Graphene aerogels that withstand extreme compressive stress and strain

Graphene aerogels combining elastic, lightweight, and robust mechanical properties have been explored for a wide variety of applications. However, graphene aerogels are generally subject to brittle mechanical properties and the irreversible damage of network structures during extreme compressions. T...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 10; no. 38; pp. 18291 - 18299
Main Authors Li, Chenwei, Ding, Meichun, Zhang, Baoqing, Qiao, Xin, Liu, Chen-Yang
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 04.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene aerogels combining elastic, lightweight, and robust mechanical properties have been explored for a wide variety of applications. However, graphene aerogels are generally subject to brittle mechanical properties and the irreversible damage of network structures during extreme compressions. Thus, the challenge of finding ways to enhance the strength and resilience of graphene aerogels remains. Herein, superelastic and ultralight aerogels are fabricated through a thermal-treatment of 3D ordered graphene aerogels. The treatments at 400–1000 °C eliminate most of the oxygen-containing functional groups and enhance the π–π stacking interactions between graphene sheets, forming a well-ordered structure of graphene sheets in cell walls. The aerogels can withstand a loading of 100 000 N (10 9 times their own weight) for 60 min and retain their substantial elastic resilience. This loading corresponds to an ultimate compressive stress of approximately 1000 MPa and a strain of 99.8%, and this ultimate stress is 1–2 orders of magnitude higher than the values for other (carbon-based, polymer-based, inorganic-based, and metal-based) porous materials. The superelastic properties can be attributed to the graphite-like ordered structure of cell walls. The successful fabrication of such superelastic materials opens a new avenue to explore their potential applications in pressure sensors, mechanical shock absorbers, soft robots, and deformable electronic devices.
AbstractList Graphene aerogels combining elastic, lightweight, and robust mechanical properties have been explored for a wide variety of applications. However, graphene aerogels are generally subject to brittle mechanical properties and the irreversible damage of network structures during extreme compressions. Thus, the challenge of finding ways to enhance the strength and resilience of graphene aerogels remains. Herein, superelastic and ultralight aerogels are fabricated through a thermal-treatment of 3D ordered graphene aerogels. The treatments at 400-1000 °C eliminate most of the oxygen-containing functional groups and enhance the π-π stacking interactions between graphene sheets, forming a well-ordered structure of graphene sheets in cell walls. The aerogels can withstand a loading of 100 000 N (109 times their own weight) for 60 min and retain their substantial elastic resilience. This loading corresponds to an ultimate compressive stress of approximately 1000 MPa and a strain of 99.8%, and this ultimate stress is 1-2 orders of magnitude higher than the values for other (carbon-based, polymer-based, inorganic-based, and metal-based) porous materials. The superelastic properties can be attributed to the graphite-like ordered structure of cell walls. The successful fabrication of such superelastic materials opens a new avenue to explore their potential applications in pressure sensors, mechanical shock absorbers, soft robots, and deformable electronic devices.Graphene aerogels combining elastic, lightweight, and robust mechanical properties have been explored for a wide variety of applications. However, graphene aerogels are generally subject to brittle mechanical properties and the irreversible damage of network structures during extreme compressions. Thus, the challenge of finding ways to enhance the strength and resilience of graphene aerogels remains. Herein, superelastic and ultralight aerogels are fabricated through a thermal-treatment of 3D ordered graphene aerogels. The treatments at 400-1000 °C eliminate most of the oxygen-containing functional groups and enhance the π-π stacking interactions between graphene sheets, forming a well-ordered structure of graphene sheets in cell walls. The aerogels can withstand a loading of 100 000 N (109 times their own weight) for 60 min and retain their substantial elastic resilience. This loading corresponds to an ultimate compressive stress of approximately 1000 MPa and a strain of 99.8%, and this ultimate stress is 1-2 orders of magnitude higher than the values for other (carbon-based, polymer-based, inorganic-based, and metal-based) porous materials. The superelastic properties can be attributed to the graphite-like ordered structure of cell walls. The successful fabrication of such superelastic materials opens a new avenue to explore their potential applications in pressure sensors, mechanical shock absorbers, soft robots, and deformable electronic devices.
Graphene aerogels combining elastic, lightweight, and robust mechanical properties have been explored for a wide variety of applications. However, graphene aerogels are generally subject to brittle mechanical properties and the irreversible damage of network structures during extreme compressions. Thus, the challenge of finding ways to enhance the strength and resilience of graphene aerogels remains. Herein, superelastic and ultralight aerogels are fabricated through a thermal-treatment of 3D ordered graphene aerogels. The treatments at 400-1000 °C eliminate most of the oxygen-containing functional groups and enhance the π-π stacking interactions between graphene sheets, forming a well-ordered structure of graphene sheets in cell walls. The aerogels can withstand a loading of 100 000 N (109 times their own weight) for 60 min and retain their substantial elastic resilience. This loading corresponds to an ultimate compressive stress of approximately 1000 MPa and a strain of 99.8%, and this ultimate stress is 1-2 orders of magnitude higher than the values for other (carbon-based, polymer-based, inorganic-based, and metal-based) porous materials. The superelastic properties can be attributed to the graphite-like ordered structure of cell walls. The successful fabrication of such superelastic materials opens a new avenue to explore their potential applications in pressure sensors, mechanical shock absorbers, soft robots, and deformable electronic devices.
Graphene aerogels combining elastic, lightweight, and robust mechanical properties have been explored for a wide variety of applications. However, graphene aerogels are generally subject to brittle mechanical properties and the irreversible damage of network structures during extreme compressions. Thus, the challenge of finding ways to enhance the strength and resilience of graphene aerogels remains. Herein, superelastic and ultralight aerogels are fabricated through a thermal-treatment of 3D ordered graphene aerogels. The treatments at 400–1000 °C eliminate most of the oxygen-containing functional groups and enhance the π–π stacking interactions between graphene sheets, forming a well-ordered structure of graphene sheets in cell walls. The aerogels can withstand a loading of 100 000 N (10 9 times their own weight) for 60 min and retain their substantial elastic resilience. This loading corresponds to an ultimate compressive stress of approximately 1000 MPa and a strain of 99.8%, and this ultimate stress is 1–2 orders of magnitude higher than the values for other (carbon-based, polymer-based, inorganic-based, and metal-based) porous materials. The superelastic properties can be attributed to the graphite-like ordered structure of cell walls. The successful fabrication of such superelastic materials opens a new avenue to explore their potential applications in pressure sensors, mechanical shock absorbers, soft robots, and deformable electronic devices.
Author Liu, Chen-Yang
Ding, Meichun
Li, Chenwei
Zhang, Baoqing
Qiao, Xin
Author_xml – sequence: 1
  givenname: Chenwei
  orcidid: 0000-0003-0343-3699
  surname: Li
  fullname: Li, Chenwei
  organization: CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190
– sequence: 2
  givenname: Meichun
  surname: Ding
  fullname: Ding, Meichun
  organization: College of Chemistry and Molecular Engineering, State Key Laboratory Base of Eco-Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
– sequence: 3
  givenname: Baoqing
  surname: Zhang
  fullname: Zhang, Baoqing
  organization: CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190
– sequence: 4
  givenname: Xin
  surname: Qiao
  fullname: Qiao, Xin
  organization: CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190
– sequence: 5
  givenname: Chen-Yang
  orcidid: 0000-0002-6461-3784
  surname: Liu
  fullname: Liu, Chen-Yang
  organization: CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30246840$$D View this record in MEDLINE/PubMed
BookMark eNpt0F1LwzAUBuAgE_ehN_4AKXgjQjVfS5tLGW4qQ0H0uqTpmetok5mkfvx7WzYnDK_yQp5zOLxD1DPWAEKnBF8RzOT1JH18xjyl_OEADSjmOGYsob1dFryPht6vMBaSCXaE-gxTLlKOB2g6c2q9BAORAmffoPJRWKoQfZZh6YMyRQRfwUENkbb12oH35QdEPnQp6r7bqEpzjA4XqvJwsn1H6HV6-zK5i-dPs_vJzTzWjIxDTFVOtCSUgIJEjnVepBIEKZjULFVpwTVAUWCiMdUpMKqE4ERRYDmVMh1LNkIXm71rZ98b8CGrS6-hqpQB2_iMEkISjhnp6PkeXdnGmfa6TgnGJWZJq862qslrKLK1K2vlvrPfhlpwuQHaWe8dLHaE4KyrP_urv8V4D-syqFBa07VU_TfyA_mfhd0
CitedBy_id crossref_primary_10_1016_j_foodhyd_2020_105742
crossref_primary_10_1021_acsnano_0c09959
crossref_primary_10_1002_solr_202100317
crossref_primary_10_1039_D3CP02219F
crossref_primary_10_3390_ma16051800
crossref_primary_10_1016_j_carbon_2023_118037
crossref_primary_10_1039_D1NR06893H
crossref_primary_10_1039_D1TC01315G
crossref_primary_10_3390_gels11010003
crossref_primary_10_1002_advs_202205202
crossref_primary_10_1021_acsanm_3c02623
crossref_primary_10_1021_acsanm_4c03142
crossref_primary_10_1021_acsami_2c03622
crossref_primary_10_1039_C9NR02071C
crossref_primary_10_1002_chem_201806342
crossref_primary_10_1557_jmr_2019_290
crossref_primary_10_1021_acsami_9b11277
crossref_primary_10_1021_acsami_9b12444
crossref_primary_10_1039_D0SM01261K
crossref_primary_10_1016_j_apsadv_2025_100708
crossref_primary_10_1016_j_matchemphys_2022_127282
crossref_primary_10_1007_s42114_021_00413_y
crossref_primary_10_1002_adma_202307772
crossref_primary_10_1016_j_electacta_2020_136600
crossref_primary_10_1016_j_cej_2023_144010
crossref_primary_10_3390_molecules25061295
crossref_primary_10_1016_j_foodhyd_2020_106044
crossref_primary_10_1016_j_nxnano_2025_100138
crossref_primary_10_1021_acsami_3c10998
crossref_primary_10_1016_j_compscitech_2019_107819
crossref_primary_10_1038_s41467_023_38664_6
crossref_primary_10_1002_pol_20220179
crossref_primary_10_1002_adma_201907176
crossref_primary_10_1016_j_carbon_2022_02_029
crossref_primary_10_1016_j_est_2024_112788
crossref_primary_10_1039_D2SC01786E
crossref_primary_10_1002_admt_202200476
crossref_primary_10_1016_j_scitotenv_2020_137781
crossref_primary_10_1016_j_foodhyd_2019_105440
crossref_primary_10_1002_EXP_20230057
crossref_primary_10_1016_j_jece_2021_106269
crossref_primary_10_1002_aic_17619
crossref_primary_10_1016_j_carbon_2020_02_057
crossref_primary_10_1016_j_jmst_2022_05_014
crossref_primary_10_1021_acsnano_2c09076
crossref_primary_10_1038_s41467_022_35386_z
crossref_primary_10_1038_s42005_022_00806_5
Cites_doi 10.1021/acsami.7b01017
10.1002/advs.201600097
10.1021/acsami.5b01608
10.1002/adma.201603079
10.1002/adfm.201704674
10.1002/adma.201204530
10.1002/adma.201505409
10.1002/adma.201302406
10.1038/nature04233
10.1002/adma.201500391
10.1038/ncomms6716
10.1038/ncomms2251
10.1039/C7TA04917J
10.1002/smll.201202965
10.1038/nmat3001
10.1039/C3MH00040K
10.1126/science.1157996
10.1002/adma.201305359
10.1002/adma.201305274
10.1039/c2ta01142e
10.1038/nmat1849
10.1002/adma.201204576
10.1039/C5PY00861A
10.1002/adma.201405788
10.1002/smll.201403532
10.1038/ncomms5328
10.1002/adma.201504594
10.1002/adma.201503957
10.1021/acsami.5b00846
10.1002/smll.201503524
10.1021/acsnano.7b01815
10.1038/nnano.2017.33
10.1021/nl0731872
10.1002/adma.201301617
10.1002/adma.201103561
10.1002/adfm.201403273
10.1038/nature14340
10.1002/smll.201600509
10.1002/adma.201200498
10.1002/adma.201505420
10.1038/srep13712
10.1002/adma.200800757
10.1039/C6RA04995H
10.1126/science.1255908
10.1002/adma.201400657
10.1038/nchem.2145
10.1126/science.1211649
10.1039/C8TA04307H
10.1038/nnano.2012.118
10.1021/acsnano.5b05373
10.1002/adma.201504317
10.1021/am504851s
10.1021/nn507426u
10.1021/nn101187z
10.1002/adma.201502682
10.1021/ja1072299
10.1002/adma.201200197
10.1002/adma.201102838
10.1021/acsami.5b01679
10.1126/science.1252291
10.1002/adma.201602393
10.1039/C8TA05407J
10.1002/anie.201000270
10.1038/ncomms12920
10.1016/j.carbon.2013.10.082
10.1002/adfm.201502395
10.1126/science.1158180
10.1038/ncomms7962
10.1038/nature06016
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/C8NR04824J
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 18299
ExternalDocumentID 30246840
10_1039_C8NR04824J
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
-JG
AGSTE
NPM
RRC
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c315t-2ab1c9121eae795cbd89e61d39c38a8d4ceedd01c02c8e32a6641a2e3b2998593
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 01:49:24 EDT 2025
Sun Jun 29 16:49:05 EDT 2025
Wed Feb 19 02:44:23 EST 2025
Tue Jul 01 01:13:28 EDT 2025
Thu Apr 24 23:00:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-2ab1c9121eae795cbd89e61d39c38a8d4ceedd01c02c8e32a6641a2e3b2998593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0343-3699
0000-0002-6461-3784
PMID 30246840
PQID 2116349037
PQPubID 2047485
PageCount 9
ParticipantIDs proquest_miscellaneous_2111740319
proquest_journals_2116349037
pubmed_primary_30246840
crossref_primary_10_1039_C8NR04824J
crossref_citationtrail_10_1039_C8NR04824J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Oct-04
PublicationDateYYYYMMDD 2018-10-04
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-Oct-04
  day: 04
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Ge (C8NR04824J-(cit52)/*[position()=1]) 2017; 12
Zhang (C8NR04824J-(cit12)/*[position()=1]) 2015; 27
Zhang (C8NR04824J-(cit29)/*[position()=1]) 2016; 28
Yang (C8NR04824J-(cit20)/*[position()=1]) 2016; 3
Tang (C8NR04824J-(cit64)/*[position()=1]) 2010; 49
Zheng (C8NR04824J-(cit58)/*[position()=1]) 2014; 344
Moon (C8NR04824J-(cit67)/*[position()=1]) 2015; 25
Meza (C8NR04824J-(cit57)/*[position()=1]) 2014; 345
Dikin (C8NR04824J-(cit38)/*[position()=1]) 2007; 448
Worsley (C8NR04824J-(cit15)/*[position()=1]) 2010; 132
Zhai (C8NR04824J-(cit47)/*[position()=1]) 2015; 7
Schaedler (C8NR04824J-(cit21)/*[position()=1]) 2011; 334
Xu (C8NR04824J-(cit27)/*[position()=1]) 2015; 9
Xu (C8NR04824J-(cit30)/*[position()=1]) 2016; 28
Gao (C8NR04824J-(cit49)/*[position()=1]) 2014; 1
Jiang (C8NR04824J-(cit62)/*[position()=1]) 2017; 5
Niu (C8NR04824J-(cit40)/*[position()=1]) 2012; 24
Lin (C8NR04824J-(cit18)/*[position()=1]) 2016; 28
Geim (C8NR04824J-(cit2)/*[position()=1]) 2007; 6
Hong (C8NR04824J-(cit45)/*[position()=1]) 2015; 25
Kucheyev (C8NR04824J-(cit55)/*[position()=1]) 2012; 24
Wu (C8NR04824J-(cit26)/*[position()=1]) 2015; 6
Lee (C8NR04824J-(cit4)/*[position()=1]) 2008; 321
Qiu (C8NR04824J-(cit22)/*[position()=1]) 2012; 3
Li (C8NR04824J-(cit37)/*[position()=1]) 2016; 28
Qian (C8NR04824J-(cit66)/*[position()=1]) 2014; 68
Ye (C8NR04824J-(cit50)/*[position()=1]) 2013; 1
Wu (C8NR04824J-(cit14)/*[position()=1]) 2017; 9
Zhang (C8NR04824J-(cit36)/*[position()=1]) 2016; 12
Fan (C8NR04824J-(cit13)/*[position()=1]) 2015; 27
Peng (C8NR04824J-(cit46)/*[position()=1]) 2014; 26
Mu (C8NR04824J-(cit56)/*[position()=1]) 2015; 6
Jiang (C8NR04824J-(cit7)/*[position()=1]) 2018; 6
Chen (C8NR04824J-(cit39)/*[position()=1]) 2008; 20
Garakani (C8NR04824J-(cit19)/*[position()=1]) 2014; 6
Peng (C8NR04824J-(cit42)/*[position()=1]) 2015; 6
Sun (C8NR04824J-(cit24)/*[position()=1]) 2013; 25
Samad (C8NR04824J-(cit61)/*[position()=1]) 2015; 11
Balandin (C8NR04824J-(cit5)/*[position()=1]) 2008; 8
Ni (C8NR04824J-(cit32)/*[position()=1]) 2015; 5
Chang (C8NR04824J-(cit16)/*[position()=1]) 2016; 28
Barg (C8NR04824J-(cit17)/*[position()=1]) 2014; 5
Yao (C8NR04824J-(cit28)/*[position()=1]) 2016; 28
Lu (C8NR04824J-(cit51)/*[position()=1]) 2016; 6
Novoselov (C8NR04824J-(cit1)/*[position()=1]) 2005; 438
Wang (C8NR04824J-(cit54)/*[position()=1]) 2013; 25
Yang (C8NR04824J-(cit68)/*[position()=1]) 2017; 11
Xu (C8NR04824J-(cit69)/*[position()=1]) 2010; 4
Lv (C8NR04824J-(cit34)/*[position()=1]) 2016; 12
Samad (C8NR04824J-(cit63)/*[position()=1]) 2015; 7
Qiu (C8NR04824J-(cit70)/*[position()=1]) 2016; 28
Li (C8NR04824J-(cit3)/*[position()=1]) 2008; 320
Sai (C8NR04824J-(cit48)/*[position()=1]) 2015; 7
Li (C8NR04824J-(cit31)/*[position()=1]) 2014; 26
Yeh (C8NR04824J-(cit41)/*[position()=1]) 2014; 7
Chen (C8NR04824J-(cit65)/*[position()=1]) 2011; 23
Liang (C8NR04824J-(cit8)/*[position()=1]) 2018; 6
Huang (C8NR04824J-(cit44)/*[position()=1]) 2013; 9
Du (C8NR04824J-(cit59)/*[position()=1]) 2016; 10
Chen (C8NR04824J-(cit6)/*[position()=1]) 2011; 10
Li (C8NR04824J-(cit60)/*[position()=1]) 2018; 28
Bi (C8NR04824J-(cit23)/*[position()=1]) 2015; 27
Hu (C8NR04824J-(cit25)/*[position()=1]) 2013; 25
Wu (C8NR04824J-(cit53)/*[position()=1]) 2013; 25
Lin (C8NR04824J-(cit11)/*[position()=1]) 2015; 520
Gao (C8NR04824J-(cit33)/*[position()=1]) 2016; 7
Zhu (C8NR04824J-(cit35)/*[position()=1]) 2015; 6
Kim (C8NR04824J-(cit43)/*[position()=1]) 2012; 7
Hu (C8NR04824J-(cit9)/*[position()=1]) 2012; 24
Qiu (C8NR04824J-(cit10)/*[position()=1]) 2014; 26
References_xml – volume: 9
  start-page: 9059
  year: 2017
  ident: C8NR04824J-(cit14)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01017
– volume: 3
  start-page: 1600097
  year: 2016
  ident: C8NR04824J-(cit20)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600097
– volume: 7
  start-page: 9195
  year: 2015
  ident: C8NR04824J-(cit63)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01608
– volume: 28
  start-page: 9223
  year: 2016
  ident: C8NR04824J-(cit30)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603079
– volume: 28
  start-page: 1704674
  year: 2018
  ident: C8NR04824J-(cit60)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704674
– volume: 25
  start-page: 2219
  year: 2013
  ident: C8NR04824J-(cit25)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204530
– volume: 28
  start-page: 2229
  year: 2016
  ident: C8NR04824J-(cit29)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505409
– volume: 25
  start-page: 5658
  year: 2013
  ident: C8NR04824J-(cit53)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302406
– volume: 438
  start-page: 197
  year: 2005
  ident: C8NR04824J-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 27
  start-page: 3767
  year: 2015
  ident: C8NR04824J-(cit13)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500391
– volume: 6
  start-page: 5716
  year: 2015
  ident: C8NR04824J-(cit42)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6716
– volume: 3
  start-page: 1241
  year: 2012
  ident: C8NR04824J-(cit22)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2251
– volume: 5
  start-page: 18684
  year: 2017
  ident: C8NR04824J-(cit62)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04917J
– volume: 9
  start-page: 1397
  year: 2013
  ident: C8NR04824J-(cit44)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201202965
– volume: 10
  start-page: 424
  year: 2011
  ident: C8NR04824J-(cit6)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3001
– volume: 1
  start-page: 69
  year: 2014
  ident: C8NR04824J-(cit49)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C3MH00040K
– volume: 321
  start-page: 385
  year: 2008
  ident: C8NR04824J-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1157996
– volume: 26
  start-page: 3333
  year: 2014
  ident: C8NR04824J-(cit10)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305359
– volume: 26
  start-page: 3241
  year: 2014
  ident: C8NR04824J-(cit46)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305274
– volume: 1
  start-page: 3495
  year: 2013
  ident: C8NR04824J-(cit50)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c2ta01142e
– volume: 6
  start-page: 183
  year: 2007
  ident: C8NR04824J-(cit2)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 25
  start-page: 2554
  year: 2013
  ident: C8NR04824J-(cit24)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204576
– volume: 6
  start-page: 5869
  year: 2015
  ident: C8NR04824J-(cit56)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C5PY00861A
– volume: 27
  start-page: 2049
  year: 2015
  ident: C8NR04824J-(cit12)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405788
– volume: 11
  start-page: 2380
  year: 2015
  ident: C8NR04824J-(cit61)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201403532
– volume: 5
  start-page: 5328
  year: 2014
  ident: C8NR04824J-(cit17)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5328
– volume: 28
  start-page: 1623
  year: 2016
  ident: C8NR04824J-(cit28)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504594
– volume: 28
  start-page: 194
  year: 2016
  ident: C8NR04824J-(cit70)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503957
– volume: 7
  start-page: 7373
  year: 2015
  ident: C8NR04824J-(cit48)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00846
– volume: 12
  start-page: 1702
  year: 2016
  ident: C8NR04824J-(cit36)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201503524
– volume: 11
  start-page: 6817
  year: 2017
  ident: C8NR04824J-(cit68)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01815
– volume: 12
  start-page: 434
  year: 2017
  ident: C8NR04824J-(cit52)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.33
– volume: 8
  start-page: 902
  year: 2008
  ident: C8NR04824J-(cit5)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl0731872
– volume: 25
  start-page: 4494
  year: 2013
  ident: C8NR04824J-(cit54)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301617
– volume: 24
  start-page: 776
  year: 2012
  ident: C8NR04824J-(cit55)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103561
– volume: 25
  start-page: 1053
  year: 2015
  ident: C8NR04824J-(cit45)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201403273
– volume: 520
  start-page: 325
  year: 2015
  ident: C8NR04824J-(cit11)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature14340
– volume: 12
  start-page: 3229
  year: 2016
  ident: C8NR04824J-(cit34)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201600509
– volume: 6
  start-page: 1038
  year: 2015
  ident: C8NR04824J-(cit26)/*[position()=1]
  publication-title: Nat. Commun.
– volume: 24
  start-page: 5493
  year: 2012
  ident: C8NR04824J-(cit9)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200498
– volume: 28
  start-page: 3504
  year: 2016
  ident: C8NR04824J-(cit16)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505420
– volume: 5
  start-page: 13712
  year: 2015
  ident: C8NR04824J-(cit32)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep13712
– volume: 20
  start-page: 3557
  year: 2008
  ident: C8NR04824J-(cit39)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800757
– volume: 6
  start-page: 43007
  year: 2016
  ident: C8NR04824J-(cit51)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA04995H
– volume: 345
  start-page: 1322
  year: 2014
  ident: C8NR04824J-(cit57)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1255908
– volume: 26
  start-page: 4789
  year: 2014
  ident: C8NR04824J-(cit31)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400657
– volume: 7
  start-page: 166
  year: 2014
  ident: C8NR04824J-(cit41)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2145
– volume: 334
  start-page: 962
  year: 2011
  ident: C8NR04824J-(cit21)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1211649
– volume: 6
  start-page: 11966
  year: 2018
  ident: C8NR04824J-(cit7)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04307H
– volume: 7
  start-page: 562
  year: 2012
  ident: C8NR04824J-(cit43)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.118
– volume: 10
  start-page: 453
  year: 2016
  ident: C8NR04824J-(cit59)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05373
– volume: 28
  start-page: 1510
  year: 2016
  ident: C8NR04824J-(cit37)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504317
– volume: 6
  start-page: 18971
  year: 2014
  ident: C8NR04824J-(cit19)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am504851s
– volume: 9
  start-page: 3969
  year: 2015
  ident: C8NR04824J-(cit27)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn507426u
– volume: 4
  start-page: 4324
  year: 2010
  ident: C8NR04824J-(cit69)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn101187z
– volume: 27
  start-page: 5943
  year: 2015
  ident: C8NR04824J-(cit23)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502682
– volume: 132
  start-page: 14067
  year: 2010
  ident: C8NR04824J-(cit15)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1072299
– volume: 24
  start-page: 4144
  year: 2012
  ident: C8NR04824J-(cit40)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200197
– volume: 23
  start-page: 5679
  year: 2011
  ident: C8NR04824J-(cit65)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102838
– volume: 7
  start-page: 7436
  year: 2015
  ident: C8NR04824J-(cit47)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01679
– volume: 344
  start-page: 1373
  year: 2014
  ident: C8NR04824J-(cit58)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1252291
– volume: 28
  start-page: 7993
  year: 2016
  ident: C8NR04824J-(cit18)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602393
– volume: 6
  start-page: 16235
  year: 2018
  ident: C8NR04824J-(cit8)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05407J
– volume: 49
  start-page: 4603
  year: 2010
  ident: C8NR04824J-(cit64)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201000270
– volume: 7
  start-page: 12920
  year: 2016
  ident: C8NR04824J-(cit33)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12920
– volume: 68
  start-page: 221
  year: 2014
  ident: C8NR04824J-(cit66)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.10.082
– volume: 25
  start-page: 6976
  year: 2015
  ident: C8NR04824J-(cit67)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502395
– volume: 320
  start-page: 1170
  year: 2008
  ident: C8NR04824J-(cit3)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1158180
– volume: 6
  start-page: 6962
  year: 2015
  ident: C8NR04824J-(cit35)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7962
– volume: 448
  start-page: 457
  year: 2007
  ident: C8NR04824J-(cit38)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature06016
SSID ssj0069363
Score 2.4670575
Snippet Graphene aerogels combining elastic, lightweight, and robust mechanical properties have been explored for a wide variety of applications. However, graphene...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 18291
SubjectTerms Aerogels
Compressive properties
Deformation
Electronic devices
Formability
Functional groups
Graphene
Heat treatment
Mechanical properties
Mechanical shock
Porous materials
Pressure sensors
Resilience
Sheets
Shock absorbers
Strain
Structural damage
Superelasticity
Tensile stress
Weight
Title Graphene aerogels that withstand extreme compressive stress and strain
URI https://www.ncbi.nlm.nih.gov/pubmed/30246840
https://www.proquest.com/docview/2116349037
https://www.proquest.com/docview/2111740319
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagk9D2gLhuhQ0ZwQuaArGdJvbjNu2iwfaANtG3yLFdVgTJ6FqQ-PUcX5uJTQJeoip268ife853Ts4FoddMlqqSRmSgjFRWVFxmUmiTlZwpIMygVITNRj45LY_Oi-PxaLxs_OeyS-bNW_XrxryS_0EV7gGuNkv2H5BNPwo34DPgC1dAGK5_hfGhrTYNwmpbmln3GbQc0Egw-K1v1bkItkHyWv-fCxx3Aa8_TMwOcQ5z1yCiz09B2HZXAFuC-8PUv5Q37U8zTaw3NEI5MVN1sUjHKzmfd2X3PapE61SdSueQHYe1gpOB-Iqv3tA3ThhRG3nIWHVdcua9E-KLtAQ5CFaLb8L1h4TOmS1wqng7A9lBiy_9SbC7l98cVgyogy1Ds9RSKXYwDt1FKxRMAzpAKzvvdw8_Rf1bClayWIiWiXfLpVbRvfjl6yzkFtPCUYyzB-h-sA3wjgf6Ibpj2kdorVcx8jE6iJDjCDm2kOMEOQ6Q4x7k2EOO7bCH_Ak6P9g_2zvKQiuMTDEymmdUNkQJQomRphIj1WguTEk0E4pxyXVhuY7Oicqp4oZRWZYFkdSwBuiGLWn3FA3arjUbCFNFJnlRTdRE6KLRmut8pApgdQqs_4nkQ_Qmbk2tQp14-2hfaxevwES9x08_uh09HqJXae6lr45y46zNuMN1-Pdc1ZSAJVCInFVD9DINg2yzL6xka7qFmwMGs82zG6J1j0xaJiL57NaR52h1eZQ30WA-W5gtYJDz5kU4Mr8BPtNx-w
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+aerogels+that+withstand+extreme+compressive+stress+and+strain&rft.jtitle=Nanoscale&rft.au=Li%2C+Chenwei&rft.au=Ding%2C+Meichun&rft.au=Zhang%2C+Baoqing&rft.au=Qiao%2C+Xin&rft.date=2018-10-04&rft.eissn=2040-3372&rft.volume=10&rft.issue=38&rft.spage=18291&rft_id=info:doi/10.1039%2Fc8nr04824j&rft_id=info%3Apmid%2F30246840&rft.externalDocID=30246840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon