Graphene quantum dot assisted translocation of drugs into a cell membrane

Graphene quantum dots (GQDs) are increasingly being recognized as anti-cancer drug carriers, e.g., doxorubicin delivery, in many experiments. In this work, the structure, thermodynamics and dynamic properties of model drugs (doxorubicin and deoxyadenosine) translocating into a POPC lipid membrane wi...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 11; no. 10; pp. 4503 - 4514
Main Authors Xue, Zhengyang, Sun, Quan, Zhang, Li, Kang, Zhengzhong, Liang, Lijun, Wang, Qi, Shen, Jia-Wei
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 14.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Graphene quantum dots (GQDs) are increasingly being recognized as anti-cancer drug carriers, e.g., doxorubicin delivery, in many experiments. In this work, the structure, thermodynamics and dynamic properties of model drugs (doxorubicin and deoxyadenosine) translocating into a POPC lipid membrane with the assistance of GQDs were investigated via MD simulation and free energy calculation. The simulation results imply that GQD19 can facilitate the permeation of model drugs into the lipid membrane on the nanosecond timescale with less deformation of the cell membrane structure. More importantly, free energy calculations further revealed that the translocation free energy of doxorubicin or deoxyadenosine permeating into the lipid bilayer could be significantly reduced with the assistance of GQD19. Our results suggest that GQDs with appropriate size may assist in the drug delivery process by reducing the translocation free energy permeating into the biomembrane. These results may promote the molecular design and application of GQD-based drug delivery systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2040-3364
2040-3372
DOI:10.1039/c8nr10091h