Coherent all-optical reservoir computing for nonlinear equalization in long-haul optical fiber communication systems
•A reservoir computing (RC) is operated optically without O/E/O conversion.•The all-optical RC mitigates nonlinear distortion in a 3960-km fiber link.•Phase property enhances the RC’s performance in nonlinear signal processing.•The RC improves the Q2 factor by 2.6 dB in a single-λ system and 1.9 dB...
Saved in:
Published in | Optics and laser technology Vol. 174; p. 110697 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A reservoir computing (RC) is operated optically without O/E/O conversion.•The all-optical RC mitigates nonlinear distortion in a 3960-km fiber link.•Phase property enhances the RC’s performance in nonlinear signal processing.•The RC improves the Q2 factor by 2.6 dB in a single-λ system and 1.9 dB in a WDM system.
Photonic reservoir computing (RC), as a promising paradigm of optical signal processing, has attracted a great deal of attention in fiber nonlinearity equalization recently. For real long-haul transmission scenarios, we propose an all-optical RC operated in a coherent scheme to mitigate the nonlinear distortion of high-speed signals. Compared with the direct decision architecture, the proposed RC can dramatically improve the Q2 factor by 2.6 dB for a single-wavelength system and 1.9 dB for a 7-channel wavelength-division multiplexing (WDM) system over 3960-km fiber transmission. Furthermore, the robustness of the coherent all-optical RC is also verified by conducting studies on different training sequences. The coherent all-optical RC shows great potential in real-time nonlinearity mitigation for long-haul fiber transmissions. |
---|---|
AbstractList | •A reservoir computing (RC) is operated optically without O/E/O conversion.•The all-optical RC mitigates nonlinear distortion in a 3960-km fiber link.•Phase property enhances the RC’s performance in nonlinear signal processing.•The RC improves the Q2 factor by 2.6 dB in a single-λ system and 1.9 dB in a WDM system.
Photonic reservoir computing (RC), as a promising paradigm of optical signal processing, has attracted a great deal of attention in fiber nonlinearity equalization recently. For real long-haul transmission scenarios, we propose an all-optical RC operated in a coherent scheme to mitigate the nonlinear distortion of high-speed signals. Compared with the direct decision architecture, the proposed RC can dramatically improve the Q2 factor by 2.6 dB for a single-wavelength system and 1.9 dB for a 7-channel wavelength-division multiplexing (WDM) system over 3960-km fiber transmission. Furthermore, the robustness of the coherent all-optical RC is also verified by conducting studies on different training sequences. The coherent all-optical RC shows great potential in real-time nonlinearity mitigation for long-haul fiber transmissions. |
ArticleNumber | 110697 |
Author | Li, Zheng Zhu, Kunpeng Zhang, Shigui Liu, Yaping Huang, Zhanhua Li, Jianping Zhang, Lin Peng, Guanju Yang, Zhiqun |
Author_xml | – sequence: 1 givenname: Guanju surname: Peng fullname: Peng, Guanju organization: State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, TianjinUniversity, Tianjin 300072, China – sequence: 2 givenname: Yaping surname: Liu fullname: Liu, Yaping email: liuyp@tju.edu.cn organization: State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, TianjinUniversity, Tianjin 300072, China – sequence: 3 givenname: Zheng orcidid: 0009-0004-5067-3825 surname: Li fullname: Li, Zheng organization: State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, TianjinUniversity, Tianjin 300072, China – sequence: 4 givenname: Kunpeng surname: Zhu fullname: Zhu, Kunpeng organization: State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, TianjinUniversity, Tianjin 300072, China – sequence: 5 givenname: Zhiqun orcidid: 0000-0001-9340-0203 surname: Yang fullname: Yang, Zhiqun email: yangzhiqun@tju.edu.cn organization: State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, TianjinUniversity, Tianjin 300072, China – sequence: 6 givenname: Jianping surname: Li fullname: Li, Jianping organization: HMN Technologies Co., Ltd, Tianjin 300467, China – sequence: 7 givenname: Shigui surname: Zhang fullname: Zhang, Shigui organization: HMN Technologies Co., Ltd, Tianjin 300467, China – sequence: 8 givenname: Zhanhua surname: Huang fullname: Huang, Zhanhua organization: State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, TianjinUniversity, Tianjin 300072, China – sequence: 9 givenname: Lin orcidid: 0000-0003-0545-1110 surname: Zhang fullname: Zhang, Lin email: lin_zhang@tju.edu.cn organization: State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, TianjinUniversity, Tianjin 300072, China |
BookMark | eNqNkM9OAjEQxhuDiaA-g32BxXa73WUPHgjxX0LiRc9NGWahpNti2yXBp3cB9eBFT5OZzO-bb74RGTjvkJAbzsac8fJ2M_bbZHVMCOOc5cWYc1bW1RkZ8klVZ7ks5IAMGRMsE3WdX5BRjBvGWFFKMSRp5tcY0CWqrc16JQPa0oARw86bQMG32y4Zt6KND7Q_bY1DHSi-d9qaD52Md9Q4ar1bZWvdWfqt0ZgFHvm2c_3guBj3vc02XpHzRtuI11_1krw93L_OnrL5y-PzbDrPQHCZMq5zvWyEkLLgKEpRlKwG3iCwCQesNVTVQoAuqkpCA5M8Z00JDPpeoERWi0tyd9KF4GMM2Cgw6egkBW2s4kwdIlQb9ROhOkSoThH2fPWL3wbT6rD_Bzk9kdi_tzMYVASDDnBpAkJSS2_-1PgEKQeXQw |
CitedBy_id | crossref_primary_10_1063_5_0248952 crossref_primary_10_12677_ces_2024_127427 |
Cites_doi | 10.1109/ACCESS.2019.2905422 10.1364/OE.25.002401 10.1364/OL.42.000375 10.1364/OE.435013 10.1364/OE.26.010211 10.1109/JLT.2008.927791 10.1109/JLT.2021.3117921 10.1016/j.optcom.2021.127082 10.1109/JLT.2019.2900568 10.1109/JLT.2020.3042414 10.1038/s41928-021-00661-2 10.1109/JLT.2011.2182038 10.1016/j.cosrev.2009.03.005 10.1109/JSTQE.2019.2927578 10.1364/OE.27.023293 10.1109/JSTQE.2019.2936947 10.1016/j.ipl.2005.05.019 10.1364/PRJ.409114 10.1038/s41467-017-02337-y 10.1016/j.optcom.2005.04.010 10.1038/srep14945 10.1109/LPT.2005.856326 10.1109/JLT.2020.3031363 10.1038/ncomms1476 10.1038/ncomms4541 10.1109/JSTQE.2019.2929179 10.1364/OE.20.003241 10.1109/JLT.2018.2888547 10.1109/LPT.2021.3087323 10.1109/JLT.2009.2030693 10.1364/OE.21.000012 10.1038/srep00287 10.1364/OE.22.010868 10.1126/science.1091277 10.1364/OPTICA.4.000307 10.1016/j.neunet.2007.04.003 10.1364/OE.27.027431 10.1038/s41467-020-17516-7 10.1109/TNNLS.2014.2311855 10.1162/089976602760407955 10.1109/JSTQE.2019.2952594 10.1063/5.0017574 10.1109/JLT.2005.855873 10.1109/JSTQE.2019.2936281 10.1364/OE.22.031356 10.1364/OE.22.008672 10.1364/OE.26.024190 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.optlastec.2024.110697 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-2545 |
ExternalDocumentID | 10_1016_j_optlastec_2024_110697 S0030399224001555 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K TN5 UHS WH7 WUQ XFK ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c315t-1a2adf335541e3634609c1fec081ce9ac77b3ca4775cfc8220f6c0c4773e5e093 |
IEDL.DBID | .~1 |
ISSN | 0030-3992 |
IngestDate | Thu Apr 24 23:07:54 EDT 2025 Tue Jul 01 01:39:01 EDT 2025 Sat Mar 30 16:21:08 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Photonic reservoir computing Long-haul transmission Nonlinearity mitigation Optical fiber communication Nonlinear equalization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c315t-1a2adf335541e3634609c1fec081ce9ac77b3ca4775cfc8220f6c0c4773e5e093 |
ORCID | 0009-0004-5067-3825 0000-0001-9340-0203 0000-0003-0545-1110 |
ParticipantIDs | crossref_citationtrail_10_1016_j_optlastec_2024_110697 crossref_primary_10_1016_j_optlastec_2024_110697 elsevier_sciencedirect_doi_10_1016_j_optlastec_2024_110697 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationTitle | Optics and laser technology |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Appeltant, Soriano, Sande, Danckaert, Massar, Dambre, Schrauwen, Mirasso, Fischer (b0080) 2011; 2 Vatin, Rontani, Sciamanna (b0125) 2020; 5 Nguimdo, Verschaffelt, Danckaert, Sande (b0155) 2014; 22 Liu, Li, Huang, Cui, Xiong, Hauske, Xie, Cai (b0015) 2012; 30 Ip, Kahn (b0010) 2008; 26 M.C. Soriano, S. Ortín, D. Brunner, L. Larger, C.R. Mirasso, I. Fischer, L. Pesquera, Optoelectronic reservoir computing: tackling noise-induced performance degradation, Opt. Exp. 21 (2013) 12–20, doi:10.1364/OE.21.000012. Verstraeten, Schrauwen, Stroobandt, Campenhout (b0065) 2005; 95 Dejonckheere, Duport, Smerieri, Fang, Oudar, Haelterman, Massar (b0140) 2014; 22 Chen, Yi, Ke, Yang, Yang, Huang, Zhuge, Hu (b0145) 2019; 27 Li, Dev, Kühl, Jamshidi, Pachnicke (b0220) 2021; 32 Ellis, Zhao, Cotter (b0005) 2010; 28 Dong, Rafayelyan, Krzakala, Gigan (b0120) 2020; 26 Song, Pan, Arieli, Motaghian, Havstad, Willner (b0255) 2005; 252 X. Guo, S. Xiang, Y. Zhang, L. Lin, A. Wen, Y. Hao, Four-channels reservoir computing based on polarization dynamics in mutually coupled VCSELs system, Opt. Exp. 27 (2019) 23293–23306, doi:10.1364/OE.27.023293. S. Sackesyn, C. Ma, J. Dambre, P. Bienstman, Experimental realization of integrated photonic reservoir computing for nonlinear fiber distortion compensation, Opt. Exp. 29 (2021) 30991–30997, doi:10.13 64/OE.435013. Wang, Fang, Wang (b0225) 2021; 495 W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations, Neural Comput. 14 (2022) 2531–2560, doi:10.1162/089976602760407955. Ortín, Soriano, Pesquera, Brunner, San-Martín, Fischer, Mirasso, Gutiérrez (b0085) 2015; 5 Bueno, Brunner, Soriano, Fischer (b0110) 2017; 25 I Estébanez, S. Li, J. Schwind, I. Fischer, S. Pachnicke, A. Argyris, 56 GBaud PAM-4 100 km transmission system with photonic processing schemes, J. Lightw. Technol. 40 (2021) 55–62, doi:10.1109 /JLT.2021.3117921. Du, Cai, Zidan, Ma, Lee, Lu (b0095) 2017; 8 Paquot, Duport, Smerieri, Dambre, Schrauwen, Haelterman, Massar (b0130) 2012; 2 Huang, Zhou, Yang, Li (b0190) 2023; 29 K. Harkhoe, G.V.D. Sande, Delay-based reservoir computing using multimode semiconductor lasers: exploiting the rich carrier dynamics, IEEE J. Sel. Top. Quant. Electron. 25 (2019) 1–9, doi:10.1109/JSTQE.2019.2952594. Yi, Liao, Huang, Xue, Li, Hu (b0245) 2019; 37 Cai, Guo, Li, Bogris, Shore, Zhang, Wang (b0185) 2021; 9 Wang, Lima, Shastri, Prucnal, Huang (b0050) 2023; 29 Larger, Soriano, Brunner, Appeltant, Gutierrez, Pesquera, Mirasso, Fischer (b0135) 2012; 20 Grüner-Nielsen, Wandel, Kristensen, Jorgensen, Jorgensen, Edvold, Pálsdóttir, Jakobsen (b0230) 2005; 23 Freire, Neskornuik, Napoli, Spinnler, Costa, Khanna, Riccardi, Prilepsky, Turitsyn (b0035) 2021; 39 Katumba, Yin, Dambre, Bienstman (b0195) 2019; 37 Xu, Sun, Ji, Manton, Shieh (b0030) 2021; 39 Fan, Zhou, Gui, Lu, Lau (b0025) 2020; 11 Hou, Xia, Yang, Wang, Jayaprasath (b0165) 2018; 26 Turitsyn, Prilepsky, Le, Wahls, Frumin, Kamalian, Derevyanko (b0020) 2017; 4 Argyris, Cantero, Galletero, Pereda, Mirasso, Fischer, Soriano (b0205) 2020; 26 Lukoševičius, Jaeger (b0075) 2009; 3 Tanaka, Otani, Hayashi, Suzuki (b0235) 2002 Soriano, Ortín, Keuninckx, Appeltant, Danckaert, Pesquera, Sande (b0090) 2015; 26 Huang, Fujisawa, Lima, Tait, Blow, Tian, Bilodeau, Jha, Yaman, Peng, Batshon, Shastri, Inada, Wang, Prucnal (b0045) 2021; 4 Watts, Mikhailov, Savory, Bayvel, Glick, Lobel, Christensen, Kirkpatrick, Shang, Killey (b0240) 2005; 17 H. Zhang, X. Feng, B. Li, Y. Wang, K. Cui, F. Liu, W. Dou, Y. Huang, Integrated photonic reservoir computing based on hierarchical time-multiplexing structure, Opt. Exp. 22 (2014) 31356–31370, https://doi.o rg/10.1364/OE.22.031356. Vandoorne, Mechet, Vaerenbergh, Fiers, Morthier, Verstraeten, Schrauwen, Dambre, Bienstman (b0150) 2014; 5 Sugano, Kanno, Uchida (b0180) 2020; 26 Winzer, Neilson, Chraplyvy (b0250) 2018; 26 Jaeger, Haas (b0060) 2004; 304 Nguimdo, Lacot, Jacquin, Hugon, Sande, Chatellus (b0105) 2017; 42 Verstraeten, Schrauwen, D’Haene, Stroobandt (b0070) 2007; 20 Huang, Sorger, Miscuglio, Al-Qadasi, Mukherjee, Lampe, Nichols, Tait, Lima, Marquez, Wang, Chrostowski, Fok, Brunner, Fan, Shekhar, Prucnal, Shastri (b0040) 2021; X 7 Argyris, Bueno, Fischer (b0200) 2019; 7 Röhm, Jaurigue, Lüdge (b0175) 2020; 26 Watts (10.1016/j.optlastec.2024.110697_b0240) 2005; 17 Huang (10.1016/j.optlastec.2024.110697_b0190) 2023; 29 Freire (10.1016/j.optlastec.2024.110697_b0035) 2021; 39 Verstraeten (10.1016/j.optlastec.2024.110697_b0065) 2005; 95 Chen (10.1016/j.optlastec.2024.110697_b0145) 2019; 27 Argyris (10.1016/j.optlastec.2024.110697_b0205) 2020; 26 Grüner-Nielsen (10.1016/j.optlastec.2024.110697_b0230) 2005; 23 Huang (10.1016/j.optlastec.2024.110697_b0045) 2021; 4 Turitsyn (10.1016/j.optlastec.2024.110697_b0020) 2017; 4 Larger (10.1016/j.optlastec.2024.110697_b0135) 2012; 20 Appeltant (10.1016/j.optlastec.2024.110697_b0080) 2011; 2 10.1016/j.optlastec.2024.110697_b0160 Nguimdo (10.1016/j.optlastec.2024.110697_b0105) 2017; 42 Xu (10.1016/j.optlastec.2024.110697_b0030) 2021; 39 Verstraeten (10.1016/j.optlastec.2024.110697_b0070) 2007; 20 Wang (10.1016/j.optlastec.2024.110697_b0225) 2021; 495 10.1016/j.optlastec.2024.110697_b0115 Sugano (10.1016/j.optlastec.2024.110697_b0180) 2020; 26 Wang (10.1016/j.optlastec.2024.110697_b0050) 2023; 29 Argyris (10.1016/j.optlastec.2024.110697_b0200) 2019; 7 Tanaka (10.1016/j.optlastec.2024.110697_b0235) 2002 Ip (10.1016/j.optlastec.2024.110697_b0010) 2008; 26 Paquot (10.1016/j.optlastec.2024.110697_b0130) 2012; 2 Jaeger (10.1016/j.optlastec.2024.110697_b0060) 2004; 304 Ortín (10.1016/j.optlastec.2024.110697_b0085) 2015; 5 Yi (10.1016/j.optlastec.2024.110697_b0245) 2019; 37 Fan (10.1016/j.optlastec.2024.110697_b0025) 2020; 11 Soriano (10.1016/j.optlastec.2024.110697_b0090) 2015; 26 Vandoorne (10.1016/j.optlastec.2024.110697_b0150) 2014; 5 Dong (10.1016/j.optlastec.2024.110697_b0120) 2020; 26 Du (10.1016/j.optlastec.2024.110697_b0095) 2017; 8 Li (10.1016/j.optlastec.2024.110697_b0220) 2021; 32 Song (10.1016/j.optlastec.2024.110697_b0255) 2005; 252 Winzer (10.1016/j.optlastec.2024.110697_b0250) 2018; 26 10.1016/j.optlastec.2024.110697_b0100 10.1016/j.optlastec.2024.110697_b0215 Bueno (10.1016/j.optlastec.2024.110697_b0110) 2017; 25 Vatin (10.1016/j.optlastec.2024.110697_b0125) 2020; 5 Ellis (10.1016/j.optlastec.2024.110697_b0005) 2010; 28 Nguimdo (10.1016/j.optlastec.2024.110697_b0155) 2014; 22 Huang (10.1016/j.optlastec.2024.110697_b0040) 2021; X 7 Lukoševičius (10.1016/j.optlastec.2024.110697_b0075) 2009; 3 Dejonckheere (10.1016/j.optlastec.2024.110697_b0140) 2014; 22 10.1016/j.optlastec.2024.110697_b0170 Liu (10.1016/j.optlastec.2024.110697_b0015) 2012; 30 Röhm (10.1016/j.optlastec.2024.110697_b0175) 2020; 26 10.1016/j.optlastec.2024.110697_b0055 Hou (10.1016/j.optlastec.2024.110697_b0165) 2018; 26 Cai (10.1016/j.optlastec.2024.110697_b0185) 2021; 9 Katumba (10.1016/j.optlastec.2024.110697_b0195) 2019; 37 10.1016/j.optlastec.2024.110697_b0210 |
References_xml | – volume: 22 start-page: 10868 year: 2014 end-page: 10881 ident: b0140 article-title: All-optical reservoir computer based on saturation of absorption publication-title: Opt. Exp. – volume: 39 start-page: 475 year: 2021 end-page: 480 ident: b0030 article-title: Feedforward and recurrent neural network-based transfer learning for nonlinear equalization in short-reach optical links publication-title: J. Lightw. Technol. – volume: 28 start-page: 423 year: 2010 end-page: 433 ident: b0005 article-title: Approaching the non-linear Shannon limit publication-title: J. Lightw. Technol. – reference: I Estébanez, S. Li, J. Schwind, I. Fischer, S. Pachnicke, A. Argyris, 56 GBaud PAM-4 100 km transmission system with photonic processing schemes, J. Lightw. Technol. 40 (2021) 55–62, doi:10.1109 /JLT.2021.3117921. – volume: 32 start-page: 978 year: 2021 end-page: 981 ident: b0220 article-title: Micro-ring resonator based photonic reservoir computing for PAM equalization publication-title: IEEE Photon. Technol. Lett. – start-page: 262 year: 2002 end-page: 264 ident: b0235 article-title: Optical signal processing with electro-absorption modulators publication-title: OFC 2002 Tech. Dig. – volume: 3 start-page: 127 year: 2009 end-page: 149 ident: b0075 article-title: Reservoir computing approaches to recurrent neural network training publication-title: Comput. Sci. Rev. – volume: 25 start-page: 2401 year: 2017 end-page: 2412 ident: b0110 article-title: Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback publication-title: Opt. Exp. – reference: S. Sackesyn, C. Ma, J. Dambre, P. Bienstman, Experimental realization of integrated photonic reservoir computing for nonlinear fiber distortion compensation, Opt. Exp. 29 (2021) 30991–30997, doi:10.13 64/OE.435013. – volume: 30 start-page: 310 year: 2012 end-page: 316 ident: b0015 article-title: Intrachannel nonlinearity compensation by inverse Volterra series transfer function publication-title: J. Lightw. Technol. – volume: X 7 start-page: 1 year: 2021 end-page: 63 ident: b0040 article-title: Prospects and applications of photonic neural networks publication-title: Adv. Phys. – volume: 29 start-page: 1 year: 2023 end-page: 9 ident: b0190 article-title: Enhanced performance of reservoir computing using multiple self-injection and mutual injection VCSELs publication-title: IEEE J. Sel. Topics Quant. Electron. – reference: M.C. Soriano, S. Ortín, D. Brunner, L. Larger, C.R. Mirasso, I. Fischer, L. Pesquera, Optoelectronic reservoir computing: tackling noise-induced performance degradation, Opt. Exp. 21 (2013) 12–20, doi:10.1364/OE.21.000012. – volume: 2 start-page: 287 year: 2012 ident: b0130 article-title: Optoelectronic reservoir computing publication-title: Sci. Rep. – volume: 26 start-page: 3416 year: 2008 end-page: 3425 ident: b0010 article-title: Compensation of dispersion and nonlinear impairments using digital backpropagation publication-title: J. Lightw. Technol. – volume: 20 start-page: 391 year: 2007 end-page: 403 ident: b0070 article-title: An experimental unification of reservoir computing methods publication-title: Neural Netw. – volume: 42 start-page: 375 year: 2017 end-page: 378 ident: b0105 article-title: Prediction performance of reservoir computing systems based on a diode-pumped erbium-doped microchip laser subject to optical feedback publication-title: Opt. Lett. – reference: X. Guo, S. Xiang, Y. Zhang, L. Lin, A. Wen, Y. Hao, Four-channels reservoir computing based on polarization dynamics in mutually coupled VCSELs system, Opt. Exp. 27 (2019) 23293–23306, doi:10.1364/OE.27.023293. – volume: 26 start-page: 10211 year: 2018 end-page: 10219 ident: b0165 article-title: Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection publication-title: Opt. Exp. – volume: 4 start-page: 307 year: 2017 end-page: 322 ident: b0020 article-title: Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives publication-title: Optica – volume: 20 start-page: 3241 year: 2012 end-page: 3249 ident: b0135 article-title: Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing publication-title: Opt. Exp. – volume: 5 start-page: 14945 year: 2015 ident: b0085 article-title: A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron publication-title: Sci. Rep. – volume: 495 year: 2021 ident: b0225 article-title: Signal recovery based on optoelectronic reservoir computing for high speed optical fiber communication system publication-title: Opt. Commun. – volume: 304 start-page: 78 year: 2004 end-page: 80 ident: b0060 article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication publication-title: Science – volume: 2 start-page: 468 year: 2011 ident: b0080 article-title: Information processing using a single dynamical node as complex system publication-title: Nat. Commun. – volume: 11 start-page: 3694 year: 2020 ident: b0025 article-title: Advancing theoretical understanding and practical performance of signal processing for nonlinear optical communications through machine learning publication-title: Nat. Commun. – volume: 26 start-page: 1 year: 2020 end-page: 9 ident: b0180 article-title: Reservoir computing using multiple lasers with feedback on a photonic integrated circuit publication-title: IEEE J. Sel. Topics Quant. Electron. – volume: 95 start-page: 521 year: 2005 end-page: 528 ident: b0065 article-title: Isolated word recognition with the liquid state machine: a case study publication-title: Inform. Process Lett. – reference: H. Zhang, X. Feng, B. Li, Y. Wang, K. Cui, F. Liu, W. Dou, Y. Huang, Integrated photonic reservoir computing based on hierarchical time-multiplexing structure, Opt. Exp. 22 (2014) 31356–31370, https://doi.o rg/10.1364/OE.22.031356. – volume: 22 start-page: 8672 year: 2014 end-page: 8686 ident: b0155 article-title: Fast photonic information processing using semiconductor lasers with delayed optical feedback: Role of phase dynamics publication-title: Opt. Exp. – volume: 252 start-page: 162 year: 2005 end-page: 166 ident: b0255 article-title: Immunization of WDM systems to nonlinearity-induced crosstalk using optical polarization-shift-keying publication-title: Opt. Commun. – volume: 5 start-page: 3541 year: 2014 ident: b0150 article-title: Experimental demonstration of reservoir computing on a silicon photonics chip publication-title: Nat. Commun. – reference: K. Harkhoe, G.V.D. Sande, Delay-based reservoir computing using multimode semiconductor lasers: exploiting the rich carrier dynamics, IEEE J. Sel. Top. Quant. Electron. 25 (2019) 1–9, doi:10.1109/JSTQE.2019.2952594. – volume: 23 start-page: 3566 year: 2005 end-page: 3579 ident: b0230 article-title: Dispersion-compensating fibers publication-title: J. Lightw. Technol. – volume: 17 start-page: 2206 year: 2005 end-page: 2208 ident: b0240 article-title: Performance of single-mode fiber links using electronic feed-forward and decision feedback equalizers publication-title: IEEE Photon. Technol. Lett. – volume: 26 start-page: 1 year: 2020 end-page: 12 ident: b0120 article-title: Optical reservoir computing using multiple light scattering for chaotic systems prediction publication-title: IEEE J. Sel. Topics Quant. Electron. – volume: 7 start-page: 37017 year: 2019 end-page: 37025 ident: b0200 article-title: PAM-4 transmission at 1550 nm using photonic reservoir computing post-processing publication-title: IEEE Access – volume: 29 start-page: 1 year: 2023 end-page: 12 ident: b0050 article-title: Multi-wavelength photonic neuromorphic computing for intra and inter-channel distortion compensations in WDM optical communication systems publication-title: IEEE J. Sel. Topics Quant. Electron. – volume: 5 year: 2020 ident: b0125 article-title: Experimental realization of dual task processing with a photonic reservoir computer publication-title: APL Photon. – volume: 26 start-page: 1 year: 2020 end-page: 8 ident: b0175 article-title: Reservoir computing using laser networks publication-title: IEEE J. Sel. Top. Quant. Electron. – volume: 26 start-page: 24190 year: 2018 end-page: 24239 ident: b0250 article-title: Fiber-optic transmission and networking: the previous 20 and the next 20 years publication-title: Opt. Exp. – volume: 39 start-page: 1696 year: 2021 end-page: 1705 ident: b0035 article-title: Complex-valued neural network design for mitigation of signal distortions in optical links publication-title: J. Lightw. Technol. – volume: 9 start-page: B1 year: 2021 end-page: B8 ident: b0185 article-title: Modulation format identification in fiber communications using single dynamical node-based photonic reservoir computing publication-title: Photon. Res. – reference: W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations, Neural Comput. 14 (2022) 2531–2560, doi:10.1162/089976602760407955. – volume: 37 start-page: 1621 year: 2019 end-page: 1630 ident: b0245 article-title: Machine learning for 100 Gb/s/λ passive optical network publication-title: J. Lightw. Technol. – volume: 4 start-page: 837 year: 2021 end-page: 844 ident: b0045 article-title: A silicon photonic–electronic neural network for fibre nonlinearity compensation publication-title: Nat. Electron. – volume: 37 start-page: 2232 year: 2019 end-page: 2239 ident: b0195 article-title: A neuromorphic silicon photonics nonlinear equalizer for optical communications with intensity modulation and direct detection publication-title: J. Lightw. Technol. – volume: 8 start-page: 2204 year: 2017 ident: b0095 article-title: Reservoir computing using dynamic memristors for temporal information processing publication-title: Nat. Commun. – volume: 26 start-page: 1 year: 2020 end-page: 9 ident: b0205 article-title: Comparison of photonic reservoir computing systems for fiber transmission equalization publication-title: IEEE J. Sel. Top. Quant. Electron. – volume: 26 start-page: 388 year: 2015 end-page: 393 ident: b0090 article-title: Delay-based reservoir computing: noise effects in a combined analog and digital implementation publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 27 start-page: 27431 year: 2019 end-page: 27440 ident: b0145 article-title: Reservoir computing system with double optoelectronic feedback loops publication-title: Opt. Exp. – volume: X 7 start-page: 1 year: 2021 ident: 10.1016/j.optlastec.2024.110697_b0040 article-title: Prospects and applications of photonic neural networks publication-title: Adv. Phys. – volume: 7 start-page: 37017 year: 2019 ident: 10.1016/j.optlastec.2024.110697_b0200 article-title: PAM-4 transmission at 1550 nm using photonic reservoir computing post-processing publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2905422 – volume: 25 start-page: 2401 year: 2017 ident: 10.1016/j.optlastec.2024.110697_b0110 article-title: Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback publication-title: Opt. Exp. doi: 10.1364/OE.25.002401 – volume: 42 start-page: 375 year: 2017 ident: 10.1016/j.optlastec.2024.110697_b0105 article-title: Prediction performance of reservoir computing systems based on a diode-pumped erbium-doped microchip laser subject to optical feedback publication-title: Opt. Lett. doi: 10.1364/OL.42.000375 – ident: 10.1016/j.optlastec.2024.110697_b0215 doi: 10.1364/OE.435013 – volume: 26 start-page: 10211 year: 2018 ident: 10.1016/j.optlastec.2024.110697_b0165 article-title: Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection publication-title: Opt. Exp. doi: 10.1364/OE.26.010211 – volume: 26 start-page: 3416 year: 2008 ident: 10.1016/j.optlastec.2024.110697_b0010 article-title: Compensation of dispersion and nonlinear impairments using digital backpropagation publication-title: J. Lightw. Technol. doi: 10.1109/JLT.2008.927791 – ident: 10.1016/j.optlastec.2024.110697_b0210 doi: 10.1109/JLT.2021.3117921 – volume: 495 year: 2021 ident: 10.1016/j.optlastec.2024.110697_b0225 article-title: Signal recovery based on optoelectronic reservoir computing for high speed optical fiber communication system publication-title: Opt. Commun. doi: 10.1016/j.optcom.2021.127082 – volume: 37 start-page: 2232 year: 2019 ident: 10.1016/j.optlastec.2024.110697_b0195 article-title: A neuromorphic silicon photonics nonlinear equalizer for optical communications with intensity modulation and direct detection publication-title: J. Lightw. Technol. doi: 10.1109/JLT.2019.2900568 – volume: 39 start-page: 1696 year: 2021 ident: 10.1016/j.optlastec.2024.110697_b0035 article-title: Complex-valued neural network design for mitigation of signal distortions in optical links publication-title: J. Lightw. Technol. doi: 10.1109/JLT.2020.3042414 – volume: 4 start-page: 837 year: 2021 ident: 10.1016/j.optlastec.2024.110697_b0045 article-title: A silicon photonic–electronic neural network for fibre nonlinearity compensation publication-title: Nat. Electron. doi: 10.1038/s41928-021-00661-2 – volume: 30 start-page: 310 year: 2012 ident: 10.1016/j.optlastec.2024.110697_b0015 article-title: Intrachannel nonlinearity compensation by inverse Volterra series transfer function publication-title: J. Lightw. Technol. doi: 10.1109/JLT.2011.2182038 – volume: 3 start-page: 127 year: 2009 ident: 10.1016/j.optlastec.2024.110697_b0075 article-title: Reservoir computing approaches to recurrent neural network training publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2009.03.005 – volume: 26 start-page: 1 year: 2020 ident: 10.1016/j.optlastec.2024.110697_b0175 article-title: Reservoir computing using laser networks publication-title: IEEE J. Sel. Top. Quant. Electron. doi: 10.1109/JSTQE.2019.2927578 – ident: 10.1016/j.optlastec.2024.110697_b0170 doi: 10.1364/OE.27.023293 – volume: 26 start-page: 1 year: 2020 ident: 10.1016/j.optlastec.2024.110697_b0205 article-title: Comparison of photonic reservoir computing systems for fiber transmission equalization publication-title: IEEE J. Sel. Top. Quant. Electron. doi: 10.1109/JSTQE.2019.2936947 – volume: 95 start-page: 521 year: 2005 ident: 10.1016/j.optlastec.2024.110697_b0065 article-title: Isolated word recognition with the liquid state machine: a case study publication-title: Inform. Process Lett. doi: 10.1016/j.ipl.2005.05.019 – volume: 9 start-page: B1 year: 2021 ident: 10.1016/j.optlastec.2024.110697_b0185 article-title: Modulation format identification in fiber communications using single dynamical node-based photonic reservoir computing publication-title: Photon. Res. doi: 10.1364/PRJ.409114 – volume: 8 start-page: 2204 year: 2017 ident: 10.1016/j.optlastec.2024.110697_b0095 article-title: Reservoir computing using dynamic memristors for temporal information processing publication-title: Nat. Commun. doi: 10.1038/s41467-017-02337-y – volume: 252 start-page: 162 year: 2005 ident: 10.1016/j.optlastec.2024.110697_b0255 article-title: Immunization of WDM systems to nonlinearity-induced crosstalk using optical polarization-shift-keying publication-title: Opt. Commun. doi: 10.1016/j.optcom.2005.04.010 – volume: 5 start-page: 14945 year: 2015 ident: 10.1016/j.optlastec.2024.110697_b0085 article-title: A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron publication-title: Sci. Rep. doi: 10.1038/srep14945 – start-page: 262 year: 2002 ident: 10.1016/j.optlastec.2024.110697_b0235 article-title: Optical signal processing with electro-absorption modulators publication-title: OFC 2002 Tech. Dig. – volume: 17 start-page: 2206 year: 2005 ident: 10.1016/j.optlastec.2024.110697_b0240 article-title: Performance of single-mode fiber links using electronic feed-forward and decision feedback equalizers publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2005.856326 – volume: 39 start-page: 475 year: 2021 ident: 10.1016/j.optlastec.2024.110697_b0030 article-title: Feedforward and recurrent neural network-based transfer learning for nonlinear equalization in short-reach optical links publication-title: J. Lightw. Technol. doi: 10.1109/JLT.2020.3031363 – volume: 2 start-page: 468 year: 2011 ident: 10.1016/j.optlastec.2024.110697_b0080 article-title: Information processing using a single dynamical node as complex system publication-title: Nat. Commun. doi: 10.1038/ncomms1476 – volume: 5 start-page: 3541 year: 2014 ident: 10.1016/j.optlastec.2024.110697_b0150 article-title: Experimental demonstration of reservoir computing on a silicon photonics chip publication-title: Nat. Commun. doi: 10.1038/ncomms4541 – volume: 26 start-page: 1 year: 2020 ident: 10.1016/j.optlastec.2024.110697_b0180 article-title: Reservoir computing using multiple lasers with feedback on a photonic integrated circuit publication-title: IEEE J. Sel. Topics Quant. Electron. doi: 10.1109/JSTQE.2019.2929179 – volume: 20 start-page: 3241 year: 2012 ident: 10.1016/j.optlastec.2024.110697_b0135 article-title: Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing publication-title: Opt. Exp. doi: 10.1364/OE.20.003241 – volume: 37 start-page: 1621 year: 2019 ident: 10.1016/j.optlastec.2024.110697_b0245 article-title: Machine learning for 100 Gb/s/λ passive optical network publication-title: J. Lightw. Technol. doi: 10.1109/JLT.2018.2888547 – volume: 32 start-page: 978 year: 2021 ident: 10.1016/j.optlastec.2024.110697_b0220 article-title: Micro-ring resonator based photonic reservoir computing for PAM equalization publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2021.3087323 – volume: 29 start-page: 1 year: 2023 ident: 10.1016/j.optlastec.2024.110697_b0190 article-title: Enhanced performance of reservoir computing using multiple self-injection and mutual injection VCSELs publication-title: IEEE J. Sel. Topics Quant. Electron. – volume: 28 start-page: 423 year: 2010 ident: 10.1016/j.optlastec.2024.110697_b0005 article-title: Approaching the non-linear Shannon limit publication-title: J. Lightw. Technol. doi: 10.1109/JLT.2009.2030693 – volume: 29 start-page: 1 year: 2023 ident: 10.1016/j.optlastec.2024.110697_b0050 article-title: Multi-wavelength photonic neuromorphic computing for intra and inter-channel distortion compensations in WDM optical communication systems publication-title: IEEE J. Sel. Topics Quant. Electron. – ident: 10.1016/j.optlastec.2024.110697_b0100 doi: 10.1364/OE.21.000012 – volume: 2 start-page: 287 year: 2012 ident: 10.1016/j.optlastec.2024.110697_b0130 article-title: Optoelectronic reservoir computing publication-title: Sci. Rep. doi: 10.1038/srep00287 – volume: 22 start-page: 10868 year: 2014 ident: 10.1016/j.optlastec.2024.110697_b0140 article-title: All-optical reservoir computer based on saturation of absorption publication-title: Opt. Exp. doi: 10.1364/OE.22.010868 – volume: 304 start-page: 78 year: 2004 ident: 10.1016/j.optlastec.2024.110697_b0060 article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication publication-title: Science doi: 10.1126/science.1091277 – volume: 4 start-page: 307 year: 2017 ident: 10.1016/j.optlastec.2024.110697_b0020 article-title: Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives publication-title: Optica doi: 10.1364/OPTICA.4.000307 – volume: 20 start-page: 391 year: 2007 ident: 10.1016/j.optlastec.2024.110697_b0070 article-title: An experimental unification of reservoir computing methods publication-title: Neural Netw. doi: 10.1016/j.neunet.2007.04.003 – volume: 27 start-page: 27431 year: 2019 ident: 10.1016/j.optlastec.2024.110697_b0145 article-title: Reservoir computing system with double optoelectronic feedback loops publication-title: Opt. Exp. doi: 10.1364/OE.27.027431 – volume: 11 start-page: 3694 year: 2020 ident: 10.1016/j.optlastec.2024.110697_b0025 article-title: Advancing theoretical understanding and practical performance of signal processing for nonlinear optical communications through machine learning publication-title: Nat. Commun. doi: 10.1038/s41467-020-17516-7 – volume: 26 start-page: 388 year: 2015 ident: 10.1016/j.optlastec.2024.110697_b0090 article-title: Delay-based reservoir computing: noise effects in a combined analog and digital implementation publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2311855 – ident: 10.1016/j.optlastec.2024.110697_b0055 doi: 10.1162/089976602760407955 – ident: 10.1016/j.optlastec.2024.110697_b0115 doi: 10.1109/JSTQE.2019.2952594 – volume: 5 year: 2020 ident: 10.1016/j.optlastec.2024.110697_b0125 article-title: Experimental realization of dual task processing with a photonic reservoir computer publication-title: APL Photon. doi: 10.1063/5.0017574 – volume: 23 start-page: 3566 year: 2005 ident: 10.1016/j.optlastec.2024.110697_b0230 article-title: Dispersion-compensating fibers publication-title: J. Lightw. Technol. doi: 10.1109/JLT.2005.855873 – volume: 26 start-page: 1 year: 2020 ident: 10.1016/j.optlastec.2024.110697_b0120 article-title: Optical reservoir computing using multiple light scattering for chaotic systems prediction publication-title: IEEE J. Sel. Topics Quant. Electron. doi: 10.1109/JSTQE.2019.2936281 – ident: 10.1016/j.optlastec.2024.110697_b0160 doi: 10.1364/OE.22.031356 – volume: 22 start-page: 8672 year: 2014 ident: 10.1016/j.optlastec.2024.110697_b0155 article-title: Fast photonic information processing using semiconductor lasers with delayed optical feedback: Role of phase dynamics publication-title: Opt. Exp. doi: 10.1364/OE.22.008672 – volume: 26 start-page: 24190 year: 2018 ident: 10.1016/j.optlastec.2024.110697_b0250 article-title: Fiber-optic transmission and networking: the previous 20 and the next 20 years publication-title: Opt. Exp. doi: 10.1364/OE.26.024190 |
SSID | ssj0004653 |
Score | 2.3877065 |
Snippet | •A reservoir computing (RC) is operated optically without O/E/O conversion.•The all-optical RC mitigates nonlinear distortion in a 3960-km fiber link.•Phase... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110697 |
SubjectTerms | Long-haul transmission Nonlinear equalization Nonlinearity mitigation Optical fiber communication Photonic reservoir computing |
Title | Coherent all-optical reservoir computing for nonlinear equalization in long-haul optical fiber communication systems |
URI | https://dx.doi.org/10.1016/j.optlastec.2024.110697 |
Volume | 174 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF2KIuhBtCrWj7IHr2s33Xx6K8VSFXuy0FvYbDYaCWlJU4_-dmeySW1B6MHjhkyy7Cwz7_DeG0LuYh7rII5iBt1YMlslUAc9z2K-H3PXd6SQFRnzdeKOp_bzzJm1yLDRwiCtsq79pqZX1bp-0qtPs7dIU9T4QvlFW1W7avwoNLdtD2_5_be1oY2snSgF1Bt4e4vjNV-UgFFLjV6GfRsp8S66P_3VoTa6zuiEHNdwkQ7Mjk5JS-dtcrRhItgmBxWJUy3PSIlaC3RbojLLGPwVE0BRX1R8zdOCqmqCAwRRQKo0NyYZsqC6UlYaPSZNc5rN83f2IVcZbb6RIK8E43_FJNR4QC_PyXT0-DYcs3qqAlPCckpmyb6ME4E4w9LCFbbLA2UlWgE4UDqQyvMioaTteY5KFOAHnriKK1gL7WgeiAuyBzvUl4RGToJ2dlzoAGBV34145KvA0wAyHBELv0Pc5iRDVVuO4-SLLGy4ZZ_hOgUhpiA0KegQvg5cGNeN3SEPTarCrQsUQm_YFXz1n-Brcogrw-G9IXtlsdK3gFTKqFtdxS7ZHzy9jCc_1hHrwg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gxqgHo6gRn3vwWtmyfXozRIIKnCDh1my3W8U0QKB49Lc70wdCYsLBYx_Tbnbame_wfd8A3Ec80n4URgZ2Y2lYKsY66Lqm4XkRdzxbCpmRMXt9pzO0Xkf2qAKtUgtDtMqi9uc1PavWxZlGsZuN2XhMGl8sv2SramWN396BXQt_Xxpj8PBtrokjCytKgQUHb98geU1nKYLUVJOZYdMiTrxD9k9_tai1ttM-hqMCL7KnfEknUNGTGhyuuQjWYC9jcarFKaQktiC7JSaTxMC3UgYYCYzmX9PxnKlshAMGMYSqbJK7ZMg505m0MhdksvGEJdPJu_EhlwkrnxETsYTif9UkLDeBXpzBsP08aHWMYqyCoYRpp4YpmzKKBQENUwtHWA73lRlrhehAaV8q1w2Fkpbr2ipWCCB47Ciu8FhoW3NfnEMVV6gvgIV2TH52XGgfcVXTCXnoKd_ViDJsEQmvDk65k4EqPMdp9EUSlOSyz2CVgoBSEOQpqANfBc5y243tIY9lqoKNLyjA5rAt-PI_wXew3xn0ukH3pf92BQd0JSf0XkM1nS_1DcKWNLzNPssfQZztUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherent+all-optical+reservoir+computing+for+nonlinear+equalization+in+long-haul+optical+fiber+communication+systems&rft.jtitle=Optics+and+laser+technology&rft.au=Peng%2C+Guanju&rft.au=Liu%2C+Yaping&rft.au=Li%2C+Zheng&rft.au=Zhu%2C+Kunpeng&rft.date=2024-07-01&rft.issn=0030-3992&rft.volume=174&rft.spage=110697&rft_id=info:doi/10.1016%2Fj.optlastec.2024.110697&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlastec_2024_110697 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon |