Graphene aerogels that withstand extreme compressive stress and strain
Graphene aerogels combining elastic, lightweight, and robust mechanical properties have been explored for a wide variety of applications. However, graphene aerogels are generally subject to brittle mechanical properties and the irreversible damage of network structures during extreme compressions. T...
Saved in:
Published in | Nanoscale Vol. 10; no. 38; pp. 18291 - 18299 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
04.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene aerogels combining elastic, lightweight, and robust mechanical properties have been explored for a wide variety of applications. However, graphene aerogels are generally subject to brittle mechanical properties and the irreversible damage of network structures during extreme compressions. Thus, the challenge of finding ways to enhance the strength and resilience of graphene aerogels remains. Herein, superelastic and ultralight aerogels are fabricated through a thermal-treatment of 3D ordered graphene aerogels. The treatments at 400–1000 °C eliminate most of the oxygen-containing functional groups and enhance the π–π stacking interactions between graphene sheets, forming a well-ordered structure of graphene sheets in cell walls. The aerogels can withstand a loading of 100 000 N (10
9
times their own weight) for 60 min and retain their substantial elastic resilience. This loading corresponds to an ultimate compressive stress of approximately 1000 MPa and a strain of 99.8%, and this ultimate stress is 1–2 orders of magnitude higher than the values for other (carbon-based, polymer-based, inorganic-based, and metal-based) porous materials. The superelastic properties can be attributed to the graphite-like ordered structure of cell walls. The successful fabrication of such superelastic materials opens a new avenue to explore their potential applications in pressure sensors, mechanical shock absorbers, soft robots, and deformable electronic devices. |
---|---|
AbstractList | Graphene aerogels combining elastic, lightweight, and robust mechanical properties have been explored for a wide variety of applications. However, graphene aerogels are generally subject to brittle mechanical properties and the irreversible damage of network structures during extreme compressions. Thus, the challenge of finding ways to enhance the strength and resilience of graphene aerogels remains. Herein, superelastic and ultralight aerogels are fabricated through a thermal-treatment of 3D ordered graphene aerogels. The treatments at 400-1000 °C eliminate most of the oxygen-containing functional groups and enhance the π-π stacking interactions between graphene sheets, forming a well-ordered structure of graphene sheets in cell walls. The aerogels can withstand a loading of 100 000 N (109 times their own weight) for 60 min and retain their substantial elastic resilience. This loading corresponds to an ultimate compressive stress of approximately 1000 MPa and a strain of 99.8%, and this ultimate stress is 1-2 orders of magnitude higher than the values for other (carbon-based, polymer-based, inorganic-based, and metal-based) porous materials. The superelastic properties can be attributed to the graphite-like ordered structure of cell walls. The successful fabrication of such superelastic materials opens a new avenue to explore their potential applications in pressure sensors, mechanical shock absorbers, soft robots, and deformable electronic devices.Graphene aerogels combining elastic, lightweight, and robust mechanical properties have been explored for a wide variety of applications. However, graphene aerogels are generally subject to brittle mechanical properties and the irreversible damage of network structures during extreme compressions. Thus, the challenge of finding ways to enhance the strength and resilience of graphene aerogels remains. Herein, superelastic and ultralight aerogels are fabricated through a thermal-treatment of 3D ordered graphene aerogels. The treatments at 400-1000 °C eliminate most of the oxygen-containing functional groups and enhance the π-π stacking interactions between graphene sheets, forming a well-ordered structure of graphene sheets in cell walls. The aerogels can withstand a loading of 100 000 N (109 times their own weight) for 60 min and retain their substantial elastic resilience. This loading corresponds to an ultimate compressive stress of approximately 1000 MPa and a strain of 99.8%, and this ultimate stress is 1-2 orders of magnitude higher than the values for other (carbon-based, polymer-based, inorganic-based, and metal-based) porous materials. The superelastic properties can be attributed to the graphite-like ordered structure of cell walls. The successful fabrication of such superelastic materials opens a new avenue to explore their potential applications in pressure sensors, mechanical shock absorbers, soft robots, and deformable electronic devices. Graphene aerogels combining elastic, lightweight, and robust mechanical properties have been explored for a wide variety of applications. However, graphene aerogels are generally subject to brittle mechanical properties and the irreversible damage of network structures during extreme compressions. Thus, the challenge of finding ways to enhance the strength and resilience of graphene aerogels remains. Herein, superelastic and ultralight aerogels are fabricated through a thermal-treatment of 3D ordered graphene aerogels. The treatments at 400-1000 °C eliminate most of the oxygen-containing functional groups and enhance the π-π stacking interactions between graphene sheets, forming a well-ordered structure of graphene sheets in cell walls. The aerogels can withstand a loading of 100 000 N (109 times their own weight) for 60 min and retain their substantial elastic resilience. This loading corresponds to an ultimate compressive stress of approximately 1000 MPa and a strain of 99.8%, and this ultimate stress is 1-2 orders of magnitude higher than the values for other (carbon-based, polymer-based, inorganic-based, and metal-based) porous materials. The superelastic properties can be attributed to the graphite-like ordered structure of cell walls. The successful fabrication of such superelastic materials opens a new avenue to explore their potential applications in pressure sensors, mechanical shock absorbers, soft robots, and deformable electronic devices. Graphene aerogels combining elastic, lightweight, and robust mechanical properties have been explored for a wide variety of applications. However, graphene aerogels are generally subject to brittle mechanical properties and the irreversible damage of network structures during extreme compressions. Thus, the challenge of finding ways to enhance the strength and resilience of graphene aerogels remains. Herein, superelastic and ultralight aerogels are fabricated through a thermal-treatment of 3D ordered graphene aerogels. The treatments at 400–1000 °C eliminate most of the oxygen-containing functional groups and enhance the π–π stacking interactions between graphene sheets, forming a well-ordered structure of graphene sheets in cell walls. The aerogels can withstand a loading of 100 000 N (10 9 times their own weight) for 60 min and retain their substantial elastic resilience. This loading corresponds to an ultimate compressive stress of approximately 1000 MPa and a strain of 99.8%, and this ultimate stress is 1–2 orders of magnitude higher than the values for other (carbon-based, polymer-based, inorganic-based, and metal-based) porous materials. The superelastic properties can be attributed to the graphite-like ordered structure of cell walls. The successful fabrication of such superelastic materials opens a new avenue to explore their potential applications in pressure sensors, mechanical shock absorbers, soft robots, and deformable electronic devices. |
Author | Liu, Chen-Yang Ding, Meichun Li, Chenwei Zhang, Baoqing Qiao, Xin |
Author_xml | – sequence: 1 givenname: Chenwei orcidid: 0000-0003-0343-3699 surname: Li fullname: Li, Chenwei organization: CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190 – sequence: 2 givenname: Meichun surname: Ding fullname: Ding, Meichun organization: College of Chemistry and Molecular Engineering, State Key Laboratory Base of Eco-Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China – sequence: 3 givenname: Baoqing surname: Zhang fullname: Zhang, Baoqing organization: CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190 – sequence: 4 givenname: Xin surname: Qiao fullname: Qiao, Xin organization: CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190 – sequence: 5 givenname: Chen-Yang orcidid: 0000-0002-6461-3784 surname: Liu fullname: Liu, Chen-Yang organization: CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30246840$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0F1LwzAUBuAgE_ehN_4AKXgjQjVfS5tLGW4qQ0H0uqTpmetok5mkfvx7WzYnDK_yQp5zOLxD1DPWAEKnBF8RzOT1JH18xjyl_OEADSjmOGYsob1dFryPht6vMBaSCXaE-gxTLlKOB2g6c2q9BAORAmffoPJRWKoQfZZh6YMyRQRfwUENkbb12oH35QdEPnQp6r7bqEpzjA4XqvJwsn1H6HV6-zK5i-dPs_vJzTzWjIxDTFVOtCSUgIJEjnVepBIEKZjULFVpwTVAUWCiMdUpMKqE4ERRYDmVMh1LNkIXm71rZ98b8CGrS6-hqpQB2_iMEkISjhnp6PkeXdnGmfa6TgnGJWZJq862qslrKLK1K2vlvrPfhlpwuQHaWe8dLHaE4KyrP_urv8V4D-syqFBa07VU_TfyA_mfhd0 |
CitedBy_id | crossref_primary_10_1016_j_foodhyd_2020_105742 crossref_primary_10_1021_acsnano_0c09959 crossref_primary_10_1002_solr_202100317 crossref_primary_10_1039_D3CP02219F crossref_primary_10_3390_ma16051800 crossref_primary_10_1016_j_carbon_2023_118037 crossref_primary_10_1039_D1NR06893H crossref_primary_10_1039_D1TC01315G crossref_primary_10_3390_gels11010003 crossref_primary_10_1002_advs_202205202 crossref_primary_10_1021_acsanm_3c02623 crossref_primary_10_1021_acsanm_4c03142 crossref_primary_10_1021_acsami_2c03622 crossref_primary_10_1039_C9NR02071C crossref_primary_10_1002_chem_201806342 crossref_primary_10_1557_jmr_2019_290 crossref_primary_10_1021_acsami_9b11277 crossref_primary_10_1021_acsami_9b12444 crossref_primary_10_1039_D0SM01261K crossref_primary_10_1016_j_apsadv_2025_100708 crossref_primary_10_1016_j_matchemphys_2022_127282 crossref_primary_10_1007_s42114_021_00413_y crossref_primary_10_1002_adma_202307772 crossref_primary_10_1016_j_electacta_2020_136600 crossref_primary_10_1016_j_cej_2023_144010 crossref_primary_10_3390_molecules25061295 crossref_primary_10_1016_j_foodhyd_2020_106044 crossref_primary_10_1016_j_nxnano_2025_100138 crossref_primary_10_1021_acsami_3c10998 crossref_primary_10_1016_j_compscitech_2019_107819 crossref_primary_10_1038_s41467_023_38664_6 crossref_primary_10_1002_pol_20220179 crossref_primary_10_1002_adma_201907176 crossref_primary_10_1016_j_carbon_2022_02_029 crossref_primary_10_1016_j_est_2024_112788 crossref_primary_10_1039_D2SC01786E crossref_primary_10_1002_admt_202200476 crossref_primary_10_1016_j_scitotenv_2020_137781 crossref_primary_10_1016_j_foodhyd_2019_105440 crossref_primary_10_1002_EXP_20230057 crossref_primary_10_1016_j_jece_2021_106269 crossref_primary_10_1002_aic_17619 crossref_primary_10_1016_j_carbon_2020_02_057 crossref_primary_10_1016_j_jmst_2022_05_014 crossref_primary_10_1021_acsnano_2c09076 crossref_primary_10_1038_s41467_022_35386_z crossref_primary_10_1038_s42005_022_00806_5 |
Cites_doi | 10.1021/acsami.7b01017 10.1002/advs.201600097 10.1021/acsami.5b01608 10.1002/adma.201603079 10.1002/adfm.201704674 10.1002/adma.201204530 10.1002/adma.201505409 10.1002/adma.201302406 10.1038/nature04233 10.1002/adma.201500391 10.1038/ncomms6716 10.1038/ncomms2251 10.1039/C7TA04917J 10.1002/smll.201202965 10.1038/nmat3001 10.1039/C3MH00040K 10.1126/science.1157996 10.1002/adma.201305359 10.1002/adma.201305274 10.1039/c2ta01142e 10.1038/nmat1849 10.1002/adma.201204576 10.1039/C5PY00861A 10.1002/adma.201405788 10.1002/smll.201403532 10.1038/ncomms5328 10.1002/adma.201504594 10.1002/adma.201503957 10.1021/acsami.5b00846 10.1002/smll.201503524 10.1021/acsnano.7b01815 10.1038/nnano.2017.33 10.1021/nl0731872 10.1002/adma.201301617 10.1002/adma.201103561 10.1002/adfm.201403273 10.1038/nature14340 10.1002/smll.201600509 10.1002/adma.201200498 10.1002/adma.201505420 10.1038/srep13712 10.1002/adma.200800757 10.1039/C6RA04995H 10.1126/science.1255908 10.1002/adma.201400657 10.1038/nchem.2145 10.1126/science.1211649 10.1039/C8TA04307H 10.1038/nnano.2012.118 10.1021/acsnano.5b05373 10.1002/adma.201504317 10.1021/am504851s 10.1021/nn507426u 10.1021/nn101187z 10.1002/adma.201502682 10.1021/ja1072299 10.1002/adma.201200197 10.1002/adma.201102838 10.1021/acsami.5b01679 10.1126/science.1252291 10.1002/adma.201602393 10.1039/C8TA05407J 10.1002/anie.201000270 10.1038/ncomms12920 10.1016/j.carbon.2013.10.082 10.1002/adfm.201502395 10.1126/science.1158180 10.1038/ncomms7962 10.1038/nature06016 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/C8NR04824J |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 18299 |
ExternalDocumentID | 30246840 10_1039_C8NR04824J |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RSCEA RVUXY -JG AGSTE NPM RRC 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c315t-2ab1c9121eae795cbd89e61d39c38a8d4ceedd01c02c8e32a6641a2e3b2998593 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 01:49:24 EDT 2025 Sun Jun 29 16:49:05 EDT 2025 Wed Feb 19 02:44:23 EST 2025 Tue Jul 01 01:13:28 EDT 2025 Thu Apr 24 23:00:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c315t-2ab1c9121eae795cbd89e61d39c38a8d4ceedd01c02c8e32a6641a2e3b2998593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0343-3699 0000-0002-6461-3784 |
PMID | 30246840 |
PQID | 2116349037 |
PQPubID | 2047485 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2111740319 proquest_journals_2116349037 pubmed_primary_30246840 crossref_primary_10_1039_C8NR04824J crossref_citationtrail_10_1039_C8NR04824J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Oct-04 |
PublicationDateYYYYMMDD | 2018-10-04 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-Oct-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Ge (C8NR04824J-(cit52)/*[position()=1]) 2017; 12 Zhang (C8NR04824J-(cit12)/*[position()=1]) 2015; 27 Zhang (C8NR04824J-(cit29)/*[position()=1]) 2016; 28 Yang (C8NR04824J-(cit20)/*[position()=1]) 2016; 3 Tang (C8NR04824J-(cit64)/*[position()=1]) 2010; 49 Zheng (C8NR04824J-(cit58)/*[position()=1]) 2014; 344 Moon (C8NR04824J-(cit67)/*[position()=1]) 2015; 25 Meza (C8NR04824J-(cit57)/*[position()=1]) 2014; 345 Dikin (C8NR04824J-(cit38)/*[position()=1]) 2007; 448 Worsley (C8NR04824J-(cit15)/*[position()=1]) 2010; 132 Zhai (C8NR04824J-(cit47)/*[position()=1]) 2015; 7 Schaedler (C8NR04824J-(cit21)/*[position()=1]) 2011; 334 Xu (C8NR04824J-(cit27)/*[position()=1]) 2015; 9 Xu (C8NR04824J-(cit30)/*[position()=1]) 2016; 28 Gao (C8NR04824J-(cit49)/*[position()=1]) 2014; 1 Jiang (C8NR04824J-(cit62)/*[position()=1]) 2017; 5 Niu (C8NR04824J-(cit40)/*[position()=1]) 2012; 24 Lin (C8NR04824J-(cit18)/*[position()=1]) 2016; 28 Geim (C8NR04824J-(cit2)/*[position()=1]) 2007; 6 Hong (C8NR04824J-(cit45)/*[position()=1]) 2015; 25 Kucheyev (C8NR04824J-(cit55)/*[position()=1]) 2012; 24 Wu (C8NR04824J-(cit26)/*[position()=1]) 2015; 6 Lee (C8NR04824J-(cit4)/*[position()=1]) 2008; 321 Qiu (C8NR04824J-(cit22)/*[position()=1]) 2012; 3 Li (C8NR04824J-(cit37)/*[position()=1]) 2016; 28 Qian (C8NR04824J-(cit66)/*[position()=1]) 2014; 68 Ye (C8NR04824J-(cit50)/*[position()=1]) 2013; 1 Wu (C8NR04824J-(cit14)/*[position()=1]) 2017; 9 Zhang (C8NR04824J-(cit36)/*[position()=1]) 2016; 12 Fan (C8NR04824J-(cit13)/*[position()=1]) 2015; 27 Peng (C8NR04824J-(cit46)/*[position()=1]) 2014; 26 Mu (C8NR04824J-(cit56)/*[position()=1]) 2015; 6 Jiang (C8NR04824J-(cit7)/*[position()=1]) 2018; 6 Chen (C8NR04824J-(cit39)/*[position()=1]) 2008; 20 Garakani (C8NR04824J-(cit19)/*[position()=1]) 2014; 6 Peng (C8NR04824J-(cit42)/*[position()=1]) 2015; 6 Sun (C8NR04824J-(cit24)/*[position()=1]) 2013; 25 Samad (C8NR04824J-(cit61)/*[position()=1]) 2015; 11 Balandin (C8NR04824J-(cit5)/*[position()=1]) 2008; 8 Ni (C8NR04824J-(cit32)/*[position()=1]) 2015; 5 Chang (C8NR04824J-(cit16)/*[position()=1]) 2016; 28 Barg (C8NR04824J-(cit17)/*[position()=1]) 2014; 5 Yao (C8NR04824J-(cit28)/*[position()=1]) 2016; 28 Lu (C8NR04824J-(cit51)/*[position()=1]) 2016; 6 Novoselov (C8NR04824J-(cit1)/*[position()=1]) 2005; 438 Wang (C8NR04824J-(cit54)/*[position()=1]) 2013; 25 Yang (C8NR04824J-(cit68)/*[position()=1]) 2017; 11 Xu (C8NR04824J-(cit69)/*[position()=1]) 2010; 4 Lv (C8NR04824J-(cit34)/*[position()=1]) 2016; 12 Samad (C8NR04824J-(cit63)/*[position()=1]) 2015; 7 Qiu (C8NR04824J-(cit70)/*[position()=1]) 2016; 28 Li (C8NR04824J-(cit3)/*[position()=1]) 2008; 320 Sai (C8NR04824J-(cit48)/*[position()=1]) 2015; 7 Li (C8NR04824J-(cit31)/*[position()=1]) 2014; 26 Yeh (C8NR04824J-(cit41)/*[position()=1]) 2014; 7 Chen (C8NR04824J-(cit65)/*[position()=1]) 2011; 23 Liang (C8NR04824J-(cit8)/*[position()=1]) 2018; 6 Huang (C8NR04824J-(cit44)/*[position()=1]) 2013; 9 Du (C8NR04824J-(cit59)/*[position()=1]) 2016; 10 Chen (C8NR04824J-(cit6)/*[position()=1]) 2011; 10 Li (C8NR04824J-(cit60)/*[position()=1]) 2018; 28 Bi (C8NR04824J-(cit23)/*[position()=1]) 2015; 27 Hu (C8NR04824J-(cit25)/*[position()=1]) 2013; 25 Wu (C8NR04824J-(cit53)/*[position()=1]) 2013; 25 Lin (C8NR04824J-(cit11)/*[position()=1]) 2015; 520 Gao (C8NR04824J-(cit33)/*[position()=1]) 2016; 7 Zhu (C8NR04824J-(cit35)/*[position()=1]) 2015; 6 Kim (C8NR04824J-(cit43)/*[position()=1]) 2012; 7 Hu (C8NR04824J-(cit9)/*[position()=1]) 2012; 24 Qiu (C8NR04824J-(cit10)/*[position()=1]) 2014; 26 |
References_xml | – volume: 9 start-page: 9059 year: 2017 ident: C8NR04824J-(cit14)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01017 – volume: 3 start-page: 1600097 year: 2016 ident: C8NR04824J-(cit20)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201600097 – volume: 7 start-page: 9195 year: 2015 ident: C8NR04824J-(cit63)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01608 – volume: 28 start-page: 9223 year: 2016 ident: C8NR04824J-(cit30)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201603079 – volume: 28 start-page: 1704674 year: 2018 ident: C8NR04824J-(cit60)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704674 – volume: 25 start-page: 2219 year: 2013 ident: C8NR04824J-(cit25)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201204530 – volume: 28 start-page: 2229 year: 2016 ident: C8NR04824J-(cit29)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201505409 – volume: 25 start-page: 5658 year: 2013 ident: C8NR04824J-(cit53)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201302406 – volume: 438 start-page: 197 year: 2005 ident: C8NR04824J-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/nature04233 – volume: 27 start-page: 3767 year: 2015 ident: C8NR04824J-(cit13)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201500391 – volume: 6 start-page: 5716 year: 2015 ident: C8NR04824J-(cit42)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms6716 – volume: 3 start-page: 1241 year: 2012 ident: C8NR04824J-(cit22)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2251 – volume: 5 start-page: 18684 year: 2017 ident: C8NR04824J-(cit62)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04917J – volume: 9 start-page: 1397 year: 2013 ident: C8NR04824J-(cit44)/*[position()=1] publication-title: Small doi: 10.1002/smll.201202965 – volume: 10 start-page: 424 year: 2011 ident: C8NR04824J-(cit6)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3001 – volume: 1 start-page: 69 year: 2014 ident: C8NR04824J-(cit49)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C3MH00040K – volume: 321 start-page: 385 year: 2008 ident: C8NR04824J-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.1157996 – volume: 26 start-page: 3333 year: 2014 ident: C8NR04824J-(cit10)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201305359 – volume: 26 start-page: 3241 year: 2014 ident: C8NR04824J-(cit46)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201305274 – volume: 1 start-page: 3495 year: 2013 ident: C8NR04824J-(cit50)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c2ta01142e – volume: 6 start-page: 183 year: 2007 ident: C8NR04824J-(cit2)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 25 start-page: 2554 year: 2013 ident: C8NR04824J-(cit24)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201204576 – volume: 6 start-page: 5869 year: 2015 ident: C8NR04824J-(cit56)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C5PY00861A – volume: 27 start-page: 2049 year: 2015 ident: C8NR04824J-(cit12)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201405788 – volume: 11 start-page: 2380 year: 2015 ident: C8NR04824J-(cit61)/*[position()=1] publication-title: Small doi: 10.1002/smll.201403532 – volume: 5 start-page: 5328 year: 2014 ident: C8NR04824J-(cit17)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5328 – volume: 28 start-page: 1623 year: 2016 ident: C8NR04824J-(cit28)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504594 – volume: 28 start-page: 194 year: 2016 ident: C8NR04824J-(cit70)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503957 – volume: 7 start-page: 7373 year: 2015 ident: C8NR04824J-(cit48)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00846 – volume: 12 start-page: 1702 year: 2016 ident: C8NR04824J-(cit36)/*[position()=1] publication-title: Small doi: 10.1002/smll.201503524 – volume: 11 start-page: 6817 year: 2017 ident: C8NR04824J-(cit68)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b01815 – volume: 12 start-page: 434 year: 2017 ident: C8NR04824J-(cit52)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.33 – volume: 8 start-page: 902 year: 2008 ident: C8NR04824J-(cit5)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl0731872 – volume: 25 start-page: 4494 year: 2013 ident: C8NR04824J-(cit54)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201301617 – volume: 24 start-page: 776 year: 2012 ident: C8NR04824J-(cit55)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201103561 – volume: 25 start-page: 1053 year: 2015 ident: C8NR04824J-(cit45)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201403273 – volume: 520 start-page: 325 year: 2015 ident: C8NR04824J-(cit11)/*[position()=1] publication-title: Nature doi: 10.1038/nature14340 – volume: 12 start-page: 3229 year: 2016 ident: C8NR04824J-(cit34)/*[position()=1] publication-title: Small doi: 10.1002/smll.201600509 – volume: 6 start-page: 1038 year: 2015 ident: C8NR04824J-(cit26)/*[position()=1] publication-title: Nat. Commun. – volume: 24 start-page: 5493 year: 2012 ident: C8NR04824J-(cit9)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201200498 – volume: 28 start-page: 3504 year: 2016 ident: C8NR04824J-(cit16)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201505420 – volume: 5 start-page: 13712 year: 2015 ident: C8NR04824J-(cit32)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep13712 – volume: 20 start-page: 3557 year: 2008 ident: C8NR04824J-(cit39)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200800757 – volume: 6 start-page: 43007 year: 2016 ident: C8NR04824J-(cit51)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA04995H – volume: 345 start-page: 1322 year: 2014 ident: C8NR04824J-(cit57)/*[position()=1] publication-title: Science doi: 10.1126/science.1255908 – volume: 26 start-page: 4789 year: 2014 ident: C8NR04824J-(cit31)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201400657 – volume: 7 start-page: 166 year: 2014 ident: C8NR04824J-(cit41)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2145 – volume: 334 start-page: 962 year: 2011 ident: C8NR04824J-(cit21)/*[position()=1] publication-title: Science doi: 10.1126/science.1211649 – volume: 6 start-page: 11966 year: 2018 ident: C8NR04824J-(cit7)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04307H – volume: 7 start-page: 562 year: 2012 ident: C8NR04824J-(cit43)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.118 – volume: 10 start-page: 453 year: 2016 ident: C8NR04824J-(cit59)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b05373 – volume: 28 start-page: 1510 year: 2016 ident: C8NR04824J-(cit37)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504317 – volume: 6 start-page: 18971 year: 2014 ident: C8NR04824J-(cit19)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am504851s – volume: 9 start-page: 3969 year: 2015 ident: C8NR04824J-(cit27)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn507426u – volume: 4 start-page: 4324 year: 2010 ident: C8NR04824J-(cit69)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn101187z – volume: 27 start-page: 5943 year: 2015 ident: C8NR04824J-(cit23)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502682 – volume: 132 start-page: 14067 year: 2010 ident: C8NR04824J-(cit15)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1072299 – volume: 24 start-page: 4144 year: 2012 ident: C8NR04824J-(cit40)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201200197 – volume: 23 start-page: 5679 year: 2011 ident: C8NR04824J-(cit65)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201102838 – volume: 7 start-page: 7436 year: 2015 ident: C8NR04824J-(cit47)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01679 – volume: 344 start-page: 1373 year: 2014 ident: C8NR04824J-(cit58)/*[position()=1] publication-title: Science doi: 10.1126/science.1252291 – volume: 28 start-page: 7993 year: 2016 ident: C8NR04824J-(cit18)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201602393 – volume: 6 start-page: 16235 year: 2018 ident: C8NR04824J-(cit8)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05407J – volume: 49 start-page: 4603 year: 2010 ident: C8NR04824J-(cit64)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/anie.201000270 – volume: 7 start-page: 12920 year: 2016 ident: C8NR04824J-(cit33)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms12920 – volume: 68 start-page: 221 year: 2014 ident: C8NR04824J-(cit66)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2013.10.082 – volume: 25 start-page: 6976 year: 2015 ident: C8NR04824J-(cit67)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502395 – volume: 320 start-page: 1170 year: 2008 ident: C8NR04824J-(cit3)/*[position()=1] publication-title: Science doi: 10.1126/science.1158180 – volume: 6 start-page: 6962 year: 2015 ident: C8NR04824J-(cit35)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms7962 – volume: 448 start-page: 457 year: 2007 ident: C8NR04824J-(cit38)/*[position()=1] publication-title: Nature doi: 10.1038/nature06016 |
SSID | ssj0069363 |
Score | 2.4670575 |
Snippet | Graphene aerogels combining elastic, lightweight, and robust mechanical properties have been explored for a wide variety of applications. However, graphene... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 18291 |
SubjectTerms | Aerogels Compressive properties Deformation Electronic devices Formability Functional groups Graphene Heat treatment Mechanical properties Mechanical shock Porous materials Pressure sensors Resilience Sheets Shock absorbers Strain Structural damage Superelasticity Tensile stress Weight |
Title | Graphene aerogels that withstand extreme compressive stress and strain |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30246840 https://www.proquest.com/docview/2116349037 https://www.proquest.com/docview/2111740319 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagk9D2gLhuhQ0ZwQuaArGdJvbjNu2iwfaANtG3yLFdVgTJ6FqQ-PUcX5uJTQJeoip268ife853Ts4FoddMlqqSRmSgjFRWVFxmUmiTlZwpIMygVITNRj45LY_Oi-PxaLxs_OeyS-bNW_XrxryS_0EV7gGuNkv2H5BNPwo34DPgC1dAGK5_hfGhrTYNwmpbmln3GbQc0Egw-K1v1bkItkHyWv-fCxx3Aa8_TMwOcQ5z1yCiz09B2HZXAFuC-8PUv5Q37U8zTaw3NEI5MVN1sUjHKzmfd2X3PapE61SdSueQHYe1gpOB-Iqv3tA3ThhRG3nIWHVdcua9E-KLtAQ5CFaLb8L1h4TOmS1wqng7A9lBiy_9SbC7l98cVgyogy1Ds9RSKXYwDt1FKxRMAzpAKzvvdw8_Rf1bClayWIiWiXfLpVbRvfjl6yzkFtPCUYyzB-h-sA3wjgf6Ibpj2kdorVcx8jE6iJDjCDm2kOMEOQ6Q4x7k2EOO7bCH_Ak6P9g_2zvKQiuMTDEymmdUNkQJQomRphIj1WguTEk0E4pxyXVhuY7Oicqp4oZRWZYFkdSwBuiGLWn3FA3arjUbCFNFJnlRTdRE6KLRmut8pApgdQqs_4nkQ_Qmbk2tQp14-2hfaxevwES9x08_uh09HqJXae6lr45y46zNuMN1-Pdc1ZSAJVCInFVD9DINg2yzL6xka7qFmwMGs82zG6J1j0xaJiL57NaR52h1eZQ30WA-W5gtYJDz5kU4Mr8BPtNx-w |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+aerogels+that+withstand+extreme+compressive+stress+and+strain&rft.jtitle=Nanoscale&rft.au=Li%2C+Chenwei&rft.au=Ding%2C+Meichun&rft.au=Zhang%2C+Baoqing&rft.au=Qiao%2C+Xin&rft.date=2018-10-04&rft.eissn=2040-3372&rft.volume=10&rft.issue=38&rft.spage=18291&rft_id=info:doi/10.1039%2Fc8nr04824j&rft_id=info%3Apmid%2F30246840&rft.externalDocID=30246840 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |