Numerical predictions of progressive collapse in reinforced concrete beam-column sub-assemblages: A focus on 3D multiscale modeling

The progressive collapse of reinforced concrete (RC) beam-column sub-assemblage under catenary action (CA) using the alternate load path method to evaluate structures' robustness has raised much attention in the past decade, both in experimental tests and finite element (FE) simulations. Howeve...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 315; p. 118485
Main Authors Long, Xu, Iyela, Percy M., Su, Yutai, Atlaw, Meklit M., Kang, Shao-Bo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The progressive collapse of reinforced concrete (RC) beam-column sub-assemblage under catenary action (CA) using the alternate load path method to evaluate structures' robustness has raised much attention in the past decade, both in experimental tests and finite element (FE) simulations. However, a comprehensive multiscale method within concrete to assess structural robustness against progressive collapse, explicitly surrounding concrete matrix under CA, is generally lacking and has not been thoroughly explored in the relevant literature. This study aims to develop an FE macromodel to reliably simulate the progressive collapse resistance of seismic and non-seismic RC beam-column sub-assemblages. The proposed macroscale FE models are extensively validated by experimental results dominated by the CA and excessive deformation of RC beam-column sub-assemblages. Then, the macroscale FE model is further partitioned at the critical region with high-stress concentration to establish a sub-model and elucidate the underlying mesoscopic mechanism to motivate the CA by performing sub-modeling analysis. A 150 mm × 150 mm × 150 mm mesoscale heterogeneous model is established to be composed of aggregates, interfacial transition zone (ITZ), pores, and mortar by 3D voxel and Voronoi-based methods. The numerical predictions of the three macroscale models demonstrate good agreement of the overall deformation and load resistance trends with experimental results at both structural and sectional levels, but an overestimation of the load resistance peak is observed when concrete is crushed. Compared to the macroscale models, the sub-modeling analysis provides a more in-depth understanding of localized phenomena such as cracks and fractures. The 3D mesoscale model is further investigated with different aggregate volume fractions following the Fuller gradation. It is found that aggregates and ITZ (higher porosity, lower elastic modulus, and lower tensile strength compared to the bulk mortar) are more prone to concrete failure mechanisms without considering the role of reinforcement leading to the CA at the mesoscale, maintaining the concrete properties of the three macroscale models. In terms of the material constitutive model, the concrete damage plasticity model, and cohesive elements for mortar and ITZ, respectively, under uniaxial compression and tension behavior, the importance of interface bonding in CA of the surrounding concrete matrix is underlined. Additionally, the established mesoscale modeling method facilitates comprehension of the responses exhibited by macroscale RC sub-assemblies, ultimately shedding light on fracture initiation and propagation mechanisms. •Numerically predict a macroscopic model resistance under catenary action.•Further improve accuracy and dependability of resistance capacity in submodelling.•Unveil the resistance contributions in mesoscale modeling under progressive collapse.
AbstractList The progressive collapse of reinforced concrete (RC) beam-column sub-assemblage under catenary action (CA) using the alternate load path method to evaluate structures' robustness has raised much attention in the past decade, both in experimental tests and finite element (FE) simulations. However, a comprehensive multiscale method within concrete to assess structural robustness against progressive collapse, explicitly surrounding concrete matrix under CA, is generally lacking and has not been thoroughly explored in the relevant literature. This study aims to develop an FE macromodel to reliably simulate the progressive collapse resistance of seismic and non-seismic RC beam-column sub-assemblages. The proposed macroscale FE models are extensively validated by experimental results dominated by the CA and excessive deformation of RC beam-column sub-assemblages. Then, the macroscale FE model is further partitioned at the critical region with high-stress concentration to establish a sub-model and elucidate the underlying mesoscopic mechanism to motivate the CA by performing sub-modeling analysis. A 150 mm × 150 mm × 150 mm mesoscale heterogeneous model is established to be composed of aggregates, interfacial transition zone (ITZ), pores, and mortar by 3D voxel and Voronoi-based methods. The numerical predictions of the three macroscale models demonstrate good agreement of the overall deformation and load resistance trends with experimental results at both structural and sectional levels, but an overestimation of the load resistance peak is observed when concrete is crushed. Compared to the macroscale models, the sub-modeling analysis provides a more in-depth understanding of localized phenomena such as cracks and fractures. The 3D mesoscale model is further investigated with different aggregate volume fractions following the Fuller gradation. It is found that aggregates and ITZ (higher porosity, lower elastic modulus, and lower tensile strength compared to the bulk mortar) are more prone to concrete failure mechanisms without considering the role of reinforcement leading to the CA at the mesoscale, maintaining the concrete properties of the three macroscale models. In terms of the material constitutive model, the concrete damage plasticity model, and cohesive elements for mortar and ITZ, respectively, under uniaxial compression and tension behavior, the importance of interface bonding in CA of the surrounding concrete matrix is underlined. Additionally, the established mesoscale modeling method facilitates comprehension of the responses exhibited by macroscale RC sub-assemblies, ultimately shedding light on fracture initiation and propagation mechanisms. •Numerically predict a macroscopic model resistance under catenary action.•Further improve accuracy and dependability of resistance capacity in submodelling.•Unveil the resistance contributions in mesoscale modeling under progressive collapse.
ArticleNumber 118485
Author Iyela, Percy M.
Atlaw, Meklit M.
Su, Yutai
Kang, Shao-Bo
Long, Xu
Author_xml – sequence: 1
  givenname: Xu
  surname: Long
  fullname: Long, Xu
  organization: School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Percy M.
  surname: Iyela
  fullname: Iyela, Percy M.
  organization: School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Yutai
  surname: Su
  fullname: Su, Yutai
  email: suyutai@nwpu.edu.cn
  organization: School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Meklit M.
  surname: Atlaw
  fullname: Atlaw, Meklit M.
  organization: School of Software Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 5
  givenname: Shao-Bo
  surname: Kang
  fullname: Kang, Shao-Bo
  email: kang0119@cqu.edu.cn
  organization: School of Civil Engineering, Chongqing University, Chongqing, China
BookMark eNqNkE1LAzEQhnOoYFv9DeYPbE2y34KHUj-h6EXPIclOlpRsUpLdgmf_uCkVD170NMwwzzvMs0Az5x0gdEXJihJaXe9W4Po4hkmNK0ZYsaK0KZpyhuaEFjQjrK3O0SLGHSGENQ2Zo8-XaYBglLB4H6AzajTeRex1an0fIEZzAKy8tWIfARuHAxinfVDQpbFTAUbAEsSQpaVpcDhOMhMxwiCt6CHe4DXWXk0p0-H8Dg-THU1M9wAPvgNrXH-BzrSwES6_6xK9P9y_bZ6y7evj82a9zVROyzFjRLStAuhEBQRyEFrSomoUoVowXSupWyZKTbXsmCoLKYsur_M2Z01VCyZZvkT1KVcFH2MAzffBDCJ8cEr40R_f8R9__OiPn_wl8vYXqcwojqrGIIz9B78-8ZDeOxgIPCoDLjk0AdJu582fGV8ba5sd
CitedBy_id crossref_primary_10_3390_buildings15071020
crossref_primary_10_1016_j_mtcomm_2025_112181
crossref_primary_10_1016_j_jobe_2025_112035
crossref_primary_10_1016_j_mtcomm_2025_112081
crossref_primary_10_1016_j_scp_2025_101985
crossref_primary_10_3390_buildings15010121
crossref_primary_10_3389_fmats_2025_1542655
crossref_primary_10_1080_15376494_2024_2447065
crossref_primary_10_1080_15376494_2024_2445794
crossref_primary_10_3390_su17062611
crossref_primary_10_1016_j_dt_2025_02_005
crossref_primary_10_1080_15376494_2024_2448302
crossref_primary_10_1016_j_matdes_2024_113159
crossref_primary_10_1038_s41598_025_94331_4
crossref_primary_10_1038_s41598_025_94328_z
crossref_primary_10_1080_15376494_2024_2438906
crossref_primary_10_1038_s41598_025_86737_x
Cites_doi 10.1016/j.cemconres.2011.06.016
10.1016/j.cemconcomp.2020.103889
10.1016/j.engstruct.2016.07.042
10.1016/j.ijimpeng.2020.103775
10.1016/j.conbuildmat.2019.117749
10.1155/2021/5538477
10.1016/j.ijsolstr.2010.04.031
10.1016/j.conbuildmat.2020.118559
10.1016/j.engstruct.2021.113316
10.1016/j.ijsolstr.2015.05.002
10.1016/j.engstruct.2015.06.051
10.1016/j.cemconres.2014.01.009
10.1016/j.conbuildmat.2018.05.052
10.6028/NIST.IR.7396
10.1080/15732479.2020.1841245
10.1016/0008-8846(94)00124-H
10.1016/j.cemconres.2013.03.021
10.12989/sem.2013.48.3.309
10.1142/S2424913021500016
10.1016/j.conbuildmat.2020.119639
10.1016/j.engfracmech.2020.106974
10.1016/j.conbuildmat.2018.01.040
10.1016/j.istruc.2021.06.008
10.1016/j.engstruct.2017.08.068
10.1061/TACEAT.0001979
10.1016/0020-7683(89)90050-4
10.12989/cac.2015.15.5.807
10.1016/j.conbuildmat.2020.119382
10.1016/j.cemconres.2022.106799
10.1016/j.cemconres.2004.05.042
10.1016/j.engstruct.2013.08.025
10.1016/j.conbuildmat.2019.07.231
10.1016/j.istruc.2024.106131
10.1016/j.ijsolstr.2022.111960
10.1016/j.cemconres.2020.106317
10.1016/S0266-3538(01)00061-6
10.1016/j.engfracmech.2019.106646
10.1016/j.compositesb.2019.106958
10.1016/j.engfracmech.2020.106979
10.1016/j.compscitech.2017.06.015
10.1016/j.engstruct.2023.116310
10.1016/j.conbuildmat.2023.130346
10.1016/j.compstruc.2017.07.009
10.1016/0266-3538(96)00005-X
10.1016/j.ijsolstr.2015.11.018
10.1016/j.engstruct.2019.109776
10.1007/s11831-011-9063-8
10.1016/j.tafmec.2022.103415
10.1016/j.jcsr.2018.09.029
10.1016/j.compstruct.2022.116267
10.1016/j.ijsolstr.2018.05.026
10.3390/app13074317
10.1016/j.ijimpeng.2016.06.009
10.1016/j.conbuildmat.2017.11.094
10.1016/j.conbuildmat.2017.12.229
10.1260/1369-4332.18.9.1461
10.1016/j.conbuildmat.2019.117823
10.12989/sem.2013.48.5.587
10.1016/j.engstruct.2009.12.048
10.1016/j.engfracmech.2017.10.003
10.1016/j.conbuildmat.2014.08.050
10.3390/buildings13020533
10.1016/j.engstruct.2014.05.011
10.1016/j.engfracmech.2020.107080
10.1016/j.cma.2011.09.014
10.1016/j.ijimpeng.2012.01.010
10.3390/ma14154314
10.1016/j.tafmec.2020.102722
10.1016/j.engstruct.2011.08.040
10.1016/j.engfailanal.2021.105683
10.1023/B:INTS.0000042339.92990.4c
10.1016/j.cemconres.2017.03.014
10.1016/j.dt.2022.02.003
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engstruct.2024.118485
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_engstruct_2024_118485
S0141029624010472
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
SSH
VH1
WUQ
ZY4
ID FETCH-LOGICAL-c315t-20a99ceeda6e0e3eafb1468c01fa2f7cbf92a5f1fbd2c54bb4d373932867a2b23
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Tue Jul 01 05:16:29 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Sat Feb 08 15:51:44 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Aggregate volume fraction
RC
Progressive collapse
Mesoscale modeling
Sub-modeling
Catenary action
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-20a99ceeda6e0e3eafb1468c01fa2f7cbf92a5f1fbd2c54bb4d373932867a2b23
ParticipantIDs crossref_primary_10_1016_j_engstruct_2024_118485
crossref_citationtrail_10_1016_j_engstruct_2024_118485
elsevier_sciencedirect_doi_10_1016_j_engstruct_2024_118485
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-15
PublicationDateYYYYMMDD 2024-09-15
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Engineering structures
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pham, Tan, Yu (bib8) 2017; 149
Long, Mao, Lu, Li, Jia (bib42) 2021; 06
Jin, Yu, Du, Yang (bib90) 2020; 230
Huang, Yang, Ren, Liu, Zhang (bib92) 2015; 67-68
Han, Eckschlager, Böhm (bib44) 2001; 61
Bao, Long, Tan, Lee (bib68) 2013; 56
Zhang, Song, Liu, Wu, Song (bib30) 2017; 149
Long, Bao, Tan, Lee (bib65) 2014; 74
Rashidian, Mohajeri Nav, Usefi (bib86) 2016; 2016
Yun, Tai-ping, Xiang, Wei-jian (bib17) 2019; 36
Wang, Shah, Wang, Wang, Zhang, Pang (bib24) 2022; 26
Akçaoğlu, Tokyay, Çelik (bib95) 2005; 35
Long, Tan, Lee (bib83) 2014; 111
Guo, Lu (bib89) 2021; 2021
Zhou R. Mesoscopic analysis of damage mechanisms in concrete material. 2016.
Naderi, Tu, Zhang (bib45) 2021; 140
Long, Lee (bib16) 2015; 18
Naderi, Zhang (bib46) 2022; 291
Tibor (bib71) 1938; 34
Zhou, Lu (bib34) 2018; 165
Standard BJBE (bib9) 2005; 1
Lv, Chen, Chen (bib52) 2018; 160
Grondin, Matallah (bib56) 2014; 58
Alshaikh, Bakar, Alwesabi, Zeyad, Magbool (bib13) 2021; 33
Long, Kang, Chi (bib11) 2013; 48
Zhang, Yang, Huang, Wang, Chen (bib50) 2021; 149
Zheng, Zhang, Zhuo, Zhang, Hu (bib93) 2023; 367
Yılmaz, Molinari (bib36) 2017; 97
Hirsch (bib54) 1962
Song, Lu (bib60) 2012; 46
Lim, Ozbakkaloglu (bib70) 2014; 71
Simeonov, Ahmad (bib94) 1995; 25
bib5
Kwasniewski (bib18) 2010; 32
Huang, Yang, Chen, Liu (bib37) 2016; 97
Yu, Liu, Yang, Liu (bib35) 2018; 147
Chen, Yuan, Dong, Zhao (bib75) 2020; 239
bib4
bib1
Long, Wang, Huang, Li, Kang (bib64) 2021; 249
Wang, Zhang, Gu, Lin (bib87) 2022; 47
Ouyang, Chen (bib32) 2020; 257
Fu, Tan, Long, Kang (bib85) 2023; 13
Long, Lee (bib10) 2015; 15
Snozzi, Caballero, Molinari (bib49) 2011; 41
Lubliner, Oliver, Oller, Oñate (bib66) 1989; 25
Nguyen, Stroeven, Sluys (bib73) 2012; 201-204
Su, Yang, Liu (bib76) 2010; 47
Long, Mao, Su, Su, Tian (bib40) 2023; 23
Ying, Guo (bib79) 2021; 14
Ellingwood B., Smilowitz, R., Dusenberry, D., Duthinh, D., Lew, H., Carino, N. Best Practices for Reducing the Potential for Progressive Collapse in Buildings,. National Institute of Standards and Technology,. 2007.
Ke, Li, Jiang (bib7) 2023; 13
Trawiński, Tejchman, Bobiński (bib39) 2018; 189
Smith M. ABAQUS/Standard User's Manual, Version 6.9 Dassault Systèmes Simulia Corp. 2009.
Scrivener, Crumbie, Laugesen (bib74) 2004; 12
Long, Wang, Zhao, Kang (bib82) 2020; 238
Elsanadedy, Al-Salloum, Alrubaidi, Almusallam, Abbas (bib22) 2021; 34
Fuller, Thompson (bib53) 1907; 59
Zhou, Song, Lu (bib62) 2017; 192
Wang, Zhang, Jivkov (bib80) 2016; 80
Zhang, Zhao, Wang (bib38) 2023; 289
Gimenes, Rodrigues, Bitencourt, Manzoli (bib28) 2023; 260
Maleki, Rasoolan, Khajehdezfuly, Jivkov (bib58) 2020; 258
Chen, Xu, Mo, Zhou (bib72) 2018; 178
Benzeggagh, Kenane (bib78) 1996; 56
Naderi, Zhang (bib91) 2021; 116
(bib55) 2017
Lee, Fenves (bib67) 1998; 124
Congro, Sanchez, Roehl, Marangon (bib43) 2019; 174
Ahmadi, Rashidian, Abbasnia, Mohajeri Nav, Usefi (bib88) 2016; 2016
Elkady, Augusthus Nelson, Weekes, Makoond, Buitrago (bib14) 2024; 62
Lin, Yang, Kang, Xu (bib19) 2019; 153
Huang, Huang, Zhang, Guo, Liu (bib25) 2022; 18
Lim N.S. Systematic study on reinforced concrete structures under progressive collapse. Nanyang Technological University, Singapore.; 2017.
Zhang, Wang, Yang, Wang, Shu (bib31) 2018; 164
Qiu, Ueda, Fu, Han, Wang, Ye (bib48) 2023; 303
Zhang, Chen, Wang, Zhang, Wang, Li (bib26) 2019; 220
Yu, Li, Zhengyi, Wei, Jiangqi, Li (bib33) 2019; 226
Huang, Huang, Zhang, Guo, Liu (bib15) 2022; 18
Koh, Krauthammer (bib23) 2019; 201
Li, Huang, Yang, Yu, Li (bib27) 2022; 256
Thilakarathna, Kristombu, Mendis, Chandrathilaka, Vimonsatit, Lee (bib77) 2020; 234
Thilakarathna, Kristombu Baduge, Mendis, Vimonsatit, Lee (bib59) 2020; 231
Long, Weifeng, Kang, Chi (bib12) 2013; 48
Dinu, Marginean, Dubina (bib21) 2017; 151
Unger, Eckardt (bib41) 2011; 18
Feng, Shi, Parisi, Brunesi, Wang (bib84) 2021; 129
Lyu, She, Chang, Gu (bib57) 2020; 248
Zhao, Wu, Liu, Zhang (bib61) 2022; 120
Dat, Hai, Jun (bib6) 2015; 101
Wang, Jivkov, Li, Engelberg (bib81) 2020; 109
Yu, Tan (bib20) 2013; 55
Van der Putte T. Using the discrete 3D Voronoi diagram for the modelling of 3D continuous information in geosciences. 2009.
Homel, Iyer, Semnani, Herbold (bib29) 2022; 157
Pedersen, Simone, Sluys (bib47) 2013; 50
Kwasniewski (10.1016/j.engstruct.2024.118485_bib18) 2010; 32
Huang (10.1016/j.engstruct.2024.118485_bib15) 2022; 18
10.1016/j.engstruct.2024.118485_bib63
Lim (10.1016/j.engstruct.2024.118485_bib70) 2014; 71
Thilakarathna (10.1016/j.engstruct.2024.118485_bib77) 2020; 234
(10.1016/j.engstruct.2024.118485_bib55) 2017
Bao (10.1016/j.engstruct.2024.118485_bib68) 2013; 56
Huang (10.1016/j.engstruct.2024.118485_bib92) 2015; 67-68
Long (10.1016/j.engstruct.2024.118485_bib42) 2021; 06
Feng (10.1016/j.engstruct.2024.118485_bib84) 2021; 129
Dinu (10.1016/j.engstruct.2024.118485_bib21) 2017; 151
Long (10.1016/j.engstruct.2024.118485_bib82) 2020; 238
Koh (10.1016/j.engstruct.2024.118485_bib23) 2019; 201
10.1016/j.engstruct.2024.118485_bib69
Ying (10.1016/j.engstruct.2024.118485_bib79) 2021; 14
Yun (10.1016/j.engstruct.2024.118485_bib17) 2019; 36
Wang (10.1016/j.engstruct.2024.118485_bib87) 2022; 47
Lubliner (10.1016/j.engstruct.2024.118485_bib66) 1989; 25
Wang (10.1016/j.engstruct.2024.118485_bib81) 2020; 109
Long (10.1016/j.engstruct.2024.118485_bib12) 2013; 48
Li (10.1016/j.engstruct.2024.118485_bib27) 2022; 256
Pedersen (10.1016/j.engstruct.2024.118485_bib47) 2013; 50
Fuller (10.1016/j.engstruct.2024.118485_bib53) 1907; 59
Chen (10.1016/j.engstruct.2024.118485_bib72) 2018; 178
10.1016/j.engstruct.2024.118485_bib51
Long (10.1016/j.engstruct.2024.118485_bib16) 2015; 18
Long (10.1016/j.engstruct.2024.118485_bib40) 2023; 23
Naderi (10.1016/j.engstruct.2024.118485_bib46) 2022; 291
Wang (10.1016/j.engstruct.2024.118485_bib80) 2016; 80
Su (10.1016/j.engstruct.2024.118485_bib76) 2010; 47
Ke (10.1016/j.engstruct.2024.118485_bib7) 2023; 13
Zhang (10.1016/j.engstruct.2024.118485_bib50) 2021; 149
Snozzi (10.1016/j.engstruct.2024.118485_bib49) 2011; 41
Zhao (10.1016/j.engstruct.2024.118485_bib61) 2022; 120
Pham (10.1016/j.engstruct.2024.118485_bib8) 2017; 149
Long (10.1016/j.engstruct.2024.118485_bib11) 2013; 48
Grondin (10.1016/j.engstruct.2024.118485_bib56) 2014; 58
Scrivener (10.1016/j.engstruct.2024.118485_bib74) 2004; 12
Zheng (10.1016/j.engstruct.2024.118485_bib93) 2023; 367
Trawiński (10.1016/j.engstruct.2024.118485_bib39) 2018; 189
Wang (10.1016/j.engstruct.2024.118485_bib24) 2022; 26
Rashidian (10.1016/j.engstruct.2024.118485_bib86) 2016; 2016
Alshaikh (10.1016/j.engstruct.2024.118485_bib13) 2021; 33
Huang (10.1016/j.engstruct.2024.118485_bib25) 2022; 18
Long (10.1016/j.engstruct.2024.118485_bib83) 2014; 111
Guo (10.1016/j.engstruct.2024.118485_bib89) 2021; 2021
Maleki (10.1016/j.engstruct.2024.118485_bib58) 2020; 258
Yu (10.1016/j.engstruct.2024.118485_bib35) 2018; 147
Yılmaz (10.1016/j.engstruct.2024.118485_bib36) 2017; 97
Hirsch (10.1016/j.engstruct.2024.118485_bib54) 1962
Zhou (10.1016/j.engstruct.2024.118485_bib62) 2017; 192
Qiu (10.1016/j.engstruct.2024.118485_bib48) 2023; 303
Chen (10.1016/j.engstruct.2024.118485_bib75) 2020; 239
Long (10.1016/j.engstruct.2024.118485_bib10) 2015; 15
Benzeggagh (10.1016/j.engstruct.2024.118485_bib78) 1996; 56
Ouyang (10.1016/j.engstruct.2024.118485_bib32) 2020; 257
Han (10.1016/j.engstruct.2024.118485_bib44) 2001; 61
Lv (10.1016/j.engstruct.2024.118485_bib52) 2018; 160
Gimenes (10.1016/j.engstruct.2024.118485_bib28) 2023; 260
Standard BJBE (10.1016/j.engstruct.2024.118485_bib9) 2005; 1
Yu (10.1016/j.engstruct.2024.118485_bib20) 2013; 55
Jin (10.1016/j.engstruct.2024.118485_bib90) 2020; 230
Zhou (10.1016/j.engstruct.2024.118485_bib34) 2018; 165
Tibor (10.1016/j.engstruct.2024.118485_bib71) 1938; 34
Lin (10.1016/j.engstruct.2024.118485_bib19) 2019; 153
Zhang (10.1016/j.engstruct.2024.118485_bib31) 2018; 164
Long (10.1016/j.engstruct.2024.118485_bib64) 2021; 249
Homel (10.1016/j.engstruct.2024.118485_bib29) 2022; 157
Naderi (10.1016/j.engstruct.2024.118485_bib91) 2021; 116
Ahmadi (10.1016/j.engstruct.2024.118485_bib88) 2016; 2016
Fu (10.1016/j.engstruct.2024.118485_bib85) 2023; 13
10.1016/j.engstruct.2024.118485_bib2
10.1016/j.engstruct.2024.118485_bib3
Zhang (10.1016/j.engstruct.2024.118485_bib38) 2023; 289
Lee (10.1016/j.engstruct.2024.118485_bib67) 1998; 124
Yu (10.1016/j.engstruct.2024.118485_bib33) 2019; 226
Elsanadedy (10.1016/j.engstruct.2024.118485_bib22) 2021; 34
Akçaoğlu (10.1016/j.engstruct.2024.118485_bib95) 2005; 35
Zhang (10.1016/j.engstruct.2024.118485_bib26) 2019; 220
Zhang (10.1016/j.engstruct.2024.118485_bib30) 2017; 149
Lyu (10.1016/j.engstruct.2024.118485_bib57) 2020; 248
Long (10.1016/j.engstruct.2024.118485_bib65) 2014; 74
Elkady (10.1016/j.engstruct.2024.118485_bib14) 2024; 62
Song (10.1016/j.engstruct.2024.118485_bib60) 2012; 46
Congro (10.1016/j.engstruct.2024.118485_bib43) 2019; 174
Naderi (10.1016/j.engstruct.2024.118485_bib45) 2021; 140
Nguyen (10.1016/j.engstruct.2024.118485_bib73) 2012; 201-204
Simeonov (10.1016/j.engstruct.2024.118485_bib94) 1995; 25
Dat (10.1016/j.engstruct.2024.118485_bib6) 2015; 101
Thilakarathna (10.1016/j.engstruct.2024.118485_bib59) 2020; 231
Huang (10.1016/j.engstruct.2024.118485_bib37) 2016; 97
Unger (10.1016/j.engstruct.2024.118485_bib41) 2011; 18
References_xml – volume: 258
  year: 2020
  ident: bib58
  article-title: On the effect of ITZ thickness in meso-scale models of concrete
  publication-title: Constr Build Mater
– volume: 178
  start-page: 418
  year: 2018
  end-page: 431
  ident: bib72
  article-title: Behavior of meso-scale heterogeneous concrete under uniaxial tensile and compressive loadings
  publication-title: Constr Build Mater
– volume: 55
  start-page: 90
  year: 2013
  end-page: 106
  ident: bib20
  article-title: Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages
  publication-title: Eng Struct
– volume: 14
  start-page: 4314
  year: 2021
  ident: bib79
  article-title: Fracture behaviour of real coarse aggregate distributed concrete under uniaxial compressive load based on cohesive zone model
  publication-title: Materials
– volume: 18
  start-page: 249
  year: 2022
  end-page: 265
  ident: bib25
  article-title: Progressive collapse of multistory 3D reinforced concrete frame structures after the loss of an edge column
  publication-title: Struct Infrastruct Eng
– volume: 34
  start-page: 269
  year: 1938
  end-page: 284
  ident: bib71
  article-title: Effect of type of test specimen and gradation of aggregate on compressive strength of concrete
  publication-title: Acids J Proc
– volume: 101
  start-page: 45
  year: 2015
  end-page: 57
  ident: bib6
  article-title: A simplified approach to assess progressive collapse resistance of reinforced concrete framed structures
  publication-title: Eng Struct
– volume: 160
  start-page: 744
  year: 2018
  end-page: 764
  ident: bib52
  article-title: The 3D meso-scale model and numerical tests of split Hopkinson pressure bar of concrete specimen
  publication-title: Constr Build Mater
– volume: 234
  year: 2020
  ident: bib77
  article-title: Understanding fracture mechanism and behaviour of ultra-high strength concrete using mesoscale modelling
  publication-title: Eng Fract Mech
– volume: 97
  start-page: 102
  year: 2016
  end-page: 115
  ident: bib37
  article-title: Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images
  publication-title: Int J Impact Eng
– volume: 41
  start-page: 1130
  year: 2011
  end-page: 1142
  ident: bib49
  article-title: Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading
  publication-title: Cem Concr Res
– volume: 149
  start-page: 2
  year: 2017
  end-page: 20
  ident: bib8
  article-title: Numerical investigations on static and dynamic responses of reinforced concrete sub-assemblages under progressive collapse
  publication-title: Eng Struct
– volume: 62
  year: 2024
  ident: bib14
  article-title: Progressive collapse: past, present, future and beyond
  publication-title: Structures
– volume: 149
  year: 2021
  ident: bib50
  article-title: Micro CT image-based simulations of concrete under high strain rate impact using a continuum-discrete coupled model
  publication-title: Int J Impact Eng
– volume: 256
  year: 2022
  ident: bib27
  article-title: 3D meso-scale fracture modelling of concrete with random aggregates using a phase-field regularized cohesive zone model
  publication-title: Int J Solids Struct
– volume: 220
  year: 2019
  ident: bib26
  article-title: 3D mesoscale fracture analysis of concrete under complex loading
  publication-title: Eng Fract Mech
– volume: 18
  start-page: 341
  year: 2011
  end-page: 393
  ident: bib41
  article-title: Multiscale modeling of concrete
  publication-title: Arch Comput Methods Eng
– volume: 25
  start-page: 299
  year: 1989
  end-page: 326
  ident: bib66
  article-title: A plastic-damage model for concrete
  publication-title: Int J Solids Struct
– volume: 124
  start-page: 892
  year: 1998
  end-page: 900
  ident: bib67
  article-title: Plastic-damage model for cyclic loading of concrete structures
– volume: 201
  year: 2019
  ident: bib23
  article-title: Exploring numerical approaches for pre-test progressive collapse assessment of RC frame structures
  publication-title: Eng Struct
– volume: 120
  year: 2022
  ident: bib61
  article-title: Numerical insights into the effect of ITZ and aggregate strength on concrete properties
  publication-title: Theor Appl Fract Mech
– volume: 61
  start-page: 1581
  year: 2001
  end-page: 1590
  ident: bib44
  article-title: The effects of three-dimensional multi-particle arrangements on the mechanical behavior and damage initiation of particle-reinforced MMCs
  publication-title: Compos Sci Technol
– volume: 2021
  year: 2021
  ident: bib89
  article-title: A 3D FEM mesoscale numerical analysis of concrete tensile strength behaviour
  publication-title: Adv Mater Sci Eng
– volume: 153
  start-page: 71
  year: 2019
  end-page: 84
  ident: bib19
  article-title: A new method for progressive collapse analysis of steel frames
  publication-title: J Constr Steel Res
– volume: 18
  start-page: 249
  year: 2022
  end-page: 265
  ident: bib15
  article-title: Progressive collapse of multistory 3D reinforced concrete frame structures after the loss of an edge column
  publication-title: Struct Infrastruct Eng
– volume: 192
  start-page: 96
  year: 2017
  end-page: 113
  ident: bib62
  article-title: 3D mesoscale finite element modelling of concrete
  publication-title: Comput Struct
– volume: 226
  start-page: 802
  year: 2019
  end-page: 817
  ident: bib33
  article-title: Mixed-mode I-II mesoscale fracture behavior of concrete determined by the realistic aggregate numerical model
  publication-title: Constr Build Mater
– volume: 140
  year: 2021
  ident: bib45
  article-title: Meso-scale modelling of compressive fracture in concrete with irregularly shaped aggregates
  publication-title: Cem Concr Res
– volume: 1
  start-page: 1993
  year: 2005
  ident: bib9
  article-title: Eurocode 3—design
  publication-title: Steel Struct
– volume: 260
  year: 2023
  ident: bib28
  article-title: 2D mesoscale modeling of compressive fracture in concrete using a mesh fragmentation technique
  publication-title: Int J Solids Struct
– volume: 238
  year: 2020
  ident: bib82
  article-title: Bond strength of steel reinforcement under different loading rates
  publication-title: Constr Build Mater
– volume: 67-68
  start-page: 340
  year: 2015
  end-page: 352
  ident: bib92
  article-title: 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model
  publication-title: Int J Solids Struct
– volume: 151
  start-page: 861
  year: 2017
  end-page: 878
  ident: bib21
  article-title: Experimental testing and numerical modelling of steel moment-frame connections under column loss
  publication-title: Eng Struct
– volume: 56
  start-page: 2076
  year: 2013
  end-page: 2082
  ident: bib68
  article-title: A new generalized Drucker–Prager flow rule for concrete under compression
  publication-title: Eng Struct
– volume: 147
  start-page: 204
  year: 2018
  end-page: 222
  ident: bib35
  article-title: 3D numerical study on fracture process of concrete with different ITZ properties using X-ray computerized tomography
  publication-title: Int J Solids Struct
– volume: 257
  year: 2020
  ident: bib32
  article-title: 3D meso-scale modeling of concrete with a local background grid method
  publication-title: Constr Build Mater
– volume: 291
  year: 2022
  ident: bib46
  article-title: 3D meso-scale modelling of tensile and compressive fracture behaviour of steel fibre reinforced concrete
  publication-title: Cem Concr Res
– volume: 74
  start-page: 32
  year: 2014
  end-page: 43
  ident: bib65
  article-title: Numerical simulation of reinforced concrete beam/column failure considering normal-shear stress interaction
  publication-title: Eng Struct
– volume: 50
  start-page: 74
  year: 2013
  end-page: 87
  ident: bib47
  article-title: Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete
  publication-title: Cem Concr Res
– volume: 189
  start-page: 27
  year: 2018
  end-page: 50
  ident: bib39
  article-title: A three-dimensional meso-scale modelling of concrete fracture, based on cohesive elements and X-ray μCT images
  publication-title: Eng Fract Mech
– volume: 2016
  year: 2016
  ident: bib88
  article-title: Experimental and numerical evaluation of progressive collapse behavior in scaled RC beam-column subassemblage
  publication-title: Shock Vib
– volume: 59
  start-page: 67
  year: 1907
  end-page: 143
  ident: bib53
  article-title: The laws of proportioning concrete
  publication-title: Trans Am Soc Civ Eng
– volume: 48
  start-page: 587
  year: 2013
  end-page: 613
  ident: bib11
  article-title: A 3D co-rotational beam element for steel and RC framed structures
  publication-title: Struct Eng Mech
– volume: 48
  start-page: 309
  year: 2013
  end-page: 331
  ident: bib12
  article-title: A superelement formulation for efficient structural analysis in progressive collapse
  publication-title: Struct Eng Mech
– year: 2017
  ident: bib55
– reference: Ellingwood B., Smilowitz, R., Dusenberry, D., Duthinh, D., Lew, H., Carino, N. Best Practices for Reducing the Potential for Progressive Collapse in Buildings,. National Institute of Standards and Technology,. 2007.
– volume: 97
  start-page: 84
  year: 2017
  end-page: 94
  ident: bib36
  article-title: A mesoscale fracture model for concrete
  publication-title: Cem Concr Res
– volume: 06
  start-page: 2150001
  year: 2021
  ident: bib42
  article-title: Modeling of heterogeneous materials at high strain rates with machine learning algorithms trained by finite element simulations
  publication-title: J Micromech Mol Phys
– volume: 174
  year: 2019
  ident: bib43
  article-title: Fracture modeling of fiber reinforced concrete in a multiscale approach
  publication-title: Compos Part B: Eng
– volume: 249
  year: 2021
  ident: bib64
  article-title: Progressive collapse resistance of exterior reinforced concrete frames and simplified method for catenary action
  publication-title: Eng Struct
– volume: 129
  year: 2021
  ident: bib84
  article-title: Efficient numerical model for progressive collapse analysis of prestressed concrete frame structures
  publication-title: Eng Fail Anal
– volume: 116
  year: 2021
  ident: bib91
  article-title: Meso-scale modelling of static and dynamic tensile fracture of concrete accounting for real-shape aggregates
  publication-title: Cem Concr Compos
– volume: 36
  start-page: 216
  year: 2019
  end-page: 226
  ident: bib17
  article-title: Progressive collapse resistance of RC frame structures considering surrounding structural constraints
  publication-title: Eng Mech
– volume: 13
  year: 2023
  ident: bib7
  article-title: Dynamic response analysis of RC frame against progressive collapse based on orthogonal test
  publication-title: Appl Sci
– volume: 231
  year: 2020
  ident: bib59
  article-title: Mesoscale modelling of concrete – a review of geometry generation, placing algorithms, constitutive relations and applications
  publication-title: Eng Fract Mech
– volume: 12
  start-page: 411
  year: 2004
  end-page: 421
  ident: bib74
  article-title: The interfacial transition zone (ITZ) between cement paste and aggregate in concrete
  publication-title: Interface Sci
– volume: 164
  start-page: 350
  year: 2018
  end-page: 361
  ident: bib31
  article-title: 3D meso-scale modeling of reinforcement concrete with high volume fraction of randomly distributed aggregates
  publication-title: Constr Build Mater
– volume: 32
  start-page: 1223
  year: 2010
  end-page: 1235
  ident: bib18
  article-title: Nonlinear dynamic simulations of progressive collapse for a multistory building
  publication-title: Eng Struct
– volume: 239
  year: 2020
  ident: bib75
  article-title: Meso-scale cracking behavior of cement treated base material
  publication-title: Constr Build Mater
– volume: 248
  year: 2020
  ident: bib57
  article-title: Effect of fine aggregate size on the overlapping of interfacial transition zone (ITZ) in mortars
  publication-title: Constr Build Mater
– volume: 367
  year: 2023
  ident: bib93
  article-title: Mesoscale synergistic effect mechanism of aggregate grading and specimen size on compressive strength of concrete with large aggregate size
  publication-title: Constr Build Mater
– volume: 289
  year: 2023
  ident: bib38
  article-title: Mesoscale modelling of concrete damage in FRP-concrete debonding failure
  publication-title: Eng Struct
– year: 1962
  ident: bib54
  article-title: Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate
  publication-title: Acids J Proc
– volume: 71
  start-page: 492
  year: 2014
  end-page: 509
  ident: bib70
  article-title: Stress–strain model for normal- and light-weight concretes under uniaxial and triaxial compression
  publication-title: Constr Build Mater
– ident: bib4
– volume: 15
  start-page: 807
  year: 2015
  end-page: 831
  ident: bib10
  article-title: Improved strut-and-tie method for 2D RC beam-column joints under monotonic loading
  publication-title: Comput Concr
– volume: 230
  year: 2020
  ident: bib90
  article-title: Meso-scale simulations of size effect on concrete dynamic splitting tensile strength: influence of aggregate content and maximum aggregate size
  publication-title: Eng Fract Mech
– volume: 165
  start-page: 608
  year: 2018
  end-page: 620
  ident: bib34
  article-title: A mesoscale interface approach to modelling fractures in concrete for material investigation
  publication-title: Constr Build Mater
– volume: 2016
  year: 2016
  ident: bib86
  article-title: Experimental and numerical evaluation of progressive collapse behavior in scaled RC beam-column sub-assemblage
  publication-title: Shock Vib
– volume: 303
  year: 2023
  ident: bib48
  article-title: Meso-scale computational modeling of the fracture of concrete with complex shaped aggregates under the self-restraint stress
  publication-title: Compos Struct
– volume: 201-204
  start-page: 139
  year: 2012
  end-page: 156
  ident: bib73
  article-title: Multiscale failure modeling of concrete: micromechanical modeling, discontinuous homogenization and parallel computations
  publication-title: Comput Methods Appl Mech Eng
– volume: 157
  year: 2022
  ident: bib29
  article-title: Mesoscale model and X-ray computed micro-tomographic imaging of damage progression in ultra-high-performance concrete
  publication-title: Cem Concr Res
– volume: 35
  start-page: 358
  year: 2005
  end-page: 363
  ident: bib95
  article-title: Assessing the ITZ microcracking via scanning electron microscope and its effect on the failure behavior of concrete
  publication-title: Cem Concr Res
– reference: Smith M. ABAQUS/Standard User's Manual, Version 6.9 Dassault Systèmes Simulia Corp. 2009.
– reference: Van der Putte T. Using the discrete 3D Voronoi diagram for the modelling of 3D continuous information in geosciences. 2009.
– volume: 47
  start-page: 2336
  year: 2010
  end-page: 2345
  ident: bib76
  article-title: Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: a 3D study
  publication-title: Int J Solids Struct
– volume: 111
  year: 2014
  ident: bib83
  article-title: Bond stress-slip prediction under pullout and dowel action in reinforced concrete joints
  publication-title: Acids Struct J
– volume: 26
  year: 2022
  ident: bib24
  article-title: Investigation of the Structural Behaviour of RC Beam-Column Sub-frame Subjected to Progressive Collapse
  publication-title: KSCE J Civ Eng
– reference: Zhou R. Mesoscopic analysis of damage mechanisms in concrete material. 2016.
– volume: 46
  start-page: 41
  year: 2012
  end-page: 55
  ident: bib60
  article-title: Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data
  publication-title: Int J Impact Eng
– volume: 80
  start-page: 310
  year: 2016
  end-page: 333
  ident: bib80
  article-title: Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete
  publication-title: Int J Solids Struct
– volume: 33
  start-page: 2361
  year: 2021
  end-page: 2373
  ident: bib13
  article-title: Finite element analysis and experimental validation of progressive collapse of reinforced rubberized concrete frame
  publication-title: Structures
– volume: 47
  year: 2022
  ident: bib87
  article-title: Experimental and numerical investigation on progressive collapse resistance of RC frame structures considering transverse beam and slab effects
  publication-title: J Build Eng
– ident: bib1
– volume: 58
  start-page: 67
  year: 2014
  end-page: 75
  ident: bib56
  article-title: How to consider the interfacial transition zones in the finite element modelling of concrete?
  publication-title: Cem Concr Res
– ident: bib5
– reference: Lim N.S. Systematic study on reinforced concrete structures under progressive collapse. Nanyang Technological University, Singapore.; 2017.
– volume: 18
  start-page: 1461
  year: 2015
  end-page: 1474
  ident: bib16
  article-title: Modelling of two dimensional reinforced concrete beam-column joints subjected to monotonic loading
  publication-title: Adv Struct Eng
– volume: 25
  start-page: 165
  year: 1995
  end-page: 176
  ident: bib94
  article-title: Effect of transition zone on the elastic behavior of cement-based composites
  publication-title: Cem Concr Res
– volume: 149
  year: 2017
  ident: bib30
  article-title: Three-dimensional mesoscale modelling of concrete composites by using random walking algorithm
  publication-title: Compos Sci Technol
– volume: 23
  start-page: 100
  year: 2023
  end-page: 111
  ident: bib40
  article-title: Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates
  publication-title: Def Technol
– volume: 56
  start-page: 439
  year: 1996
  end-page: 449
  ident: bib78
  article-title: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus
  publication-title: Compos Sci Technol
– volume: 34
  year: 2021
  ident: bib22
  article-title: Finite element analysis for progressive collapse potential of precast concrete beam-to-column connections strengthened with steel plates
  publication-title: J Build Eng
– volume: 109
  year: 2020
  ident: bib81
  article-title: Experimental and numerical investigation of mortar and ITZ parameters in meso-scale models of concrete
  publication-title: Theor Appl Fract Mech
– volume: 13
  start-page: 533
  year: 2023
  ident: bib85
  article-title: Numerical investigations of progressive collapse behaviour of multi-storey reinforced concrete frames
  publication-title: Buildings
– volume: 41
  start-page: 1130
  year: 2011
  ident: 10.1016/j.engstruct.2024.118485_bib49
  article-title: Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2011.06.016
– volume: 116
  year: 2021
  ident: 10.1016/j.engstruct.2024.118485_bib91
  article-title: Meso-scale modelling of static and dynamic tensile fracture of concrete accounting for real-shape aggregates
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2020.103889
– volume: 149
  start-page: 2
  year: 2017
  ident: 10.1016/j.engstruct.2024.118485_bib8
  article-title: Numerical investigations on static and dynamic responses of reinforced concrete sub-assemblages under progressive collapse
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2016.07.042
– volume: 149
  year: 2021
  ident: 10.1016/j.engstruct.2024.118485_bib50
  article-title: Micro CT image-based simulations of concrete under high strain rate impact using a continuum-discrete coupled model
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2020.103775
– volume: 111
  year: 2014
  ident: 10.1016/j.engstruct.2024.118485_bib83
  article-title: Bond stress-slip prediction under pullout and dowel action in reinforced concrete joints
  publication-title: Acids Struct J
– volume: 238
  year: 2020
  ident: 10.1016/j.engstruct.2024.118485_bib82
  article-title: Bond strength of steel reinforcement under different loading rates
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2019.117749
– volume: 2021
  year: 2021
  ident: 10.1016/j.engstruct.2024.118485_bib89
  article-title: A 3D FEM mesoscale numerical analysis of concrete tensile strength behaviour
  publication-title: Adv Mater Sci Eng
  doi: 10.1155/2021/5538477
– volume: 47
  start-page: 2336
  year: 2010
  ident: 10.1016/j.engstruct.2024.118485_bib76
  article-title: Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: a 3D study
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2010.04.031
– volume: 248
  year: 2020
  ident: 10.1016/j.engstruct.2024.118485_bib57
  article-title: Effect of fine aggregate size on the overlapping of interfacial transition zone (ITZ) in mortars
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2020.118559
– volume: 249
  year: 2021
  ident: 10.1016/j.engstruct.2024.118485_bib64
  article-title: Progressive collapse resistance of exterior reinforced concrete frames and simplified method for catenary action
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.113316
– volume: 67-68
  start-page: 340
  year: 2015
  ident: 10.1016/j.engstruct.2024.118485_bib92
  article-title: 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2015.05.002
– volume: 101
  start-page: 45
  year: 2015
  ident: 10.1016/j.engstruct.2024.118485_bib6
  article-title: A simplified approach to assess progressive collapse resistance of reinforced concrete framed structures
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2015.06.051
– ident: 10.1016/j.engstruct.2024.118485_bib3
– volume: 58
  start-page: 67
  year: 2014
  ident: 10.1016/j.engstruct.2024.118485_bib56
  article-title: How to consider the interfacial transition zones in the finite element modelling of concrete?
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2014.01.009
– volume: 124
  start-page: 892
  year: 1998
  ident: 10.1016/j.engstruct.2024.118485_bib67
  article-title: Plastic-damage model for cyclic loading of concrete structures
– volume: 178
  start-page: 418
  year: 2018
  ident: 10.1016/j.engstruct.2024.118485_bib72
  article-title: Behavior of meso-scale heterogeneous concrete under uniaxial tensile and compressive loadings
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.05.052
– ident: 10.1016/j.engstruct.2024.118485_bib2
  doi: 10.6028/NIST.IR.7396
– volume: 18
  start-page: 249
  year: 2022
  ident: 10.1016/j.engstruct.2024.118485_bib25
  article-title: Progressive collapse of multistory 3D reinforced concrete frame structures after the loss of an edge column
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732479.2020.1841245
– volume: 1
  start-page: 1993
  year: 2005
  ident: 10.1016/j.engstruct.2024.118485_bib9
  article-title: Eurocode 3—design
  publication-title: Steel Struct
– volume: 25
  start-page: 165
  year: 1995
  ident: 10.1016/j.engstruct.2024.118485_bib94
  article-title: Effect of transition zone on the elastic behavior of cement-based composites
  publication-title: Cem Concr Res
  doi: 10.1016/0008-8846(94)00124-H
– volume: 50
  start-page: 74
  year: 2013
  ident: 10.1016/j.engstruct.2024.118485_bib47
  article-title: Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2013.03.021
– volume: 48
  start-page: 309
  year: 2013
  ident: 10.1016/j.engstruct.2024.118485_bib12
  article-title: A superelement formulation for efficient structural analysis in progressive collapse
  publication-title: Struct Eng Mech
  doi: 10.12989/sem.2013.48.3.309
– volume: 06
  start-page: 2150001
  year: 2021
  ident: 10.1016/j.engstruct.2024.118485_bib42
  article-title: Modeling of heterogeneous materials at high strain rates with machine learning algorithms trained by finite element simulations
  publication-title: J Micromech Mol Phys
  doi: 10.1142/S2424913021500016
– volume: 258
  year: 2020
  ident: 10.1016/j.engstruct.2024.118485_bib58
  article-title: On the effect of ITZ thickness in meso-scale models of concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2020.119639
– volume: 231
  year: 2020
  ident: 10.1016/j.engstruct.2024.118485_bib59
  article-title: Mesoscale modelling of concrete – a review of geometry generation, placing algorithms, constitutive relations and applications
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2020.106974
– volume: 165
  start-page: 608
  year: 2018
  ident: 10.1016/j.engstruct.2024.118485_bib34
  article-title: A mesoscale interface approach to modelling fractures in concrete for material investigation
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.01.040
– volume: 33
  start-page: 2361
  year: 2021
  ident: 10.1016/j.engstruct.2024.118485_bib13
  article-title: Finite element analysis and experimental validation of progressive collapse of reinforced rubberized concrete frame
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.06.008
– volume: 151
  start-page: 861
  year: 2017
  ident: 10.1016/j.engstruct.2024.118485_bib21
  article-title: Experimental testing and numerical modelling of steel moment-frame connections under column loss
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.08.068
– volume: 59
  start-page: 67
  year: 1907
  ident: 10.1016/j.engstruct.2024.118485_bib53
  article-title: The laws of proportioning concrete
  publication-title: Trans Am Soc Civ Eng
  doi: 10.1061/TACEAT.0001979
– volume: 25
  start-page: 299
  year: 1989
  ident: 10.1016/j.engstruct.2024.118485_bib66
  article-title: A plastic-damage model for concrete
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(89)90050-4
– volume: 15
  start-page: 807
  year: 2015
  ident: 10.1016/j.engstruct.2024.118485_bib10
  article-title: Improved strut-and-tie method for 2D RC beam-column joints under monotonic loading
  publication-title: Comput Concr
  doi: 10.12989/cac.2015.15.5.807
– volume: 2016
  year: 2016
  ident: 10.1016/j.engstruct.2024.118485_bib88
  article-title: Experimental and numerical evaluation of progressive collapse behavior in scaled RC beam-column subassemblage
  publication-title: Shock Vib
– volume: 257
  year: 2020
  ident: 10.1016/j.engstruct.2024.118485_bib32
  article-title: 3D meso-scale modeling of concrete with a local background grid method
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2020.119382
– ident: 10.1016/j.engstruct.2024.118485_bib69
– volume: 157
  year: 2022
  ident: 10.1016/j.engstruct.2024.118485_bib29
  article-title: Mesoscale model and X-ray computed micro-tomographic imaging of damage progression in ultra-high-performance concrete
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2022.106799
– volume: 35
  start-page: 358
  year: 2005
  ident: 10.1016/j.engstruct.2024.118485_bib95
  article-title: Assessing the ITZ microcracking via scanning electron microscope and its effect on the failure behavior of concrete
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2004.05.042
– volume: 56
  start-page: 2076
  year: 2013
  ident: 10.1016/j.engstruct.2024.118485_bib68
  article-title: A new generalized Drucker–Prager flow rule for concrete under compression
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2013.08.025
– ident: 10.1016/j.engstruct.2024.118485_bib51
– volume: 226
  start-page: 802
  year: 2019
  ident: 10.1016/j.engstruct.2024.118485_bib33
  article-title: Mixed-mode I-II mesoscale fracture behavior of concrete determined by the realistic aggregate numerical model
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2019.07.231
– volume: 34
  start-page: 269
  year: 1938
  ident: 10.1016/j.engstruct.2024.118485_bib71
  article-title: Effect of type of test specimen and gradation of aggregate on compressive strength of concrete
  publication-title: Acids J Proc
– volume: 36
  start-page: 216
  year: 2019
  ident: 10.1016/j.engstruct.2024.118485_bib17
  article-title: Progressive collapse resistance of RC frame structures considering surrounding structural constraints
  publication-title: Eng Mech
– volume: 62
  year: 2024
  ident: 10.1016/j.engstruct.2024.118485_bib14
  article-title: Progressive collapse: past, present, future and beyond
  publication-title: Structures
  doi: 10.1016/j.istruc.2024.106131
– volume: 256
  year: 2022
  ident: 10.1016/j.engstruct.2024.118485_bib27
  article-title: 3D meso-scale fracture modelling of concrete with random aggregates using a phase-field regularized cohesive zone model
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2022.111960
– volume: 26
  year: 2022
  ident: 10.1016/j.engstruct.2024.118485_bib24
  article-title: Investigation of the Structural Behaviour of RC Beam-Column Sub-frame Subjected to Progressive Collapse
  publication-title: KSCE J Civ Eng
– volume: 140
  year: 2021
  ident: 10.1016/j.engstruct.2024.118485_bib45
  article-title: Meso-scale modelling of compressive fracture in concrete with irregularly shaped aggregates
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2020.106317
– volume: 61
  start-page: 1581
  year: 2001
  ident: 10.1016/j.engstruct.2024.118485_bib44
  article-title: The effects of three-dimensional multi-particle arrangements on the mechanical behavior and damage initiation of particle-reinforced MMCs
  publication-title: Compos Sci Technol
  doi: 10.1016/S0266-3538(01)00061-6
– volume: 220
  year: 2019
  ident: 10.1016/j.engstruct.2024.118485_bib26
  article-title: 3D mesoscale fracture analysis of concrete under complex loading
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2019.106646
– volume: 174
  year: 2019
  ident: 10.1016/j.engstruct.2024.118485_bib43
  article-title: Fracture modeling of fiber reinforced concrete in a multiscale approach
  publication-title: Compos Part B: Eng
  doi: 10.1016/j.compositesb.2019.106958
– volume: 230
  year: 2020
  ident: 10.1016/j.engstruct.2024.118485_bib90
  article-title: Meso-scale simulations of size effect on concrete dynamic splitting tensile strength: influence of aggregate content and maximum aggregate size
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2020.106979
– volume: 149
  year: 2017
  ident: 10.1016/j.engstruct.2024.118485_bib30
  article-title: Three-dimensional mesoscale modelling of concrete composites by using random walking algorithm
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2017.06.015
– volume: 289
  year: 2023
  ident: 10.1016/j.engstruct.2024.118485_bib38
  article-title: Mesoscale modelling of concrete damage in FRP-concrete debonding failure
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2023.116310
– volume: 291
  year: 2022
  ident: 10.1016/j.engstruct.2024.118485_bib46
  article-title: 3D meso-scale modelling of tensile and compressive fracture behaviour of steel fibre reinforced concrete
  publication-title: Cem Concr Res
– year: 2017
  ident: 10.1016/j.engstruct.2024.118485_bib55
– volume: 367
  year: 2023
  ident: 10.1016/j.engstruct.2024.118485_bib93
  article-title: Mesoscale synergistic effect mechanism of aggregate grading and specimen size on compressive strength of concrete with large aggregate size
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2023.130346
– volume: 192
  start-page: 96
  year: 2017
  ident: 10.1016/j.engstruct.2024.118485_bib62
  article-title: 3D mesoscale finite element modelling of concrete
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2017.07.009
– volume: 2016
  year: 2016
  ident: 10.1016/j.engstruct.2024.118485_bib86
  article-title: Experimental and numerical evaluation of progressive collapse behavior in scaled RC beam-column sub-assemblage
  publication-title: Shock Vib
– volume: 56
  start-page: 439
  year: 1996
  ident: 10.1016/j.engstruct.2024.118485_bib78
  article-title: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus
  publication-title: Compos Sci Technol
  doi: 10.1016/0266-3538(96)00005-X
– volume: 80
  start-page: 310
  year: 2016
  ident: 10.1016/j.engstruct.2024.118485_bib80
  article-title: Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2015.11.018
– volume: 201
  year: 2019
  ident: 10.1016/j.engstruct.2024.118485_bib23
  article-title: Exploring numerical approaches for pre-test progressive collapse assessment of RC frame structures
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.109776
– volume: 18
  start-page: 341
  year: 2011
  ident: 10.1016/j.engstruct.2024.118485_bib41
  article-title: Multiscale modeling of concrete
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-011-9063-8
– volume: 120
  year: 2022
  ident: 10.1016/j.engstruct.2024.118485_bib61
  article-title: Numerical insights into the effect of ITZ and aggregate strength on concrete properties
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2022.103415
– year: 1962
  ident: 10.1016/j.engstruct.2024.118485_bib54
  article-title: Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate
  publication-title: Acids J Proc
– volume: 153
  start-page: 71
  year: 2019
  ident: 10.1016/j.engstruct.2024.118485_bib19
  article-title: A new method for progressive collapse analysis of steel frames
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2018.09.029
– volume: 303
  year: 2023
  ident: 10.1016/j.engstruct.2024.118485_bib48
  article-title: Meso-scale computational modeling of the fracture of concrete with complex shaped aggregates under the self-restraint stress
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2022.116267
– volume: 147
  start-page: 204
  year: 2018
  ident: 10.1016/j.engstruct.2024.118485_bib35
  article-title: 3D numerical study on fracture process of concrete with different ITZ properties using X-ray computerized tomography
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2018.05.026
– volume: 13
  year: 2023
  ident: 10.1016/j.engstruct.2024.118485_bib7
  article-title: Dynamic response analysis of RC frame against progressive collapse based on orthogonal test
  publication-title: Appl Sci
  doi: 10.3390/app13074317
– volume: 97
  start-page: 102
  year: 2016
  ident: 10.1016/j.engstruct.2024.118485_bib37
  article-title: Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2016.06.009
– volume: 160
  start-page: 744
  year: 2018
  ident: 10.1016/j.engstruct.2024.118485_bib52
  article-title: The 3D meso-scale model and numerical tests of split Hopkinson pressure bar of concrete specimen
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.11.094
– volume: 260
  year: 2023
  ident: 10.1016/j.engstruct.2024.118485_bib28
  article-title: 2D mesoscale modeling of compressive fracture in concrete using a mesh fragmentation technique
  publication-title: Int J Solids Struct
– volume: 18
  start-page: 249
  year: 2022
  ident: 10.1016/j.engstruct.2024.118485_bib15
  article-title: Progressive collapse of multistory 3D reinforced concrete frame structures after the loss of an edge column
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732479.2020.1841245
– volume: 164
  start-page: 350
  year: 2018
  ident: 10.1016/j.engstruct.2024.118485_bib31
  article-title: 3D meso-scale modeling of reinforcement concrete with high volume fraction of randomly distributed aggregates
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.12.229
– ident: 10.1016/j.engstruct.2024.118485_bib63
– volume: 18
  start-page: 1461
  year: 2015
  ident: 10.1016/j.engstruct.2024.118485_bib16
  article-title: Modelling of two dimensional reinforced concrete beam-column joints subjected to monotonic loading
  publication-title: Adv Struct Eng
  doi: 10.1260/1369-4332.18.9.1461
– volume: 239
  year: 2020
  ident: 10.1016/j.engstruct.2024.118485_bib75
  article-title: Meso-scale cracking behavior of cement treated base material
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2019.117823
– volume: 48
  start-page: 587
  year: 2013
  ident: 10.1016/j.engstruct.2024.118485_bib11
  article-title: A 3D co-rotational beam element for steel and RC framed structures
  publication-title: Struct Eng Mech
  doi: 10.12989/sem.2013.48.5.587
– volume: 32
  start-page: 1223
  year: 2010
  ident: 10.1016/j.engstruct.2024.118485_bib18
  article-title: Nonlinear dynamic simulations of progressive collapse for a multistory building
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2009.12.048
– volume: 189
  start-page: 27
  year: 2018
  ident: 10.1016/j.engstruct.2024.118485_bib39
  article-title: A three-dimensional meso-scale modelling of concrete fracture, based on cohesive elements and X-ray μCT images
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2017.10.003
– volume: 71
  start-page: 492
  year: 2014
  ident: 10.1016/j.engstruct.2024.118485_bib70
  article-title: Stress–strain model for normal- and light-weight concretes under uniaxial and triaxial compression
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2014.08.050
– volume: 13
  start-page: 533
  year: 2023
  ident: 10.1016/j.engstruct.2024.118485_bib85
  article-title: Numerical investigations of progressive collapse behaviour of multi-storey reinforced concrete frames
  publication-title: Buildings
  doi: 10.3390/buildings13020533
– volume: 74
  start-page: 32
  year: 2014
  ident: 10.1016/j.engstruct.2024.118485_bib65
  article-title: Numerical simulation of reinforced concrete beam/column failure considering normal-shear stress interaction
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2014.05.011
– volume: 234
  year: 2020
  ident: 10.1016/j.engstruct.2024.118485_bib77
  article-title: Understanding fracture mechanism and behaviour of ultra-high strength concrete using mesoscale modelling
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2020.107080
– volume: 201-204
  start-page: 139
  year: 2012
  ident: 10.1016/j.engstruct.2024.118485_bib73
  article-title: Multiscale failure modeling of concrete: micromechanical modeling, discontinuous homogenization and parallel computations
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2011.09.014
– volume: 46
  start-page: 41
  year: 2012
  ident: 10.1016/j.engstruct.2024.118485_bib60
  article-title: Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2012.01.010
– volume: 47
  year: 2022
  ident: 10.1016/j.engstruct.2024.118485_bib87
  article-title: Experimental and numerical investigation on progressive collapse resistance of RC frame structures considering transverse beam and slab effects
  publication-title: J Build Eng
– volume: 14
  start-page: 4314
  year: 2021
  ident: 10.1016/j.engstruct.2024.118485_bib79
  article-title: Fracture behaviour of real coarse aggregate distributed concrete under uniaxial compressive load based on cohesive zone model
  publication-title: Materials
  doi: 10.3390/ma14154314
– volume: 109
  year: 2020
  ident: 10.1016/j.engstruct.2024.118485_bib81
  article-title: Experimental and numerical investigation of mortar and ITZ parameters in meso-scale models of concrete
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2020.102722
– volume: 55
  start-page: 90
  year: 2013
  ident: 10.1016/j.engstruct.2024.118485_bib20
  article-title: Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2011.08.040
– volume: 129
  year: 2021
  ident: 10.1016/j.engstruct.2024.118485_bib84
  article-title: Efficient numerical model for progressive collapse analysis of prestressed concrete frame structures
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2021.105683
– volume: 34
  year: 2021
  ident: 10.1016/j.engstruct.2024.118485_bib22
  article-title: Finite element analysis for progressive collapse potential of precast concrete beam-to-column connections strengthened with steel plates
  publication-title: J Build Eng
– volume: 12
  start-page: 411
  year: 2004
  ident: 10.1016/j.engstruct.2024.118485_bib74
  article-title: The interfacial transition zone (ITZ) between cement paste and aggregate in concrete
  publication-title: Interface Sci
  doi: 10.1023/B:INTS.0000042339.92990.4c
– volume: 97
  start-page: 84
  year: 2017
  ident: 10.1016/j.engstruct.2024.118485_bib36
  article-title: A mesoscale fracture model for concrete
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2017.03.014
– volume: 23
  start-page: 100
  year: 2023
  ident: 10.1016/j.engstruct.2024.118485_bib40
  article-title: Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates
  publication-title: Def Technol
  doi: 10.1016/j.dt.2022.02.003
SSID ssj0002880
Score 2.5884297
Snippet The progressive collapse of reinforced concrete (RC) beam-column sub-assemblage under catenary action (CA) using the alternate load path method to evaluate...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 118485
SubjectTerms Aggregate volume fraction
Catenary action
Mesoscale modeling
Progressive collapse
Sub-modeling
Title Numerical predictions of progressive collapse in reinforced concrete beam-column sub-assemblages: A focus on 3D multiscale modeling
URI https://dx.doi.org/10.1016/j.engstruct.2024.118485
Volume 315
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGBAPEV5VB5YTRPHceNuVaEqIHWBSt0i27VRUZtWfTCy8MfxOUlpJaQOjLF8juO73F3iz98hdCcSaiNLFeFMcMIkC4hIeEI0DVSopTZaebRFj3f77HkQDyqoXZ6FAVhl4ftzn-69ddFSL1azPhuN6q8eokgFdzEJ-AbADzPWACu___qFedDEV0-DzgR6b2G8TPae07S6D0XKnPtIGBRV_itCbUSdzjE6KtJF3MpndIIqJjtFhxskgmfou7fKd13GeDaHbRdvSXhqscdeAcz102Cv79nC4FGG58bTpbpnd82ZSxuXBisjJ0SDq8rwYqWIy6nNRI2dt1k0cQvbqV65MTMcPWCPQVy4-xns6-i4WZyjfufxrd0lRWkFoqMwXrp3QwoB8VFyE5jISKvgDJYOQiupbWhlBZWxDa0aUh0zpdgwAu48mvCGpIpGF2gvm2bmEmHJzJDrEHjSoF45_CGhTCoRC84SN0YV8XI5U13wjkP5i3FaAsw-0rUeUtBDmuuhioK14Cyn3tgt0iz1lW5ZUeoCxC7hq_8IX6MDuAIkSRjfoD3Xwdy6dGWpat4ea2i_9fTS7f0AM3nuig
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BTtwwELUQHEoPiLZUXaCtD-3RbOI4JkbigErRUuheChK3YHvH1VZLdkV2QVy48En9wc44WQpSJQ4VVyfjWDOTmUn8_IaxT6aQIQvSCa2MFsqqRJhCF8LLxKXeevAuoi36uneqvp3lZwvs9_wsDMEq29jfxPQYrduRbqvN7mQ47P6IEEVpNOYk4huQLbLyCG6u8but3j3cRyN_lvLg68mXnmhbCwifpfkUfcMaQ_nBakggAxscnUHySRqsDNveBSNtHtLgBtLnyjk1yIg7ThZ620pHbAcY95cUhgtqm7B1-xdXIovYro1WJ2h5j0BlUP1seGHxy1QqjFeFoi7O_0qJD9LcwSpbaetTvteo4BVbgOo1e_mAtfANu-vPmm2eEZ9c0j5PdF0-DjyCvQhXewU8OtikBj6s-CVEflZUNg5XWKdOgTuwF8JTbKx4PXMCi3i4cCMMb_UO3-Nh7Gc4Z8WzfR5BjzU-D3hs3IOrWGOnz6Lwt2yxGlfwjnGrYKB9SsRs1CCdfslIZZ3JjVYFztFheq7O0rdE59RvY1TOEW2_yns7lGSHsrFDhyX3gpOG6-NpkZ25vcpHbltiRnpKeP1_hD-yF72T78fl8WH_aIMt0xWCsaT5JlvEm-E91kpT9yH6Jmfnz_0y_AHl6CwZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+predictions+of+progressive+collapse+in+reinforced+concrete+beam-column+sub-assemblages%3A+A+focus+on+3D+multiscale+modeling&rft.jtitle=Engineering+structures&rft.au=Long%2C+Xu&rft.au=Iyela%2C+Percy+M.&rft.au=Su%2C+Yutai&rft.au=Atlaw%2C+Meklit+M.&rft.date=2024-09-15&rft.issn=0141-0296&rft.volume=315&rft.spage=118485&rft_id=info:doi/10.1016%2Fj.engstruct.2024.118485&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2024_118485
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon