3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis

We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a spacer. The SERS performance of the 3D nanostructure was investigated and it was found that the SERS effect increased as the number of Ag NP layers...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 10; no. 13; pp. 5897 - 5905
Main Authors Li, Zhen, Jiang, Shouzhen, Huo, Yanyan, Ning, Tingyin, Liu, Aihua, Zhang, Chao, He, Yuan, Wang, Minghong, Li, Chonghui, Man, Baoyuan
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 07.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a spacer. The SERS performance of the 3D nanostructure was investigated and it was found that the SERS effect increased as the number of Ag NP layers increased, and showed almost no change for more than four layers. We found that the SERS performance of the 3D nanostructures can be mainly attributed to the topmost hot spots which are closely related to the Ag NP layers in the 3D nanostructure. Furthermore, we explored 3D nanostructures with different Ag NP layers using the finite difference time domain method (FDTD). The 3D SERS substrates also exhibit excellent detection capability. The limit of detection (LOD) was calculated down to 10 −15 M for R6G and 10 −12 M for CV. In addition, the reproducibility of the 3D SERS substrate was attributed obviously to the increasing number of Ag NP layers. Based on these promising results, the highly sensitive detection of molecules such as malachite green was demonstrated for food safety inspection.
AbstractList We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a spacer. The SERS performance of the 3D nanostructure was investigated and it was found that the SERS effect increased as the number of Ag NP layers increased, and showed almost no change for more than four layers. We found that the SERS performance of the 3D nanostructures can be mainly attributed to the topmost hot spots which are closely related to the Ag NP layers in the 3D nanostructure. Furthermore, we explored 3D nanostructures with different Ag NP layers using the finite difference time domain method (FDTD). The 3D SERS substrates also exhibit excellent detection capability. The limit of detection (LOD) was calculated down to 10−15 M for R6G and 10−12 M for CV. In addition, the reproducibility of the 3D SERS substrate was attributed obviously to the increasing number of Ag NP layers. Based on these promising results, the highly sensitive detection of molecules such as malachite green was demonstrated for food safety inspection.
We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a spacer. The SERS performance of the 3D nanostructure was investigated and it was found that the SERS effect increased as the number of Ag NP layers increased, and showed almost no change for more than four layers. We found that the SERS performance of the 3D nanostructures can be mainly attributed to the topmost hot spots which are closely related to the Ag NP layers in the 3D nanostructure. Furthermore, we explored 3D nanostructures with different Ag NP layers using the finite difference time domain method (FDTD). The 3D SERS substrates also exhibit excellent detection capability. The limit of detection (LOD) was calculated down to 10-15 M for R6G and 10-12 M for CV. In addition, the reproducibility of the 3D SERS substrate was attributed obviously to the increasing number of Ag NP layers. Based on these promising results, the highly sensitive detection of molecules such as malachite green was demonstrated for food safety inspection.We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a spacer. The SERS performance of the 3D nanostructure was investigated and it was found that the SERS effect increased as the number of Ag NP layers increased, and showed almost no change for more than four layers. We found that the SERS performance of the 3D nanostructures can be mainly attributed to the topmost hot spots which are closely related to the Ag NP layers in the 3D nanostructure. Furthermore, we explored 3D nanostructures with different Ag NP layers using the finite difference time domain method (FDTD). The 3D SERS substrates also exhibit excellent detection capability. The limit of detection (LOD) was calculated down to 10-15 M for R6G and 10-12 M for CV. In addition, the reproducibility of the 3D SERS substrate was attributed obviously to the increasing number of Ag NP layers. Based on these promising results, the highly sensitive detection of molecules such as malachite green was demonstrated for food safety inspection.
We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a spacer. The SERS performance of the 3D nanostructure was investigated and it was found that the SERS effect increased as the number of Ag NP layers increased, and showed almost no change for more than four layers. We found that the SERS performance of the 3D nanostructures can be mainly attributed to the topmost hot spots which are closely related to the Ag NP layers in the 3D nanostructure. Furthermore, we explored 3D nanostructures with different Ag NP layers using the finite difference time domain method (FDTD). The 3D SERS substrates also exhibit excellent detection capability. The limit of detection (LOD) was calculated down to 10-15 M for R6G and 10-12 M for CV. In addition, the reproducibility of the 3D SERS substrate was attributed obviously to the increasing number of Ag NP layers. Based on these promising results, the highly sensitive detection of molecules such as malachite green was demonstrated for food safety inspection.
We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a spacer. The SERS performance of the 3D nanostructure was investigated and it was found that the SERS effect increased as the number of Ag NP layers increased, and showed almost no change for more than four layers. We found that the SERS performance of the 3D nanostructures can be mainly attributed to the topmost hot spots which are closely related to the Ag NP layers in the 3D nanostructure. Furthermore, we explored 3D nanostructures with different Ag NP layers using the finite difference time domain method (FDTD). The 3D SERS substrates also exhibit excellent detection capability. The limit of detection (LOD) was calculated down to 10 −15 M for R6G and 10 −12 M for CV. In addition, the reproducibility of the 3D SERS substrate was attributed obviously to the increasing number of Ag NP layers. Based on these promising results, the highly sensitive detection of molecules such as malachite green was demonstrated for food safety inspection.
Author Ning, Tingyin
Li, Zhen
Huo, Yanyan
Zhang, Chao
He, Yuan
Wang, Minghong
Liu, Aihua
Jiang, Shouzhen
Li, Chonghui
Man, Baoyuan
Author_xml – sequence: 1
  givenname: Zhen
  orcidid: 0000-0002-6820-4187
  surname: Li
  fullname: Li, Zhen
  organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
– sequence: 2
  givenname: Shouzhen
  surname: Jiang
  fullname: Jiang, Shouzhen
  organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
– sequence: 3
  givenname: Yanyan
  surname: Huo
  fullname: Huo, Yanyan
  organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
– sequence: 4
  givenname: Tingyin
  surname: Ning
  fullname: Ning, Tingyin
  organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
– sequence: 5
  givenname: Aihua
  surname: Liu
  fullname: Liu, Aihua
  organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
– sequence: 6
  givenname: Chao
  surname: Zhang
  fullname: Zhang, Chao
  organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
– sequence: 7
  givenname: Yuan
  surname: He
  fullname: He, Yuan
  organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
– sequence: 8
  givenname: Minghong
  orcidid: 0000-0003-4462-4766
  surname: Wang
  fullname: Wang, Minghong
  organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
– sequence: 9
  givenname: Chonghui
  surname: Li
  fullname: Li, Chonghui
  organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
– sequence: 10
  givenname: Baoyuan
  surname: Man
  fullname: Man, Baoyuan
  organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29546897$$D View this record in MEDLINE/PubMed
BookMark eNpt0VtrFTEQAOAgLfaiL_4ACfhShFNz3d08yvFSoSgUfV5msxNPym6yJtna8--NtlUoPmXCfDNMMifkIMSAhLzg7Jwzad5s289XzIi2uXhCjgVTbCNlKw7-xo06Iic5XzPWGNnIp-RIGK2azrTHJMt3NPvpBhMNEOICqXg7YaY_fdnReZ2Kn2Bfs98TLDsMSOOtH5FCpkDzAramXEw0r8nVC8Wwg2BxpFcwQ6gCbUkx27jsKQSY9tnnZ-TQwZTx-f15Sr59eP91e7G5_PLx0_bt5cZKrstGtnZwaLnthGPKDqCt0U6OWoiBjdrVgCsnlXMt13YUEjtnkauhc4Nph0aekrO7vkuKP1bMpZ99tjhNEDCuuReMK6O6lplKXz2i13FNdd4_ymghNVdVvbxX6zDj2C_Jz5D2_cN3VsDugK1vzgldb32B4mMoCfzUc9b_3lj_b2O15PWjkoeu_8G_AMbll1c
CitedBy_id crossref_primary_10_1088_1361_6463_ab08c1
crossref_primary_10_1039_C8AY01698D
crossref_primary_10_1364_OE_26_022432
crossref_primary_10_3390_lubricants7090081
crossref_primary_10_1016_j_jhazmat_2021_127686
crossref_primary_10_1515_nanoph_2020_0644
crossref_primary_10_1016_j_msec_2020_111362
crossref_primary_10_1364_OE_441176
crossref_primary_10_1039_D0TC02752A
crossref_primary_10_1016_j_jallcom_2023_170573
crossref_primary_10_1016_j_apsusc_2018_11_223
crossref_primary_10_1364_OE_27_003483
crossref_primary_10_1364_OE_27_003000
crossref_primary_10_3390_chemosensors11020073
crossref_primary_10_1016_j_apsusc_2021_149623
crossref_primary_10_1364_OE_419133
crossref_primary_10_1002_elps_201900285
crossref_primary_10_1039_D4NJ04049J
crossref_primary_10_1021_acsomega_0c00133
crossref_primary_10_1039_D0CP01866J
crossref_primary_10_1039_D0NA00849D
crossref_primary_10_1016_j_compscitech_2019_05_003
crossref_primary_10_1039_D3AY02044D
crossref_primary_10_1515_nanoph_2021_0381
crossref_primary_10_1016_j_apsusc_2022_154123
crossref_primary_10_1364_OE_441606
crossref_primary_10_1016_j_apsusc_2018_08_065
crossref_primary_10_1038_s41598_020_62251_0
crossref_primary_10_1016_j_ceramint_2020_10_238
crossref_primary_10_1002_jrs_6350
crossref_primary_10_1016_j_apmt_2020_100871
crossref_primary_10_3390_nano12030401
crossref_primary_10_1016_j_snb_2020_127663
crossref_primary_10_1063_1_5111082
crossref_primary_10_1002_admi_201900659
crossref_primary_10_1515_nanoph_2021_0301
crossref_primary_10_1016_j_pdpdt_2022_103156
crossref_primary_10_1016_j_vibspec_2023_103614
crossref_primary_10_1002_advs_202100640
crossref_primary_10_1016_j_chemphys_2022_111591
crossref_primary_10_1016_j_optlastec_2023_109533
crossref_primary_10_1364_AO_411974
crossref_primary_10_1021_acssuschemeng_2c03220
crossref_primary_10_1364_AO_386966
crossref_primary_10_1364_OE_389886
crossref_primary_10_3390_nano11030587
crossref_primary_10_1021_acsanm_3c04835
crossref_primary_10_1364_BOE_408649
crossref_primary_10_1364_OE_435627
crossref_primary_10_1039_D4NA00464G
crossref_primary_10_1016_j_talanta_2024_126717
crossref_primary_10_3390_nano13091518
crossref_primary_10_1364_OE_26_022168
crossref_primary_10_1021_acsomega_4c04961
crossref_primary_10_3390_nano14201648
crossref_primary_10_1016_j_talanta_2019_120535
crossref_primary_10_1021_acsanm_2c05011
crossref_primary_10_1016_j_apcatb_2019_03_084
crossref_primary_10_1088_1361_6528_ab3ee7
crossref_primary_10_1016_j_apsusc_2018_06_094
crossref_primary_10_1364_OL_43_005170
crossref_primary_10_3390_nano8080574
crossref_primary_10_1364_OE_454893
crossref_primary_10_1002_smsc_202200093
crossref_primary_10_1016_j_aca_2021_338323
crossref_primary_10_1039_D4AN00992D
crossref_primary_10_1016_j_jhazmat_2021_127492
crossref_primary_10_1364_OE_26_021784
crossref_primary_10_1007_s11468_022_01710_y
crossref_primary_10_1016_j_apsusc_2020_146948
crossref_primary_10_1364_OE_443835
crossref_primary_10_1039_C9RA00932A
crossref_primary_10_3390_nano14201654
crossref_primary_10_1021_acs_langmuir_4c03226
crossref_primary_10_1039_C9TC03143J
crossref_primary_10_3390_nano12071202
crossref_primary_10_1039_C9TB00666D
crossref_primary_10_1016_j_matlet_2020_128993
crossref_primary_10_1080_10408398_2022_2106547
crossref_primary_10_1039_D0RA01963A
crossref_primary_10_1364_OE_403940
crossref_primary_10_3390_bios13030350
crossref_primary_10_1039_D1TC02217B
crossref_primary_10_3390_molecules25204662
crossref_primary_10_1039_D2NR07161D
crossref_primary_10_1088_1361_6463_ab550b
crossref_primary_10_3390_nano10122371
crossref_primary_10_1016_j_cplett_2021_139165
crossref_primary_10_1016_j_microc_2021_106908
crossref_primary_10_1039_D1CP05870C
crossref_primary_10_1016_j_cap_2021_02_012
crossref_primary_10_1007_s13204_020_01445_4
crossref_primary_10_1016_j_mtphys_2021_100378
crossref_primary_10_1364_OE_26_023831
crossref_primary_10_1364_OE_435662
crossref_primary_10_1515_nanoph_2020_0454
crossref_primary_10_3390_bios12050314
crossref_primary_10_3390_bios13090880
crossref_primary_10_1016_j_carbon_2019_02_077
crossref_primary_10_1088_1361_6528_ac0665
crossref_primary_10_1364_OE_481784
crossref_primary_10_1016_j_saa_2023_123357
crossref_primary_10_1016_j_snb_2022_133172
crossref_primary_10_3390_bios13010052
crossref_primary_10_1016_j_arabjc_2022_104075
crossref_primary_10_29026_oea_2023_230094
crossref_primary_10_1021_acsomega_1c02832
crossref_primary_10_1021_acs_analchem_9b00348
crossref_primary_10_1016_j_vibspec_2020_103034
crossref_primary_10_1016_j_apsusc_2020_145331
crossref_primary_10_1021_acsapm_2c02011
crossref_primary_10_1016_j_snb_2021_131056
crossref_primary_10_1364_OE_472726
crossref_primary_10_1155_2021_6679637
crossref_primary_10_1021_acs_chemmater_9b05293
crossref_primary_10_1016_j_talanta_2021_122481
crossref_primary_10_3390_chemosensors11040210
crossref_primary_10_1016_j_apsusc_2020_148908
crossref_primary_10_1016_j_jallcom_2022_164622
crossref_primary_10_1021_acs_analchem_0c00047
crossref_primary_10_1016_j_vibspec_2022_103360
crossref_primary_10_1364_OE_385128
crossref_primary_10_3390_nano14171417
crossref_primary_10_1364_OE_27_025091
crossref_primary_10_3390_chemosensors10120539
crossref_primary_10_1364_OE_410603
crossref_primary_10_2139_ssrn_4166585
crossref_primary_10_1016_j_apsusc_2021_150946
crossref_primary_10_1021_acsanm_0c00979
crossref_primary_10_1515_nanoph_2019_0124
crossref_primary_10_1080_1536383X_2023_2213358
crossref_primary_10_1016_j_apsusc_2019_144225
crossref_primary_10_1016_j_apsusc_2021_149729
crossref_primary_10_1002_admi_201800661
crossref_primary_10_1016_j_apsusc_2020_148735
crossref_primary_10_1016_j_microc_2022_108371
crossref_primary_10_1016_j_apsusc_2022_154419
crossref_primary_10_1007_s11467_023_1287_1
crossref_primary_10_1364_OE_418551
crossref_primary_10_1364_OE_453806
crossref_primary_10_1016_j_physe_2021_114696
crossref_primary_10_1016_j_optmat_2024_115866
crossref_primary_10_1039_D4AY01396D
crossref_primary_10_1364_OE_26_021546
crossref_primary_10_1016_j_matchemphys_2020_123291
crossref_primary_10_1038_s41538_025_00393_z
Cites_doi 10.1016/S1369-7021(12)70017-2
10.1126/science.297.5586.1536
10.1021/acs.nanolett.6b00868
10.1039/C7NR06987A
10.1002/smll.201502917
10.1002/adma.201602603
10.1364/OE.23.024811
10.1016/j.actamat.2013.10.045
10.1016/j.snb.2017.08.082
10.1039/C3TB21278E
10.1021/nl903414x
10.1021/ja909228n
10.1039/C6NR00092D
10.1021/acsami.5b00937
10.1021/ja502890c
10.1038/nmat2162
10.1016/j.snb.2016.02.120
10.1021/nn102291j
10.1039/C5NR00944H
10.1038/nnano.2008.215
10.1002/adfm.201303384
10.1038/nature08907
10.1021/nl404610c
10.1021/ja056957p
10.1038/nmat3488
10.1002/adfm.201601850
10.1038/nnano.2007.189
10.1021/acsami.5b02303
10.1039/C1NR10956A
10.1038/nnano.2011.79
10.1073/pnas.1518980113
10.1021/ac202452t
10.1002/adom.201600358
10.1039/C6NR09592E
10.1016/j.foodchem.2017.01.045
10.1039/b912076a
10.1002/adma.201505617
10.1038/ncomms6228
10.1016/j.apsusc.2016.11.098
10.1016/j.carbon.2013.09.076
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/C7NR09276H
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 5905
ExternalDocumentID 29546897
10_1039_C7NR09276H
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
P2P
R56
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c315t-37cbfec1c82f04cba5c95f3d522b0d5fd5214f34ff715cd23e8fce14b8fb97b63
ISSN 2040-3364
2040-3372
IngestDate Thu Jul 10 17:37:56 EDT 2025
Mon Jun 30 05:15:03 EDT 2025
Thu Apr 03 07:02:51 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
Tue Jul 01 00:33:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-37cbfec1c82f04cba5c95f3d522b0d5fd5214f34ff715cd23e8fce14b8fb97b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6820-4187
0000-0003-4462-4766
PMID 29546897
PQID 2019523514
PQPubID 2047485
PageCount 9
ParticipantIDs proquest_miscellaneous_2014948709
proquest_journals_2019523514
pubmed_primary_29546897
crossref_citationtrail_10_1039_C7NR09276H
crossref_primary_10_1039_C7NR09276H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-07
PublicationDateYYYYMMDD 2018-04-07
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Xu (C7NR09276H-(cit11)/*[position()=1]) 2015; 7
Liu (C7NR09276H-(cit8)/*[position()=1]) 2011; 84
Cho (C7NR09276H-(cit20)/*[position()=1]) 2009; 9
Lee (C7NR09276H-(cit25)/*[position()=1]) 2016; 26
Liu (C7NR09276H-(cit17)/*[position()=1]) 2016; 16
Guo (C7NR09276H-(cit38)/*[position()=1]) 2017; 396
Li (C7NR09276H-(cit13)/*[position()=1]) 2018; 255
Li (C7NR09276H-(cit23)/*[position()=1]) 2015; 7
Wang (C7NR09276H-(cit37)/*[position()=1]) 2017; 9
Gao (C7NR09276H-(cit16)/*[position()=1]) 2014; 136
Chen (C7NR09276H-(cit6)/*[position()=1]) 2016; 12
Li (C7NR09276H-(cit7)/*[position()=1]) 2010; 464
Zhou (C7NR09276H-(cit31)/*[position()=1]) 2009; 132
Quyen (C7NR09276H-(cit9)/*[position()=1]) 2014; 2
Yang (C7NR09276H-(cit15)/*[position()=1]) 2016; 113
Sharma (C7NR09276H-(cit2)/*[position()=1]) 2012; 15
Ling (C7NR09276H-(cit26)/*[position()=1]) 2009; 10
Li (C7NR09276H-(cit3)/*[position()=1]) 2016; 230
Zhu (C7NR09276H-(cit27)/*[position()=1]) 2014; 5
Hernandez (C7NR09276H-(cit29)/*[position()=1]) 2008; 3
Zhang (C7NR09276H-(cit12)/*[position()=1]) 2015; 23
Cao (C7NR09276H-(cit1)/*[position()=1]) 2002; 297
Kim (C7NR09276H-(cit21)/*[position()=1]) 2016; 8
Hui (C7NR09276H-(cit32)/*[position()=1]) 2014; 64
Zhan (C7NR09276H-(cit24)/*[position()=1]) 2016; 4
Li (C7NR09276H-(cit22)/*[position()=1]) 2014; 24
Lim (C7NR09276H-(cit10)/*[position()=1]) 2011; 6
Jeong (C7NR09276H-(cit34)/*[position()=1]) 2016; 28
Cecchini (C7NR09276H-(cit4)/*[position()=1]) 2013; 12
Shalaby (C7NR09276H-(cit40)/*[position()=1]) 2017; 226
Li (C7NR09276H-(cit30)/*[position()=1]) 2014; 66
Yu (C7NR09276H-(cit28)/*[position()=1]) 2011; 5
Ling (C7NR09276H-(cit26)/*[position()=2]) 2014; 14
Shao (C7NR09276H-(cit33)/*[position()=1]) 2015; 7
Wang (C7NR09276H-(cit39)/*[position()=1]) 2017; 9
Tao (C7NR09276H-(cit19)/*[position()=1]) 2007; 2
Zhang (C7NR09276H-(cit14)/*[position()=1]) 2017; 9
Baker (C7NR09276H-(cit5)/*[position()=1]) 2006; 128
Zhai (C7NR09276H-(cit35)/*[position()=1]) 2012; 4
Li (C7NR09276H-(cit36)/*[position()=1]) 2016; 28
Anker (C7NR09276H-(cit18)/*[position()=1]) 2008; 7
References_xml – volume: 15
  start-page: 16
  year: 2012
  ident: C7NR09276H-(cit2)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(12)70017-2
– volume: 297
  start-page: 1536
  year: 2002
  ident: C7NR09276H-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.297.5586.1536
– volume: 16
  start-page: 3675
  year: 2016
  ident: C7NR09276H-(cit17)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00868
– volume: 9
  start-page: 16749
  year: 2017
  ident: C7NR09276H-(cit37)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR06987A
– volume: 12
  start-page: 1458
  year: 2016
  ident: C7NR09276H-(cit6)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201502917
– volume: 28
  start-page: 8695
  year: 2016
  ident: C7NR09276H-(cit34)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602603
– volume: 23
  start-page: 24811
  year: 2015
  ident: C7NR09276H-(cit12)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.23.024811
– volume: 64
  start-page: 326
  year: 2014
  ident: C7NR09276H-(cit32)/*[position()=1]
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.10.045
– volume: 9
  start-page: 16749
  year: 2017
  ident: C7NR09276H-(cit39)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR06987A
– volume: 255
  start-page: 374
  year: 2018
  ident: C7NR09276H-(cit13)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.08.082
– volume: 2
  start-page: 629
  year: 2014
  ident: C7NR09276H-(cit9)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C3TB21278E
– volume: 10
  start-page: 553
  year: 2009
  ident: C7NR09276H-(cit26)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl903414x
– volume: 132
  start-page: 944
  year: 2009
  ident: C7NR09276H-(cit31)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909228n
– volume: 8
  start-page: 8878
  year: 2016
  ident: C7NR09276H-(cit21)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR00092D
– volume: 7
  start-page: 6966
  year: 2015
  ident: C7NR09276H-(cit33)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00937
– volume: 136
  start-page: 7474
  year: 2014
  ident: C7NR09276H-(cit16)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502890c
– volume: 7
  start-page: 442
  year: 2008
  ident: C7NR09276H-(cit18)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2162
– volume: 230
  start-page: 645
  year: 2016
  ident: C7NR09276H-(cit3)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2016.02.120
– volume: 5
  start-page: 952
  year: 2011
  ident: C7NR09276H-(cit28)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn102291j
– volume: 7
  start-page: 11291
  year: 2015
  ident: C7NR09276H-(cit23)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR00944H
– volume: 3
  start-page: 563
  year: 2008
  ident: C7NR09276H-(cit29)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.215
– volume: 24
  start-page: 3114
  year: 2014
  ident: C7NR09276H-(cit22)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303384
– volume: 464
  start-page: 392
  year: 2010
  ident: C7NR09276H-(cit7)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature08907
– volume: 14
  start-page: 3033
  year: 2014
  ident: C7NR09276H-(cit26)/*[position()=2]
  publication-title: Nano Lett.
  doi: 10.1021/nl404610c
– volume: 128
  start-page: 3138
  year: 2006
  ident: C7NR09276H-(cit5)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056957p
– volume: 12
  start-page: 165
  year: 2013
  ident: C7NR09276H-(cit4)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3488
– volume: 26
  start-page: 5093
  year: 2016
  ident: C7NR09276H-(cit25)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601850
– volume: 2
  start-page: 435
  year: 2007
  ident: C7NR09276H-(cit19)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.189
– volume: 7
  start-page: 10977
  year: 2015
  ident: C7NR09276H-(cit11)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b02303
– volume: 4
  start-page: 137
  year: 2012
  ident: C7NR09276H-(cit35)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C1NR10956A
– volume: 6
  start-page: 452
  year: 2011
  ident: C7NR09276H-(cit10)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.79
– volume: 113
  start-page: 268
  year: 2016
  ident: C7NR09276H-(cit15)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1518980113
– volume: 84
  start-page: 255
  year: 2011
  ident: C7NR09276H-(cit8)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac202452t
– volume: 4
  start-page: 2021
  year: 2016
  ident: C7NR09276H-(cit24)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600358
– volume: 9
  start-page: 3114
  year: 2017
  ident: C7NR09276H-(cit14)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR09592E
– volume: 226
  start-page: 8
  year: 2017
  ident: C7NR09276H-(cit40)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.01.045
– volume: 9
  start-page: 3360
  year: 2009
  ident: C7NR09276H-(cit20)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/b912076a
– volume: 28
  start-page: 2511
  year: 2016
  ident: C7NR09276H-(cit36)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505617
– volume: 5
  start-page: 5228
  year: 2014
  ident: C7NR09276H-(cit27)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6228
– volume: 396
  start-page: 1130
  year: 2017
  ident: C7NR09276H-(cit38)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.11.098
– volume: 66
  start-page: 713
  year: 2014
  ident: C7NR09276H-(cit30)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.09.076
SSID ssj0069363
Score 2.5869076
Snippet We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 5897
SubjectTerms Finite difference method
Finite difference time domain method
Graphene
Inspection
Malachite green
Nanoparticles
Nanostructure
Product safety
Raman spectroscopy
Reproducibility
Silver
Substrates
Time domain analysis
Title 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/29546897
https://www.proquest.com/docview/2019523514
https://www.proquest.com/docview/2014948709
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiPsKAxnBC4oykjiOk8exAdWAPkydGLxUjmOrlapkWhoJ9sof5_iSS9mQBi9pajvp5Xw5Pra_8xmh1xAhCwmBhs8lFX6saOhzzoTPY5EWgrAiMBneX2bJ9DQ-PqNno9GvAWup2eT74vLavJL_sSqUgV11luw_WLa7KRTAOdgXjmBhON7IxuTIq1ea2uyVvITRryO52clVQxVccwipPaNKDU7Nq36sCqm3luEeeBIBVZplWDcXCt54slxaPsAJ1zP7JglTi11W51qkyYqXDINZ8MxQy9cdNj4basD3ZZ9edrxq56OXVXM5qJg2Zo72G_iiHp8zt8HKHF5_OklwNyMRpobIwnrHFWmWIiFWnXxfDsvYtucNhggjAz9KU8vadX0yzUxu9lV_HxAtl3rIZidBFrFk2vdq7Ur-H51dR0E0i-8kW_TX3kI7EYw1ojHaOfj07uPXtkNPMmI25Ot-VqtyS7K3_dXbcc1fBismaJnfQ3fdaAMfWGDcRyNZPkB3BhqUD1FNjrAFEd4CEdYgwj2IcAsibECEeY05tiDCACLsQIRbEGEDIjwEEW5B9Aidfng_P5z6bicOX5CQbqAXErmSIhRppIJY5JyKjCpSQPCeBwVVcBLGisRKsZCKIiIyVeAC4jxVecbyhDxG47Iq5S7CEMHKPC4g7E4heEwkDxRJQi6ZlFEWJ-EEvWn_x4VwMvV6t5T14qrFJuhV1_bcirNc22qvNcfCPbz1ItKJspFOY5mgl101uFa9XsZLWTWmjRZPYkE2QU-sGbuP0cvjCYD06Y2-wjN0u39Q9tB4c9HI5xDMbvIXDmy_AY0GopY
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+silver+nanoparticles+with+multilayer+graphene+oxide+as+a+spacer+for+surface+enhanced+Raman+spectroscopy+analysis&rft.jtitle=Nanoscale&rft.au=Li%2C+Zhen&rft.au=Jiang%2C+Shouzhen&rft.au=Huo%2C+Yanyan&rft.au=Ning%2C+Tingyin&rft.date=2018-04-07&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=10&rft.issue=13&rft.spage=5897&rft.epage=5905&rft_id=info:doi/10.1039%2FC7NR09276H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7NR09276H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon