Discovery of thirteen cobalt( ii ) and copper( ii ) salicylaldehyde Schiff base complexes that induce apoptosis and autophagy in human lung adenocarcinoma A549/DDP cells and that can overcome cisplatin resistance in vitro and in vivo
In this study, 13 transition metal complexes, namely, [Cu(L 1 H)(H 2 O) 2 ]·(H 2 O)·NO 3 (1), [Cu(L n H 2 ) 2 ]·(NO 3 )·(H 2 O) 2 (2, n = 2; 3, n = 3; 4, n = 4; 5, n = 5), [Co(L n H) 2 ] 2 ·(H 2 O) 0.5 (6, n = 2; 7, n = 3; 8, n = 4; 9, n = 5), [Cu(L 6 H) 0.5 (L 10 H) 0.5 (phen)]·(CH 3 OH) 0.25 (10),...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 51; no. 10; pp. 4068 - 4078 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
08.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, 13 transition metal complexes, namely, [Cu(L
1
H)(H
2
O)
2
]·(H
2
O)·NO
3
(1), [Cu(L
n
H
2
)
2
]·(NO
3
)·(H
2
O)
2
(2,
n
= 2; 3,
n
= 3; 4,
n
= 4; 5,
n
= 5), [Co(L
n
H)
2
]
2
·(H
2
O)
0.5
(6,
n
= 2; 7,
n
= 3; 8,
n
= 4; 9,
n
= 5), [Cu(L
6
H)
0.5
(L
10
H)
0.5
(phen)]·(CH
3
OH)
0.25
(10), [Cu(L
11
H) (phen)]
4
·(H
2
O)
9
(11), [Cu(L
8
H)
0.27
(L
12
H)
0.73
(phen)]
4
·(H
2
O)
5.5
(CH
3
OH) (12), and [Cu(L
9
H) (phen)]
3
·(H
2
O)
7
·(CH
3
OH) (13), were synthesized using Schiff base ligands and characterized by elemental analysis (EA), infrared spectroscopy (IR), and single-crystal X-ray diffraction (SC-XRD). Compared with complexes 1–9, complexes 10–13 displayed stronger cytotoxic activities against the tested A549/DDP cancer cells (IC
50
= 0.97–3.31 μM), with differences greater than one order of magnitude. Moreover, complexes 11 and 13 could induce apoptosis and autophagy in A549/DDP cells
via
the mitochondrial dysfunction pathway that affects the regulation of autophagy- and mitochondrial-related proteins. Importantly, the results indicate that the two novel salicylaldehyde Schiff base analogs, 11 and 13, exhibited pronounced and selective activity against A549/DDP xenografts
in vivo
. |
---|---|
AbstractList | In this study, 13 transition metal complexes, namely, [Cu(L
H)(H
O)
]·(H
O)·NO
(1), [Cu(L
H
)
]·(NO
)·(H
O)
(2,
= 2; 3,
= 3; 4,
= 4; 5,
= 5), [Co(L
H)
]
·(H
O)
(6,
= 2; 7,
= 3; 8,
= 4; 9,
= 5), [Cu(L
H)
(L
H)
(phen)]·(CH
OH)
(10), [Cu(L
H) (phen)]
·(H
O)
(11), [Cu(L
H)
(L
H)
(phen)]
·(H
O)
(CH
OH) (12), and [Cu(L
H) (phen)]
·(H
O)
·(CH
OH) (13), were synthesized using Schiff base ligands and characterized by elemental analysis (EA), infrared spectroscopy (IR), and single-crystal X-ray diffraction (SC-XRD). Compared with complexes 1-9, complexes 10-13 displayed stronger cytotoxic activities against the tested A549/DDP cancer cells (IC
= 0.97-3.31 μM), with differences greater than one order of magnitude. Moreover, complexes 11 and 13 could induce apoptosis and autophagy in A549/DDP cells
the mitochondrial dysfunction pathway that affects the regulation of autophagy- and mitochondrial-related proteins. Importantly, the results indicate that the two novel salicylaldehyde Schiff base analogs, 11 and 13, exhibited pronounced and selective activity against A549/DDP xenografts
. In this study, 13 transition metal complexes, namely, [Cu(L1H)(H2O)2]·(H2O)·NO3 (1), [Cu(LnH2)2]·(NO3)·(H2O)2 (2, n = 2; 3, n = 3; 4, n = 4; 5, n = 5), [Co(LnH)2]2·(H2O)0.5 (6, n = 2; 7, n = 3; 8, n = 4; 9, n = 5), [Cu(L6H)0.5(L10H)0.5(phen)]·(CH3OH)0.25 (10), [Cu(L11H) (phen)]4·(H2O)9 (11), [Cu(L8H)0.27(L12H)0.73(phen)]4·(H2O)5.5(CH3OH) (12), and [Cu(L9H) (phen)]3·(H2O)7·(CH3OH) (13), were synthesized using Schiff base ligands and characterized by elemental analysis (EA), infrared spectroscopy (IR), and single-crystal X-ray diffraction (SC-XRD). Compared with complexes 1–9, complexes 10–13 displayed stronger cytotoxic activities against the tested A549/DDP cancer cells (IC50 = 0.97–3.31 μM), with differences greater than one order of magnitude. Moreover, complexes 11 and 13 could induce apoptosis and autophagy in A549/DDP cells via the mitochondrial dysfunction pathway that affects the regulation of autophagy- and mitochondrial-related proteins. Importantly, the results indicate that the two novel salicylaldehyde Schiff base analogs, 11 and 13, exhibited pronounced and selective activity against A549/DDP xenografts in vivo. In this study, 13 transition metal complexes, namely, [Cu(L 1 H)(H 2 O) 2 ]·(H 2 O)·NO 3 (1), [Cu(L n H 2 ) 2 ]·(NO 3 )·(H 2 O) 2 (2, n = 2; 3, n = 3; 4, n = 4; 5, n = 5), [Co(L n H) 2 ] 2 ·(H 2 O) 0.5 (6, n = 2; 7, n = 3; 8, n = 4; 9, n = 5), [Cu(L 6 H) 0.5 (L 10 H) 0.5 (phen)]·(CH 3 OH) 0.25 (10), [Cu(L 11 H) (phen)] 4 ·(H 2 O) 9 (11), [Cu(L 8 H) 0.27 (L 12 H) 0.73 (phen)] 4 ·(H 2 O) 5.5 (CH 3 OH) (12), and [Cu(L 9 H) (phen)] 3 ·(H 2 O) 7 ·(CH 3 OH) (13), were synthesized using Schiff base ligands and characterized by elemental analysis (EA), infrared spectroscopy (IR), and single-crystal X-ray diffraction (SC-XRD). Compared with complexes 1–9, complexes 10–13 displayed stronger cytotoxic activities against the tested A549/DDP cancer cells (IC 50 = 0.97–3.31 μM), with differences greater than one order of magnitude. Moreover, complexes 11 and 13 could induce apoptosis and autophagy in A549/DDP cells via the mitochondrial dysfunction pathway that affects the regulation of autophagy- and mitochondrial-related proteins. Importantly, the results indicate that the two novel salicylaldehyde Schiff base analogs, 11 and 13, exhibited pronounced and selective activity against A549/DDP xenografts in vivo . In this study, 13 transition metal complexes, namely, [Cu(L1H)(H2O)2]·(H2O)·NO3 (1), [Cu(LnH2)2]·(NO3)·(H2O)2 (2, n = 2; 3, n = 3; 4, n = 4; 5, n = 5), [Co(LnH)2]2·(H2O)0.5 (6, n = 2; 7, n = 3; 8, n = 4; 9, n = 5), [Cu(L6H)0.5(L10H)0.5(phen)]·(CH3OH)0.25 (10), [Cu(L11H) (phen)]4·(H2O)9 (11), [Cu(L8H)0.27(L12H)0.73(phen)]4·(H2O)5.5(CH3OH) (12), and [Cu(L9H) (phen)]3·(H2O)7·(CH3OH) (13), were synthesized using Schiff base ligands and characterized by elemental analysis (EA), infrared spectroscopy (IR), and single-crystal X-ray diffraction (SC-XRD). Compared with complexes 1-9, complexes 10-13 displayed stronger cytotoxic activities against the tested A549/DDP cancer cells (IC50 = 0.97-3.31 μM), with differences greater than one order of magnitude. Moreover, complexes 11 and 13 could induce apoptosis and autophagy in A549/DDP cells via the mitochondrial dysfunction pathway that affects the regulation of autophagy- and mitochondrial-related proteins. Importantly, the results indicate that the two novel salicylaldehyde Schiff base analogs, 11 and 13, exhibited pronounced and selective activity against A549/DDP xenografts in vivo.In this study, 13 transition metal complexes, namely, [Cu(L1H)(H2O)2]·(H2O)·NO3 (1), [Cu(LnH2)2]·(NO3)·(H2O)2 (2, n = 2; 3, n = 3; 4, n = 4; 5, n = 5), [Co(LnH)2]2·(H2O)0.5 (6, n = 2; 7, n = 3; 8, n = 4; 9, n = 5), [Cu(L6H)0.5(L10H)0.5(phen)]·(CH3OH)0.25 (10), [Cu(L11H) (phen)]4·(H2O)9 (11), [Cu(L8H)0.27(L12H)0.73(phen)]4·(H2O)5.5(CH3OH) (12), and [Cu(L9H) (phen)]3·(H2O)7·(CH3OH) (13), were synthesized using Schiff base ligands and characterized by elemental analysis (EA), infrared spectroscopy (IR), and single-crystal X-ray diffraction (SC-XRD). Compared with complexes 1-9, complexes 10-13 displayed stronger cytotoxic activities against the tested A549/DDP cancer cells (IC50 = 0.97-3.31 μM), with differences greater than one order of magnitude. Moreover, complexes 11 and 13 could induce apoptosis and autophagy in A549/DDP cells via the mitochondrial dysfunction pathway that affects the regulation of autophagy- and mitochondrial-related proteins. Importantly, the results indicate that the two novel salicylaldehyde Schiff base analogs, 11 and 13, exhibited pronounced and selective activity against A549/DDP xenografts in vivo. |
Author | Chen, Ya-Ting Zhang, Shao-Nan Wang, Zhen-Feng Wei, Qing-Min Zhang, Shu-Hua |
Author_xml | – sequence: 1 givenname: Ya-Ting orcidid: 0000-0001-7784-3151 surname: Chen fullname: Chen, Ya-Ting organization: College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P R China, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China – sequence: 2 givenname: Shao-Nan surname: Zhang fullname: Zhang, Shao-Nan organization: Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China – sequence: 3 givenname: Zhen-Feng surname: Wang fullname: Wang, Zhen-Feng organization: Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China – sequence: 4 givenname: Qing-Min surname: Wei fullname: Wei, Qing-Min organization: College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China – sequence: 5 givenname: Shu-Hua orcidid: 0000-0002-1097-1674 surname: Zhang fullname: Zhang, Shu-Hua organization: College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P R China, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35179159$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstu1TAQhiNURC-w4QGQJTYF6YAd5-Zl1UNbpEogUdaRY08aV44dbOeoeWTegjmXglSxsmf8zT8Xz2l25LyDLHvL6CdGufi8Zus7yutC3LzITlhR1yuR8-Lo7z2vjrPTGB8ozXNa5q-yY16yWrBSnGS_1yYqv4GwEN-TNJiQABxRvpM2nRNjyAcinUbHNEE4OKK0Ri1WWg3DooH8UIPpe9LJCAiOk4VHiCgmEzFOzwqInPyUfDRxJybn5KdB3i_4TIZ5lI7Y2d0TqcF5JYMyzo-SXJQFNrf-ThRYu4_caSrktyVjKsxn4mRlQqEAqJ-kw3RobUwKfhezMzb-dfaylzbCm8N5lv28-nJ3ebO6_Xb99fLidqU4K9OK865rNC1KlbO-0UrUvCmV4KxmrBN9V9eqA1n1mjUVU0UDle76vtMNcMq1rvhZdr7XnYL_NUNM7Ygjxg6kAz_HNq84FXlDc4Ho-2fog5-Dw-q2VI0ZBG2Qeneg5m4E3U7BjDIs7dMnIkD3gAo-xgB9q0zCkXiXgjS2ZbTd7kn7b08w5OOzkCfV_8B_AO4swGA |
CitedBy_id | crossref_primary_10_1016_j_ejmech_2022_114743 crossref_primary_10_1039_D3DT01750H crossref_primary_10_1021_acs_jmedchem_2c00698 crossref_primary_10_1021_acscentsci_4c02188 crossref_primary_10_15671_hjbc_1597332 crossref_primary_10_1039_D2DT01310J crossref_primary_10_1016_j_molliq_2022_120941 crossref_primary_10_1039_D2DT00669C crossref_primary_10_1039_D3DT00150D crossref_primary_10_1080_00958972_2025_2482231 crossref_primary_10_1016_j_jinorgbio_2023_112443 crossref_primary_10_1016_j_ejmech_2022_114736 crossref_primary_10_1016_j_apmt_2024_102305 crossref_primary_10_1016_j_cej_2024_150906 crossref_primary_10_1016_j_molstruc_2024_139086 crossref_primary_10_1016_j_poly_2022_115861 crossref_primary_10_1016_j_poly_2023_116697 crossref_primary_10_1016_j_jct_2023_107162 crossref_primary_10_1016_j_phrs_2024_107353 crossref_primary_10_1016_j_canlet_2024_216659 crossref_primary_10_1016_j_saa_2024_124143 crossref_primary_10_3390_ph18010099 crossref_primary_10_1002_ejic_202400302 crossref_primary_10_1016_j_ccr_2023_215156 crossref_primary_10_1016_j_molstruc_2024_141184 crossref_primary_10_1002_aoc_7066 crossref_primary_10_1002_cmdc_202400060 crossref_primary_10_1016_j_jinorgbio_2023_112152 crossref_primary_10_1039_D3DT02732E crossref_primary_10_1039_D2DT01929A crossref_primary_10_1021_acsami_3c13955 crossref_primary_10_1016_j_molstruc_2022_134683 crossref_primary_10_1016_j_drup_2023_101018 |
Cites_doi | 10.1016/j.jinorgbio.2014.08.006 10.1039/C9DT04594E 10.1039/DT9840001349 10.1039/D1DT00450F 10.1021/jm101532u 10.1002/ange.201510443 10.1039/c9mt00187e 10.1039/C6DT00451B 10.1016/j.ejmech.2017.05.005 10.1039/D0DT01742F 10.1016/j.ejmech.2020.112610 10.1039/C4SC00384E 10.1021/acs.molpharmaceut.9b00399 10.1021/acs.inorgchem.7b00710 10.1039/C9DT04656A 10.1016/j.ejmech.2020.112535 10.1016/j.ejmech.2018.09.034 10.1021/jm300768u 10.1039/C9MT00165D 10.1039/D0DT01309A 10.1016/j.ejmech.2019.111751 10.1016/j.ejmech.2016.08.063 10.1021/acs.inorgchem.0c03083 10.1039/D0CC01606C 10.1021/acs.inorgchem.7b01368 10.1039/C6MT00275G 10.1039/C8DT00558C 10.1016/j.ejmech.2020.112637 10.1039/C6DT04443C 10.1002/anie.201403936 10.1016/j.ejmech.2018.07.022 10.1016/j.ejmech.2017.10.058 10.1021/acs.jmedchem.8b01031 10.1016/j.bioorg.2021.104962 10.1016/j.bioorg.2019.103561 10.1039/C8DT04606A 10.1016/j.jinorgbio.2017.11.023 10.1016/j.jinorgbio.2017.07.034 10.1080/15548627.2018.1528812 10.1016/j.ejmech.2019.01.007 10.1039/C5DT02101D 10.1021/acs.inorgchem.9b01281 10.1002/anie.201407468 10.1021/ja109413c 10.1016/j.ejmech.2018.01.009 10.1039/C8DT03448F 10.1016/j.bmc.2020.115948 10.1016/j.jinorgbio.2019.02.010 10.1039/D0NJ03552A 10.1039/B617136B 10.1039/D0CC00667J 10.1016/j.ejmech.2019.05.088 10.1016/j.ejmech.2016.04.027 10.1039/C9NJ00061E 10.1107/S2053229614024218 10.1039/D0DT02657C 10.1016/j.jinorgbio.2019.110820 10.1016/j.bioorg.2020.104193 10.1039/D0DT01389G 10.1016/j.ejmech.2017.04.026 10.1107/S0021889808042726 10.1021/ic1004837 10.1039/C9DT00322C 10.1016/j.poly.2011.11.030 10.1021/acsmedchemlett.9b00356 10.1039/C9DT01576K 10.1021/acs.jmedchem.0c01875 10.1016/j.ejmech.2018.05.023 10.1039/D0CC00524J |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/D1DT03749H |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-9234 |
EndPage | 4078 |
ExternalDocumentID | 35179159 10_1039_D1DT03749H |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 29F 2WC 4.4 53G 5GY 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3H J3I M4U O9- R56 R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UPT VH6 WH7 -JG CGR CUY CVF ECM EIF NPM UCJ VQA 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c315t-33bb8d045c21f8dc97385c931711b9fb77cbea6fd1861c48e6dbffbd8e303dd63 |
ISSN | 1477-9226 1477-9234 |
IngestDate | Fri Jul 11 15:56:03 EDT 2025 Sun Jun 29 15:21:30 EDT 2025 Wed Feb 19 02:26:03 EST 2025 Tue Jul 01 04:26:59 EDT 2025 Thu Apr 24 22:51:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c315t-33bb8d045c21f8dc97385c931711b9fb77cbea6fd1861c48e6dbffbd8e303dd63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1097-1674 0000-0001-7784-3151 |
PMID | 35179159 |
PQID | 2637186908 |
PQPubID | 2047498 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2630928029 proquest_journals_2637186908 pubmed_primary_35179159 crossref_citationtrail_10_1039_D1DT03749H crossref_primary_10_1039_D1DT03749H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-08 |
PublicationDateYYYYMMDD | 2022-03-08 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Dalton transactions : an international journal of inorganic chemistry |
PublicationTitleAlternate | Dalton Trans |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Tabrizi (D1DT03749H/cit2/1) 2019; 16 Anjum (D1DT03749H/cit18/1) 2019; 58 Hopff (D1DT03749H/cit27/1) 2020; 104 Zeglis (D1DT03749H/cit10/1) 2011; 54 Low (D1DT03749H/cit15/1) 2016; 120 Zehra (D1DT03749H/cit31/1) 2020; 49 Balakrishnan (D1DT03749H/cit17/1) 2020; 49 Glenister (D1DT03749H/cit40/1) 2017; 9 Qin (D1DT03749H/cit13/1) 2018; 143 Xu (D1DT03749H/cit65/1) 2016; 45 Massoud (D1DT03749H/cit42/1) 2019; 43 Icsel (D1DT03749H/cit46/1) 2020; 202 Tan (D1DT03749H/cit66/1) 2020; 49 Sutradhar (D1DT03749H/cit47/1) 2017; 175 Massoud (D1DT03749H/cit41/1) 2018; 180 Liang (D1DT03749H/cit59/1) 2019; 48 Gao (D1DT03749H/cit5/1) 2017; 136 Gou (D1DT03749H/cit49/1) 2017; 134 Qin (D1DT03749H/cit30/1) 2016; 124 Qin (D1DT03749H/cit67/1) 2020; 56 O'Neill (D1DT03749H/cit38/1) 2017; 56 Simunkova (D1DT03749H/cit24/1) 2019; 194 Gouda (D1DT03749H/cit14/1) 2018; 145 Khanra (D1DT03749H/cit44/1) 2020; 56 Rossier (D1DT03749H/cit36/1) 2017; 46 Ahamad (D1DT03749H/cit26/1) 2020; 95 Ghosh (D1DT03749H/cit52/1) 2010; 49 de Souza (D1DT03749H/cit32/1) 2020; 49 Zhou (D1DT03749H/cit1/1) 2014; 5 Munteanu (D1DT03749H/cit33/1) 2015; 44 Tardito (D1DT03749H/cit43/1) 2011; 133 Mo (D1DT03749H/cit21/1) 2019; 11 Kotian (D1DT03749H/cit28/1) 2021; 112 Yang (D1DT03749H/cit58/1) 2021; 50 Sheldrick (D1DT03749H/cit68/1) 2015; 71 Abe (D1DT03749H/cit23/1) 2018; 47 Mo (D1DT03749H/cit8/1) 2018; 156 Qi (D1DT03749H/cit12/1) 2018; 158 Eraj (D1DT03749H/cit25/1) 2020; 44 King (D1DT03749H/cit48/1) 2019; 48 Yang (D1DT03749H/cit54/1) 2007 Lee (D1DT03749H/cit60/1) 2019; 15 Rochford (D1DT03749H/cit20/1) 2020; 12 Boodram (D1DT03749H/cit3/1) 2016; 128 Karnthaler-Benbakka (D1DT03749H/cit7/1) 2014; 53 Lovejoy (D1DT03749H/cit11/1) 2012; 55 Nagaraju (D1DT03749H/cit53/1) 2012; 33 Parsekar (D1DT03749H/cit19/1) 2020; 49 Meng (D1DT03749H/cit29/1) 2019; 10 Li (D1DT03749H/cit57/1) 2019; 164 Addison (D1DT03749H/cit51/1) 1984 Qin (D1DT03749H/cit55/1) 2020; 30 Qi (D1DT03749H/cit4/1) 2018; 154 Chaudhuri (D1DT03749H/cit45/1) 2020; 56 He (D1DT03749H/cit61/1) 2014; 53 Zhang (D1DT03749H/cit34/1) 2019; 201 Ohui (D1DT03749H/cit9/1) 2018; 62 Das (D1DT03749H/cit22/1) 2019; 48 Qin (D1DT03749H/cit56/1) 2019; 184 Cao (D1DT03749H/cit16/1) 2020; 49 Glenister (D1DT03749H/cit39/1) 2021; 64 King (D1DT03749H/cit50/1) 2017; 56 Wu (D1DT03749H/cit63/1) 2020; 204 Su (D1DT03749H/cit64/1) 2019; 178 Dolomanov (D1DT03749H/cit69/1) 2009; 42 Maroń (D1DT03749H/cit37/1) 2018; 47 Qian (D1DT03749H/cit62/1) 2020; 204 Mathuber (D1DT03749H/cit6/1) 2020; 59 Liang (D1DT03749H/cit35/1) 2014; 141 |
References_xml | – volume: 141 start-page: 17 year: 2014 ident: D1DT03749H/cit35/1 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2014.08.006 – volume: 49 start-page: 1613 year: 2020 ident: D1DT03749H/cit66/1 publication-title: Dalton Trans. doi: 10.1039/C9DT04594E – start-page: 1349 year: 1984 ident: D1DT03749H/cit51/1 publication-title: Dalton Trans. doi: 10.1039/DT9840001349 – volume: 50 start-page: 5828 year: 2021 ident: D1DT03749H/cit58/1 publication-title: Dalton Trans. doi: 10.1039/D1DT00450F – volume: 54 start-page: 2391 year: 2011 ident: D1DT03749H/cit10/1 publication-title: J. Med. Chem. doi: 10.1021/jm101532u – volume: 128 start-page: 2895 year: 2016 ident: D1DT03749H/cit3/1 publication-title: Angew. Chem. doi: 10.1002/ange.201510443 – volume: 12 start-page: 65 year: 2020 ident: D1DT03749H/cit20/1 publication-title: Metallomics doi: 10.1039/c9mt00187e – volume: 45 start-page: 8036 year: 2016 ident: D1DT03749H/cit65/1 publication-title: Dalton Trans. doi: 10.1039/C6DT00451B – volume: 136 start-page: 235 year: 2017 ident: D1DT03749H/cit5/1 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2017.05.005 – volume: 49 start-page: 11851 year: 2020 ident: D1DT03749H/cit16/1 publication-title: Dalton Trans. doi: 10.1039/D0DT01742F – volume: 204 start-page: 112610 year: 2020 ident: D1DT03749H/cit62/1 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2020.112610 – volume: 5 start-page: 2761 year: 2014 ident: D1DT03749H/cit1/1 publication-title: Chem. Sci. doi: 10.1039/C4SC00384E – volume: 16 start-page: 3802 year: 2019 ident: D1DT03749H/cit2/1 publication-title: Mol. Pharmaceutics doi: 10.1021/acs.molpharmaceut.9b00399 – volume: 56 start-page: 6609 year: 2017 ident: D1DT03749H/cit50/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b00710 – volume: 49 start-page: 2947 year: 2020 ident: D1DT03749H/cit19/1 publication-title: Dalton Trans. doi: 10.1039/C9DT04656A – volume: 202 start-page: 112535 year: 2020 ident: D1DT03749H/cit46/1 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2020.112535 – volume: 158 start-page: 853 year: 2018 ident: D1DT03749H/cit12/1 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2018.09.034 – volume: 55 start-page: 7230 year: 2012 ident: D1DT03749H/cit11/1 publication-title: J. Med. Chem. doi: 10.1021/jm300768u – volume: 11 start-page: 1952 year: 2019 ident: D1DT03749H/cit21/1 publication-title: Metallomics doi: 10.1039/C9MT00165D – volume: 49 start-page: 9411 year: 2020 ident: D1DT03749H/cit17/1 publication-title: Dalton Trans. doi: 10.1039/D0DT01309A – volume: 184 start-page: 111751 year: 2019 ident: D1DT03749H/cit56/1 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2019.111751 – volume: 124 start-page: 380 year: 2016 ident: D1DT03749H/cit30/1 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2016.08.063 – volume: 59 start-page: 17794 year: 2020 ident: D1DT03749H/cit6/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c03083 – volume: 56 start-page: 6563 year: 2020 ident: D1DT03749H/cit44/1 publication-title: Chem. Commun. doi: 10.1039/D0CC01606C – volume: 56 start-page: 9860 year: 2017 ident: D1DT03749H/cit38/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b01368 – volume: 9 start-page: 699 year: 2017 ident: D1DT03749H/cit40/1 publication-title: Metallomics doi: 10.1039/C6MT00275G – volume: 47 start-page: 6444 year: 2018 ident: D1DT03749H/cit37/1 publication-title: Dalton Trans. doi: 10.1039/C8DT00558C – volume: 204 start-page: 112608 year: 2020 ident: D1DT03749H/cit63/1 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2020.112637 – volume: 46 start-page: 2159 year: 2017 ident: D1DT03749H/cit36/1 publication-title: Dalton Trans. doi: 10.1039/C6DT04443C – volume: 53 start-page: 12930 year: 2014 ident: D1DT03749H/cit7/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201403936 – volume: 156 start-page: 368 year: 2018 ident: D1DT03749H/cit8/1 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2018.07.022 – volume: 143 start-page: 1597 year: 2018 ident: D1DT03749H/cit13/1 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2017.10.058 – volume: 62 start-page: 512 year: 2018 ident: D1DT03749H/cit9/1 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.8b01031 – volume: 112 start-page: 104962 year: 2021 ident: D1DT03749H/cit28/1 publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2021.104962 – volume: 95 start-page: 103561 year: 2020 ident: D1DT03749H/cit26/1 publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2019.103561 – volume: 48 start-page: 5987 year: 2019 ident: D1DT03749H/cit48/1 publication-title: Dalton Trans. doi: 10.1039/C8DT04606A – volume: 180 start-page: 39 year: 2018 ident: D1DT03749H/cit41/1 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2017.11.023 – volume: 175 start-page: 267 year: 2017 ident: D1DT03749H/cit47/1 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2017.07.034 – volume: 15 start-page: 543 year: 2019 ident: D1DT03749H/cit60/1 publication-title: Autophagy doi: 10.1080/15548627.2018.1528812 – volume: 164 start-page: 640 year: 2019 ident: D1DT03749H/cit57/1 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2019.01.007 – volume: 44 start-page: 13796 year: 2015 ident: D1DT03749H/cit33/1 publication-title: Dalton Trans. doi: 10.1039/C5DT02101D – volume: 58 start-page: 13709 year: 2019 ident: D1DT03749H/cit18/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b01281 – volume: 53 start-page: 12137 year: 2014 ident: D1DT03749H/cit61/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201407468 – volume: 133 start-page: 6235 year: 2011 ident: D1DT03749H/cit43/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja109413c – volume: 145 start-page: 350 year: 2018 ident: D1DT03749H/cit14/1 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2018.01.009 – volume: 47 start-page: 13761 year: 2018 ident: D1DT03749H/cit23/1 publication-title: Dalton Trans. doi: 10.1039/C8DT03448F – volume: 30 start-page: 115948 year: 2020 ident: D1DT03749H/cit55/1 publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2020.115948 – volume: 194 start-page: 97 year: 2019 ident: D1DT03749H/cit24/1 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2019.02.010 – volume: 44 start-page: 20101 year: 2020 ident: D1DT03749H/cit25/1 publication-title: New J. Chem. doi: 10.1039/D0NJ03552A – start-page: 955 year: 2007 ident: D1DT03749H/cit54/1 publication-title: Dalton Trans. doi: 10.1039/B617136B – volume: 56 start-page: 4559 year: 2020 ident: D1DT03749H/cit45/1 publication-title: Chem. Commun. doi: 10.1039/D0CC00667J – volume: 178 start-page: 154 year: 2019 ident: D1DT03749H/cit64/1 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2019.05.088 – volume: 120 start-page: 1 year: 2016 ident: D1DT03749H/cit15/1 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2016.04.027 – volume: 43 start-page: 6186 year: 2019 ident: D1DT03749H/cit42/1 publication-title: New J. Chem. doi: 10.1039/C9NJ00061E – volume: 71 start-page: 3 year: 2015 ident: D1DT03749H/cit68/1 publication-title: Acta Crystallogr., Sect. C: Struct. Chem. doi: 10.1107/S2053229614024218 – volume: 49 start-page: 16830 year: 2020 ident: D1DT03749H/cit31/1 publication-title: Dalton Trans. doi: 10.1039/D0DT02657C – volume: 201 start-page: 110820 year: 2019 ident: D1DT03749H/cit34/1 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2019.110820 – volume: 104 start-page: 104193 year: 2020 ident: D1DT03749H/cit27/1 publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2020.104193 – volume: 49 start-page: 16425 year: 2020 ident: D1DT03749H/cit32/1 publication-title: Dalton Trans. doi: 10.1039/D0DT01389G – volume: 134 start-page: 207 year: 2017 ident: D1DT03749H/cit49/1 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2017.04.026 – volume: 42 start-page: 339 year: 2009 ident: D1DT03749H/cit69/1 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889808042726 – volume: 49 start-page: 7614 year: 2010 ident: D1DT03749H/cit52/1 publication-title: Inorg. Chem. doi: 10.1021/ic1004837 – volume: 48 start-page: 4398 year: 2019 ident: D1DT03749H/cit59/1 publication-title: Dalton Trans. doi: 10.1039/C9DT00322C – volume: 33 start-page: 52 year: 2012 ident: D1DT03749H/cit53/1 publication-title: Polyhedron doi: 10.1016/j.poly.2011.11.030 – volume: 10 start-page: 1603 year: 2019 ident: D1DT03749H/cit29/1 publication-title: ACS Med. Chem. Lett. doi: 10.1021/acsmedchemlett.9b00356 – volume: 48 start-page: 12933 year: 2019 ident: D1DT03749H/cit22/1 publication-title: Dalton Trans. doi: 10.1039/C9DT01576K – volume: 64 start-page: 2678 year: 2021 ident: D1DT03749H/cit39/1 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.0c01875 – volume: 154 start-page: 220 year: 2018 ident: D1DT03749H/cit4/1 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2018.05.023 – volume: 56 start-page: 3999 year: 2020 ident: D1DT03749H/cit67/1 publication-title: Chem. Commun. doi: 10.1039/D0CC00524J |
SSID | ssj0022052 |
Score | 2.5287976 |
Snippet | In this study, 13 transition metal complexes, namely, [Cu(L
1
H)(H
2
O)
2
]·(H
2
O)·NO
3
(1), [Cu(L
n
H
2
)
2
]·(NO
3
)·(H
2
O)
2
(2,
n
= 2; 3,
n
= 3; 4,
n
=... In this study, 13 transition metal complexes, namely, [Cu(L H)(H O) ]·(H O)·NO (1), [Cu(L H ) ]·(NO )·(H O) (2, = 2; 3, = 3; 4, = 4; 5, = 5), [Co(L H) ] ·(H O)... In this study, 13 transition metal complexes, namely, [Cu(L1H)(H2O)2]·(H2O)·NO3 (1), [Cu(LnH2)2]·(NO3)·(H2O)2 (2, n = 2; 3, n = 3; 4, n = 4; 5, n = 5),... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 4068 |
SubjectTerms | A549 Cells Adenocarcinoma Aldehydes - chemistry Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Apoptosis Apoptosis - drug effects Autophagy Autophagy - drug effects Chemical analysis Cisplatin - pharmacology Cobalt - chemistry Coordination Complexes - chemistry Coordination Complexes - pharmacology Coordination compounds Copper Copper - chemistry Crystals Drug Resistance, Neoplasm Humans Imines In vivo methods and tests Infrared analysis Infrared spectroscopy Lung Neoplasms Models, Molecular Molecular Structure Single crystals Transition metal compounds Xenotransplantation |
Title | Discovery of thirteen cobalt( ii ) and copper( ii ) salicylaldehyde Schiff base complexes that induce apoptosis and autophagy in human lung adenocarcinoma A549/DDP cells and that can overcome cisplatin resistance in vitro and in vivo |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35179159 https://www.proquest.com/docview/2637186908 https://www.proquest.com/docview/2630928029 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6V9gAXxJtAQYvgQBWZ-hU_jlXTqkFtAclVCxdrX1YihTiKnYryf_kfzOyu7QQFqXCxsmvv2vF8uzOznv2GkHccBlAUitAB7eQ7IY-lw0HuzsCVKlYsFAO93nF2Hp1chB-vBldbd3orUUvLmn8QPzfuK_kfqUIdyBV3yf6DZNtOoQJ-g3zhCBKG461kPJxUAkMwb8yX_smixpArgRQfNVqOI_T5zca1-RxlY6sqhmTAUzaVanwjNRXnpCj6qNFMjLn6gcwPY4b5A-QS9xTMy3ldInmJJnddIh0BM3sGTZa_6RI3O8IkBrpxISaz8jvrH4BXCH9uOPzcx-8DlY3WhF5x6sUHh5vBHSfVHCPycGNNheYszjVQup7Ui9KyQ0Hhulw1pIcM02Fjhosm3XmlVzfYTDNgdIuca9QYJoeV6IsmzV0X3WCm36_MyRplvracPmalc96NpEtb_w3aOYCJtsWl0uERX6AT58yymttFFfDHMapsVQ-E-GXbt-usakOdVR6WLdcOEndFFYCllGzUUW6A7156skbun3TcaeIm-uD8U358cXqaZ0dX2R2y44MHBFP4zsFRNjptVxN8V6eTap-q4d4N0v2u73Vr6y8ulDalsgfkvvWB6IEB9EOypWaPyN3DRiaPya8W2LQsaANsaoD9fjTao4AKakCti38AmhpAUwQ0bQFNEXrUAJq2gNZdtYCG01QDmiKg6TqgKQJ6H-BMNZx1S90nwJk2cKYtnGkHZ-xWw1m30YXr8gm5OD7KDk8cm4_EEYE3qJ0g4DyR4AMJ3ysSKVJkghIpWOCex9OCx7HgikWF9JLIE2GiIsmLgstEgZ0oZRQ8JduzcqaeE8oL5RbgmgWskKFK0yRVAxnEQRiHiQuTe4_sNXLLhSXrx5wx01wHjQRpPvSGmZbxSY-8ba-dG4qajVftNuLP7circj8KYp2TLumRN-1pEDa-RjZT5VJf46Z-4vppjzwzsGlvEyDBHzhEL27R-iW51420XbJdL5bqFRj0NX9tof0bEOsBgw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovery+of+thirteen+cobalt%28II%29+and+copper%28II%29+salicylaldehyde+Schiff+base+complexes+that+induce+apoptosis+and+autophagy+in+human+lung+adenocarcinoma+A549%2FDDP+cells+and+that+can+overcome+cisplatin+resistance+in+vitro+and+in+vivo&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Chen%2C+Ya-Ting&rft.au=Zhang%2C+Shao-Nan&rft.au=Wang%2C+Zhen-Feng&rft.au=Wei%2C+Qing-Min&rft.date=2022-03-08&rft.issn=1477-9234&rft.eissn=1477-9234&rft.volume=51&rft.issue=10&rft.spage=4068&rft_id=info:doi/10.1039%2Fd1dt03749h&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon |