Numerical predictions of progressive collapse in reinforced concrete beam-column sub-assemblages: A focus on 3D multiscale modeling
The progressive collapse of reinforced concrete (RC) beam-column sub-assemblage under catenary action (CA) using the alternate load path method to evaluate structures' robustness has raised much attention in the past decade, both in experimental tests and finite element (FE) simulations. Howeve...
Saved in:
Published in | Engineering structures Vol. 315; p. 118485 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The progressive collapse of reinforced concrete (RC) beam-column sub-assemblage under catenary action (CA) using the alternate load path method to evaluate structures' robustness has raised much attention in the past decade, both in experimental tests and finite element (FE) simulations. However, a comprehensive multiscale method within concrete to assess structural robustness against progressive collapse, explicitly surrounding concrete matrix under CA, is generally lacking and has not been thoroughly explored in the relevant literature. This study aims to develop an FE macromodel to reliably simulate the progressive collapse resistance of seismic and non-seismic RC beam-column sub-assemblages. The proposed macroscale FE models are extensively validated by experimental results dominated by the CA and excessive deformation of RC beam-column sub-assemblages. Then, the macroscale FE model is further partitioned at the critical region with high-stress concentration to establish a sub-model and elucidate the underlying mesoscopic mechanism to motivate the CA by performing sub-modeling analysis. A 150 mm × 150 mm × 150 mm mesoscale heterogeneous model is established to be composed of aggregates, interfacial transition zone (ITZ), pores, and mortar by 3D voxel and Voronoi-based methods. The numerical predictions of the three macroscale models demonstrate good agreement of the overall deformation and load resistance trends with experimental results at both structural and sectional levels, but an overestimation of the load resistance peak is observed when concrete is crushed. Compared to the macroscale models, the sub-modeling analysis provides a more in-depth understanding of localized phenomena such as cracks and fractures. The 3D mesoscale model is further investigated with different aggregate volume fractions following the Fuller gradation. It is found that aggregates and ITZ (higher porosity, lower elastic modulus, and lower tensile strength compared to the bulk mortar) are more prone to concrete failure mechanisms without considering the role of reinforcement leading to the CA at the mesoscale, maintaining the concrete properties of the three macroscale models. In terms of the material constitutive model, the concrete damage plasticity model, and cohesive elements for mortar and ITZ, respectively, under uniaxial compression and tension behavior, the importance of interface bonding in CA of the surrounding concrete matrix is underlined. Additionally, the established mesoscale modeling method facilitates comprehension of the responses exhibited by macroscale RC sub-assemblies, ultimately shedding light on fracture initiation and propagation mechanisms.
•Numerically predict a macroscopic model resistance under catenary action.•Further improve accuracy and dependability of resistance capacity in submodelling.•Unveil the resistance contributions in mesoscale modeling under progressive collapse. |
---|---|
AbstractList | The progressive collapse of reinforced concrete (RC) beam-column sub-assemblage under catenary action (CA) using the alternate load path method to evaluate structures' robustness has raised much attention in the past decade, both in experimental tests and finite element (FE) simulations. However, a comprehensive multiscale method within concrete to assess structural robustness against progressive collapse, explicitly surrounding concrete matrix under CA, is generally lacking and has not been thoroughly explored in the relevant literature. This study aims to develop an FE macromodel to reliably simulate the progressive collapse resistance of seismic and non-seismic RC beam-column sub-assemblages. The proposed macroscale FE models are extensively validated by experimental results dominated by the CA and excessive deformation of RC beam-column sub-assemblages. Then, the macroscale FE model is further partitioned at the critical region with high-stress concentration to establish a sub-model and elucidate the underlying mesoscopic mechanism to motivate the CA by performing sub-modeling analysis. A 150 mm × 150 mm × 150 mm mesoscale heterogeneous model is established to be composed of aggregates, interfacial transition zone (ITZ), pores, and mortar by 3D voxel and Voronoi-based methods. The numerical predictions of the three macroscale models demonstrate good agreement of the overall deformation and load resistance trends with experimental results at both structural and sectional levels, but an overestimation of the load resistance peak is observed when concrete is crushed. Compared to the macroscale models, the sub-modeling analysis provides a more in-depth understanding of localized phenomena such as cracks and fractures. The 3D mesoscale model is further investigated with different aggregate volume fractions following the Fuller gradation. It is found that aggregates and ITZ (higher porosity, lower elastic modulus, and lower tensile strength compared to the bulk mortar) are more prone to concrete failure mechanisms without considering the role of reinforcement leading to the CA at the mesoscale, maintaining the concrete properties of the three macroscale models. In terms of the material constitutive model, the concrete damage plasticity model, and cohesive elements for mortar and ITZ, respectively, under uniaxial compression and tension behavior, the importance of interface bonding in CA of the surrounding concrete matrix is underlined. Additionally, the established mesoscale modeling method facilitates comprehension of the responses exhibited by macroscale RC sub-assemblies, ultimately shedding light on fracture initiation and propagation mechanisms.
•Numerically predict a macroscopic model resistance under catenary action.•Further improve accuracy and dependability of resistance capacity in submodelling.•Unveil the resistance contributions in mesoscale modeling under progressive collapse. |
ArticleNumber | 118485 |
Author | Iyela, Percy M. Atlaw, Meklit M. Su, Yutai Kang, Shao-Bo Long, Xu |
Author_xml | – sequence: 1 givenname: Xu surname: Long fullname: Long, Xu organization: School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Percy M. surname: Iyela fullname: Iyela, Percy M. organization: School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Yutai surname: Su fullname: Su, Yutai email: suyutai@nwpu.edu.cn organization: School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Meklit M. surname: Atlaw fullname: Atlaw, Meklit M. organization: School of Software Engineering, Xi'an Jiaotong University, Xi'an, China – sequence: 5 givenname: Shao-Bo surname: Kang fullname: Kang, Shao-Bo email: kang0119@cqu.edu.cn organization: School of Civil Engineering, Chongqing University, Chongqing, China |
BookMark | eNqNkE1LAzEQhnOoYFv9DeYPbE2y34KHUj-h6EXPIclOlpRsUpLdgmf_uCkVD170NMwwzzvMs0Az5x0gdEXJihJaXe9W4Po4hkmNK0ZYsaK0KZpyhuaEFjQjrK3O0SLGHSGENQ2Zo8-XaYBglLB4H6AzajTeRex1an0fIEZzAKy8tWIfARuHAxinfVDQpbFTAUbAEsSQpaVpcDhOMhMxwiCt6CHe4DXWXk0p0-H8Dg-THU1M9wAPvgNrXH-BzrSwES6_6xK9P9y_bZ6y7evj82a9zVROyzFjRLStAuhEBQRyEFrSomoUoVowXSupWyZKTbXsmCoLKYsur_M2Z01VCyZZvkT1KVcFH2MAzffBDCJ8cEr40R_f8R9__OiPn_wl8vYXqcwojqrGIIz9B78-8ZDeOxgIPCoDLjk0AdJu582fGV8ba5sd |
CitedBy_id | crossref_primary_10_3390_buildings15071020 crossref_primary_10_1016_j_mtcomm_2025_112181 crossref_primary_10_1016_j_jobe_2025_112035 crossref_primary_10_1016_j_mtcomm_2025_112081 crossref_primary_10_1016_j_scp_2025_101985 crossref_primary_10_3390_buildings15010121 crossref_primary_10_3389_fmats_2025_1542655 crossref_primary_10_1080_15376494_2024_2447065 crossref_primary_10_1080_15376494_2024_2445794 crossref_primary_10_3390_su17062611 crossref_primary_10_1016_j_dt_2025_02_005 crossref_primary_10_1080_15376494_2024_2448302 crossref_primary_10_1016_j_matdes_2024_113159 crossref_primary_10_1038_s41598_025_94331_4 crossref_primary_10_1038_s41598_025_94328_z crossref_primary_10_1080_15376494_2024_2438906 crossref_primary_10_1038_s41598_025_86737_x |
Cites_doi | 10.1016/j.cemconres.2011.06.016 10.1016/j.cemconcomp.2020.103889 10.1016/j.engstruct.2016.07.042 10.1016/j.ijimpeng.2020.103775 10.1016/j.conbuildmat.2019.117749 10.1155/2021/5538477 10.1016/j.ijsolstr.2010.04.031 10.1016/j.conbuildmat.2020.118559 10.1016/j.engstruct.2021.113316 10.1016/j.ijsolstr.2015.05.002 10.1016/j.engstruct.2015.06.051 10.1016/j.cemconres.2014.01.009 10.1016/j.conbuildmat.2018.05.052 10.6028/NIST.IR.7396 10.1080/15732479.2020.1841245 10.1016/0008-8846(94)00124-H 10.1016/j.cemconres.2013.03.021 10.12989/sem.2013.48.3.309 10.1142/S2424913021500016 10.1016/j.conbuildmat.2020.119639 10.1016/j.engfracmech.2020.106974 10.1016/j.conbuildmat.2018.01.040 10.1016/j.istruc.2021.06.008 10.1016/j.engstruct.2017.08.068 10.1061/TACEAT.0001979 10.1016/0020-7683(89)90050-4 10.12989/cac.2015.15.5.807 10.1016/j.conbuildmat.2020.119382 10.1016/j.cemconres.2022.106799 10.1016/j.cemconres.2004.05.042 10.1016/j.engstruct.2013.08.025 10.1016/j.conbuildmat.2019.07.231 10.1016/j.istruc.2024.106131 10.1016/j.ijsolstr.2022.111960 10.1016/j.cemconres.2020.106317 10.1016/S0266-3538(01)00061-6 10.1016/j.engfracmech.2019.106646 10.1016/j.compositesb.2019.106958 10.1016/j.engfracmech.2020.106979 10.1016/j.compscitech.2017.06.015 10.1016/j.engstruct.2023.116310 10.1016/j.conbuildmat.2023.130346 10.1016/j.compstruc.2017.07.009 10.1016/0266-3538(96)00005-X 10.1016/j.ijsolstr.2015.11.018 10.1016/j.engstruct.2019.109776 10.1007/s11831-011-9063-8 10.1016/j.tafmec.2022.103415 10.1016/j.jcsr.2018.09.029 10.1016/j.compstruct.2022.116267 10.1016/j.ijsolstr.2018.05.026 10.3390/app13074317 10.1016/j.ijimpeng.2016.06.009 10.1016/j.conbuildmat.2017.11.094 10.1016/j.conbuildmat.2017.12.229 10.1260/1369-4332.18.9.1461 10.1016/j.conbuildmat.2019.117823 10.12989/sem.2013.48.5.587 10.1016/j.engstruct.2009.12.048 10.1016/j.engfracmech.2017.10.003 10.1016/j.conbuildmat.2014.08.050 10.3390/buildings13020533 10.1016/j.engstruct.2014.05.011 10.1016/j.engfracmech.2020.107080 10.1016/j.cma.2011.09.014 10.1016/j.ijimpeng.2012.01.010 10.3390/ma14154314 10.1016/j.tafmec.2020.102722 10.1016/j.engstruct.2011.08.040 10.1016/j.engfailanal.2021.105683 10.1023/B:INTS.0000042339.92990.4c 10.1016/j.cemconres.2017.03.014 10.1016/j.dt.2022.02.003 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.engstruct.2024.118485 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_engstruct_2024_118485 S0141029624010472 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU ATOGT AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSE SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G AAQXK AATTM AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET SSH VH1 WUQ ZY4 |
ID | FETCH-LOGICAL-c315t-20a99ceeda6e0e3eafb1468c01fa2f7cbf92a5f1fbd2c54bb4d373932867a2b23 |
IEDL.DBID | .~1 |
ISSN | 0141-0296 |
IngestDate | Tue Jul 01 05:16:29 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Sat Feb 08 15:51:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Aggregate volume fraction RC Progressive collapse Mesoscale modeling Sub-modeling Catenary action |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c315t-20a99ceeda6e0e3eafb1468c01fa2f7cbf92a5f1fbd2c54bb4d373932867a2b23 |
ParticipantIDs | crossref_primary_10_1016_j_engstruct_2024_118485 crossref_citationtrail_10_1016_j_engstruct_2024_118485 elsevier_sciencedirect_doi_10_1016_j_engstruct_2024_118485 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-15 |
PublicationDateYYYYMMDD | 2024-09-15 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Engineering structures |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Pham, Tan, Yu (bib8) 2017; 149 Long, Mao, Lu, Li, Jia (bib42) 2021; 06 Jin, Yu, Du, Yang (bib90) 2020; 230 Huang, Yang, Ren, Liu, Zhang (bib92) 2015; 67-68 Han, Eckschlager, Böhm (bib44) 2001; 61 Bao, Long, Tan, Lee (bib68) 2013; 56 Zhang, Song, Liu, Wu, Song (bib30) 2017; 149 Long, Bao, Tan, Lee (bib65) 2014; 74 Rashidian, Mohajeri Nav, Usefi (bib86) 2016; 2016 Yun, Tai-ping, Xiang, Wei-jian (bib17) 2019; 36 Wang, Shah, Wang, Wang, Zhang, Pang (bib24) 2022; 26 Akçaoğlu, Tokyay, Çelik (bib95) 2005; 35 Long, Tan, Lee (bib83) 2014; 111 Guo, Lu (bib89) 2021; 2021 Zhou R. Mesoscopic analysis of damage mechanisms in concrete material. 2016. Naderi, Tu, Zhang (bib45) 2021; 140 Long, Lee (bib16) 2015; 18 Naderi, Zhang (bib46) 2022; 291 Tibor (bib71) 1938; 34 Zhou, Lu (bib34) 2018; 165 Standard BJBE (bib9) 2005; 1 Lv, Chen, Chen (bib52) 2018; 160 Grondin, Matallah (bib56) 2014; 58 Alshaikh, Bakar, Alwesabi, Zeyad, Magbool (bib13) 2021; 33 Long, Kang, Chi (bib11) 2013; 48 Zhang, Yang, Huang, Wang, Chen (bib50) 2021; 149 Zheng, Zhang, Zhuo, Zhang, Hu (bib93) 2023; 367 Yılmaz, Molinari (bib36) 2017; 97 Hirsch (bib54) 1962 Song, Lu (bib60) 2012; 46 Lim, Ozbakkaloglu (bib70) 2014; 71 Simeonov, Ahmad (bib94) 1995; 25 bib5 Kwasniewski (bib18) 2010; 32 Huang, Yang, Chen, Liu (bib37) 2016; 97 Yu, Liu, Yang, Liu (bib35) 2018; 147 Chen, Yuan, Dong, Zhao (bib75) 2020; 239 bib4 bib1 Long, Wang, Huang, Li, Kang (bib64) 2021; 249 Wang, Zhang, Gu, Lin (bib87) 2022; 47 Ouyang, Chen (bib32) 2020; 257 Fu, Tan, Long, Kang (bib85) 2023; 13 Long, Lee (bib10) 2015; 15 Snozzi, Caballero, Molinari (bib49) 2011; 41 Lubliner, Oliver, Oller, Oñate (bib66) 1989; 25 Nguyen, Stroeven, Sluys (bib73) 2012; 201-204 Su, Yang, Liu (bib76) 2010; 47 Long, Mao, Su, Su, Tian (bib40) 2023; 23 Ying, Guo (bib79) 2021; 14 Ellingwood B., Smilowitz, R., Dusenberry, D., Duthinh, D., Lew, H., Carino, N. Best Practices for Reducing the Potential for Progressive Collapse in Buildings,. National Institute of Standards and Technology,. 2007. Ke, Li, Jiang (bib7) 2023; 13 Trawiński, Tejchman, Bobiński (bib39) 2018; 189 Smith M. ABAQUS/Standard User's Manual, Version 6.9 Dassault Systèmes Simulia Corp. 2009. Scrivener, Crumbie, Laugesen (bib74) 2004; 12 Long, Wang, Zhao, Kang (bib82) 2020; 238 Elsanadedy, Al-Salloum, Alrubaidi, Almusallam, Abbas (bib22) 2021; 34 Fuller, Thompson (bib53) 1907; 59 Zhou, Song, Lu (bib62) 2017; 192 Wang, Zhang, Jivkov (bib80) 2016; 80 Zhang, Zhao, Wang (bib38) 2023; 289 Gimenes, Rodrigues, Bitencourt, Manzoli (bib28) 2023; 260 Maleki, Rasoolan, Khajehdezfuly, Jivkov (bib58) 2020; 258 Chen, Xu, Mo, Zhou (bib72) 2018; 178 Benzeggagh, Kenane (bib78) 1996; 56 Naderi, Zhang (bib91) 2021; 116 (bib55) 2017 Lee, Fenves (bib67) 1998; 124 Congro, Sanchez, Roehl, Marangon (bib43) 2019; 174 Ahmadi, Rashidian, Abbasnia, Mohajeri Nav, Usefi (bib88) 2016; 2016 Elkady, Augusthus Nelson, Weekes, Makoond, Buitrago (bib14) 2024; 62 Lin, Yang, Kang, Xu (bib19) 2019; 153 Huang, Huang, Zhang, Guo, Liu (bib25) 2022; 18 Lim N.S. Systematic study on reinforced concrete structures under progressive collapse. Nanyang Technological University, Singapore.; 2017. Zhang, Wang, Yang, Wang, Shu (bib31) 2018; 164 Qiu, Ueda, Fu, Han, Wang, Ye (bib48) 2023; 303 Zhang, Chen, Wang, Zhang, Wang, Li (bib26) 2019; 220 Yu, Li, Zhengyi, Wei, Jiangqi, Li (bib33) 2019; 226 Huang, Huang, Zhang, Guo, Liu (bib15) 2022; 18 Koh, Krauthammer (bib23) 2019; 201 Li, Huang, Yang, Yu, Li (bib27) 2022; 256 Thilakarathna, Kristombu, Mendis, Chandrathilaka, Vimonsatit, Lee (bib77) 2020; 234 Thilakarathna, Kristombu Baduge, Mendis, Vimonsatit, Lee (bib59) 2020; 231 Long, Weifeng, Kang, Chi (bib12) 2013; 48 Dinu, Marginean, Dubina (bib21) 2017; 151 Unger, Eckardt (bib41) 2011; 18 Feng, Shi, Parisi, Brunesi, Wang (bib84) 2021; 129 Lyu, She, Chang, Gu (bib57) 2020; 248 Zhao, Wu, Liu, Zhang (bib61) 2022; 120 Dat, Hai, Jun (bib6) 2015; 101 Wang, Jivkov, Li, Engelberg (bib81) 2020; 109 Yu, Tan (bib20) 2013; 55 Van der Putte T. Using the discrete 3D Voronoi diagram for the modelling of 3D continuous information in geosciences. 2009. Homel, Iyer, Semnani, Herbold (bib29) 2022; 157 Pedersen, Simone, Sluys (bib47) 2013; 50 Kwasniewski (10.1016/j.engstruct.2024.118485_bib18) 2010; 32 Huang (10.1016/j.engstruct.2024.118485_bib15) 2022; 18 10.1016/j.engstruct.2024.118485_bib63 Lim (10.1016/j.engstruct.2024.118485_bib70) 2014; 71 Thilakarathna (10.1016/j.engstruct.2024.118485_bib77) 2020; 234 (10.1016/j.engstruct.2024.118485_bib55) 2017 Bao (10.1016/j.engstruct.2024.118485_bib68) 2013; 56 Huang (10.1016/j.engstruct.2024.118485_bib92) 2015; 67-68 Long (10.1016/j.engstruct.2024.118485_bib42) 2021; 06 Feng (10.1016/j.engstruct.2024.118485_bib84) 2021; 129 Dinu (10.1016/j.engstruct.2024.118485_bib21) 2017; 151 Long (10.1016/j.engstruct.2024.118485_bib82) 2020; 238 Koh (10.1016/j.engstruct.2024.118485_bib23) 2019; 201 10.1016/j.engstruct.2024.118485_bib69 Ying (10.1016/j.engstruct.2024.118485_bib79) 2021; 14 Yun (10.1016/j.engstruct.2024.118485_bib17) 2019; 36 Wang (10.1016/j.engstruct.2024.118485_bib87) 2022; 47 Lubliner (10.1016/j.engstruct.2024.118485_bib66) 1989; 25 Wang (10.1016/j.engstruct.2024.118485_bib81) 2020; 109 Long (10.1016/j.engstruct.2024.118485_bib12) 2013; 48 Li (10.1016/j.engstruct.2024.118485_bib27) 2022; 256 Pedersen (10.1016/j.engstruct.2024.118485_bib47) 2013; 50 Fuller (10.1016/j.engstruct.2024.118485_bib53) 1907; 59 Chen (10.1016/j.engstruct.2024.118485_bib72) 2018; 178 10.1016/j.engstruct.2024.118485_bib51 Long (10.1016/j.engstruct.2024.118485_bib16) 2015; 18 Long (10.1016/j.engstruct.2024.118485_bib40) 2023; 23 Naderi (10.1016/j.engstruct.2024.118485_bib46) 2022; 291 Wang (10.1016/j.engstruct.2024.118485_bib80) 2016; 80 Su (10.1016/j.engstruct.2024.118485_bib76) 2010; 47 Ke (10.1016/j.engstruct.2024.118485_bib7) 2023; 13 Zhang (10.1016/j.engstruct.2024.118485_bib50) 2021; 149 Snozzi (10.1016/j.engstruct.2024.118485_bib49) 2011; 41 Zhao (10.1016/j.engstruct.2024.118485_bib61) 2022; 120 Pham (10.1016/j.engstruct.2024.118485_bib8) 2017; 149 Long (10.1016/j.engstruct.2024.118485_bib11) 2013; 48 Grondin (10.1016/j.engstruct.2024.118485_bib56) 2014; 58 Scrivener (10.1016/j.engstruct.2024.118485_bib74) 2004; 12 Zheng (10.1016/j.engstruct.2024.118485_bib93) 2023; 367 Trawiński (10.1016/j.engstruct.2024.118485_bib39) 2018; 189 Wang (10.1016/j.engstruct.2024.118485_bib24) 2022; 26 Rashidian (10.1016/j.engstruct.2024.118485_bib86) 2016; 2016 Alshaikh (10.1016/j.engstruct.2024.118485_bib13) 2021; 33 Huang (10.1016/j.engstruct.2024.118485_bib25) 2022; 18 Long (10.1016/j.engstruct.2024.118485_bib83) 2014; 111 Guo (10.1016/j.engstruct.2024.118485_bib89) 2021; 2021 Maleki (10.1016/j.engstruct.2024.118485_bib58) 2020; 258 Yu (10.1016/j.engstruct.2024.118485_bib35) 2018; 147 Yılmaz (10.1016/j.engstruct.2024.118485_bib36) 2017; 97 Hirsch (10.1016/j.engstruct.2024.118485_bib54) 1962 Zhou (10.1016/j.engstruct.2024.118485_bib62) 2017; 192 Qiu (10.1016/j.engstruct.2024.118485_bib48) 2023; 303 Chen (10.1016/j.engstruct.2024.118485_bib75) 2020; 239 Long (10.1016/j.engstruct.2024.118485_bib10) 2015; 15 Benzeggagh (10.1016/j.engstruct.2024.118485_bib78) 1996; 56 Ouyang (10.1016/j.engstruct.2024.118485_bib32) 2020; 257 Han (10.1016/j.engstruct.2024.118485_bib44) 2001; 61 Lv (10.1016/j.engstruct.2024.118485_bib52) 2018; 160 Gimenes (10.1016/j.engstruct.2024.118485_bib28) 2023; 260 Standard BJBE (10.1016/j.engstruct.2024.118485_bib9) 2005; 1 Yu (10.1016/j.engstruct.2024.118485_bib20) 2013; 55 Jin (10.1016/j.engstruct.2024.118485_bib90) 2020; 230 Zhou (10.1016/j.engstruct.2024.118485_bib34) 2018; 165 Tibor (10.1016/j.engstruct.2024.118485_bib71) 1938; 34 Lin (10.1016/j.engstruct.2024.118485_bib19) 2019; 153 Zhang (10.1016/j.engstruct.2024.118485_bib31) 2018; 164 Long (10.1016/j.engstruct.2024.118485_bib64) 2021; 249 Homel (10.1016/j.engstruct.2024.118485_bib29) 2022; 157 Naderi (10.1016/j.engstruct.2024.118485_bib91) 2021; 116 Ahmadi (10.1016/j.engstruct.2024.118485_bib88) 2016; 2016 Fu (10.1016/j.engstruct.2024.118485_bib85) 2023; 13 10.1016/j.engstruct.2024.118485_bib2 10.1016/j.engstruct.2024.118485_bib3 Zhang (10.1016/j.engstruct.2024.118485_bib38) 2023; 289 Lee (10.1016/j.engstruct.2024.118485_bib67) 1998; 124 Yu (10.1016/j.engstruct.2024.118485_bib33) 2019; 226 Elsanadedy (10.1016/j.engstruct.2024.118485_bib22) 2021; 34 Akçaoğlu (10.1016/j.engstruct.2024.118485_bib95) 2005; 35 Zhang (10.1016/j.engstruct.2024.118485_bib26) 2019; 220 Zhang (10.1016/j.engstruct.2024.118485_bib30) 2017; 149 Lyu (10.1016/j.engstruct.2024.118485_bib57) 2020; 248 Long (10.1016/j.engstruct.2024.118485_bib65) 2014; 74 Elkady (10.1016/j.engstruct.2024.118485_bib14) 2024; 62 Song (10.1016/j.engstruct.2024.118485_bib60) 2012; 46 Congro (10.1016/j.engstruct.2024.118485_bib43) 2019; 174 Naderi (10.1016/j.engstruct.2024.118485_bib45) 2021; 140 Nguyen (10.1016/j.engstruct.2024.118485_bib73) 2012; 201-204 Simeonov (10.1016/j.engstruct.2024.118485_bib94) 1995; 25 Dat (10.1016/j.engstruct.2024.118485_bib6) 2015; 101 Thilakarathna (10.1016/j.engstruct.2024.118485_bib59) 2020; 231 Huang (10.1016/j.engstruct.2024.118485_bib37) 2016; 97 Unger (10.1016/j.engstruct.2024.118485_bib41) 2011; 18 |
References_xml | – volume: 258 year: 2020 ident: bib58 article-title: On the effect of ITZ thickness in meso-scale models of concrete publication-title: Constr Build Mater – volume: 178 start-page: 418 year: 2018 end-page: 431 ident: bib72 article-title: Behavior of meso-scale heterogeneous concrete under uniaxial tensile and compressive loadings publication-title: Constr Build Mater – volume: 55 start-page: 90 year: 2013 end-page: 106 ident: bib20 article-title: Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages publication-title: Eng Struct – volume: 14 start-page: 4314 year: 2021 ident: bib79 article-title: Fracture behaviour of real coarse aggregate distributed concrete under uniaxial compressive load based on cohesive zone model publication-title: Materials – volume: 18 start-page: 249 year: 2022 end-page: 265 ident: bib25 article-title: Progressive collapse of multistory 3D reinforced concrete frame structures after the loss of an edge column publication-title: Struct Infrastruct Eng – volume: 34 start-page: 269 year: 1938 end-page: 284 ident: bib71 article-title: Effect of type of test specimen and gradation of aggregate on compressive strength of concrete publication-title: Acids J Proc – volume: 101 start-page: 45 year: 2015 end-page: 57 ident: bib6 article-title: A simplified approach to assess progressive collapse resistance of reinforced concrete framed structures publication-title: Eng Struct – volume: 160 start-page: 744 year: 2018 end-page: 764 ident: bib52 article-title: The 3D meso-scale model and numerical tests of split Hopkinson pressure bar of concrete specimen publication-title: Constr Build Mater – volume: 234 year: 2020 ident: bib77 article-title: Understanding fracture mechanism and behaviour of ultra-high strength concrete using mesoscale modelling publication-title: Eng Fract Mech – volume: 97 start-page: 102 year: 2016 end-page: 115 ident: bib37 article-title: Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images publication-title: Int J Impact Eng – volume: 41 start-page: 1130 year: 2011 end-page: 1142 ident: bib49 article-title: Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading publication-title: Cem Concr Res – volume: 149 start-page: 2 year: 2017 end-page: 20 ident: bib8 article-title: Numerical investigations on static and dynamic responses of reinforced concrete sub-assemblages under progressive collapse publication-title: Eng Struct – volume: 62 year: 2024 ident: bib14 article-title: Progressive collapse: past, present, future and beyond publication-title: Structures – volume: 149 year: 2021 ident: bib50 article-title: Micro CT image-based simulations of concrete under high strain rate impact using a continuum-discrete coupled model publication-title: Int J Impact Eng – volume: 256 year: 2022 ident: bib27 article-title: 3D meso-scale fracture modelling of concrete with random aggregates using a phase-field regularized cohesive zone model publication-title: Int J Solids Struct – volume: 220 year: 2019 ident: bib26 article-title: 3D mesoscale fracture analysis of concrete under complex loading publication-title: Eng Fract Mech – volume: 18 start-page: 341 year: 2011 end-page: 393 ident: bib41 article-title: Multiscale modeling of concrete publication-title: Arch Comput Methods Eng – volume: 25 start-page: 299 year: 1989 end-page: 326 ident: bib66 article-title: A plastic-damage model for concrete publication-title: Int J Solids Struct – volume: 124 start-page: 892 year: 1998 end-page: 900 ident: bib67 article-title: Plastic-damage model for cyclic loading of concrete structures – volume: 201 year: 2019 ident: bib23 article-title: Exploring numerical approaches for pre-test progressive collapse assessment of RC frame structures publication-title: Eng Struct – volume: 120 year: 2022 ident: bib61 article-title: Numerical insights into the effect of ITZ and aggregate strength on concrete properties publication-title: Theor Appl Fract Mech – volume: 61 start-page: 1581 year: 2001 end-page: 1590 ident: bib44 article-title: The effects of three-dimensional multi-particle arrangements on the mechanical behavior and damage initiation of particle-reinforced MMCs publication-title: Compos Sci Technol – volume: 2021 year: 2021 ident: bib89 article-title: A 3D FEM mesoscale numerical analysis of concrete tensile strength behaviour publication-title: Adv Mater Sci Eng – volume: 153 start-page: 71 year: 2019 end-page: 84 ident: bib19 article-title: A new method for progressive collapse analysis of steel frames publication-title: J Constr Steel Res – volume: 18 start-page: 249 year: 2022 end-page: 265 ident: bib15 article-title: Progressive collapse of multistory 3D reinforced concrete frame structures after the loss of an edge column publication-title: Struct Infrastruct Eng – volume: 192 start-page: 96 year: 2017 end-page: 113 ident: bib62 article-title: 3D mesoscale finite element modelling of concrete publication-title: Comput Struct – volume: 226 start-page: 802 year: 2019 end-page: 817 ident: bib33 article-title: Mixed-mode I-II mesoscale fracture behavior of concrete determined by the realistic aggregate numerical model publication-title: Constr Build Mater – volume: 140 year: 2021 ident: bib45 article-title: Meso-scale modelling of compressive fracture in concrete with irregularly shaped aggregates publication-title: Cem Concr Res – volume: 1 start-page: 1993 year: 2005 ident: bib9 article-title: Eurocode 3—design publication-title: Steel Struct – volume: 260 year: 2023 ident: bib28 article-title: 2D mesoscale modeling of compressive fracture in concrete using a mesh fragmentation technique publication-title: Int J Solids Struct – volume: 238 year: 2020 ident: bib82 article-title: Bond strength of steel reinforcement under different loading rates publication-title: Constr Build Mater – volume: 67-68 start-page: 340 year: 2015 end-page: 352 ident: bib92 article-title: 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model publication-title: Int J Solids Struct – volume: 151 start-page: 861 year: 2017 end-page: 878 ident: bib21 article-title: Experimental testing and numerical modelling of steel moment-frame connections under column loss publication-title: Eng Struct – volume: 56 start-page: 2076 year: 2013 end-page: 2082 ident: bib68 article-title: A new generalized Drucker–Prager flow rule for concrete under compression publication-title: Eng Struct – volume: 147 start-page: 204 year: 2018 end-page: 222 ident: bib35 article-title: 3D numerical study on fracture process of concrete with different ITZ properties using X-ray computerized tomography publication-title: Int J Solids Struct – volume: 257 year: 2020 ident: bib32 article-title: 3D meso-scale modeling of concrete with a local background grid method publication-title: Constr Build Mater – volume: 291 year: 2022 ident: bib46 article-title: 3D meso-scale modelling of tensile and compressive fracture behaviour of steel fibre reinforced concrete publication-title: Cem Concr Res – volume: 74 start-page: 32 year: 2014 end-page: 43 ident: bib65 article-title: Numerical simulation of reinforced concrete beam/column failure considering normal-shear stress interaction publication-title: Eng Struct – volume: 50 start-page: 74 year: 2013 end-page: 87 ident: bib47 article-title: Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete publication-title: Cem Concr Res – volume: 189 start-page: 27 year: 2018 end-page: 50 ident: bib39 article-title: A three-dimensional meso-scale modelling of concrete fracture, based on cohesive elements and X-ray μCT images publication-title: Eng Fract Mech – volume: 2016 year: 2016 ident: bib88 article-title: Experimental and numerical evaluation of progressive collapse behavior in scaled RC beam-column subassemblage publication-title: Shock Vib – volume: 59 start-page: 67 year: 1907 end-page: 143 ident: bib53 article-title: The laws of proportioning concrete publication-title: Trans Am Soc Civ Eng – volume: 48 start-page: 587 year: 2013 end-page: 613 ident: bib11 article-title: A 3D co-rotational beam element for steel and RC framed structures publication-title: Struct Eng Mech – volume: 48 start-page: 309 year: 2013 end-page: 331 ident: bib12 article-title: A superelement formulation for efficient structural analysis in progressive collapse publication-title: Struct Eng Mech – year: 2017 ident: bib55 – reference: Ellingwood B., Smilowitz, R., Dusenberry, D., Duthinh, D., Lew, H., Carino, N. Best Practices for Reducing the Potential for Progressive Collapse in Buildings,. National Institute of Standards and Technology,. 2007. – volume: 97 start-page: 84 year: 2017 end-page: 94 ident: bib36 article-title: A mesoscale fracture model for concrete publication-title: Cem Concr Res – volume: 06 start-page: 2150001 year: 2021 ident: bib42 article-title: Modeling of heterogeneous materials at high strain rates with machine learning algorithms trained by finite element simulations publication-title: J Micromech Mol Phys – volume: 174 year: 2019 ident: bib43 article-title: Fracture modeling of fiber reinforced concrete in a multiscale approach publication-title: Compos Part B: Eng – volume: 249 year: 2021 ident: bib64 article-title: Progressive collapse resistance of exterior reinforced concrete frames and simplified method for catenary action publication-title: Eng Struct – volume: 129 year: 2021 ident: bib84 article-title: Efficient numerical model for progressive collapse analysis of prestressed concrete frame structures publication-title: Eng Fail Anal – volume: 116 year: 2021 ident: bib91 article-title: Meso-scale modelling of static and dynamic tensile fracture of concrete accounting for real-shape aggregates publication-title: Cem Concr Compos – volume: 36 start-page: 216 year: 2019 end-page: 226 ident: bib17 article-title: Progressive collapse resistance of RC frame structures considering surrounding structural constraints publication-title: Eng Mech – volume: 13 year: 2023 ident: bib7 article-title: Dynamic response analysis of RC frame against progressive collapse based on orthogonal test publication-title: Appl Sci – volume: 231 year: 2020 ident: bib59 article-title: Mesoscale modelling of concrete – a review of geometry generation, placing algorithms, constitutive relations and applications publication-title: Eng Fract Mech – volume: 12 start-page: 411 year: 2004 end-page: 421 ident: bib74 article-title: The interfacial transition zone (ITZ) between cement paste and aggregate in concrete publication-title: Interface Sci – volume: 164 start-page: 350 year: 2018 end-page: 361 ident: bib31 article-title: 3D meso-scale modeling of reinforcement concrete with high volume fraction of randomly distributed aggregates publication-title: Constr Build Mater – volume: 32 start-page: 1223 year: 2010 end-page: 1235 ident: bib18 article-title: Nonlinear dynamic simulations of progressive collapse for a multistory building publication-title: Eng Struct – volume: 239 year: 2020 ident: bib75 article-title: Meso-scale cracking behavior of cement treated base material publication-title: Constr Build Mater – volume: 248 year: 2020 ident: bib57 article-title: Effect of fine aggregate size on the overlapping of interfacial transition zone (ITZ) in mortars publication-title: Constr Build Mater – volume: 367 year: 2023 ident: bib93 article-title: Mesoscale synergistic effect mechanism of aggregate grading and specimen size on compressive strength of concrete with large aggregate size publication-title: Constr Build Mater – volume: 289 year: 2023 ident: bib38 article-title: Mesoscale modelling of concrete damage in FRP-concrete debonding failure publication-title: Eng Struct – year: 1962 ident: bib54 article-title: Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate publication-title: Acids J Proc – volume: 71 start-page: 492 year: 2014 end-page: 509 ident: bib70 article-title: Stress–strain model for normal- and light-weight concretes under uniaxial and triaxial compression publication-title: Constr Build Mater – ident: bib4 – volume: 15 start-page: 807 year: 2015 end-page: 831 ident: bib10 article-title: Improved strut-and-tie method for 2D RC beam-column joints under monotonic loading publication-title: Comput Concr – volume: 230 year: 2020 ident: bib90 article-title: Meso-scale simulations of size effect on concrete dynamic splitting tensile strength: influence of aggregate content and maximum aggregate size publication-title: Eng Fract Mech – volume: 165 start-page: 608 year: 2018 end-page: 620 ident: bib34 article-title: A mesoscale interface approach to modelling fractures in concrete for material investigation publication-title: Constr Build Mater – volume: 2016 year: 2016 ident: bib86 article-title: Experimental and numerical evaluation of progressive collapse behavior in scaled RC beam-column sub-assemblage publication-title: Shock Vib – volume: 303 year: 2023 ident: bib48 article-title: Meso-scale computational modeling of the fracture of concrete with complex shaped aggregates under the self-restraint stress publication-title: Compos Struct – volume: 201-204 start-page: 139 year: 2012 end-page: 156 ident: bib73 article-title: Multiscale failure modeling of concrete: micromechanical modeling, discontinuous homogenization and parallel computations publication-title: Comput Methods Appl Mech Eng – volume: 157 year: 2022 ident: bib29 article-title: Mesoscale model and X-ray computed micro-tomographic imaging of damage progression in ultra-high-performance concrete publication-title: Cem Concr Res – volume: 35 start-page: 358 year: 2005 end-page: 363 ident: bib95 article-title: Assessing the ITZ microcracking via scanning electron microscope and its effect on the failure behavior of concrete publication-title: Cem Concr Res – reference: Smith M. ABAQUS/Standard User's Manual, Version 6.9 Dassault Systèmes Simulia Corp. 2009. – reference: Van der Putte T. Using the discrete 3D Voronoi diagram for the modelling of 3D continuous information in geosciences. 2009. – volume: 47 start-page: 2336 year: 2010 end-page: 2345 ident: bib76 article-title: Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: a 3D study publication-title: Int J Solids Struct – volume: 111 year: 2014 ident: bib83 article-title: Bond stress-slip prediction under pullout and dowel action in reinforced concrete joints publication-title: Acids Struct J – volume: 26 year: 2022 ident: bib24 article-title: Investigation of the Structural Behaviour of RC Beam-Column Sub-frame Subjected to Progressive Collapse publication-title: KSCE J Civ Eng – reference: Zhou R. Mesoscopic analysis of damage mechanisms in concrete material. 2016. – volume: 46 start-page: 41 year: 2012 end-page: 55 ident: bib60 article-title: Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data publication-title: Int J Impact Eng – volume: 80 start-page: 310 year: 2016 end-page: 333 ident: bib80 article-title: Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete publication-title: Int J Solids Struct – volume: 33 start-page: 2361 year: 2021 end-page: 2373 ident: bib13 article-title: Finite element analysis and experimental validation of progressive collapse of reinforced rubberized concrete frame publication-title: Structures – volume: 47 year: 2022 ident: bib87 article-title: Experimental and numerical investigation on progressive collapse resistance of RC frame structures considering transverse beam and slab effects publication-title: J Build Eng – ident: bib1 – volume: 58 start-page: 67 year: 2014 end-page: 75 ident: bib56 article-title: How to consider the interfacial transition zones in the finite element modelling of concrete? publication-title: Cem Concr Res – ident: bib5 – reference: Lim N.S. Systematic study on reinforced concrete structures under progressive collapse. Nanyang Technological University, Singapore.; 2017. – volume: 18 start-page: 1461 year: 2015 end-page: 1474 ident: bib16 article-title: Modelling of two dimensional reinforced concrete beam-column joints subjected to monotonic loading publication-title: Adv Struct Eng – volume: 25 start-page: 165 year: 1995 end-page: 176 ident: bib94 article-title: Effect of transition zone on the elastic behavior of cement-based composites publication-title: Cem Concr Res – volume: 149 year: 2017 ident: bib30 article-title: Three-dimensional mesoscale modelling of concrete composites by using random walking algorithm publication-title: Compos Sci Technol – volume: 23 start-page: 100 year: 2023 end-page: 111 ident: bib40 article-title: Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates publication-title: Def Technol – volume: 56 start-page: 439 year: 1996 end-page: 449 ident: bib78 article-title: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus publication-title: Compos Sci Technol – volume: 34 year: 2021 ident: bib22 article-title: Finite element analysis for progressive collapse potential of precast concrete beam-to-column connections strengthened with steel plates publication-title: J Build Eng – volume: 109 year: 2020 ident: bib81 article-title: Experimental and numerical investigation of mortar and ITZ parameters in meso-scale models of concrete publication-title: Theor Appl Fract Mech – volume: 13 start-page: 533 year: 2023 ident: bib85 article-title: Numerical investigations of progressive collapse behaviour of multi-storey reinforced concrete frames publication-title: Buildings – volume: 41 start-page: 1130 year: 2011 ident: 10.1016/j.engstruct.2024.118485_bib49 article-title: Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2011.06.016 – volume: 116 year: 2021 ident: 10.1016/j.engstruct.2024.118485_bib91 article-title: Meso-scale modelling of static and dynamic tensile fracture of concrete accounting for real-shape aggregates publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2020.103889 – volume: 149 start-page: 2 year: 2017 ident: 10.1016/j.engstruct.2024.118485_bib8 article-title: Numerical investigations on static and dynamic responses of reinforced concrete sub-assemblages under progressive collapse publication-title: Eng Struct doi: 10.1016/j.engstruct.2016.07.042 – volume: 149 year: 2021 ident: 10.1016/j.engstruct.2024.118485_bib50 article-title: Micro CT image-based simulations of concrete under high strain rate impact using a continuum-discrete coupled model publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2020.103775 – volume: 111 year: 2014 ident: 10.1016/j.engstruct.2024.118485_bib83 article-title: Bond stress-slip prediction under pullout and dowel action in reinforced concrete joints publication-title: Acids Struct J – volume: 238 year: 2020 ident: 10.1016/j.engstruct.2024.118485_bib82 article-title: Bond strength of steel reinforcement under different loading rates publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2019.117749 – volume: 2021 year: 2021 ident: 10.1016/j.engstruct.2024.118485_bib89 article-title: A 3D FEM mesoscale numerical analysis of concrete tensile strength behaviour publication-title: Adv Mater Sci Eng doi: 10.1155/2021/5538477 – volume: 47 start-page: 2336 year: 2010 ident: 10.1016/j.engstruct.2024.118485_bib76 article-title: Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: a 3D study publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2010.04.031 – volume: 248 year: 2020 ident: 10.1016/j.engstruct.2024.118485_bib57 article-title: Effect of fine aggregate size on the overlapping of interfacial transition zone (ITZ) in mortars publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.118559 – volume: 249 year: 2021 ident: 10.1016/j.engstruct.2024.118485_bib64 article-title: Progressive collapse resistance of exterior reinforced concrete frames and simplified method for catenary action publication-title: Eng Struct doi: 10.1016/j.engstruct.2021.113316 – volume: 67-68 start-page: 340 year: 2015 ident: 10.1016/j.engstruct.2024.118485_bib92 article-title: 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2015.05.002 – volume: 101 start-page: 45 year: 2015 ident: 10.1016/j.engstruct.2024.118485_bib6 article-title: A simplified approach to assess progressive collapse resistance of reinforced concrete framed structures publication-title: Eng Struct doi: 10.1016/j.engstruct.2015.06.051 – ident: 10.1016/j.engstruct.2024.118485_bib3 – volume: 58 start-page: 67 year: 2014 ident: 10.1016/j.engstruct.2024.118485_bib56 article-title: How to consider the interfacial transition zones in the finite element modelling of concrete? publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2014.01.009 – volume: 124 start-page: 892 year: 1998 ident: 10.1016/j.engstruct.2024.118485_bib67 article-title: Plastic-damage model for cyclic loading of concrete structures – volume: 178 start-page: 418 year: 2018 ident: 10.1016/j.engstruct.2024.118485_bib72 article-title: Behavior of meso-scale heterogeneous concrete under uniaxial tensile and compressive loadings publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.05.052 – ident: 10.1016/j.engstruct.2024.118485_bib2 doi: 10.6028/NIST.IR.7396 – volume: 18 start-page: 249 year: 2022 ident: 10.1016/j.engstruct.2024.118485_bib25 article-title: Progressive collapse of multistory 3D reinforced concrete frame structures after the loss of an edge column publication-title: Struct Infrastruct Eng doi: 10.1080/15732479.2020.1841245 – volume: 1 start-page: 1993 year: 2005 ident: 10.1016/j.engstruct.2024.118485_bib9 article-title: Eurocode 3—design publication-title: Steel Struct – volume: 25 start-page: 165 year: 1995 ident: 10.1016/j.engstruct.2024.118485_bib94 article-title: Effect of transition zone on the elastic behavior of cement-based composites publication-title: Cem Concr Res doi: 10.1016/0008-8846(94)00124-H – volume: 50 start-page: 74 year: 2013 ident: 10.1016/j.engstruct.2024.118485_bib47 article-title: Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2013.03.021 – volume: 48 start-page: 309 year: 2013 ident: 10.1016/j.engstruct.2024.118485_bib12 article-title: A superelement formulation for efficient structural analysis in progressive collapse publication-title: Struct Eng Mech doi: 10.12989/sem.2013.48.3.309 – volume: 06 start-page: 2150001 year: 2021 ident: 10.1016/j.engstruct.2024.118485_bib42 article-title: Modeling of heterogeneous materials at high strain rates with machine learning algorithms trained by finite element simulations publication-title: J Micromech Mol Phys doi: 10.1142/S2424913021500016 – volume: 258 year: 2020 ident: 10.1016/j.engstruct.2024.118485_bib58 article-title: On the effect of ITZ thickness in meso-scale models of concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.119639 – volume: 231 year: 2020 ident: 10.1016/j.engstruct.2024.118485_bib59 article-title: Mesoscale modelling of concrete – a review of geometry generation, placing algorithms, constitutive relations and applications publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2020.106974 – volume: 165 start-page: 608 year: 2018 ident: 10.1016/j.engstruct.2024.118485_bib34 article-title: A mesoscale interface approach to modelling fractures in concrete for material investigation publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.01.040 – volume: 33 start-page: 2361 year: 2021 ident: 10.1016/j.engstruct.2024.118485_bib13 article-title: Finite element analysis and experimental validation of progressive collapse of reinforced rubberized concrete frame publication-title: Structures doi: 10.1016/j.istruc.2021.06.008 – volume: 151 start-page: 861 year: 2017 ident: 10.1016/j.engstruct.2024.118485_bib21 article-title: Experimental testing and numerical modelling of steel moment-frame connections under column loss publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.08.068 – volume: 59 start-page: 67 year: 1907 ident: 10.1016/j.engstruct.2024.118485_bib53 article-title: The laws of proportioning concrete publication-title: Trans Am Soc Civ Eng doi: 10.1061/TACEAT.0001979 – volume: 25 start-page: 299 year: 1989 ident: 10.1016/j.engstruct.2024.118485_bib66 article-title: A plastic-damage model for concrete publication-title: Int J Solids Struct doi: 10.1016/0020-7683(89)90050-4 – volume: 15 start-page: 807 year: 2015 ident: 10.1016/j.engstruct.2024.118485_bib10 article-title: Improved strut-and-tie method for 2D RC beam-column joints under monotonic loading publication-title: Comput Concr doi: 10.12989/cac.2015.15.5.807 – volume: 2016 year: 2016 ident: 10.1016/j.engstruct.2024.118485_bib88 article-title: Experimental and numerical evaluation of progressive collapse behavior in scaled RC beam-column subassemblage publication-title: Shock Vib – volume: 257 year: 2020 ident: 10.1016/j.engstruct.2024.118485_bib32 article-title: 3D meso-scale modeling of concrete with a local background grid method publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.119382 – ident: 10.1016/j.engstruct.2024.118485_bib69 – volume: 157 year: 2022 ident: 10.1016/j.engstruct.2024.118485_bib29 article-title: Mesoscale model and X-ray computed micro-tomographic imaging of damage progression in ultra-high-performance concrete publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2022.106799 – volume: 35 start-page: 358 year: 2005 ident: 10.1016/j.engstruct.2024.118485_bib95 article-title: Assessing the ITZ microcracking via scanning electron microscope and its effect on the failure behavior of concrete publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2004.05.042 – volume: 56 start-page: 2076 year: 2013 ident: 10.1016/j.engstruct.2024.118485_bib68 article-title: A new generalized Drucker–Prager flow rule for concrete under compression publication-title: Eng Struct doi: 10.1016/j.engstruct.2013.08.025 – ident: 10.1016/j.engstruct.2024.118485_bib51 – volume: 226 start-page: 802 year: 2019 ident: 10.1016/j.engstruct.2024.118485_bib33 article-title: Mixed-mode I-II mesoscale fracture behavior of concrete determined by the realistic aggregate numerical model publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2019.07.231 – volume: 34 start-page: 269 year: 1938 ident: 10.1016/j.engstruct.2024.118485_bib71 article-title: Effect of type of test specimen and gradation of aggregate on compressive strength of concrete publication-title: Acids J Proc – volume: 36 start-page: 216 year: 2019 ident: 10.1016/j.engstruct.2024.118485_bib17 article-title: Progressive collapse resistance of RC frame structures considering surrounding structural constraints publication-title: Eng Mech – volume: 62 year: 2024 ident: 10.1016/j.engstruct.2024.118485_bib14 article-title: Progressive collapse: past, present, future and beyond publication-title: Structures doi: 10.1016/j.istruc.2024.106131 – volume: 256 year: 2022 ident: 10.1016/j.engstruct.2024.118485_bib27 article-title: 3D meso-scale fracture modelling of concrete with random aggregates using a phase-field regularized cohesive zone model publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2022.111960 – volume: 26 year: 2022 ident: 10.1016/j.engstruct.2024.118485_bib24 article-title: Investigation of the Structural Behaviour of RC Beam-Column Sub-frame Subjected to Progressive Collapse publication-title: KSCE J Civ Eng – volume: 140 year: 2021 ident: 10.1016/j.engstruct.2024.118485_bib45 article-title: Meso-scale modelling of compressive fracture in concrete with irregularly shaped aggregates publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2020.106317 – volume: 61 start-page: 1581 year: 2001 ident: 10.1016/j.engstruct.2024.118485_bib44 article-title: The effects of three-dimensional multi-particle arrangements on the mechanical behavior and damage initiation of particle-reinforced MMCs publication-title: Compos Sci Technol doi: 10.1016/S0266-3538(01)00061-6 – volume: 220 year: 2019 ident: 10.1016/j.engstruct.2024.118485_bib26 article-title: 3D mesoscale fracture analysis of concrete under complex loading publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2019.106646 – volume: 174 year: 2019 ident: 10.1016/j.engstruct.2024.118485_bib43 article-title: Fracture modeling of fiber reinforced concrete in a multiscale approach publication-title: Compos Part B: Eng doi: 10.1016/j.compositesb.2019.106958 – volume: 230 year: 2020 ident: 10.1016/j.engstruct.2024.118485_bib90 article-title: Meso-scale simulations of size effect on concrete dynamic splitting tensile strength: influence of aggregate content and maximum aggregate size publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2020.106979 – volume: 149 year: 2017 ident: 10.1016/j.engstruct.2024.118485_bib30 article-title: Three-dimensional mesoscale modelling of concrete composites by using random walking algorithm publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2017.06.015 – volume: 289 year: 2023 ident: 10.1016/j.engstruct.2024.118485_bib38 article-title: Mesoscale modelling of concrete damage in FRP-concrete debonding failure publication-title: Eng Struct doi: 10.1016/j.engstruct.2023.116310 – volume: 291 year: 2022 ident: 10.1016/j.engstruct.2024.118485_bib46 article-title: 3D meso-scale modelling of tensile and compressive fracture behaviour of steel fibre reinforced concrete publication-title: Cem Concr Res – year: 2017 ident: 10.1016/j.engstruct.2024.118485_bib55 – volume: 367 year: 2023 ident: 10.1016/j.engstruct.2024.118485_bib93 article-title: Mesoscale synergistic effect mechanism of aggregate grading and specimen size on compressive strength of concrete with large aggregate size publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2023.130346 – volume: 192 start-page: 96 year: 2017 ident: 10.1016/j.engstruct.2024.118485_bib62 article-title: 3D mesoscale finite element modelling of concrete publication-title: Comput Struct doi: 10.1016/j.compstruc.2017.07.009 – volume: 2016 year: 2016 ident: 10.1016/j.engstruct.2024.118485_bib86 article-title: Experimental and numerical evaluation of progressive collapse behavior in scaled RC beam-column sub-assemblage publication-title: Shock Vib – volume: 56 start-page: 439 year: 1996 ident: 10.1016/j.engstruct.2024.118485_bib78 article-title: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus publication-title: Compos Sci Technol doi: 10.1016/0266-3538(96)00005-X – volume: 80 start-page: 310 year: 2016 ident: 10.1016/j.engstruct.2024.118485_bib80 article-title: Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2015.11.018 – volume: 201 year: 2019 ident: 10.1016/j.engstruct.2024.118485_bib23 article-title: Exploring numerical approaches for pre-test progressive collapse assessment of RC frame structures publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.109776 – volume: 18 start-page: 341 year: 2011 ident: 10.1016/j.engstruct.2024.118485_bib41 article-title: Multiscale modeling of concrete publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-011-9063-8 – volume: 120 year: 2022 ident: 10.1016/j.engstruct.2024.118485_bib61 article-title: Numerical insights into the effect of ITZ and aggregate strength on concrete properties publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2022.103415 – year: 1962 ident: 10.1016/j.engstruct.2024.118485_bib54 article-title: Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate publication-title: Acids J Proc – volume: 153 start-page: 71 year: 2019 ident: 10.1016/j.engstruct.2024.118485_bib19 article-title: A new method for progressive collapse analysis of steel frames publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2018.09.029 – volume: 303 year: 2023 ident: 10.1016/j.engstruct.2024.118485_bib48 article-title: Meso-scale computational modeling of the fracture of concrete with complex shaped aggregates under the self-restraint stress publication-title: Compos Struct doi: 10.1016/j.compstruct.2022.116267 – volume: 147 start-page: 204 year: 2018 ident: 10.1016/j.engstruct.2024.118485_bib35 article-title: 3D numerical study on fracture process of concrete with different ITZ properties using X-ray computerized tomography publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2018.05.026 – volume: 13 year: 2023 ident: 10.1016/j.engstruct.2024.118485_bib7 article-title: Dynamic response analysis of RC frame against progressive collapse based on orthogonal test publication-title: Appl Sci doi: 10.3390/app13074317 – volume: 97 start-page: 102 year: 2016 ident: 10.1016/j.engstruct.2024.118485_bib37 article-title: Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2016.06.009 – volume: 160 start-page: 744 year: 2018 ident: 10.1016/j.engstruct.2024.118485_bib52 article-title: The 3D meso-scale model and numerical tests of split Hopkinson pressure bar of concrete specimen publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.11.094 – volume: 260 year: 2023 ident: 10.1016/j.engstruct.2024.118485_bib28 article-title: 2D mesoscale modeling of compressive fracture in concrete using a mesh fragmentation technique publication-title: Int J Solids Struct – volume: 18 start-page: 249 year: 2022 ident: 10.1016/j.engstruct.2024.118485_bib15 article-title: Progressive collapse of multistory 3D reinforced concrete frame structures after the loss of an edge column publication-title: Struct Infrastruct Eng doi: 10.1080/15732479.2020.1841245 – volume: 164 start-page: 350 year: 2018 ident: 10.1016/j.engstruct.2024.118485_bib31 article-title: 3D meso-scale modeling of reinforcement concrete with high volume fraction of randomly distributed aggregates publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.12.229 – ident: 10.1016/j.engstruct.2024.118485_bib63 – volume: 18 start-page: 1461 year: 2015 ident: 10.1016/j.engstruct.2024.118485_bib16 article-title: Modelling of two dimensional reinforced concrete beam-column joints subjected to monotonic loading publication-title: Adv Struct Eng doi: 10.1260/1369-4332.18.9.1461 – volume: 239 year: 2020 ident: 10.1016/j.engstruct.2024.118485_bib75 article-title: Meso-scale cracking behavior of cement treated base material publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2019.117823 – volume: 48 start-page: 587 year: 2013 ident: 10.1016/j.engstruct.2024.118485_bib11 article-title: A 3D co-rotational beam element for steel and RC framed structures publication-title: Struct Eng Mech doi: 10.12989/sem.2013.48.5.587 – volume: 32 start-page: 1223 year: 2010 ident: 10.1016/j.engstruct.2024.118485_bib18 article-title: Nonlinear dynamic simulations of progressive collapse for a multistory building publication-title: Eng Struct doi: 10.1016/j.engstruct.2009.12.048 – volume: 189 start-page: 27 year: 2018 ident: 10.1016/j.engstruct.2024.118485_bib39 article-title: A three-dimensional meso-scale modelling of concrete fracture, based on cohesive elements and X-ray μCT images publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2017.10.003 – volume: 71 start-page: 492 year: 2014 ident: 10.1016/j.engstruct.2024.118485_bib70 article-title: Stress–strain model for normal- and light-weight concretes under uniaxial and triaxial compression publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2014.08.050 – volume: 13 start-page: 533 year: 2023 ident: 10.1016/j.engstruct.2024.118485_bib85 article-title: Numerical investigations of progressive collapse behaviour of multi-storey reinforced concrete frames publication-title: Buildings doi: 10.3390/buildings13020533 – volume: 74 start-page: 32 year: 2014 ident: 10.1016/j.engstruct.2024.118485_bib65 article-title: Numerical simulation of reinforced concrete beam/column failure considering normal-shear stress interaction publication-title: Eng Struct doi: 10.1016/j.engstruct.2014.05.011 – volume: 234 year: 2020 ident: 10.1016/j.engstruct.2024.118485_bib77 article-title: Understanding fracture mechanism and behaviour of ultra-high strength concrete using mesoscale modelling publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2020.107080 – volume: 201-204 start-page: 139 year: 2012 ident: 10.1016/j.engstruct.2024.118485_bib73 article-title: Multiscale failure modeling of concrete: micromechanical modeling, discontinuous homogenization and parallel computations publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2011.09.014 – volume: 46 start-page: 41 year: 2012 ident: 10.1016/j.engstruct.2024.118485_bib60 article-title: Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2012.01.010 – volume: 47 year: 2022 ident: 10.1016/j.engstruct.2024.118485_bib87 article-title: Experimental and numerical investigation on progressive collapse resistance of RC frame structures considering transverse beam and slab effects publication-title: J Build Eng – volume: 14 start-page: 4314 year: 2021 ident: 10.1016/j.engstruct.2024.118485_bib79 article-title: Fracture behaviour of real coarse aggregate distributed concrete under uniaxial compressive load based on cohesive zone model publication-title: Materials doi: 10.3390/ma14154314 – volume: 109 year: 2020 ident: 10.1016/j.engstruct.2024.118485_bib81 article-title: Experimental and numerical investigation of mortar and ITZ parameters in meso-scale models of concrete publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2020.102722 – volume: 55 start-page: 90 year: 2013 ident: 10.1016/j.engstruct.2024.118485_bib20 article-title: Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages publication-title: Eng Struct doi: 10.1016/j.engstruct.2011.08.040 – volume: 129 year: 2021 ident: 10.1016/j.engstruct.2024.118485_bib84 article-title: Efficient numerical model for progressive collapse analysis of prestressed concrete frame structures publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2021.105683 – volume: 34 year: 2021 ident: 10.1016/j.engstruct.2024.118485_bib22 article-title: Finite element analysis for progressive collapse potential of precast concrete beam-to-column connections strengthened with steel plates publication-title: J Build Eng – volume: 12 start-page: 411 year: 2004 ident: 10.1016/j.engstruct.2024.118485_bib74 article-title: The interfacial transition zone (ITZ) between cement paste and aggregate in concrete publication-title: Interface Sci doi: 10.1023/B:INTS.0000042339.92990.4c – volume: 97 start-page: 84 year: 2017 ident: 10.1016/j.engstruct.2024.118485_bib36 article-title: A mesoscale fracture model for concrete publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2017.03.014 – volume: 23 start-page: 100 year: 2023 ident: 10.1016/j.engstruct.2024.118485_bib40 article-title: Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates publication-title: Def Technol doi: 10.1016/j.dt.2022.02.003 |
SSID | ssj0002880 |
Score | 2.5884297 |
Snippet | The progressive collapse of reinforced concrete (RC) beam-column sub-assemblage under catenary action (CA) using the alternate load path method to evaluate... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 118485 |
SubjectTerms | Aggregate volume fraction Catenary action Mesoscale modeling Progressive collapse Sub-modeling |
Title | Numerical predictions of progressive collapse in reinforced concrete beam-column sub-assemblages: A focus on 3D multiscale modeling |
URI | https://dx.doi.org/10.1016/j.engstruct.2024.118485 |
Volume | 315 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGBAPEV5VB5YTRPHceNuVaEqIHWBSt0i27VRUZtWfTCy8MfxOUlpJaQOjLF8juO73F3iz98hdCcSaiNLFeFMcMIkC4hIeEI0DVSopTZaebRFj3f77HkQDyqoXZ6FAVhl4ftzn-69ddFSL1azPhuN6q8eokgFdzEJ-AbADzPWACu___qFedDEV0-DzgR6b2G8TPae07S6D0XKnPtIGBRV_itCbUSdzjE6KtJF3MpndIIqJjtFhxskgmfou7fKd13GeDaHbRdvSXhqscdeAcz102Cv79nC4FGG58bTpbpnd82ZSxuXBisjJ0SDq8rwYqWIy6nNRI2dt1k0cQvbqV65MTMcPWCPQVy4-xns6-i4WZyjfufxrd0lRWkFoqMwXrp3QwoB8VFyE5jISKvgDJYOQiupbWhlBZWxDa0aUh0zpdgwAu48mvCGpIpGF2gvm2bmEmHJzJDrEHjSoF45_CGhTCoRC84SN0YV8XI5U13wjkP5i3FaAsw-0rUeUtBDmuuhioK14Cyn3tgt0iz1lW5ZUeoCxC7hq_8IX6MDuAIkSRjfoD3Xwdy6dGWpat4ea2i_9fTS7f0AM3nuig |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BTtwwELUQHEoPiLZUXaCtD-3RbOI4JkbigErRUuheChK3YHvH1VZLdkV2QVy48En9wc44WQpSJQ4VVyfjWDOTmUn8_IaxT6aQIQvSCa2MFsqqRJhCF8LLxKXeevAuoi36uneqvp3lZwvs9_wsDMEq29jfxPQYrduRbqvN7mQ47P6IEEVpNOYk4huQLbLyCG6u8but3j3cRyN_lvLg68mXnmhbCwifpfkUfcMaQ_nBakggAxscnUHySRqsDNveBSNtHtLgBtLnyjk1yIg7ThZ620pHbAcY95cUhgtqm7B1-xdXIovYro1WJ2h5j0BlUP1seGHxy1QqjFeFoi7O_0qJD9LcwSpbaetTvteo4BVbgOo1e_mAtfANu-vPmm2eEZ9c0j5PdF0-DjyCvQhXewU8OtikBj6s-CVEflZUNg5XWKdOgTuwF8JTbKx4PXMCi3i4cCMMb_UO3-Nh7Gc4Z8WzfR5BjzU-D3hs3IOrWGOnz6Lwt2yxGlfwjnGrYKB9SsRs1CCdfslIZZ3JjVYFztFheq7O0rdE59RvY1TOEW2_yns7lGSHsrFDhyX3gpOG6-NpkZ25vcpHbltiRnpKeP1_hD-yF72T78fl8WH_aIMt0xWCsaT5JlvEm-E91kpT9yH6Jmfnz_0y_AHl6CwZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+predictions+of+progressive+collapse+in+reinforced+concrete+beam-column+sub-assemblages%3A+A+focus+on+3D+multiscale+modeling&rft.jtitle=Engineering+structures&rft.au=Long%2C+Xu&rft.au=Iyela%2C+Percy+M.&rft.au=Su%2C+Yutai&rft.au=Atlaw%2C+Meklit+M.&rft.date=2024-09-15&rft.issn=0141-0296&rft.volume=315&rft.spage=118485&rft_id=info:doi/10.1016%2Fj.engstruct.2024.118485&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2024_118485 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |