Temperature compensation based on BP neural network with small sample data for chloride ions optical fiber probe

•The small sample data temperature compensation of chloride ion probe was proposed.•An improved adaptive BP neural network algorithm was designed.•The Black Widow Optimization Algorithm was combined with BP neural network.•The improved model achieves good recognition accuracy (1.21% relative error)....

Full description

Saved in:
Bibliographic Details
Published inOptics and laser technology Vol. 176; p. 110973
Main Authors Li, Xia, Ke, Sicheng, Li, Yu, Jin, Wa, Fu, Xinghu, Fu, Guangwei, Bi, Weihong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2024
Subjects
Online AccessGet full text
ISSN0030-3992
DOI10.1016/j.optlastec.2024.110973

Cover

Abstract •The small sample data temperature compensation of chloride ion probe was proposed.•An improved adaptive BP neural network algorithm was designed.•The Black Widow Optimization Algorithm was combined with BP neural network.•The improved model achieves good recognition accuracy (1.21% relative error). Fiber optic sensors have great applied in the field of sensing, however they are subject to temperature. In this study, we proposed an improved small sample data Back Propagating (BP) neural network for temperature compensation of a chloride ion probe based on an optical fiber Fabry-Perot interferometer (FPI). The temperature compensation results show that the Black Widow Optimization (BWO) algorithm was combined with BP neural network to further improve the performance of the model with a great detection accuracy that the relative error is 1.21%, associated with a Mean Square Error (MSE) of 2.6e−5.This is an excellent temperature compensation method with low computational cost and small samples.
AbstractList •The small sample data temperature compensation of chloride ion probe was proposed.•An improved adaptive BP neural network algorithm was designed.•The Black Widow Optimization Algorithm was combined with BP neural network.•The improved model achieves good recognition accuracy (1.21% relative error). Fiber optic sensors have great applied in the field of sensing, however they are subject to temperature. In this study, we proposed an improved small sample data Back Propagating (BP) neural network for temperature compensation of a chloride ion probe based on an optical fiber Fabry-Perot interferometer (FPI). The temperature compensation results show that the Black Widow Optimization (BWO) algorithm was combined with BP neural network to further improve the performance of the model with a great detection accuracy that the relative error is 1.21%, associated with a Mean Square Error (MSE) of 2.6e−5.This is an excellent temperature compensation method with low computational cost and small samples.
ArticleNumber 110973
Author Li, Yu
Jin, Wa
Fu, Guangwei
Fu, Xinghu
Li, Xia
Ke, Sicheng
Bi, Weihong
Author_xml – sequence: 1
  givenname: Xia
  surname: Li
  fullname: Li, Xia
– sequence: 2
  givenname: Sicheng
  surname: Ke
  fullname: Ke, Sicheng
– sequence: 3
  givenname: Yu
  surname: Li
  fullname: Li, Yu
– sequence: 4
  givenname: Wa
  surname: Jin
  fullname: Jin, Wa
– sequence: 5
  givenname: Xinghu
  surname: Fu
  fullname: Fu, Xinghu
– sequence: 6
  givenname: Guangwei
  surname: Fu
  fullname: Fu, Guangwei
– sequence: 7
  givenname: Weihong
  surname: Bi
  fullname: Bi, Weihong
  email: bwhong@ysu.edu.cn
BookMark eNqNkL1OwzAUhT0UibbwDPgFEuzYSZqBoVT8SZVgKLPlnxvVJYkj26Xi7XEpYmCB6ZzlO7r3m6HJ4AZA6IqSnBJaXe9yN8ZOhgg6L0jBc0pJU7MJmhLCSMaapjhHsxB2hBBelWyKxg30I3gZ9x6wdqkPQUbrBqxkAINTuX3BA-y97FLEg_Nv-GDjFodedh0Osh87wEZGiVvnsd52zlsDOE0EnK6xOoGtVeDx6J2CC3TWyi7A5XfO0ev93Wb1mK2fH55Wy3WmGS1jxmRlDFnUVJWGF7w0Sld0oRUvKi1NY1TDQXNWUl3xBW8kV6qBuqRtIWlb14bN0c1pV3sXgodWaBu_Pote2k5QIo7KxE78KBNHZeKkLPH1L370tpf-4x_k8kRCeu_dghdBWxg0GOtBR2Gc_XPjE1MKkts
CitedBy_id crossref_primary_10_3390_app15020935
crossref_primary_10_3390_s24165394
crossref_primary_10_1016_j_ijmecsci_2024_109510
crossref_primary_10_1016_j_physleta_2024_130030
crossref_primary_10_46604_ijeti_2024_13621
crossref_primary_10_1016_j_triboint_2024_110272
crossref_primary_10_1021_acsanm_4c06895
crossref_primary_10_1088_1361_6501_adc02b
crossref_primary_10_1088_1402_4896_ad75d4
crossref_primary_10_3390_buildings15010149
crossref_primary_10_1109_JSEN_2024_3456967
Cites_doi 10.1007/978-981-10-6373-2_14
10.1080/10739149.2013.816965
10.3390/electronics8040425
10.1364/OE.463396
10.1016/j.saa.2020.118169
10.1080/01431161.2021.1910367
10.1088/1755-1315/117/1/012031
10.1016/j.jiec.2020.09.020
10.1364/OE.19.020003
10.1016/j.jcf.2008.07.005
10.1016/j.engappai.2019.103249
10.1016/j.atmosenv.2016.10.024
10.1021/acs.est.6b00679
10.1007/s11356-021-14065-4
10.1016/j.snb.2021.131134
10.1016/j.econmod.2020.06.008
10.1016/j.heliyon.2023.e20133
10.3390/horticulturae8030261
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.optlastec.2024.110973
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_optlastec_2024_110973
S0030399224004316
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFFNX
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
ZMT
~G-
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c315t-3a6dd0871b5d4245dbc618cb426cad9db94ec4351c64849a4bb9e751f2a1f77d3
IEDL.DBID AIKHN
ISSN 0030-3992
IngestDate Tue Jul 01 01:39:03 EDT 2025
Thu Apr 24 23:04:44 EDT 2025
Sat Sep 28 16:20:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Optic fiber probe
Temperature compensation
BP neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-3a6dd0871b5d4245dbc618cb426cad9db94ec4351c64849a4bb9e751f2a1f77d3
ParticipantIDs crossref_citationtrail_10_1016_j_optlastec_2024_110973
crossref_primary_10_1016_j_optlastec_2024_110973
elsevier_sciencedirect_doi_10_1016_j_optlastec_2024_110973
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Optics and laser technology
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Peng, Zhou, Liu, He, Gao, Guo (b0050) 2020; 233
Xu, Song, Xia, Chen, Wang, Wei (b0055) 2017; 762
I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep Learning, Cambridge, 2016.
Hayyolalam, Kazem (b0090) 2020; 87
Zhu, Jiang, Chen, Wang, Sun, Zhang, Wang, Huang (b0025) 2022; 30
Zhao, Zhao, Wang, Peng, Hu (b0030) 2022; 353
Li, Li, Li (b0080) 2015; 14
Kaushal (b0010) 2016; 50
Suresh, Rajan, Pushparaj (b0100) 2021; 42
Popoola, Stewart, Mead, Jones (b0040) 2016; 147
Panahi, Ehteram, Emami (b0095) 2021; 28
Adrián (b0110) 2020; 8
Wu, Guan, Lu, Tam (b0035) 2011; 19
Wang, Zhang, You, Yuan, Zhao, Jiang (b0075) 2013; 41
Alweshah, Aldabbas, Abu-Salih (b0105) 2023; 9
Li, Zhang (b0045) 2017
Xu, Feng, Xing (b0085) 2019; 8
Toscano, La Fornara, Romano (b0015) 2022; 8
Lebecque, Leonard, De Boeck, De Baets, Malfroot, Casimir, Desager, Godding, Leal (b0020) 2009; 8
Abidin, Asmat, Hamidon (b0060) 2018; 117
Jahn (b0065) 2020; 91
Wang, Du, Yang, Tian, Ge, Huang, Wang (b0005) 2021; 93
Zhu (10.1016/j.optlastec.2024.110973_b0025) 2022; 30
Panahi (10.1016/j.optlastec.2024.110973_b0095) 2021; 28
Xu (10.1016/j.optlastec.2024.110973_b0085) 2019; 8
Peng (10.1016/j.optlastec.2024.110973_b0050) 2020; 233
Abidin (10.1016/j.optlastec.2024.110973_b0060) 2018; 117
Adrián (10.1016/j.optlastec.2024.110973_b0110) 2020; 8
Xu (10.1016/j.optlastec.2024.110973_b0055) 2017; 762
10.1016/j.optlastec.2024.110973_b0070
Wu (10.1016/j.optlastec.2024.110973_b0035) 2011; 19
Popoola (10.1016/j.optlastec.2024.110973_b0040) 2016; 147
Zhao (10.1016/j.optlastec.2024.110973_b0030) 2022; 353
Hayyolalam (10.1016/j.optlastec.2024.110973_b0090) 2020; 87
Li (10.1016/j.optlastec.2024.110973_b0080) 2015; 14
Toscano (10.1016/j.optlastec.2024.110973_b0015) 2022; 8
Kaushal (10.1016/j.optlastec.2024.110973_b0010) 2016; 50
Li (10.1016/j.optlastec.2024.110973_b0045) 2017
Suresh (10.1016/j.optlastec.2024.110973_b0100) 2021; 42
Lebecque (10.1016/j.optlastec.2024.110973_b0020) 2009; 8
Alweshah (10.1016/j.optlastec.2024.110973_b0105) 2023; 9
Jahn (10.1016/j.optlastec.2024.110973_b0065) 2020; 91
Wang (10.1016/j.optlastec.2024.110973_b0075) 2013; 41
Wang (10.1016/j.optlastec.2024.110973_b0005) 2021; 93
References_xml – volume: 30
  start-page: 34956
  year: 2022
  end-page: 34972
  ident: b0025
  article-title: Highly sensitive gas pressure sensor based on the enhanced Vernier effect through a cascaded fabry-perot and mach-zehnder interferometer
  publication-title: Opt. Express
– volume: 762
  start-page: 135
  year: 2017
  end-page: 145
  ident: b0055
  article-title: Temperature and humidity compensation for MOS gas sensor based on random forests
  publication-title: Intelligent Computing, Networked Control, and Their Engineering Applications
– volume: 28
  year: 2021
  ident: b0095
  article-title: Suspended sediment load prediction based on soft computing models and black Widow optimization algorithm using an enhanced gamma test
  publication-title: Environ. Sci. Pollut. Res.
– volume: 353
  start-page: 10
  year: 2022
  ident: b0030
  article-title: Femtosecond laser-inscribed fiber-optic sensor for seawater salinity and temperature measurements
  publication-title: Sens. Actuator B-Chem.
– volume: 8
  start-page: 26
  year: 2009
  end-page: 30
  ident: b0020
  article-title: Early referral to cystic fibrosis specialist centre impacts on respiratory outcome
  publication-title: J. Cyst. Fibros
– volume: 117
  year: 2018
  ident: b0060
  article-title: Comparative study of drift compensation methods for environmental gas sensors
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
– volume: 42
  year: 2021
  ident: b0100
  article-title: Dehazing of satellite images using Adaptive black Widow optimization-based framework
  publication-title: Int. J. Remote Sens.
– volume: 93
  start-page: 170
  year: 2021
  end-page: 175
  ident: b0005
  article-title: Removal of chloride ions from acidic solution with antimony oxides
  publication-title: J. Ind. Eng. Chem.
– volume: 8
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0110
  article-title: Pea-delgado, hernán Peraza-vázquez, Juan H, Almazán-Covarrubias, a novel bio-inspired algorithm applied to selective Harmonic elimination in a three-phase eleven-level inverter
  publication-title: Math. Probl. Eng.
– volume: 87
  year: 2020
  ident: b0090
  article-title: Black Widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 233
  year: 2020
  ident: b0050
  article-title: An ultra-sensitive detection system for sulfur dioxide and nitric oxide based on improved differential optical absorption spectroscopy method
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 91
  start-page: 148
  year: 2020
  end-page: 154
  ident: b0065
  article-title: Artificial neural network regression models in a panel setting: predicting economic growth
  publication-title: Econ. Model.
– volume: 8
  start-page: 26
  year: 2022
  ident: b0015
  article-title: Salt spray and Surfactants induced morphological, physiological, and biochemical responses in Callistemon citrinus (Curtis) plants
  publication-title: Horticulturae
– volume: 147
  start-page: 330
  year: 2016
  end-page: 343
  ident: b0040
  article-title: Development of a baseline temperature correction methodology for electrochemical sensors and its implications for long-term stability
  publication-title: Atmos. Environ.
– volume: 19
  start-page: 6
  year: 2011
  ident: b0035
  article-title: Salinity sensor based on polyimide-coated photonic crystal fiber
  publication-title: Opt. Express
– start-page: 99
  year: 2017
  end-page: 103
  ident: b0045
  article-title: Research on key technology of CO2 concentration measurement based on non-dispersive infrared, in
  publication-title: 2nd International Conference on Frontiers of Sensors Technologies (ICFST)
– reference: I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep Learning, Cambridge, 2016.
– volume: 50
  start-page: 2765
  year: 2016
  end-page: 2766
  ident: b0010
  article-title: Increased salinization decreases safe drinking water
  publication-title: Environ. Sci. Technol.
– volume: 8
  year: 2019
  ident: b0085
  article-title: Modeling and analysis of Adaptive temperature compensation for humidity sensors
  publication-title: Electronics
– volume: 9
  year: 2023
  ident: b0105
  article-title: Hybrid black widow optimization with iterated greedy algorithm for gene selection problems
  publication-title: Heliyon
– volume: 14
  start-page: 1
  year: 2015
  end-page: 6
  ident: b0080
  article-title: The Research of temperature compensation for thermopile sensor based on improved PSO-BP algorithm
  publication-title: Math. Probl. Eng.
– volume: 41
  start-page: 608
  year: 2013
  end-page: 618
  ident: b0075
  article-title: Back propagation neural network model for temperature and humidity compensation of a non dispersive infrared methane sensor
  publication-title: Instrum. Sci. Technol.
– volume: 762
  start-page: 135
  year: 2017
  ident: 10.1016/j.optlastec.2024.110973_b0055
  article-title: Temperature and humidity compensation for MOS gas sensor based on random forests
  publication-title: Intelligent Computing, Networked Control, and Their Engineering Applications
  doi: 10.1007/978-981-10-6373-2_14
– volume: 41
  start-page: 608
  year: 2013
  ident: 10.1016/j.optlastec.2024.110973_b0075
  article-title: Back propagation neural network model for temperature and humidity compensation of a non dispersive infrared methane sensor
  publication-title: Instrum. Sci. Technol.
  doi: 10.1080/10739149.2013.816965
– volume: 8
  year: 2019
  ident: 10.1016/j.optlastec.2024.110973_b0085
  article-title: Modeling and analysis of Adaptive temperature compensation for humidity sensors
  publication-title: Electronics
  doi: 10.3390/electronics8040425
– ident: 10.1016/j.optlastec.2024.110973_b0070
– volume: 30
  start-page: 34956
  year: 2022
  ident: 10.1016/j.optlastec.2024.110973_b0025
  article-title: Highly sensitive gas pressure sensor based on the enhanced Vernier effect through a cascaded fabry-perot and mach-zehnder interferometer
  publication-title: Opt. Express
  doi: 10.1364/OE.463396
– volume: 233
  year: 2020
  ident: 10.1016/j.optlastec.2024.110973_b0050
  article-title: An ultra-sensitive detection system for sulfur dioxide and nitric oxide based on improved differential optical absorption spectroscopy method
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2020.118169
– volume: 42
  year: 2021
  ident: 10.1016/j.optlastec.2024.110973_b0100
  article-title: Dehazing of satellite images using Adaptive black Widow optimization-based framework
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2021.1910367
– volume: 117
  year: 2018
  ident: 10.1016/j.optlastec.2024.110973_b0060
  article-title: Comparative study of drift compensation methods for environmental gas sensors
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/117/1/012031
– volume: 93
  start-page: 170
  issue: 2020
  year: 2021
  ident: 10.1016/j.optlastec.2024.110973_b0005
  article-title: Removal of chloride ions from acidic solution with antimony oxides
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2020.09.020
– volume: 19
  start-page: 6
  year: 2011
  ident: 10.1016/j.optlastec.2024.110973_b0035
  article-title: Salinity sensor based on polyimide-coated photonic crystal fiber
  publication-title: Opt. Express
  doi: 10.1364/OE.19.020003
– volume: 8
  start-page: 26
  year: 2009
  ident: 10.1016/j.optlastec.2024.110973_b0020
  article-title: Early referral to cystic fibrosis specialist centre impacts on respiratory outcome
  publication-title: J. Cyst. Fibros
  doi: 10.1016/j.jcf.2008.07.005
– volume: 87
  year: 2020
  ident: 10.1016/j.optlastec.2024.110973_b0090
  article-title: Black Widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103249
– volume: 147
  start-page: 330
  year: 2016
  ident: 10.1016/j.optlastec.2024.110973_b0040
  article-title: Development of a baseline temperature correction methodology for electrochemical sensors and its implications for long-term stability
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.10.024
– volume: 50
  start-page: 2765
  year: 2016
  ident: 10.1016/j.optlastec.2024.110973_b0010
  article-title: Increased salinization decreases safe drinking water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00679
– start-page: 99
  year: 2017
  ident: 10.1016/j.optlastec.2024.110973_b0045
  article-title: Research on key technology of CO2 concentration measurement based on non-dispersive infrared, in
– volume: 28
  year: 2021
  ident: 10.1016/j.optlastec.2024.110973_b0095
  article-title: Suspended sediment load prediction based on soft computing models and black Widow optimization algorithm using an enhanced gamma test
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-14065-4
– volume: 353
  start-page: 10
  year: 2022
  ident: 10.1016/j.optlastec.2024.110973_b0030
  article-title: Femtosecond laser-inscribed fiber-optic sensor for seawater salinity and temperature measurements
  publication-title: Sens. Actuator B-Chem.
  doi: 10.1016/j.snb.2021.131134
– volume: 91
  start-page: 148
  year: 2020
  ident: 10.1016/j.optlastec.2024.110973_b0065
  article-title: Artificial neural network regression models in a panel setting: predicting economic growth
  publication-title: Econ. Model.
  doi: 10.1016/j.econmod.2020.06.008
– volume: 14
  start-page: 1
  year: 2015
  ident: 10.1016/j.optlastec.2024.110973_b0080
  article-title: The Research of temperature compensation for thermopile sensor based on improved PSO-BP algorithm
  publication-title: Math. Probl. Eng.
– volume: 9
  year: 2023
  ident: 10.1016/j.optlastec.2024.110973_b0105
  article-title: Hybrid black widow optimization with iterated greedy algorithm for gene selection problems
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e20133
– volume: 8
  start-page: 26
  year: 2022
  ident: 10.1016/j.optlastec.2024.110973_b0015
  article-title: Salt spray and Surfactants induced morphological, physiological, and biochemical responses in Callistemon citrinus (Curtis) plants
  publication-title: Horticulturae
  doi: 10.3390/horticulturae8030261
– volume: 8
  start-page: 1
  year: 2020
  ident: 10.1016/j.optlastec.2024.110973_b0110
  article-title: Pea-delgado, hernán Peraza-vázquez, Juan H, Almazán-Covarrubias, a novel bio-inspired algorithm applied to selective Harmonic elimination in a three-phase eleven-level inverter
  publication-title: Math. Probl. Eng.
SSID ssj0004653
Score 2.4610653
SecondaryResourceType review_article
Snippet •The small sample data temperature compensation of chloride ion probe was proposed.•An improved adaptive BP neural network algorithm was designed.•The Black...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110973
SubjectTerms BP neural network
Optic fiber probe
Temperature compensation
Title Temperature compensation based on BP neural network with small sample data for chloride ions optical fiber probe
URI https://dx.doi.org/10.1016/j.optlastec.2024.110973
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qi6AH8Ylv9uA1tpt9pPGmolTF4sFCb2FfQaW2xcarv92ZJJUWBA_eNoEJyeww8232m28BzlRssez4OMJSkkbSaREZkQgclfLieQhdanB-7OveQN4P1bAB1_NeGKJV1rm_yulltq7vtGtvtqevr9Tji-mXZFUpDAXXK9CKRapVE1qXdw-9_kJ7ZC1GKTDloMESzWsyLRCmFoHkDGNZCnAm4vcitVB4bjdho0aM7LJ6qS1ohPE2rC_oCG7DasnjdLMdmD4HxMGVTjIjujiuUkvfMypXnuHg6omRiCU-clxRwBn9i2WzdzMasZkhtWBGvFGGcJa5F2Lo-cAoOhl-Bc0py4lmwugsmrALg9ub5-teVB-qEDnBVREJo73v4DLJKk-7nt46zbvOYqV2xqfepjI4xFDcadmVqZHWpiFRPI8Nz5PEiz1ojifjsA_MJ0Fbo2OPEFAqkxgVh4TnRBz1uerGB6DnXsxcrThOB1-Msjm17C37cX9G7s8q9x9A58dwWolu_G1yMZ-mbCl-MiwNfxkf_sf4CNboquKdHUOz-PgMJwhUCnsKK-df_LQOx2_5L-nr
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6qIupBtCq-3YPXWJN9Nd60WOoTDxV6C_sKKrUWG6_-dmeSVCoIHrwtSSYks8N8s8k33wIcy8Qi7PgkQihJI-EUjwzXHEelvHgeQpsanO_uVe9RXA_koAGdaS8M0Srr3F_l9DJb10datTdb4-dn6vHF9EuyqhSGPFZzsCAk18TrO_mMZ5ojaylKjgkHL_9B8nobF1ikFoHEDBNRym9q_jtEzcBOdw1W63qRnVePtA6NMGrCyoyKYBMWSxanm2zAuB-wCq5UkhmRxXGNWnqeEVh5hoOLB0YSlnjLUUUAZ_Qllk1ezXDIJoa0ghmxRhkWs8w9ET_PB0axyfAtaEZZTiQTRjvRhE147F72O72o3lIhcjyWRcSN8v4UF0lWevrn6a1TcdtZxGlnfOptKoLDCip2SrRFaoS1adAyzhMT51p7vgXzo7dR2AbmdVDWqMRjASik0UYmQcc50UZ9LtvJDqipFzNX643TthfDbEose8m-3Z-R-7PK_Ttw-m04riQ3_jY5m05T9iN6MgSGv4x3_2N8BEu9_t1tdnt1f7MHy3SmYqDtw3zx_hEOsGQp7GEZkl_3I-q2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+compensation+based+on+BP+neural+network+with+small+sample+data+for+chloride+ions+optical+fiber+probe&rft.jtitle=Optics+and+laser+technology&rft.au=Li%2C+Xia&rft.au=Ke%2C+Sicheng&rft.au=Li%2C+Yu&rft.au=Jin%2C+Wa&rft.date=2024-09-01&rft.pub=Elsevier+Ltd&rft.issn=0030-3992&rft.volume=176&rft_id=info:doi/10.1016%2Fj.optlastec.2024.110973&rft.externalDocID=S0030399224004316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon