Cold Tolerance of Container-grown Green Ash Trees Is Influenced by Nitrogen Fertilizer Type and Rate

A study was conducted to determine whether nitrogen (N) application rate and fertilizer form are related to cold tolerance of buds and stems using container-grown ‘Summit’ green ash (Fraxinus pennsylvanica) trees. Trees were grown with different rates of N from either urea formaldehyde (UF) or a con...

Full description

Saved in:
Bibliographic Details
Published inHortTechnology (Alexandria, Va.) Vol. 20; no. 2; pp. 292 - 303
Main Authors Scagel, Carolyn F, Regan, Richard P, Hummel, Rita, Bi, Guihong
Format Journal Article
LanguageEnglish
Published 01.04.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A study was conducted to determine whether nitrogen (N) application rate and fertilizer form are related to cold tolerance of buds and stems using container-grown ‘Summit’ green ash (Fraxinus pennsylvanica) trees. Trees were grown with different rates of N from either urea formaldehyde (UF) or a controlled-release fertilizer (CRF) containing ammonium nitrate during the 2006 growing season; and growth, N and carbon (C) composition, and cold tolerance were evaluated in Oct. 2006, Dec. 2006, and Feb. 2007 by assessing the lowest survival temperature (LST) of stem and bud tissues on current season (2006) stems. Both fertilizer type and rate influenced the bud and stem LSTs. The influence of fertilizer rate was most evident on midwinter (December) stem LSTs and the influence of fertilizer type was observed in bud and stem LSTs during the deacclimation period in February. Higher LSTs were associated with higher N concentrations and lower C/N ratios; however, stems and buds of trees fertilized with UF were more cold-tolerant (had lower LSTs) than stems and buds on trees fertilized with CRF. Fertilizer type resulted in several differences in N and C translocation and metabolism during the fall and winter. Our results indicate trees with a similar N status are able to withstand different levels of cold depending on the rate of N and the type or form of fertilizer used during production. This may have to do with differences in how trees metabolize the different fertilizer forms, where and when the N is stored, and how it is remobilized in the spring, especially in relation to C metabolism.
Bibliography:http://hdl.handle.net/10113/45720
ISSN:1063-0198
1943-7714
DOI:10.21273/horttech.20.2.292