3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis
We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a spacer. The SERS performance of the 3D nanostructure was investigated and it was found that the SERS effect increased as the number of Ag NP layers...
Saved in:
Published in | Nanoscale Vol. 10; no. 13; pp. 5897 - 5905 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
07.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a spacer. The SERS performance of the 3D nanostructure was investigated and it was found that the SERS effect increased as the number of Ag NP layers increased, and showed almost no change for more than four layers. We found that the SERS performance of the 3D nanostructures can be mainly attributed to the topmost hot spots which are closely related to the Ag NP layers in the 3D nanostructure. Furthermore, we explored 3D nanostructures with different Ag NP layers using the finite difference time domain method (FDTD). The 3D SERS substrates also exhibit excellent detection capability. The limit of detection (LOD) was calculated down to 10
−15
M for R6G and 10
−12
M for CV. In addition, the reproducibility of the 3D SERS substrate was attributed obviously to the increasing number of Ag NP layers. Based on these promising results, the highly sensitive detection of molecules such as malachite green was demonstrated for food safety inspection. |
---|---|
AbstractList | We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a spacer. The SERS performance of the 3D nanostructure was investigated and it was found that the SERS effect increased as the number of Ag NP layers increased, and showed almost no change for more than four layers. We found that the SERS performance of the 3D nanostructures can be mainly attributed to the topmost hot spots which are closely related to the Ag NP layers in the 3D nanostructure. Furthermore, we explored 3D nanostructures with different Ag NP layers using the finite difference time domain method (FDTD). The 3D SERS substrates also exhibit excellent detection capability. The limit of detection (LOD) was calculated down to 10−15 M for R6G and 10−12 M for CV. In addition, the reproducibility of the 3D SERS substrate was attributed obviously to the increasing number of Ag NP layers. Based on these promising results, the highly sensitive detection of molecules such as malachite green was demonstrated for food safety inspection. We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a spacer. The SERS performance of the 3D nanostructure was investigated and it was found that the SERS effect increased as the number of Ag NP layers increased, and showed almost no change for more than four layers. We found that the SERS performance of the 3D nanostructures can be mainly attributed to the topmost hot spots which are closely related to the Ag NP layers in the 3D nanostructure. Furthermore, we explored 3D nanostructures with different Ag NP layers using the finite difference time domain method (FDTD). The 3D SERS substrates also exhibit excellent detection capability. The limit of detection (LOD) was calculated down to 10-15 M for R6G and 10-12 M for CV. In addition, the reproducibility of the 3D SERS substrate was attributed obviously to the increasing number of Ag NP layers. Based on these promising results, the highly sensitive detection of molecules such as malachite green was demonstrated for food safety inspection.We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a spacer. The SERS performance of the 3D nanostructure was investigated and it was found that the SERS effect increased as the number of Ag NP layers increased, and showed almost no change for more than four layers. We found that the SERS performance of the 3D nanostructures can be mainly attributed to the topmost hot spots which are closely related to the Ag NP layers in the 3D nanostructure. Furthermore, we explored 3D nanostructures with different Ag NP layers using the finite difference time domain method (FDTD). The 3D SERS substrates also exhibit excellent detection capability. The limit of detection (LOD) was calculated down to 10-15 M for R6G and 10-12 M for CV. In addition, the reproducibility of the 3D SERS substrate was attributed obviously to the increasing number of Ag NP layers. Based on these promising results, the highly sensitive detection of molecules such as malachite green was demonstrated for food safety inspection. We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a spacer. The SERS performance of the 3D nanostructure was investigated and it was found that the SERS effect increased as the number of Ag NP layers increased, and showed almost no change for more than four layers. We found that the SERS performance of the 3D nanostructures can be mainly attributed to the topmost hot spots which are closely related to the Ag NP layers in the 3D nanostructure. Furthermore, we explored 3D nanostructures with different Ag NP layers using the finite difference time domain method (FDTD). The 3D SERS substrates also exhibit excellent detection capability. The limit of detection (LOD) was calculated down to 10-15 M for R6G and 10-12 M for CV. In addition, the reproducibility of the 3D SERS substrate was attributed obviously to the increasing number of Ag NP layers. Based on these promising results, the highly sensitive detection of molecules such as malachite green was demonstrated for food safety inspection. We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a spacer. The SERS performance of the 3D nanostructure was investigated and it was found that the SERS effect increased as the number of Ag NP layers increased, and showed almost no change for more than four layers. We found that the SERS performance of the 3D nanostructures can be mainly attributed to the topmost hot spots which are closely related to the Ag NP layers in the 3D nanostructure. Furthermore, we explored 3D nanostructures with different Ag NP layers using the finite difference time domain method (FDTD). The 3D SERS substrates also exhibit excellent detection capability. The limit of detection (LOD) was calculated down to 10 −15 M for R6G and 10 −12 M for CV. In addition, the reproducibility of the 3D SERS substrate was attributed obviously to the increasing number of Ag NP layers. Based on these promising results, the highly sensitive detection of molecules such as malachite green was demonstrated for food safety inspection. |
Author | Ning, Tingyin Li, Zhen Huo, Yanyan Zhang, Chao He, Yuan Wang, Minghong Liu, Aihua Jiang, Shouzhen Li, Chonghui Man, Baoyuan |
Author_xml | – sequence: 1 givenname: Zhen orcidid: 0000-0002-6820-4187 surname: Li fullname: Li, Zhen organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China – sequence: 2 givenname: Shouzhen surname: Jiang fullname: Jiang, Shouzhen organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China – sequence: 3 givenname: Yanyan surname: Huo fullname: Huo, Yanyan organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China – sequence: 4 givenname: Tingyin surname: Ning fullname: Ning, Tingyin organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China – sequence: 5 givenname: Aihua surname: Liu fullname: Liu, Aihua organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China – sequence: 6 givenname: Chao surname: Zhang fullname: Zhang, Chao organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China – sequence: 7 givenname: Yuan surname: He fullname: He, Yuan organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China – sequence: 8 givenname: Minghong orcidid: 0000-0003-4462-4766 surname: Wang fullname: Wang, Minghong organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China – sequence: 9 givenname: Chonghui surname: Li fullname: Li, Chonghui organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China – sequence: 10 givenname: Baoyuan surname: Man fullname: Man, Baoyuan organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29546897$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0VtrFTEQAOAgLfaiL_4ACfhShFNz3d08yvFSoSgUfV5msxNPym6yJtna8--NtlUoPmXCfDNMMifkIMSAhLzg7Jwzad5s289XzIi2uXhCjgVTbCNlKw7-xo06Iic5XzPWGNnIp-RIGK2azrTHJMt3NPvpBhMNEOICqXg7YaY_fdnReZ2Kn2Bfs98TLDsMSOOtH5FCpkDzAramXEw0r8nVC8Wwg2BxpFcwQ6gCbUkx27jsKQSY9tnnZ-TQwZTx-f15Sr59eP91e7G5_PLx0_bt5cZKrstGtnZwaLnthGPKDqCt0U6OWoiBjdrVgCsnlXMt13YUEjtnkauhc4Nph0aekrO7vkuKP1bMpZ99tjhNEDCuuReMK6O6lplKXz2i13FNdd4_ymghNVdVvbxX6zDj2C_Jz5D2_cN3VsDugK1vzgldb32B4mMoCfzUc9b_3lj_b2O15PWjkoeu_8G_AMbll1c |
CitedBy_id | crossref_primary_10_1088_1361_6463_ab08c1 crossref_primary_10_1039_C8AY01698D crossref_primary_10_1364_OE_26_022432 crossref_primary_10_3390_lubricants7090081 crossref_primary_10_1016_j_jhazmat_2021_127686 crossref_primary_10_1515_nanoph_2020_0644 crossref_primary_10_1016_j_msec_2020_111362 crossref_primary_10_1364_OE_441176 crossref_primary_10_1039_D0TC02752A crossref_primary_10_1016_j_jallcom_2023_170573 crossref_primary_10_1016_j_apsusc_2018_11_223 crossref_primary_10_1364_OE_27_003483 crossref_primary_10_1364_OE_27_003000 crossref_primary_10_3390_chemosensors11020073 crossref_primary_10_1016_j_apsusc_2021_149623 crossref_primary_10_1364_OE_419133 crossref_primary_10_1002_elps_201900285 crossref_primary_10_1039_D4NJ04049J crossref_primary_10_1021_acsomega_0c00133 crossref_primary_10_1039_D0CP01866J crossref_primary_10_1039_D0NA00849D crossref_primary_10_1016_j_compscitech_2019_05_003 crossref_primary_10_1039_D3AY02044D crossref_primary_10_1515_nanoph_2021_0381 crossref_primary_10_1016_j_apsusc_2022_154123 crossref_primary_10_1364_OE_441606 crossref_primary_10_1016_j_apsusc_2018_08_065 crossref_primary_10_1038_s41598_020_62251_0 crossref_primary_10_1016_j_ceramint_2020_10_238 crossref_primary_10_1002_jrs_6350 crossref_primary_10_1016_j_apmt_2020_100871 crossref_primary_10_3390_nano12030401 crossref_primary_10_1016_j_snb_2020_127663 crossref_primary_10_1063_1_5111082 crossref_primary_10_1002_admi_201900659 crossref_primary_10_1515_nanoph_2021_0301 crossref_primary_10_1016_j_pdpdt_2022_103156 crossref_primary_10_1016_j_vibspec_2023_103614 crossref_primary_10_1002_advs_202100640 crossref_primary_10_1016_j_chemphys_2022_111591 crossref_primary_10_1016_j_optlastec_2023_109533 crossref_primary_10_1364_AO_411974 crossref_primary_10_1021_acssuschemeng_2c03220 crossref_primary_10_1364_AO_386966 crossref_primary_10_1364_OE_389886 crossref_primary_10_3390_nano11030587 crossref_primary_10_1021_acsanm_3c04835 crossref_primary_10_1364_BOE_408649 crossref_primary_10_1364_OE_435627 crossref_primary_10_1039_D4NA00464G crossref_primary_10_1016_j_talanta_2024_126717 crossref_primary_10_3390_nano13091518 crossref_primary_10_1364_OE_26_022168 crossref_primary_10_1021_acsomega_4c04961 crossref_primary_10_3390_nano14201648 crossref_primary_10_1016_j_talanta_2019_120535 crossref_primary_10_1021_acsanm_2c05011 crossref_primary_10_1016_j_apcatb_2019_03_084 crossref_primary_10_1088_1361_6528_ab3ee7 crossref_primary_10_1016_j_apsusc_2018_06_094 crossref_primary_10_1364_OL_43_005170 crossref_primary_10_3390_nano8080574 crossref_primary_10_1364_OE_454893 crossref_primary_10_1002_smsc_202200093 crossref_primary_10_1016_j_aca_2021_338323 crossref_primary_10_1039_D4AN00992D crossref_primary_10_1016_j_jhazmat_2021_127492 crossref_primary_10_1364_OE_26_021784 crossref_primary_10_1007_s11468_022_01710_y crossref_primary_10_1016_j_apsusc_2020_146948 crossref_primary_10_1364_OE_443835 crossref_primary_10_1039_C9RA00932A crossref_primary_10_3390_nano14201654 crossref_primary_10_1021_acs_langmuir_4c03226 crossref_primary_10_1039_C9TC03143J crossref_primary_10_3390_nano12071202 crossref_primary_10_1039_C9TB00666D crossref_primary_10_1016_j_matlet_2020_128993 crossref_primary_10_1080_10408398_2022_2106547 crossref_primary_10_1039_D0RA01963A crossref_primary_10_1364_OE_403940 crossref_primary_10_3390_bios13030350 crossref_primary_10_1039_D1TC02217B crossref_primary_10_3390_molecules25204662 crossref_primary_10_1039_D2NR07161D crossref_primary_10_1088_1361_6463_ab550b crossref_primary_10_3390_nano10122371 crossref_primary_10_1016_j_cplett_2021_139165 crossref_primary_10_1016_j_microc_2021_106908 crossref_primary_10_1039_D1CP05870C crossref_primary_10_1016_j_cap_2021_02_012 crossref_primary_10_1007_s13204_020_01445_4 crossref_primary_10_1016_j_mtphys_2021_100378 crossref_primary_10_1364_OE_26_023831 crossref_primary_10_1364_OE_435662 crossref_primary_10_1515_nanoph_2020_0454 crossref_primary_10_3390_bios12050314 crossref_primary_10_3390_bios13090880 crossref_primary_10_1016_j_carbon_2019_02_077 crossref_primary_10_1088_1361_6528_ac0665 crossref_primary_10_1364_OE_481784 crossref_primary_10_1016_j_saa_2023_123357 crossref_primary_10_1016_j_snb_2022_133172 crossref_primary_10_3390_bios13010052 crossref_primary_10_1016_j_arabjc_2022_104075 crossref_primary_10_29026_oea_2023_230094 crossref_primary_10_1021_acsomega_1c02832 crossref_primary_10_1021_acs_analchem_9b00348 crossref_primary_10_1016_j_vibspec_2020_103034 crossref_primary_10_1016_j_apsusc_2020_145331 crossref_primary_10_1021_acsapm_2c02011 crossref_primary_10_1016_j_snb_2021_131056 crossref_primary_10_1364_OE_472726 crossref_primary_10_1155_2021_6679637 crossref_primary_10_1021_acs_chemmater_9b05293 crossref_primary_10_1016_j_talanta_2021_122481 crossref_primary_10_3390_chemosensors11040210 crossref_primary_10_1016_j_apsusc_2020_148908 crossref_primary_10_1016_j_jallcom_2022_164622 crossref_primary_10_1021_acs_analchem_0c00047 crossref_primary_10_1016_j_vibspec_2022_103360 crossref_primary_10_1364_OE_385128 crossref_primary_10_3390_nano14171417 crossref_primary_10_1364_OE_27_025091 crossref_primary_10_3390_chemosensors10120539 crossref_primary_10_1364_OE_410603 crossref_primary_10_2139_ssrn_4166585 crossref_primary_10_1016_j_apsusc_2021_150946 crossref_primary_10_1021_acsanm_0c00979 crossref_primary_10_1515_nanoph_2019_0124 crossref_primary_10_1080_1536383X_2023_2213358 crossref_primary_10_1016_j_apsusc_2019_144225 crossref_primary_10_1016_j_apsusc_2021_149729 crossref_primary_10_1002_admi_201800661 crossref_primary_10_1016_j_apsusc_2020_148735 crossref_primary_10_1016_j_microc_2022_108371 crossref_primary_10_1016_j_apsusc_2022_154419 crossref_primary_10_1007_s11467_023_1287_1 crossref_primary_10_1364_OE_418551 crossref_primary_10_1364_OE_453806 crossref_primary_10_1016_j_physe_2021_114696 crossref_primary_10_1016_j_optmat_2024_115866 crossref_primary_10_1039_D4AY01396D crossref_primary_10_1364_OE_26_021546 crossref_primary_10_1016_j_matchemphys_2020_123291 crossref_primary_10_1038_s41538_025_00393_z |
Cites_doi | 10.1016/S1369-7021(12)70017-2 10.1126/science.297.5586.1536 10.1021/acs.nanolett.6b00868 10.1039/C7NR06987A 10.1002/smll.201502917 10.1002/adma.201602603 10.1364/OE.23.024811 10.1016/j.actamat.2013.10.045 10.1016/j.snb.2017.08.082 10.1039/C3TB21278E 10.1021/nl903414x 10.1021/ja909228n 10.1039/C6NR00092D 10.1021/acsami.5b00937 10.1021/ja502890c 10.1038/nmat2162 10.1016/j.snb.2016.02.120 10.1021/nn102291j 10.1039/C5NR00944H 10.1038/nnano.2008.215 10.1002/adfm.201303384 10.1038/nature08907 10.1021/nl404610c 10.1021/ja056957p 10.1038/nmat3488 10.1002/adfm.201601850 10.1038/nnano.2007.189 10.1021/acsami.5b02303 10.1039/C1NR10956A 10.1038/nnano.2011.79 10.1073/pnas.1518980113 10.1021/ac202452t 10.1002/adom.201600358 10.1039/C6NR09592E 10.1016/j.foodchem.2017.01.045 10.1039/b912076a 10.1002/adma.201505617 10.1038/ncomms6228 10.1016/j.apsusc.2016.11.098 10.1016/j.carbon.2013.09.076 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/C7NR09276H |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 5905 |
ExternalDocumentID | 29546897 10_1039_C7NR09276H |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF DU5 EBS ECGLT EE0 EF- EJD F5P FEDTE GGIMP H13 HVGLF HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 P2P R56 RAOCF RCNCU RNS RPMJG RSCEA RVUXY NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c315t-37cbfec1c82f04cba5c95f3d522b0d5fd5214f34ff715cd23e8fce14b8fb97b63 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Thu Jul 10 17:37:56 EDT 2025 Mon Jun 30 05:15:03 EDT 2025 Thu Apr 03 07:02:51 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 Tue Jul 01 00:33:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c315t-37cbfec1c82f04cba5c95f3d522b0d5fd5214f34ff715cd23e8fce14b8fb97b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6820-4187 0000-0003-4462-4766 |
PMID | 29546897 |
PQID | 2019523514 |
PQPubID | 2047485 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2014948709 proquest_journals_2019523514 pubmed_primary_29546897 crossref_citationtrail_10_1039_C7NR09276H crossref_primary_10_1039_C7NR09276H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-07 |
PublicationDateYYYYMMDD | 2018-04-07 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Xu (C7NR09276H-(cit11)/*[position()=1]) 2015; 7 Liu (C7NR09276H-(cit8)/*[position()=1]) 2011; 84 Cho (C7NR09276H-(cit20)/*[position()=1]) 2009; 9 Lee (C7NR09276H-(cit25)/*[position()=1]) 2016; 26 Liu (C7NR09276H-(cit17)/*[position()=1]) 2016; 16 Guo (C7NR09276H-(cit38)/*[position()=1]) 2017; 396 Li (C7NR09276H-(cit13)/*[position()=1]) 2018; 255 Li (C7NR09276H-(cit23)/*[position()=1]) 2015; 7 Wang (C7NR09276H-(cit37)/*[position()=1]) 2017; 9 Gao (C7NR09276H-(cit16)/*[position()=1]) 2014; 136 Chen (C7NR09276H-(cit6)/*[position()=1]) 2016; 12 Li (C7NR09276H-(cit7)/*[position()=1]) 2010; 464 Zhou (C7NR09276H-(cit31)/*[position()=1]) 2009; 132 Quyen (C7NR09276H-(cit9)/*[position()=1]) 2014; 2 Yang (C7NR09276H-(cit15)/*[position()=1]) 2016; 113 Sharma (C7NR09276H-(cit2)/*[position()=1]) 2012; 15 Ling (C7NR09276H-(cit26)/*[position()=1]) 2009; 10 Li (C7NR09276H-(cit3)/*[position()=1]) 2016; 230 Zhu (C7NR09276H-(cit27)/*[position()=1]) 2014; 5 Hernandez (C7NR09276H-(cit29)/*[position()=1]) 2008; 3 Zhang (C7NR09276H-(cit12)/*[position()=1]) 2015; 23 Cao (C7NR09276H-(cit1)/*[position()=1]) 2002; 297 Kim (C7NR09276H-(cit21)/*[position()=1]) 2016; 8 Hui (C7NR09276H-(cit32)/*[position()=1]) 2014; 64 Zhan (C7NR09276H-(cit24)/*[position()=1]) 2016; 4 Li (C7NR09276H-(cit22)/*[position()=1]) 2014; 24 Lim (C7NR09276H-(cit10)/*[position()=1]) 2011; 6 Jeong (C7NR09276H-(cit34)/*[position()=1]) 2016; 28 Cecchini (C7NR09276H-(cit4)/*[position()=1]) 2013; 12 Shalaby (C7NR09276H-(cit40)/*[position()=1]) 2017; 226 Li (C7NR09276H-(cit30)/*[position()=1]) 2014; 66 Yu (C7NR09276H-(cit28)/*[position()=1]) 2011; 5 Ling (C7NR09276H-(cit26)/*[position()=2]) 2014; 14 Shao (C7NR09276H-(cit33)/*[position()=1]) 2015; 7 Wang (C7NR09276H-(cit39)/*[position()=1]) 2017; 9 Tao (C7NR09276H-(cit19)/*[position()=1]) 2007; 2 Zhang (C7NR09276H-(cit14)/*[position()=1]) 2017; 9 Baker (C7NR09276H-(cit5)/*[position()=1]) 2006; 128 Zhai (C7NR09276H-(cit35)/*[position()=1]) 2012; 4 Li (C7NR09276H-(cit36)/*[position()=1]) 2016; 28 Anker (C7NR09276H-(cit18)/*[position()=1]) 2008; 7 |
References_xml | – volume: 15 start-page: 16 year: 2012 ident: C7NR09276H-(cit2)/*[position()=1] publication-title: Mater. Today doi: 10.1016/S1369-7021(12)70017-2 – volume: 297 start-page: 1536 year: 2002 ident: C7NR09276H-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.297.5586.1536 – volume: 16 start-page: 3675 year: 2016 ident: C7NR09276H-(cit17)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00868 – volume: 9 start-page: 16749 year: 2017 ident: C7NR09276H-(cit37)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR06987A – volume: 12 start-page: 1458 year: 2016 ident: C7NR09276H-(cit6)/*[position()=1] publication-title: Small doi: 10.1002/smll.201502917 – volume: 28 start-page: 8695 year: 2016 ident: C7NR09276H-(cit34)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201602603 – volume: 23 start-page: 24811 year: 2015 ident: C7NR09276H-(cit12)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.23.024811 – volume: 64 start-page: 326 year: 2014 ident: C7NR09276H-(cit32)/*[position()=1] publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.10.045 – volume: 9 start-page: 16749 year: 2017 ident: C7NR09276H-(cit39)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR06987A – volume: 255 start-page: 374 year: 2018 ident: C7NR09276H-(cit13)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.08.082 – volume: 2 start-page: 629 year: 2014 ident: C7NR09276H-(cit9)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C3TB21278E – volume: 10 start-page: 553 year: 2009 ident: C7NR09276H-(cit26)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl903414x – volume: 132 start-page: 944 year: 2009 ident: C7NR09276H-(cit31)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909228n – volume: 8 start-page: 8878 year: 2016 ident: C7NR09276H-(cit21)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR00092D – volume: 7 start-page: 6966 year: 2015 ident: C7NR09276H-(cit33)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00937 – volume: 136 start-page: 7474 year: 2014 ident: C7NR09276H-(cit16)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502890c – volume: 7 start-page: 442 year: 2008 ident: C7NR09276H-(cit18)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2162 – volume: 230 start-page: 645 year: 2016 ident: C7NR09276H-(cit3)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2016.02.120 – volume: 5 start-page: 952 year: 2011 ident: C7NR09276H-(cit28)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn102291j – volume: 7 start-page: 11291 year: 2015 ident: C7NR09276H-(cit23)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR00944H – volume: 3 start-page: 563 year: 2008 ident: C7NR09276H-(cit29)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.215 – volume: 24 start-page: 3114 year: 2014 ident: C7NR09276H-(cit22)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303384 – volume: 464 start-page: 392 year: 2010 ident: C7NR09276H-(cit7)/*[position()=1] publication-title: Nature doi: 10.1038/nature08907 – volume: 14 start-page: 3033 year: 2014 ident: C7NR09276H-(cit26)/*[position()=2] publication-title: Nano Lett. doi: 10.1021/nl404610c – volume: 128 start-page: 3138 year: 2006 ident: C7NR09276H-(cit5)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056957p – volume: 12 start-page: 165 year: 2013 ident: C7NR09276H-(cit4)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3488 – volume: 26 start-page: 5093 year: 2016 ident: C7NR09276H-(cit25)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601850 – volume: 2 start-page: 435 year: 2007 ident: C7NR09276H-(cit19)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.189 – volume: 7 start-page: 10977 year: 2015 ident: C7NR09276H-(cit11)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02303 – volume: 4 start-page: 137 year: 2012 ident: C7NR09276H-(cit35)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C1NR10956A – volume: 6 start-page: 452 year: 2011 ident: C7NR09276H-(cit10)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.79 – volume: 113 start-page: 268 year: 2016 ident: C7NR09276H-(cit15)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1518980113 – volume: 84 start-page: 255 year: 2011 ident: C7NR09276H-(cit8)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac202452t – volume: 4 start-page: 2021 year: 2016 ident: C7NR09276H-(cit24)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600358 – volume: 9 start-page: 3114 year: 2017 ident: C7NR09276H-(cit14)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR09592E – volume: 226 start-page: 8 year: 2017 ident: C7NR09276H-(cit40)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.01.045 – volume: 9 start-page: 3360 year: 2009 ident: C7NR09276H-(cit20)/*[position()=1] publication-title: Lab Chip doi: 10.1039/b912076a – volume: 28 start-page: 2511 year: 2016 ident: C7NR09276H-(cit36)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201505617 – volume: 5 start-page: 5228 year: 2014 ident: C7NR09276H-(cit27)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms6228 – volume: 396 start-page: 1130 year: 2017 ident: C7NR09276H-(cit38)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.11.098 – volume: 66 start-page: 713 year: 2014 ident: C7NR09276H-(cit30)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2013.09.076 |
SSID | ssj0069363 |
Score | 2.5869076 |
Snippet | We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 5897 |
SubjectTerms | Finite difference method Finite difference time domain method Graphene Inspection Malachite green Nanoparticles Nanostructure Product safety Raman spectroscopy Reproducibility Silver Substrates Time domain analysis |
Title | 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29546897 https://www.proquest.com/docview/2019523514 https://www.proquest.com/docview/2014948709 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiPsKAxnBC4oykjiOk8exAdWAPkydGLxUjmOrlapkWhoJ9sof5_iSS9mQBi9pajvp5Xw5Pra_8xmh1xAhCwmBhs8lFX6saOhzzoTPY5EWgrAiMBneX2bJ9DQ-PqNno9GvAWup2eT74vLavJL_sSqUgV11luw_WLa7KRTAOdgXjmBhON7IxuTIq1ea2uyVvITRryO52clVQxVccwipPaNKDU7Nq36sCqm3luEeeBIBVZplWDcXCt54slxaPsAJ1zP7JglTi11W51qkyYqXDINZ8MxQy9cdNj4basD3ZZ9edrxq56OXVXM5qJg2Zo72G_iiHp8zt8HKHF5_OklwNyMRpobIwnrHFWmWIiFWnXxfDsvYtucNhggjAz9KU8vadX0yzUxu9lV_HxAtl3rIZidBFrFk2vdq7Ur-H51dR0E0i-8kW_TX3kI7EYw1ojHaOfj07uPXtkNPMmI25Ot-VqtyS7K3_dXbcc1fBismaJnfQ3fdaAMfWGDcRyNZPkB3BhqUD1FNjrAFEd4CEdYgwj2IcAsibECEeY05tiDCACLsQIRbEGEDIjwEEW5B9Aidfng_P5z6bicOX5CQbqAXErmSIhRppIJY5JyKjCpSQPCeBwVVcBLGisRKsZCKIiIyVeAC4jxVecbyhDxG47Iq5S7CEMHKPC4g7E4heEwkDxRJQi6ZlFEWJ-EEvWn_x4VwMvV6t5T14qrFJuhV1_bcirNc22qvNcfCPbz1ItKJspFOY5mgl101uFa9XsZLWTWmjRZPYkE2QU-sGbuP0cvjCYD06Y2-wjN0u39Q9tB4c9HI5xDMbvIXDmy_AY0GopY |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+silver+nanoparticles+with+multilayer+graphene+oxide+as+a+spacer+for+surface+enhanced+Raman+spectroscopy+analysis&rft.jtitle=Nanoscale&rft.au=Li%2C+Zhen&rft.au=Jiang%2C+Shouzhen&rft.au=Huo%2C+Yanyan&rft.au=Ning%2C+Tingyin&rft.date=2018-04-07&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=10&rft.issue=13&rft.spage=5897&rft.epage=5905&rft_id=info:doi/10.1039%2FC7NR09276H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7NR09276H |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |