birefringence scanning publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.16.002103 – ident: 10.1016/j.optlastec.2023.109388_b0250 doi: 10.1117/12.803344 – volume: 201 start-page: 1 year: 2020 ident: 10.1016/j.optlastec.2023.109388_b0280 article-title: A method of calculating compensators in polarization-sensitive optical systems publication-title: Optik doi: 10.1016/j.ijleo.2019.163474 – volume: 46 start-page: 1809 year: 2007 ident: 10.1016/j.optlastec.2023.109388_b0020 article-title: Directional eye fixation sensor using birefringence-based foveal detection publication-title: Appl. Opt. doi: 10.1364/AO.46.001809 – year: 2019 ident: 10.1016/j.optlastec.2023.109388_b0270 |
SSID | ssj0004653 |
Score | 2.3587458 |
Snippet | •Retinal imaging systems rarely incorporate technology for foveal tracking.•Retinal Birefringence Scanning (RBS) allows fast detection of central fixation.•RBS... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109388 |
SubjectTerms | Computer modeling of polarization-sensitive systems Conjoined ophthalmic systems Fast central fixation detection Ophthalmic optics Polarization-responsive retinal scanning Retinal birefringence |
Title | Central fixation detection with an open-frame retinal birefringence scanning system: Optics, optomechanics, polarization balancing aspects, computer modeling and simulation |
URI | https://dx.doi.org/10.1016/j.optlastec.2023.109388 |
Volume | 163 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jIuhBdCrOHyMHj9alS5q2u43hmIrz4mC30vwoTFxXXAVP_kX-kealqWwg7OAxaV9p88JLXvq970PomoRCxjQinkrhN2NAlBelKfViDuRpTHCu4ED_acLHU_YwC2YNNKxrYQBW6WJ_FdNttHY9XTea3WI-hxpfE36BVpVC4mALzRkLYZbffvlrtZGOiZKaeGPu3sB4LYvS7FFLDVyGPWqplawEyx8r1NqqMzpEB267iAfVGx2hhs5baH-NRLCFdi2IU66O0bc7qsXZ_NMOOFa6tFCrHMN5K05zDGpZXgaILAz1i_BwYUYgs8d75uPxSlYqRrjieO7j5wKYnG-MZblcaCgUts0CcmJXxIkFACQlWKW2dNNcl04uAlutHXspV3g1Xzi9sBM0Hd29DMeeU2PwJPWD0mMsS30tQg1JLZdUycjXVurX9EtBFY-p0CY7lFoQrX2SBZHSRAHM2SQxip6iZr7M9RnClKhU9TJOhJ-xUFFBQ6F7jCupY-Yr1Ua89kAiHVU5KGa8JTUm7TX5dV0Crksq17UR-TUsKraO7Sb92sXJxsRLzJqyzfj8P8YXaA9aFZrwEjXL9w99ZXY4pejYKdxBO4P7x_HkBzg2AbA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kF1EP4hPf5uDRYrpp0623ZVG6PtaLgrfQPAorbre4FfxR_kgzaSorCB48tmFKmwmTzPSb7wM4o4lUKevTQOf4mzGmOujnOQtSjuRpkeRcY0H_fsyzp-jmOX5egmHbC4OwSh_7m5juorW_c-Fn86KaTLDH14ZfpFVlmDhgo3kX2aniDnQHo9tsvNAe6ckomQ051uAHzGtW1faYWhukM-wxx67kVFh-2aQWNp7rDVj3J0YyaF5qE5ZMuQVrCzyCW7DscJxqvg2fvlpLismHm3OiTe3QViXBkivJS4KCWUGBoCyCLYz4cGknoXAVPvv9ZK4aISPS0DxfkocKyZzPrWU9mxrsFXaXFabFvo-TSMRIKrTKXfemHVdeMYI4uR03VGoyn0y9ZNgOPF1fPQ6zwAsyBIqFcR1EUZGHRiYG81qumFb90Di1X3tfSaZ5yqSxCaIykhoT0iLua0M1Ip1tHqPZLnTKWWn2gDCqc90rOJVhESWaSZZI04u4ViaNQq33gbceEMqzlaNoxqtoYWkv4tt1Al0nGtftA_02rBrCjr9NLlsXix9rT9ht5S_jg_8Yn8JK9nh_J-5G49tDWMWRBlx4BJ367d0c2wNPLU_8gv4C9N0EYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Central+fixation+detection+with+an+open-frame+retinal+birefringence+scanning+system%3A+Optics%2C+optomechanics%2C+polarization+balancing+aspects%2C+computer+modeling+and+simulation&rft.jtitle=Optics+and+laser+technology&rft.au=Gramatikov%2C+Boris+I.&rft.au=Irsch%2C+Kristina&rft.au=Guyton%2C+David+L.&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0030-3992&rft.eissn=1879-2545&rft.volume=163&rft_id=info:doi/10.1016%2Fj.optlastec.2023.109388&rft.externalDocID=S0030399223002815 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon |