Central fixation detection with an open-frame retinal birefringence scanning system: Optics, optomechanics, polarization balancing aspects, computer modeling and simulation

•Retinal imaging systems rarely incorporate technology for foveal tracking.•Retinal Birefringence Scanning (RBS) allows fast detection of central fixation.•RBS can be used conjointly with any imaging technology and guide it.•RBS is polarization sensitive and not trivial to integrate with.•Mueller-ma...

Full description

Saved in:
Bibliographic Details
Published inOptics and laser technology Vol. 163; p. 109388
Main Authors Gramatikov, Boris I., Irsch, Kristina, Guyton, David L.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text
ISSN0030-3992
1879-2545
DOI10.1016/j.optlastec.2023.109388

Cover

Loading…
Abstract •Retinal imaging systems rarely incorporate technology for foveal tracking.•Retinal Birefringence Scanning (RBS) allows fast detection of central fixation.•RBS can be used conjointly with any imaging technology and guide it.•RBS is polarization sensitive and not trivial to integrate with.•Mueller-matrix-based computer model may optimize polarization-sensitive systems. There is a growing need to add a fast fixation-detection system or even an eye-tracking system to various diagnostic and some therapeutic ophthalmic technologies. For example, this would enable registration of stable images of the fovea. In recent years we have developed rapid technologies that detect the location of the fovea using retinal birefringence scanning (RBS). Yet, combining it with ophthalmic imaging technologies is not trivial, mainly because RBS employs polarized light and polarization-sensitive optics, while most ophthalmic imaging systems do not. Therefore, integrating these two types of systems optically poses a significant challenge, especially to the RBS system. Using principles from polarization optics and Mueller-matrix-based computer modeling for optimization, we developed a prototype of an open-frame RBS system as a potential adjunct fixation monitoring technology, with a promise to reduce the interference created by eye movements in advanced ophthalmic imaging technologies, such as optical coherence tomography, fluorescein angiography, scanning laser ophthalmoscopy, and others. Our technology is fast, does not need calibration, and uses true anatomical information from the retina for fixation detection. It enables adding fixation monitoring capabilities without having to modify the main imaging system, and has the potential to facilitate imaging without anesthesia in otherwise challenging subjects and/or patients, such as young children.
AbstractList •Retinal imaging systems rarely incorporate technology for foveal tracking.•Retinal Birefringence Scanning (RBS) allows fast detection of central fixation.•RBS can be used conjointly with any imaging technology and guide it.•RBS is polarization sensitive and not trivial to integrate with.•Mueller-matrix-based computer model may optimize polarization-sensitive systems. There is a growing need to add a fast fixation-detection system or even an eye-tracking system to various diagnostic and some therapeutic ophthalmic technologies. For example, this would enable registration of stable images of the fovea. In recent years we have developed rapid technologies that detect the location of the fovea using retinal birefringence scanning (RBS). Yet, combining it with ophthalmic imaging technologies is not trivial, mainly because RBS employs polarized light and polarization-sensitive optics, while most ophthalmic imaging systems do not. Therefore, integrating these two types of systems optically poses a significant challenge, especially to the RBS system. Using principles from polarization optics and Mueller-matrix-based computer modeling for optimization, we developed a prototype of an open-frame RBS system as a potential adjunct fixation monitoring technology, with a promise to reduce the interference created by eye movements in advanced ophthalmic imaging technologies, such as optical coherence tomography, fluorescein angiography, scanning laser ophthalmoscopy, and others. Our technology is fast, does not need calibration, and uses true anatomical information from the retina for fixation detection. It enables adding fixation monitoring capabilities without having to modify the main imaging system, and has the potential to facilitate imaging without anesthesia in otherwise challenging subjects and/or patients, such as young children.
ArticleNumber 109388
Author Gramatikov, Boris I.
Irsch, Kristina
Guyton, David L.
Author_xml – sequence: 1
  givenname: Boris I.
  orcidid: 0000-0002-3287-6192
  surname: Gramatikov
  fullname: Gramatikov, Boris I.
  email: bgramat@jhmi.edu
– sequence: 2
  givenname: Kristina
  orcidid: 0000-0003-2525-4288
  surname: Irsch
  fullname: Irsch, Kristina
  email: kristina.irsch@inserm.fr
– sequence: 3
  givenname: David L.
  surname: Guyton
  fullname: Guyton, David L.
  email: dguyton@jhmi.edu
BookMark eNqNkMtOAyEUQImpia36DfIBToWh8zJx0TS-kiZudE0YuKM0MzABqtZv8iNlpsaFG10B93Lu48zQxFgDCJ1RMqeE5hebue1DK3wAOU9JymK0YmV5gKa0LKokzRbZBE0JYSRhVZUeoZn3G0LIIs_YFH2uwAQnWtzodxG0NVhBrDTe3nR4wcJg24NJGic6wA6CNvF3rR00TptnMBKwl8KY-MB-F8foLvFDH7T055EMtgP5Isz47G0rnP7Y96lFK4wcKOH72DHmpe36bQCHO6ugHVNGYa-7bTsyJ-iwEa2H0-_zGD3dXD-u7pL1w-39arlOJKNZSBaLRlCoC2CsZLlkSpYUSJQ1xGXNVF6xGgpaSKgJACVNViogilZVTstUsWNU7OtKZ72Pm_Le6U64HaeED9L5hv9I54N0vpceyatfpNRhnD1K1u0_-OWeh7jeqwbHvdSDYxWFy8CV1X_W-AL_Jqx2
CitedBy_id crossref_primary_10_3390_s25010165
Cites_doi 10.1016/j.media.2017.02.002
10.1364/OE.10.001542
10.1364/OE.22.007972
10.1109/TBME.1981.324734
10.1117/1.JBO.17.8.086001
10.1097/ICU.0000000000000524
10.1364/JOSAA.24.001468
10.1117/1.1805560
10.1364/BOE.8.001838
10.1016/S1350-9462(02)00063-0
10.1117/1.JBO.19.10.106014
10.1364/AO.38.001273
10.1186/1475-925X-12-41
10.1186/s12938-016-0128-7
10.1371/journal.pone.0169926
10.1007/s10439-013-0818-2
10.1038/s41598-019-42324-5
10.1016/j.visres.2008.04.031
10.1167/tvst.10.10.10
10.1364/JOSAA.13.001106
10.1016/j.medengphy.2016.05.004
10.1186/1475-925X-13-52
10.1364/OPEX.13.010217
10.1117/1.2209003
10.1364/AO.26.001492
10.1364/AO.42.004621
10.1097/IAE.0b013e318164a907
10.1167/iovs.12-9705
10.1016/S0002-9394(14)70221-1
10.1016/j.medengphy.2015.06.007
10.1016/j.pacs.2016.05.001
10.1145/3314111.3322877
10.1364/OL.41.004891
10.1364/BOE.5.001391
10.1016/j.preteyeres.2014.03.004
10.1038/sj.eye.6702203
10.1038/sj.neo.7900071
10.1097/00006982-199212030-00003
10.1016/j.ijleo.2020.164474
10.1080/03091902.2017.1281357
10.1371/journal.pone.0044026
10.1364/OE.10.000405
10.1364/AO.21.003811
10.1126/science.1957169
10.21037/aes-20-127
10.1117/1.JBO.19.6.067004
10.1364/AO.31.006676
10.1364/OL.35.000270
10.1364/FIO.2014.FW1F.2
10.1016/j.compbiomed.2020.103672
10.1364/BOE.3.002611
10.1364/AO.26.001500
10.1161/01.CIR.24.1.82
10.1364/BOE.2.001955
10.1117/1.1629308
10.1167/tvst.6.5.12
10.1364/JOSAA.16.002103
10.1117/12.803344
10.1016/j.ijleo.2019.163474
10.1364/AO.46.001809
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.optlastec.2023.109388
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-2545
ExternalDocumentID 10_1016_j_optlastec_2023_109388
S0030399223002815
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XFK
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c315t-44fa1eb7e33836c3dc81e01014fa1cb3d693be717ceb0ee10f58de0d1996182d3
IEDL.DBID .~1
ISSN 0030-3992
IngestDate Thu Apr 24 23:12:35 EDT 2025
Tue Jul 01 01:38:54 EDT 2025
Fri Feb 23 02:38:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Computer modeling of polarization-sensitive systems
Ophthalmic optics
Retinal birefringence
Fast central fixation detection
Conjoined ophthalmic systems
Polarization-responsive retinal scanning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-44fa1eb7e33836c3dc81e01014fa1cb3d693be717ceb0ee10f58de0d1996182d3
ORCID 0000-0002-3287-6192
0000-0003-2525-4288
ParticipantIDs crossref_primary_10_1016_j_optlastec_2023_109388
crossref_citationtrail_10_1016_j_optlastec_2023_109388
elsevier_sciencedirect_doi_10_1016_j_optlastec_2023_109388
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Optics and laser technology
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References de Boer, Hitzenberger, Yasuno (b0120) 2017; 8
L. Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1, 2014.
Yamanari, Nagase, Fukuda, Ishii, Tanaka, Yasui, Oshika, Miura, Yasuno (b0400) 2014; 5
Knighton, Huang (b0275) 2002; 43
McBrien, Gentle (b0380) 2003; 22
J. Park, A. Shin, J. Demer, Optical Birefringence Correlates with Tensile Properties of Human Sclera, in: ARVO Annual Meeting, published in Investigative Ophthalmology & Visual Science, 2017, pp. 3165.
D.L. Guyton, D.G. Hunter, S.N. Patel, J.C. Sandruck, R.L. Fry, Eye Fixation Monitor and Tracker, U.S. Patent No. 6,027,216, 2000.
Collett (b0310) 2005
Hunter, Patel, Guyton (b0010) 1999; 38
Leitgeb, Werkmeister, Blatter, Schmetterer (b0105) 2014; 41
Elsner, Weber, Cheney, VanNasdale, Miura (b0340) 2007; 24
McBrien, Cornell, Gentle (b0375) 2001; 42
Qian, Carrasco-Zevallos, Mangalesh, Sarin, Vajzovic, Farsiu, Izatt, Toth (b0335) 2017; 6
Weinreb, Shakiba, Zangwill (b0090) 1995; 119
Pijanka, Coudrillier, Ziegler, Sorensen, Meek, Nguyen, Quigley, Boote (b0385) 2012; 53
Gramatikov, Zalloum, Wu, Hunter, Guyton (b0020) 2007; 46
Baghaie, Yu, D'Souza (b0215) 2017; 37
Shurcliff (b0225) 1962
Yannuzzi, Slakter, Sorenson, Guyer, Orlock (b0135) 1992; 12
B.I. Gramatikov, D.L. Guyton, K. Irsch, Eye tracking and gaze fixation detection systems, components and methods using polarized light. U.S. Patent No. 9,737,209 B2 (August 22, 2017).
Webb, Hughes, Delori (b0075) 1987; 26
K. Irsch, B.I. Gramatikov, Y.K. Wu, D.L. Guyton, Spinning wave plate design for retinal birefringence scanning, in: Proc SPIE, Advanced Biomedical and Clinical Diagnostic Systems VII, 7169 (2009).
Gramatikov, Irsch, Mullenbroich, Frindt, Qu, Gutmark, Wu, Guyton (b0045) 2013; 41
Gramatikov (b0065) 2014
Gramatikov, Rangarajan, Irsch, Guyton (b0060) 2016; 38
Hochheimer, Kues (b0360) 1982; 21
Hogan, Alverado, Weddell (b0365) 1971
Chipman, Lam, Young (b0270) 2019
Webb, Hughes (b0070) 1981; 28
Fujimoto, Pitris, Boppart, Brezinski (b0100) 2000; 2
de la Zerda, Paulus, Teed, Bodapati, Dollberg, Khuri-Yakub, Blumenkranz, Moshfeghi, Gambhir (b0145) 2010; 35
Lu, Chipman (b0295) 1996; 13
Wornson, Hughes, Webb (b0080) 1987; 26
N.R. Bowers, A. Gibaldi, E. Alexander, M.S. Banks, A. Roorda, High-resolution eye tracking using scanning laser ophthalmoscopy, in: 2019 Symposium on Eye Tracking Research and Applications (ETRA ’19), Association for Computing Machinery (ACM), Denver, CO, June 25–28, 2019.
Nesper, Scarinci, Fawzi (b0180) 2017; 12
de Carlo, Romano, Waheed, Duker (b0125) 2015; 1
Nguyen, Li, Henry, Qian, Zhang, Wang, Paulus (b0175) 2021; 10
Collett, Schaeffer (b0230) 2012
Leitgeb, Baumann (b0165) 2018; 6
Goldstein (b0290) 1992; 31
Gotzinger, Pircher, Sticker, Fercher, Hitzenberger (b0110) 2004; 9
Gramatikov (b0255) 2020; 207
J.J. Gil, R. Ossikovski, Nondepolarizing media: retarders, diattenuators, and serial decompositions, in: Polarized Light and the Mueller Matrix Approach, CRC Press, Taylor and Francis Group, Boca Raton, London, New York, 2016.
Novotny, Alvis (b0130) 1961; 24
Gotzinger, Pircher, Hitzenberger (b0115) 2005; 13
Irsch, Gramatikov, Wu, Guyton (b0030) 2014; 19
Gramatikov (b0220) 2020; 119
Yamanari, Ishii, Fukuda, Lim, Duan, Makita, Miura, Oshika, Yasuno (b0390) 2012; 7
Gramatikov (b0055) 2015; 37
Carrasco-Zevallos, Qian, Gahm, Migacz, Toth, Izatt (b0330) 2016; 41
Gramatikov, Irsch, Guyton (b0350) 2014; 19
Gramatikov (b0050) 2013; 12
Sheehy, Yang, Arathorn, Tiruveedhula, de Boer, Roorda (b0200) 2012; 3
Huang, Swanson, Lin, Schuman, Stinson, Chang, Hee, Flotte, Gregory, Puliafito, Fujimoto (b0095) 1991; 254
Gramatikov (b0280) 2020; 201
Hunter, Nassif, Piskun, Winsor, Gramatikov, Guyton (b0025) 2004; 9
M. Born, E. Wolf, Principles of Optics, 7th (expanded) edition ed., Pergamon Press/Cambridge University Press, New York/Cambridge, 1959 (first edition).
Hunter, Sandruck, Sau, Patel, Guyton (b0005) 1999; 16
Nguyen, Li, Qian, Liu, Tian, Zhang, Huang, Ponduri, Tarnowski, Wang, Paulus (b0170) 2019; 9
Irsch, Gramatikov, Wu, Guyton (b0245) 2014; 22
Gramatikov, Irsch, Wu, Guyton (b0040) 2016; 15
Roorda, Romero-Borja, Donnelly Iii, Queener, Hebert, Campbell (b0085) 2002; 10
Irsch, Gramatikov, Wu, Guyton (b0315) 2011; 2
Gramatikov, Guyton (b0240) 2017; 41
Gil, Ossikovski (b0305) 2016
Schmitz-Valckenberg, Holz, Bird, Spaide (b0140) 2008; 28
Hammer, Ferguson, Magill, Elsner, Webb (b0190) 2002; 43
Goldstein (b0265) 2003
B.I. Gramatikov, D.L. Guyton, K. Irsch, C. Toth, O. Carrasco-Zevallos, J. Izatt, Method and System for Improving Aiming during Optical Coherence Tomography on Young Children by Synchronization with Retinal Birefringence Scanning, U.S. Patent No. 10,004,397 B2 (June 26, 2018).
Brosseau (b0285) 1988
Irsch, Shah (b0355) 2012; 17
Liu, Zhang (b0150) 2016; 4
Tran, Pakzad-Vaezi (b0160) 2018; 29
Elsner, Weber, Cheney, Vannasdale (b0260) 2008; 48
Weber, Elsner, Miura, Kompa, Cheney (b0345) 2007; 21
Di Carlo, Augustin (b0155) 2018
Hammer, Ferguson, Magill, White, Elsner, Webb (b0185) 2002; 10
Kozak, Rahm (b0210) 2021; 6
Gramatikov, Zalloum, Wu, Hunter, Guyton (b0235) 2006; 11
Hammer, Ferguson, Magill, White, Elsner, Webb (b0195) 2003; 42
Hammer (10.1016/j.optlastec.2023.109388_b0190) 2002; 43
Knighton (10.1016/j.optlastec.2023.109388_b0275) 2002; 43
Novotny (10.1016/j.optlastec.2023.109388_b0130) 1961; 24
Gramatikov (10.1016/j.optlastec.2023.109388_b0255) 2020; 207
Gramatikov (10.1016/j.optlastec.2023.109388_b0065) 2014
Carrasco-Zevallos (10.1016/j.optlastec.2023.109388_b0330) 2016; 41
Gramatikov (10.1016/j.optlastec.2023.109388_b0220) 2020; 119
Hogan (10.1016/j.optlastec.2023.109388_b0365) 1971
Irsch (10.1016/j.optlastec.2023.109388_b0030) 2014; 19
Qian (10.1016/j.optlastec.2023.109388_b0335) 2017; 6
Sheehy (10.1016/j.optlastec.2023.109388_b0200) 2012; 3
de Carlo (10.1016/j.optlastec.2023.109388_b0125) 2015; 1
Tran (10.1016/j.optlastec.2023.109388_b0160) 2018; 29
Gil (10.1016/j.optlastec.2023.109388_b0305) 2016
Goldstein (10.1016/j.optlastec.2023.109388_b0290) 1992; 31
10.1016/j.optlastec.2023.109388_b0395
Gramatikov (10.1016/j.optlastec.2023.109388_b0050) 2013; 12
Collett (10.1016/j.optlastec.2023.109388_b0230) 2012
10.1016/j.optlastec.2023.109388_b0035
Gramatikov (10.1016/j.optlastec.2023.109388_b0280) 2020; 201
Shurcliff (10.1016/j.optlastec.2023.109388_b0225) 1962
Yamanari (10.1016/j.optlastec.2023.109388_b0390) 2012; 7
Liu (10.1016/j.optlastec.2023.109388_b0150) 2016; 4
Elsner (10.1016/j.optlastec.2023.109388_b0340) 2007; 24
Gotzinger (10.1016/j.optlastec.2023.109388_b0115) 2005; 13
Hunter (10.1016/j.optlastec.2023.109388_b0005) 1999; 16
Gotzinger (10.1016/j.optlastec.2023.109388_b0110) 2004; 9
de la Zerda (10.1016/j.optlastec.2023.109388_b0145) 2010; 35
Roorda (10.1016/j.optlastec.2023.109388_b0085) 2002; 10
Nesper (10.1016/j.optlastec.2023.109388_b0180) 2017; 12
Hunter (10.1016/j.optlastec.2023.109388_b0025) 2004; 9
Collett (10.1016/j.optlastec.2023.109388_b0310) 2005
Chipman (10.1016/j.optlastec.2023.109388_b0270) 2019
10.1016/j.optlastec.2023.109388_b0300
Hunter (10.1016/j.optlastec.2023.109388_b0010) 1999; 38
Irsch (10.1016/j.optlastec.2023.109388_b0245) 2014; 22
Nguyen (10.1016/j.optlastec.2023.109388_b0175) 2021; 10
Hammer (10.1016/j.optlastec.2023.109388_b0195) 2003; 42
Hammer (10.1016/j.optlastec.2023.109388_b0185) 2002; 10
Di Carlo (10.1016/j.optlastec.2023.109388_b0155) 2018
Yannuzzi (10.1016/j.optlastec.2023.109388_b0135) 1992; 12
Gramatikov (10.1016/j.optlastec.2023.109388_b0235) 2006; 11
McBrien (10.1016/j.optlastec.2023.109388_b0380) 2003; 22
Yamanari (10.1016/j.optlastec.2023.109388_b0400) 2014; 5
Kozak (10.1016/j.optlastec.2023.109388_b0210) 2021; 6
Lu (10.1016/j.optlastec.2023.109388_b0295) 1996; 13
Gramatikov (10.1016/j.optlastec.2023.109388_b0060) 2016; 38
Pijanka (10.1016/j.optlastec.2023.109388_b0385) 2012; 53
10.1016/j.optlastec.2023.109388_b0015
McBrien (10.1016/j.optlastec.2023.109388_b0375) 2001; 42
Leitgeb (10.1016/j.optlastec.2023.109388_b0165) 2018; 6
Elsner (10.1016/j.optlastec.2023.109388_b0260) 2008; 48
Irsch (10.1016/j.optlastec.2023.109388_b0355) 2012; 17
10.1016/j.optlastec.2023.109388_b0370
10.1016/j.optlastec.2023.109388_b0250
Weinreb (10.1016/j.optlastec.2023.109388_b0090) 1995; 119
Irsch (10.1016/j.optlastec.2023.109388_b0315) 2011; 2
Huang (10.1016/j.optlastec.2023.109388_b0095) 1991; 254
Gramatikov (10.1016/j.optlastec.2023.109388_b0020) 2007; 46
Gramatikov (10.1016/j.optlastec.2023.109388_b0045) 2013; 41
Schmitz-Valckenberg (10.1016/j.optlastec.2023.109388_b0140) 2008; 28
Gramatikov (10.1016/j.optlastec.2023.109388_b0055) 2015; 37
Nguyen (10.1016/j.optlastec.2023.109388_b0170) 2019; 9
Webb (10.1016/j.optlastec.2023.109388_b0070) 1981; 28
de Boer (10.1016/j.optlastec.2023.109388_b0120) 2017; 8
Wornson (10.1016/j.optlastec.2023.109388_b0080) 1987; 26
Gramatikov (10.1016/j.optlastec.2023.109388_b0240) 2017; 41
10.1016/j.optlastec.2023.109388_b0325
10.1016/j.optlastec.2023.109388_b0205
Fujimoto (10.1016/j.optlastec.2023.109388_b0100) 2000; 2
Leitgeb (10.1016/j.optlastec.2023.109388_b0105) 2014; 41
Hochheimer (10.1016/j.optlastec.2023.109388_b0360) 1982; 21
Weber (10.1016/j.optlastec.2023.109388_b0345) 2007; 21
Gramatikov (10.1016/j.optlastec.2023.109388_b0040) 2016; 15
Webb (10.1016/j.optlastec.2023.109388_b0075) 1987; 26
Brosseau (10.1016/j.optlastec.2023.109388_b0285) 1988
Gramatikov (10.1016/j.optlastec.2023.109388_b0350) 2014; 19
Baghaie (10.1016/j.optlastec.2023.109388_b0215) 2017; 37
Goldstein (10.1016/j.optlastec.2023.109388_b0265) 2003
10.1016/j.optlastec.2023.109388_b0320
References_xml – volume: 46
  start-page: 1809
  year: 2007
  end-page: 1818
  ident: b0020
  article-title: Directional eye fixation sensor using birefringence-based foveal detection
  publication-title: Appl. Opt.
– volume: 19
  year: 2014
  ident: b0030
  article-title: New pediatric vision screener employing polarization-modulated, retinal-birefringence-scanning-based strabismus detection and bull's eye focus detection with an improved target system: opto-mechanical design and operation
  publication-title: J. Biomed. Opt.
– volume: 7
  start-page: e44026
  year: 2012
  ident: b0390
  article-title: Optical rheology of porcine sclera by birefringence imaging
  publication-title: PLoS ONE
– volume: 38
  start-page: 818
  year: 2016
  end-page: 821
  ident: b0060
  article-title: Attention attraction in an ophthalmic diagnostic device using sound-modulated fixation targets
  publication-title: Med. Eng. Phys.
– year: 2019
  ident: b0270
  article-title: Polarized Light and Optical Systems
– volume: 42
  start-page: 4621
  year: 2003
  end-page: 4632
  ident: b0195
  article-title: Compact scanning laser ophthalmoscope with high-speed retinal tracker
  publication-title: Appl. Opt.
– volume: 24
  start-page: 1468
  year: 2007
  end-page: 1480
  ident: b0340
  article-title: Imaging polarimetry in patients with neovascular age-related macular degeneration
  publication-title: J. Opt. Soc. Am. A Opt. Image Sci. Vis.
– volume: 9
  start-page: 94
  year: 2004
  end-page: 102
  ident: b0110
  article-title: Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography
  publication-title: J. Biomed. Opt.
– volume: 9
  start-page: 1363
  year: 2004
  end-page: 1368
  ident: b0025
  article-title: Pediatric vision screener 1: instrument design and operation
  publication-title: J. Biomed. Opt.
– volume: 53
  start-page: 5258
  year: 2012
  end-page: 5270
  ident: b0385
  article-title: Quantitative mapping of collagen fiber orientation in non-glaucoma and glaucoma posterior human sclerae
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 12
  start-page: 191
  year: 1992
  end-page: 223
  ident: b0135
  article-title: Digital indocyanine green videoangiography and choroidal neovascularization
  publication-title: Retina
– volume: 12
  start-page: 41
  year: 2013
  ident: b0050
  article-title: Detecting fixation on a target using time-frequency distributions of a retinal birefringence scanning signal
  publication-title: Biomed. Eng. Online
– volume: 119
  year: 2020
  ident: b0220
  article-title: Computer-aided fixation detection using retinal birefringence in multi-modal ophthalmic systems: Computer, electronics, algorithms
  publication-title: Comput. Biol. Med.
– volume: 13
  start-page: 10217
  year: 2005
  end-page: 10229
  ident: b0115
  article-title: High speed spectral domain polarization sensitive optical coherence tomography of the human retina
  publication-title: Opt. Express
– volume: 8
  start-page: 1838
  year: 2017
  end-page: 1873
  ident: b0120
  article-title: Polarization sensitive optical coherence tomography – a review [Invited]
  publication-title: Biomed. Opt. Express
– volume: 22
  start-page: 7972
  year: 2014
  end-page: 7988
  ident: b0245
  article-title: Improved eye-fixation detection using polarization-modulated retinal birefringence scanning, immune to corneal birefringence
  publication-title: Opt. Express
– volume: 43
  start-page: U1260
  year: 2002
  ident: b0190
  article-title: Tracking scanning laser ophthalmoscope (TSLO): Initial human subject testing
  publication-title: Invest. Ophth. Vis. Sci.
– volume: 3
  start-page: 2611
  year: 2012
  end-page: 2622
  ident: b0200
  article-title: High-speed, image-based eye tracking with a scanning laser ophthalmoscope
  publication-title: Biomed. Opt. Express
– reference: J. Park, A. Shin, J. Demer, Optical Birefringence Correlates with Tensile Properties of Human Sclera, in: ARVO Annual Meeting, published in Investigative Ophthalmology & Visual Science, 2017, pp. 3165.
– year: 1962
  ident: b0225
  article-title: Polarized Light: Production and Use
– volume: 9
  start-page: 5945
  year: 2019
  ident: b0170
  article-title: Contrast agent enhanced multimodal photoacoustic microscopy and optical coherence tomography for imaging of rabbit choroidal and retinal vessels in vivo
  publication-title: Sci. Rep.
– volume: 37
  start-page: 905
  year: 2015
  end-page: 910
  ident: b0055
  article-title: Detection of central fixation using short-time autoregressive spectral estimation during retinal birefringence scanning
  publication-title: Med. Eng. Phys.
– volume: 38
  start-page: 1273
  year: 1999
  end-page: 1279
  ident: b0010
  article-title: Automated detection of foveal fixation by use of retinal birefringence scanning
  publication-title: Appl. Opt.
– volume: 2
  start-page: 9
  year: 2000
  end-page: 25
  ident: b0100
  article-title: Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy
  publication-title: Neoplasia
– volume: 41
  start-page: 26
  year: 2014
  end-page: 43
  ident: b0105
  article-title: Doppler optical coherence tomography
  publication-title: Prog. Retin. Eye Res.
– volume: 16
  start-page: 2103
  year: 1999
  end-page: 2111
  ident: b0005
  article-title: Mathematical modeling of retinal birefringence scanning
  publication-title: J. Opt. Soc. Am. A
– reference: D.L. Guyton, D.G. Hunter, S.N. Patel, J.C. Sandruck, R.L. Fry, Eye Fixation Monitor and Tracker, U.S. Patent No. 6,027,216, 2000.
– volume: 31
  start-page: 6676
  year: 1992
  end-page: 6683
  ident: b0290
  article-title: Mueller matrix dual-rotating retarder polarimeter
  publication-title: Appl. Opt.
– volume: 41
  start-page: 1968
  year: 2013
  end-page: 1978
  ident: b0045
  article-title: A device for continuous monitoring of true central fixation based on foveal birefringence
  publication-title: Ann. Biomed. Eng.
– volume: 10
  start-page: 405
  year: 2002
  end-page: 412
  ident: b0085
  article-title: Adaptive optics scanning laser ophthalmoscopy
  publication-title: Opt. Express
– volume: 10
  start-page: 1542
  year: 2002
  end-page: 1549
  ident: b0185
  article-title: Image stabilization for scanning laser ophthalmoscopy
  publication-title: Opt. Express
– reference: N.R. Bowers, A. Gibaldi, E. Alexander, M.S. Banks, A. Roorda, High-resolution eye tracking using scanning laser ophthalmoscopy, in: 2019 Symposium on Eye Tracking Research and Applications (ETRA ’19), Association for Computing Machinery (ACM), Denver, CO, June 25–28, 2019.
– start-page: 52
  year: 2014
  ident: b0065
  article-title: Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer
  publication-title: Biomed. Eng. Online 13
– year: 1988
  ident: b0285
  article-title: Fundamentals of Polarized Light. A Statistical Optics Approach
– volume: 15
  start-page: 15
  year: 2016
  ident: b0040
  article-title: New pediatric vision screener, part II: electronics, software, signal processing and validation
  publication-title: Biomed. Eng. Online
– volume: 43
  start-page: 82
  year: 2002
  end-page: 86
  ident: b0275
  article-title: Linear birefringence of the central human cornea
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 12
  start-page: e0169926
  year: 2017
  ident: b0180
  article-title: Adaptive optics reveals photoreceptor abnormalities in diabetic macular ischemia
  publication-title: PLoS One
– volume: 37
  start-page: 129
  year: 2017
  end-page: 145
  ident: b0215
  article-title: Involuntary eye motion correction in retinal optical coherence tomography: hardware or software solution?
  publication-title: Med. Image Anal.
– reference: B.I. Gramatikov, D.L. Guyton, K. Irsch, Eye tracking and gaze fixation detection systems, components and methods using polarized light. U.S. Patent No. 9,737,209 B2 (August 22, 2017).
– reference: K. Irsch, B.I. Gramatikov, Y.K. Wu, D.L. Guyton, Spinning wave plate design for retinal birefringence scanning, in: Proc SPIE, Advanced Biomedical and Clinical Diagnostic Systems VII, 7169 (2009).
– volume: 48
  start-page: 2578
  year: 2008
  end-page: 2585
  ident: b0260
  article-title: Spatial distribution of macular birefringence associated with the Henle fibers
  publication-title: Vision Res.
– year: 2012
  ident: b0230
  article-title: Polarized Light for Scientists and Engineers
– volume: 201
  start-page: 1
  year: 2020
  end-page: 7
  ident: b0280
  article-title: A method of calculating compensators in polarization-sensitive optical systems
  publication-title: Optik
– volume: 26
  start-page: 1492
  year: 1987
  end-page: 1499
  ident: b0075
  article-title: Confocal scanning laser ophthalmoscope
  publication-title: Appl. Opt.
– volume: 35
  start-page: 270
  year: 2010
  end-page: 272
  ident: b0145
  article-title: Photoacoustic ocular imaging
  publication-title: Opt. Lett.
– volume: 207
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0255
  article-title: A Mueller matrix approach to flat gold mirror analysis and polarization balancing for use in retinal birefringence scanning systems
  publication-title: Optik
– year: 2016
  ident: b0305
  article-title: Physical Quantities in a Mueller Matrix, Polarized Light and the Mueller Matrix Approach
– volume: 17
  year: 2012
  ident: b0355
  article-title: Birefringence of the central cornea in children assessed with scanning laser polarimetry
  publication-title: J. Biomed. Opt.
– reference: B.I. Gramatikov, D.L. Guyton, K. Irsch, C. Toth, O. Carrasco-Zevallos, J. Izatt, Method and System for Improving Aiming during Optical Coherence Tomography on Young Children by Synchronization with Retinal Birefringence Scanning, U.S. Patent No. 10,004,397 B2 (June 26, 2018).
– volume: 19
  year: 2014
  ident: b0350
  article-title: Optimal timing of retinal scanning during dark adaptation, in the presence of fixation on a target: the role of pupil size dynamics
  publication-title: J. Biomed. Opt.
– volume: 6
  start-page: 12
  year: 2017
  ident: b0335
  article-title: Characterization of long working distance optical coherence tomography for imaging of pediatric retinal pathology
  publication-title: Transl. Vis. Sci. Technol.
– volume: 119
  start-page: 627
  year: 1995
  end-page: 636
  ident: b0090
  article-title: Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes
  publication-title: Am. J. Ophthalmol.
– volume: 254
  start-page: 1178
  year: 1991
  end-page: 1181
  ident: b0095
  article-title: Optical coherence tomography
  publication-title: Science
– volume: 28
  start-page: 385
  year: 2008
  end-page: 409
  ident: b0140
  article-title: Fundus autofluorescence imaging: review and perspectives
  publication-title: Retina
– volume: 11
  year: 2006
  ident: b0235
  article-title: Birefringence-based eye fixation monitor with no moving parts
  publication-title: J. Biomed. Opt.
– volume: 42
  start-page: 2179
  year: 2001
  end-page: 2187
  ident: b0375
  article-title: Structural and ultrastructural changes to the sclera in a mammalian model of high myopia
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 28
  start-page: 488
  year: 1981
  end-page: 492
  ident: b0070
  article-title: Scanning laser ophthalmoscope
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 2
  start-page: 1955
  year: 2011
  end-page: 1968
  ident: b0315
  article-title: Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection
  publication-title: Biomed. Opt. Express
– year: 2003
  ident: b0265
  article-title: Polarized Light
– volume: 21
  start-page: 3811
  year: 1982
  end-page: 3818
  ident: b0360
  article-title: Retinal polarization effects
  publication-title: Appl. Opt.
– reference: M. Born, E. Wolf, Principles of Optics, 7th (expanded) edition ed., Pergamon Press/Cambridge University Press, New York/Cambridge, 1959 (first edition).
– volume: 41
  start-page: 249
  year: 2017
  end-page: 256
  ident: b0240
  article-title: A no-moving-parts sensor for the detection of eye fixation using polarised light and retinal birefringence information
  publication-title: J. Med. Eng. Technol.
– volume: 6
  start-page: 1
  year: 2021
  end-page: 13
  ident: b0210
  article-title: Navigation technology/eye-tracking in ophthalmology: principles, applications and benefits—a narrative review
  publication-title: Ann. Eye Sci.
– volume: 41
  start-page: 4891
  year: 2016
  end-page: 4894
  ident: b0330
  article-title: Long working distance OCT with a compact 2f retinal scanning configuration for pediatric imaging
  publication-title: Opt. Lett.
– volume: 5
  start-page: 1391
  year: 2014
  end-page: 1402
  ident: b0400
  article-title: Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo
  publication-title: Biomed. Opt. Express
– year: 1971
  ident: b0365
  article-title: Histology of the Human Eye
– volume: 6
  year: 2018
  ident: b0165
  article-title: Multimodal optical medical imaging concepts based on optical coherence tomography
  publication-title: Front. Phys.-Lausanne
– volume: 21
  start-page: 353
  year: 2007
  end-page: 361
  ident: b0345
  article-title: Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration
  publication-title: Eye
– volume: 10
  start-page: 10
  year: 2021
  ident: b0175
  article-title: In vivo subretinal ARPE-19 cell tracking using indocyanine green contrast-enhanced multimodality photoacoustic microscopy, optical coherence tomography, and fluorescence imaging for regenerative medicine
  publication-title: Transl. Vis. Sci. Technol.
– volume: 13
  start-page: 1106
  year: 1996
  end-page: 1113
  ident: b0295
  article-title: Interpretation of Mueller matrices based on polar decomposition
  publication-title: J. Opt. Soc. Am. A – Opt. Image Sci. Vis.
– volume: 22
  start-page: 307
  year: 2003
  end-page: 338
  ident: b0380
  article-title: Role of the sclera in the development and pathological complications of myopia
  publication-title: Prog. Retin. Eye Res.
– volume: 26
  start-page: 1500
  year: 1987
  end-page: 1504
  ident: b0080
  article-title: Fundus tracking with the scanning laser ophthalmoscope
  publication-title: Appl. Opt.
– volume: 4
  start-page: 112
  year: 2016
  end-page: 123
  ident: b0150
  article-title: Photoacoustic imaging of the eye: a mini review
  publication-title: Photoacoustics
– year: 2018
  ident: b0155
  article-title: The emergence of multimodal imaging in ophthalmology
  publication-title: Ophthalmol. Times Europe (online)
– volume: 24
  start-page: 82
  year: 1961
  end-page: 86
  ident: b0130
  article-title: A method of photographing fluorescence in circulating blood in the human retina
  publication-title: Circulation
– volume: 1
  year: 2015
  ident: b0125
  article-title: A review of optical coherence tomography angiography (OCTA)
  publication-title: Int. J. Retina Vitreous (BioMed. Central)
– year: 2005
  ident: b0310
  article-title: Field Guide to Polarization
– reference: L. Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1, 2014.
– reference: J.J. Gil, R. Ossikovski, Nondepolarizing media: retarders, diattenuators, and serial decompositions, in: Polarized Light and the Mueller Matrix Approach, CRC Press, Taylor and Francis Group, Boca Raton, London, New York, 2016.
– volume: 29
  start-page: 566
  year: 2018
  end-page: 575
  ident: b0160
  article-title: Multimodal imaging of diabetic retinopathy
  publication-title: Curr. Opin. Ophthalmol.
– volume: 37
  start-page: 129
  year: 2017
  ident: 10.1016/j.optlastec.2023.109388_b0215
  article-title: Involuntary eye motion correction in retinal optical coherence tomography: hardware or software solution?
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.02.002
– year: 2018
  ident: 10.1016/j.optlastec.2023.109388_b0155
  article-title: The emergence of multimodal imaging in ophthalmology
  publication-title: Ophthalmol. Times Europe (online)
– volume: 10
  start-page: 1542
  year: 2002
  ident: 10.1016/j.optlastec.2023.109388_b0185
  article-title: Image stabilization for scanning laser ophthalmoscopy
  publication-title: Opt. Express
  doi: 10.1364/OE.10.001542
– volume: 22
  start-page: 7972
  year: 2014
  ident: 10.1016/j.optlastec.2023.109388_b0245
  article-title: Improved eye-fixation detection using polarization-modulated retinal birefringence scanning, immune to corneal birefringence
  publication-title: Opt. Express
  doi: 10.1364/OE.22.007972
– ident: 10.1016/j.optlastec.2023.109388_b0325
– volume: 28
  start-page: 488
  year: 1981
  ident: 10.1016/j.optlastec.2023.109388_b0070
  article-title: Scanning laser ophthalmoscope
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1981.324734
– volume: 17
  year: 2012
  ident: 10.1016/j.optlastec.2023.109388_b0355
  article-title: Birefringence of the central cornea in children assessed with scanning laser polarimetry
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.17.8.086001
– volume: 29
  start-page: 566
  year: 2018
  ident: 10.1016/j.optlastec.2023.109388_b0160
  article-title: Multimodal imaging of diabetic retinopathy
  publication-title: Curr. Opin. Ophthalmol.
  doi: 10.1097/ICU.0000000000000524
– volume: 24
  start-page: 1468
  year: 2007
  ident: 10.1016/j.optlastec.2023.109388_b0340
  article-title: Imaging polarimetry in patients with neovascular age-related macular degeneration
  publication-title: J. Opt. Soc. Am. A Opt. Image Sci. Vis.
  doi: 10.1364/JOSAA.24.001468
– volume: 9
  start-page: 1363
  year: 2004
  ident: 10.1016/j.optlastec.2023.109388_b0025
  article-title: Pediatric vision screener 1: instrument design and operation
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.1805560
– volume: 8
  start-page: 1838
  year: 2017
  ident: 10.1016/j.optlastec.2023.109388_b0120
  article-title: Polarization sensitive optical coherence tomography – a review [Invited]
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.001838
– volume: 22
  start-page: 307
  year: 2003
  ident: 10.1016/j.optlastec.2023.109388_b0380
  article-title: Role of the sclera in the development and pathological complications of myopia
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/S1350-9462(02)00063-0
– volume: 19
  year: 2014
  ident: 10.1016/j.optlastec.2023.109388_b0350
  article-title: Optimal timing of retinal scanning during dark adaptation, in the presence of fixation on a target: the role of pupil size dynamics
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.19.10.106014
– volume: 38
  start-page: 1273
  year: 1999
  ident: 10.1016/j.optlastec.2023.109388_b0010
  article-title: Automated detection of foveal fixation by use of retinal birefringence scanning
  publication-title: Appl. Opt.
  doi: 10.1364/AO.38.001273
– year: 2012
  ident: 10.1016/j.optlastec.2023.109388_b0230
– year: 2003
  ident: 10.1016/j.optlastec.2023.109388_b0265
– volume: 12
  start-page: 41
  year: 2013
  ident: 10.1016/j.optlastec.2023.109388_b0050
  article-title: Detecting fixation on a target using time-frequency distributions of a retinal birefringence scanning signal
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-12-41
– volume: 15
  start-page: 15
  year: 2016
  ident: 10.1016/j.optlastec.2023.109388_b0040
  article-title: New pediatric vision screener, part II: electronics, software, signal processing and validation
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-016-0128-7
– year: 1988
  ident: 10.1016/j.optlastec.2023.109388_b0285
– volume: 12
  start-page: e0169926
  year: 2017
  ident: 10.1016/j.optlastec.2023.109388_b0180
  article-title: Adaptive optics reveals photoreceptor abnormalities in diabetic macular ischemia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0169926
– volume: 43
  start-page: U1260
  year: 2002
  ident: 10.1016/j.optlastec.2023.109388_b0190
  article-title: Tracking scanning laser ophthalmoscope (TSLO): Initial human subject testing
  publication-title: Invest. Ophth. Vis. Sci.
– volume: 42
  start-page: 2179
  year: 2001
  ident: 10.1016/j.optlastec.2023.109388_b0375
  article-title: Structural and ultrastructural changes to the sclera in a mammalian model of high myopia
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 41
  start-page: 1968
  year: 2013
  ident: 10.1016/j.optlastec.2023.109388_b0045
  article-title: A device for continuous monitoring of true central fixation based on foveal birefringence
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-013-0818-2
– volume: 9
  start-page: 5945
  year: 2019
  ident: 10.1016/j.optlastec.2023.109388_b0170
  article-title: Contrast agent enhanced multimodal photoacoustic microscopy and optical coherence tomography for imaging of rabbit choroidal and retinal vessels in vivo
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-42324-5
– volume: 48
  start-page: 2578
  year: 2008
  ident: 10.1016/j.optlastec.2023.109388_b0260
  article-title: Spatial distribution of macular birefringence associated with the Henle fibers
  publication-title: Vision Res.
  doi: 10.1016/j.visres.2008.04.031
– ident: 10.1016/j.optlastec.2023.109388_b0370
– volume: 10
  start-page: 10
  year: 2021
  ident: 10.1016/j.optlastec.2023.109388_b0175
  article-title: In vivo subretinal ARPE-19 cell tracking using indocyanine green contrast-enhanced multimodality photoacoustic microscopy, optical coherence tomography, and fluorescence imaging for regenerative medicine
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.10.10.10
– ident: 10.1016/j.optlastec.2023.109388_b0395
– volume: 13
  start-page: 1106
  year: 1996
  ident: 10.1016/j.optlastec.2023.109388_b0295
  article-title: Interpretation of Mueller matrices based on polar decomposition
  publication-title: J. Opt. Soc. Am. A – Opt. Image Sci. Vis.
  doi: 10.1364/JOSAA.13.001106
– year: 1971
  ident: 10.1016/j.optlastec.2023.109388_b0365
– volume: 38
  start-page: 818
  year: 2016
  ident: 10.1016/j.optlastec.2023.109388_b0060
  article-title: Attention attraction in an ophthalmic diagnostic device using sound-modulated fixation targets
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2016.05.004
– start-page: 52
  year: 2014
  ident: 10.1016/j.optlastec.2023.109388_b0065
  article-title: Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer
  publication-title: Biomed. Eng. Online 13
  doi: 10.1186/1475-925X-13-52
– volume: 1
  year: 2015
  ident: 10.1016/j.optlastec.2023.109388_b0125
  article-title: A review of optical coherence tomography angiography (OCTA)
  publication-title: Int. J. Retina Vitreous (BioMed. Central)
– volume: 13
  start-page: 10217
  year: 2005
  ident: 10.1016/j.optlastec.2023.109388_b0115
  article-title: High speed spectral domain polarization sensitive optical coherence tomography of the human retina
  publication-title: Opt. Express
  doi: 10.1364/OPEX.13.010217
– volume: 11
  year: 2006
  ident: 10.1016/j.optlastec.2023.109388_b0235
  article-title: Birefringence-based eye fixation monitor with no moving parts
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.2209003
– ident: 10.1016/j.optlastec.2023.109388_b0015
– volume: 26
  start-page: 1492
  year: 1987
  ident: 10.1016/j.optlastec.2023.109388_b0075
  article-title: Confocal scanning laser ophthalmoscope
  publication-title: Appl. Opt.
  doi: 10.1364/AO.26.001492
– volume: 42
  start-page: 4621
  year: 2003
  ident: 10.1016/j.optlastec.2023.109388_b0195
  article-title: Compact scanning laser ophthalmoscope with high-speed retinal tracker
  publication-title: Appl. Opt.
  doi: 10.1364/AO.42.004621
– volume: 28
  start-page: 385
  year: 2008
  ident: 10.1016/j.optlastec.2023.109388_b0140
  article-title: Fundus autofluorescence imaging: review and perspectives
  publication-title: Retina
  doi: 10.1097/IAE.0b013e318164a907
– year: 1962
  ident: 10.1016/j.optlastec.2023.109388_b0225
– volume: 53
  start-page: 5258
  year: 2012
  ident: 10.1016/j.optlastec.2023.109388_b0385
  article-title: Quantitative mapping of collagen fiber orientation in non-glaucoma and glaucoma posterior human sclerae
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.12-9705
– volume: 119
  start-page: 627
  year: 1995
  ident: 10.1016/j.optlastec.2023.109388_b0090
  article-title: Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/S0002-9394(14)70221-1
– volume: 37
  start-page: 905
  year: 2015
  ident: 10.1016/j.optlastec.2023.109388_b0055
  article-title: Detection of central fixation using short-time autoregressive spectral estimation during retinal birefringence scanning
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2015.06.007
– volume: 4
  start-page: 112
  year: 2016
  ident: 10.1016/j.optlastec.2023.109388_b0150
  article-title: Photoacoustic imaging of the eye: a mini review
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2016.05.001
– year: 2005
  ident: 10.1016/j.optlastec.2023.109388_b0310
– ident: 10.1016/j.optlastec.2023.109388_b0300
– ident: 10.1016/j.optlastec.2023.109388_b0205
  doi: 10.1145/3314111.3322877
– volume: 41
  start-page: 4891
  year: 2016
  ident: 10.1016/j.optlastec.2023.109388_b0330
  article-title: Long working distance OCT with a compact 2f retinal scanning configuration for pediatric imaging
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.004891
– volume: 5
  start-page: 1391
  year: 2014
  ident: 10.1016/j.optlastec.2023.109388_b0400
  article-title: Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.5.001391
– volume: 43
  start-page: 82
  year: 2002
  ident: 10.1016/j.optlastec.2023.109388_b0275
  article-title: Linear birefringence of the central human cornea
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 41
  start-page: 26
  year: 2014
  ident: 10.1016/j.optlastec.2023.109388_b0105
  article-title: Doppler optical coherence tomography
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2014.03.004
– volume: 21
  start-page: 353
  year: 2007
  ident: 10.1016/j.optlastec.2023.109388_b0345
  article-title: Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration
  publication-title: Eye
  doi: 10.1038/sj.eye.6702203
– volume: 2
  start-page: 9
  year: 2000
  ident: 10.1016/j.optlastec.2023.109388_b0100
  article-title: Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy
  publication-title: Neoplasia
  doi: 10.1038/sj.neo.7900071
– volume: 12
  start-page: 191
  year: 1992
  ident: 10.1016/j.optlastec.2023.109388_b0135
  article-title: Digital indocyanine green videoangiography and choroidal neovascularization
  publication-title: Retina
  doi: 10.1097/00006982-199212030-00003
– volume: 207
  start-page: 1
  year: 2020
  ident: 10.1016/j.optlastec.2023.109388_b0255
  article-title: A Mueller matrix approach to flat gold mirror analysis and polarization balancing for use in retinal birefringence scanning systems
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.164474
– volume: 41
  start-page: 249
  year: 2017
  ident: 10.1016/j.optlastec.2023.109388_b0240
  article-title: A no-moving-parts sensor for the detection of eye fixation using polarised light and retinal birefringence information
  publication-title: J. Med. Eng. Technol.
  doi: 10.1080/03091902.2017.1281357
– year: 2016
  ident: 10.1016/j.optlastec.2023.109388_b0305
– volume: 7
  start-page: e44026
  year: 2012
  ident: 10.1016/j.optlastec.2023.109388_b0390
  article-title: Optical rheology of porcine sclera by birefringence imaging
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0044026
– volume: 10
  start-page: 405
  year: 2002
  ident: 10.1016/j.optlastec.2023.109388_b0085
  article-title: Adaptive optics scanning laser ophthalmoscopy
  publication-title: Opt. Express
  doi: 10.1364/OE.10.000405
– volume: 21
  start-page: 3811
  year: 1982
  ident: 10.1016/j.optlastec.2023.109388_b0360
  article-title: Retinal polarization effects
  publication-title: Appl. Opt.
  doi: 10.1364/AO.21.003811
– ident: 10.1016/j.optlastec.2023.109388_b0035
– volume: 254
  start-page: 1178
  year: 1991
  ident: 10.1016/j.optlastec.2023.109388_b0095
  article-title: Optical coherence tomography
  publication-title: Science
  doi: 10.1126/science.1957169
– volume: 6
  start-page: 1
  year: 2021
  ident: 10.1016/j.optlastec.2023.109388_b0210
  article-title: Navigation technology/eye-tracking in ophthalmology: principles, applications and benefits—a narrative review
  publication-title: Ann. Eye Sci.
  doi: 10.21037/aes-20-127
– volume: 19
  year: 2014
  ident: 10.1016/j.optlastec.2023.109388_b0030
  article-title: New pediatric vision screener employing polarization-modulated, retinal-birefringence-scanning-based strabismus detection and bull's eye focus detection with an improved target system: opto-mechanical design and operation
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.19.6.067004
– volume: 31
  start-page: 6676
  year: 1992
  ident: 10.1016/j.optlastec.2023.109388_b0290
  article-title: Mueller matrix dual-rotating retarder polarimeter
  publication-title: Appl. Opt.
  doi: 10.1364/AO.31.006676
– volume: 35
  start-page: 270
  year: 2010
  ident: 10.1016/j.optlastec.2023.109388_b0145
  article-title: Photoacoustic ocular imaging
  publication-title: Opt. Lett.
  doi: 10.1364/OL.35.000270
– ident: 10.1016/j.optlastec.2023.109388_b0320
  doi: 10.1364/FIO.2014.FW1F.2
– volume: 119
  year: 2020
  ident: 10.1016/j.optlastec.2023.109388_b0220
  article-title: Computer-aided fixation detection using retinal birefringence in multi-modal ophthalmic systems: Computer, electronics, algorithms
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103672
– volume: 6
  year: 2018
  ident: 10.1016/j.optlastec.2023.109388_b0165
  article-title: Multimodal optical medical imaging concepts based on optical coherence tomography
  publication-title: Front. Phys.-Lausanne
– volume: 3
  start-page: 2611
  year: 2012
  ident: 10.1016/j.optlastec.2023.109388_b0200
  article-title: High-speed, image-based eye tracking with a scanning laser ophthalmoscope
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.3.002611
– volume: 26
  start-page: 1500
  year: 1987
  ident: 10.1016/j.optlastec.2023.109388_b0080
  article-title: Fundus tracking with the scanning laser ophthalmoscope
  publication-title: Appl. Opt.
  doi: 10.1364/AO.26.001500
– volume: 24
  start-page: 82
  year: 1961
  ident: 10.1016/j.optlastec.2023.109388_b0130
  article-title: A method of photographing fluorescence in circulating blood in the human retina
  publication-title: Circulation
  doi: 10.1161/01.CIR.24.1.82
– volume: 2
  start-page: 1955
  year: 2011
  ident: 10.1016/j.optlastec.2023.109388_b0315
  article-title: Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.2.001955
– volume: 9
  start-page: 94
  year: 2004
  ident: 10.1016/j.optlastec.2023.109388_b0110
  article-title: Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.1629308
– volume: 6
  start-page: 12
  year: 2017
  ident: 10.1016/j.optlastec.2023.109388_b0335
  article-title: Characterization of long working distance optical coherence tomography for imaging of pediatric retinal pathology
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.6.5.12
– volume: 16
  start-page: 2103
  year: 1999
  ident: 10.1016/j.optlastec.2023.109388_b0005
  article-title: Mathematical modeling of retinal birefringence scanning
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.16.002103
– ident: 10.1016/j.optlastec.2023.109388_b0250
  doi: 10.1117/12.803344
– volume: 201
  start-page: 1
  year: 2020
  ident: 10.1016/j.optlastec.2023.109388_b0280
  article-title: A method of calculating compensators in polarization-sensitive optical systems
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.163474
– volume: 46
  start-page: 1809
  year: 2007
  ident: 10.1016/j.optlastec.2023.109388_b0020
  article-title: Directional eye fixation sensor using birefringence-based foveal detection
  publication-title: Appl. Opt.
  doi: 10.1364/AO.46.001809
– year: 2019
  ident: 10.1016/j.optlastec.2023.109388_b0270
SSID ssj0004653
Score 2.3587458
Snippet •Retinal imaging systems rarely incorporate technology for foveal tracking.•Retinal Birefringence Scanning (RBS) allows fast detection of central fixation.•RBS...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109388
SubjectTerms Computer modeling of polarization-sensitive systems
Conjoined ophthalmic systems
Fast central fixation detection
Ophthalmic optics
Polarization-responsive retinal scanning
Retinal birefringence
Title Central fixation detection with an open-frame retinal birefringence scanning system: Optics, optomechanics, polarization balancing aspects, computer modeling and simulation
URI https://dx.doi.org/10.1016/j.optlastec.2023.109388
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jIuhBdCrOHyMHj9alS5q2u43hmIrz4mC30vwoTFxXXAVP_kX-kealqWwg7OAxaV9p88JLXvq970PomoRCxjQinkrhN2NAlBelKfViDuRpTHCu4ED_acLHU_YwC2YNNKxrYQBW6WJ_FdNttHY9XTea3WI-hxpfE36BVpVC4mALzRkLYZbffvlrtZGOiZKaeGPu3sB4LYvS7FFLDVyGPWqplawEyx8r1NqqMzpEB267iAfVGx2hhs5baH-NRLCFdi2IU66O0bc7qsXZ_NMOOFa6tFCrHMN5K05zDGpZXgaILAz1i_BwYUYgs8d75uPxSlYqRrjieO7j5wKYnG-MZblcaCgUts0CcmJXxIkFACQlWKW2dNNcl04uAlutHXspV3g1Xzi9sBM0Hd29DMeeU2PwJPWD0mMsS30tQg1JLZdUycjXVurX9EtBFY-p0CY7lFoQrX2SBZHSRAHM2SQxip6iZr7M9RnClKhU9TJOhJ-xUFFBQ6F7jCupY-Yr1Ua89kAiHVU5KGa8JTUm7TX5dV0Crksq17UR-TUsKraO7Sb92sXJxsRLzJqyzfj8P8YXaA9aFZrwEjXL9w99ZXY4pejYKdxBO4P7x_HkBzg2AbA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kF1EP4hPf5uDRYrpp0623ZVG6PtaLgrfQPAorbre4FfxR_kgzaSorCB48tmFKmwmTzPSb7wM4o4lUKevTQOf4mzGmOujnOQtSjuRpkeRcY0H_fsyzp-jmOX5egmHbC4OwSh_7m5juorW_c-Fn86KaTLDH14ZfpFVlmDhgo3kX2aniDnQHo9tsvNAe6ckomQ051uAHzGtW1faYWhukM-wxx67kVFh-2aQWNp7rDVj3J0YyaF5qE5ZMuQVrCzyCW7DscJxqvg2fvlpLismHm3OiTe3QViXBkivJS4KCWUGBoCyCLYz4cGknoXAVPvv9ZK4aISPS0DxfkocKyZzPrWU9mxrsFXaXFabFvo-TSMRIKrTKXfemHVdeMYI4uR03VGoyn0y9ZNgOPF1fPQ6zwAsyBIqFcR1EUZGHRiYG81qumFb90Di1X3tfSaZ5yqSxCaIykhoT0iLua0M1Ip1tHqPZLnTKWWn2gDCqc90rOJVhESWaSZZI04u4ViaNQq33gbceEMqzlaNoxqtoYWkv4tt1Al0nGtftA_02rBrCjr9NLlsXix9rT9ht5S_jg_8Yn8JK9nh_J-5G49tDWMWRBlx4BJ367d0c2wNPLU_8gv4C9N0EYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Central+fixation+detection+with+an+open-frame+retinal+birefringence+scanning+system%3A+Optics%2C+optomechanics%2C+polarization+balancing+aspects%2C+computer+modeling+and+simulation&rft.jtitle=Optics+and+laser+technology&rft.au=Gramatikov%2C+Boris+I.&rft.au=Irsch%2C+Kristina&rft.au=Guyton%2C+David+L.&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0030-3992&rft.eissn=1879-2545&rft.volume=163&rft_id=info:doi/10.1016%2Fj.optlastec.2023.109388&rft.externalDocID=S0030399223002815
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon