Coherent all-optical reservoir computing for nonlinear equalization in long-haul optical fiber communication systems

•A reservoir computing (RC) is operated optically without O/E/O conversion.•The all-optical RC mitigates nonlinear distortion in a 3960-km fiber link.•Phase property enhances the RC’s performance in nonlinear signal processing.•The RC improves the Q2 factor by 2.6 dB in a single-λ system and 1.9 dB...

Full description

Saved in:
Bibliographic Details
Published inOptics and laser technology Vol. 174; p. 110697
Main Authors Peng, Guanju, Liu, Yaping, Li, Zheng, Zhu, Kunpeng, Yang, Zhiqun, Li, Jianping, Zhang, Shigui, Huang, Zhanhua, Zhang, Lin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A reservoir computing (RC) is operated optically without O/E/O conversion.•The all-optical RC mitigates nonlinear distortion in a 3960-km fiber link.•Phase property enhances the RC’s performance in nonlinear signal processing.•The RC improves the Q2 factor by 2.6 dB in a single-λ system and 1.9 dB in a WDM system. Photonic reservoir computing (RC), as a promising paradigm of optical signal processing, has attracted a great deal of attention in fiber nonlinearity equalization recently. For real long-haul transmission scenarios, we propose an all-optical RC operated in a coherent scheme to mitigate the nonlinear distortion of high-speed signals. Compared with the direct decision architecture, the proposed RC can dramatically improve the Q2 factor by 2.6 dB for a single-wavelength system and 1.9 dB for a 7-channel wavelength-division multiplexing (WDM) system over 3960-km fiber transmission. Furthermore, the robustness of the coherent all-optical RC is also verified by conducting studies on different training sequences. The coherent all-optical RC shows great potential in real-time nonlinearity mitigation for long-haul fiber transmissions.
AbstractList •A reservoir computing (RC) is operated optically without O/E/O conversion.•The all-optical RC mitigates nonlinear distortion in a 3960-km fiber link.•Phase property enhances the RC’s performance in nonlinear signal processing.•The RC improves the Q2 factor by 2.6 dB in a single-λ system and 1.9 dB in a WDM system. Photonic reservoir computing (RC), as a promising paradigm of optical signal processing, has attracted a great deal of attention in fiber nonlinearity equalization recently. For real long-haul transmission scenarios, we propose an all-optical RC operated in a coherent scheme to mitigate the nonlinear distortion of high-speed signals. Compared with the direct decision architecture, the proposed RC can dramatically improve the Q2 factor by 2.6 dB for a single-wavelength system and 1.9 dB for a 7-channel wavelength-division multiplexing (WDM) system over 3960-km fiber transmission. Furthermore, the robustness of the coherent all-optical RC is also verified by conducting studies on different training sequences. The coherent all-optical RC shows great potential in real-time nonlinearity mitigation for long-haul fiber transmissions.
ArticleNumber 110697
Author Li, Zheng
Zhu, Kunpeng
Zhang, Shigui
Liu, Yaping
Huang, Zhanhua
Li, Jianping
Zhang, Lin
Peng, Guanju
Yang, Zhiqun
Author_xml – sequence: 1
  givenname: Guanju
  surname: Peng
  fullname: Peng, Guanju
  organization: State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, TianjinUniversity, Tianjin 300072, China
– sequence: 2
  givenname: Yaping
  surname: Liu
  fullname: Liu, Yaping
  email: liuyp@tju.edu.cn
  organization: State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, TianjinUniversity, Tianjin 300072, China
– sequence: 3
  givenname: Zheng
  orcidid: 0009-0004-5067-3825
  surname: Li
  fullname: Li, Zheng
  organization: State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, TianjinUniversity, Tianjin 300072, China
– sequence: 4
  givenname: Kunpeng
  surname: Zhu
  fullname: Zhu, Kunpeng
  organization: State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, TianjinUniversity, Tianjin 300072, China
– sequence: 5
  givenname: Zhiqun
  orcidid: 0000-0001-9340-0203
  surname: Yang
  fullname: Yang, Zhiqun
  email: yangzhiqun@tju.edu.cn
  organization: State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, TianjinUniversity, Tianjin 300072, China
– sequence: 6
  givenname: Jianping
  surname: Li
  fullname: Li, Jianping
  organization: HMN Technologies Co., Ltd, Tianjin 300467, China
– sequence: 7
  givenname: Shigui
  surname: Zhang
  fullname: Zhang, Shigui
  organization: HMN Technologies Co., Ltd, Tianjin 300467, China
– sequence: 8
  givenname: Zhanhua
  surname: Huang
  fullname: Huang, Zhanhua
  organization: State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, TianjinUniversity, Tianjin 300072, China
– sequence: 9
  givenname: Lin
  orcidid: 0000-0003-0545-1110
  surname: Zhang
  fullname: Zhang, Lin
  email: lin_zhang@tju.edu.cn
  organization: State Key Laboratory of Precision Measurement Technology and Instruments, Key Laboratory of Opto-electronic Information Technology of Ministry of Education, Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, TianjinUniversity, Tianjin 300072, China
BookMark eNqNkM9OAjEQxhuDiaA-g32BxXa73WUPHgjxX0LiRc9NGWahpNti2yXBp3cB9eBFT5OZzO-bb74RGTjvkJAbzsac8fJ2M_bbZHVMCOOc5cWYc1bW1RkZ8klVZ7ks5IAMGRMsE3WdX5BRjBvGWFFKMSRp5tcY0CWqrc16JQPa0oARw86bQMG32y4Zt6KND7Q_bY1DHSi-d9qaD52Md9Q4ar1bZWvdWfqt0ZgFHvm2c_3guBj3vc02XpHzRtuI11_1krw93L_OnrL5y-PzbDrPQHCZMq5zvWyEkLLgKEpRlKwG3iCwCQesNVTVQoAuqkpCA5M8Z00JDPpeoERWi0tyd9KF4GMM2Cgw6egkBW2s4kwdIlQb9ROhOkSoThH2fPWL3wbT6rD_Bzk9kdi_tzMYVASDDnBpAkJSS2_-1PgEKQeXQw
CitedBy_id crossref_primary_10_1063_5_0248952
crossref_primary_10_12677_ces_2024_127427
Cites_doi 10.1109/ACCESS.2019.2905422
10.1364/OE.25.002401
10.1364/OL.42.000375
10.1364/OE.435013
10.1364/OE.26.010211
10.1109/JLT.2008.927791
10.1109/JLT.2021.3117921
10.1016/j.optcom.2021.127082
10.1109/JLT.2019.2900568
10.1109/JLT.2020.3042414
10.1038/s41928-021-00661-2
10.1109/JLT.2011.2182038
10.1016/j.cosrev.2009.03.005
10.1109/JSTQE.2019.2927578
10.1364/OE.27.023293
10.1109/JSTQE.2019.2936947
10.1016/j.ipl.2005.05.019
10.1364/PRJ.409114
10.1038/s41467-017-02337-y
10.1016/j.optcom.2005.04.010
10.1038/srep14945
10.1109/LPT.2005.856326
10.1109/JLT.2020.3031363
10.1038/ncomms1476
10.1038/ncomms4541
10.1109/JSTQE.2019.2929179
10.1364/OE.20.003241
10.1109/JLT.2018.2888547
10.1109/LPT.2021.3087323
10.1109/JLT.2009.2030693
10.1364/OE.21.000012
10.1038/srep00287
10.1364/OE.22.010868
10.1126/science.1091277
10.1364/OPTICA.4.000307
10.1016/j.neunet.2007.04.003
10.1364/OE.27.027431
10.1038/s41467-020-17516-7
10.1109/TNNLS.2014.2311855
10.1162/089976602760407955
10.1109/JSTQE.2019.2952594
10.1063/5.0017574
10.1109/JLT.2005.855873
10.1109/JSTQE.2019.2936281
10.1364/OE.22.031356
10.1364/OE.22.008672
10.1364/OE.26.024190
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.optlastec.2024.110697
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-2545
ExternalDocumentID 10_1016_j_optlastec_2024_110697
S0030399224001555
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XFK
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c315t-1a2adf335541e3634609c1fec081ce9ac77b3ca4775cfc8220f6c0c4773e5e093
IEDL.DBID .~1
ISSN 0030-3992
IngestDate Thu Apr 24 23:07:54 EDT 2025
Tue Jul 01 01:39:01 EDT 2025
Sat Mar 30 16:21:08 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Photonic reservoir computing
Long-haul transmission
Nonlinearity mitigation
Optical fiber communication
Nonlinear equalization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-1a2adf335541e3634609c1fec081ce9ac77b3ca4775cfc8220f6c0c4773e5e093
ORCID 0009-0004-5067-3825
0000-0001-9340-0203
0000-0003-0545-1110
ParticipantIDs crossref_citationtrail_10_1016_j_optlastec_2024_110697
crossref_primary_10_1016_j_optlastec_2024_110697
elsevier_sciencedirect_doi_10_1016_j_optlastec_2024_110697
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Optics and laser technology
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Appeltant, Soriano, Sande, Danckaert, Massar, Dambre, Schrauwen, Mirasso, Fischer (b0080) 2011; 2
Vatin, Rontani, Sciamanna (b0125) 2020; 5
Nguimdo, Verschaffelt, Danckaert, Sande (b0155) 2014; 22
Liu, Li, Huang, Cui, Xiong, Hauske, Xie, Cai (b0015) 2012; 30
Ip, Kahn (b0010) 2008; 26
M.C. Soriano, S. Ortín, D. Brunner, L. Larger, C.R. Mirasso, I. Fischer, L. Pesquera, Optoelectronic reservoir computing: tackling noise-induced performance degradation, Opt. Exp. 21 (2013) 12–20, doi:10.1364/OE.21.000012.
Verstraeten, Schrauwen, Stroobandt, Campenhout (b0065) 2005; 95
Dejonckheere, Duport, Smerieri, Fang, Oudar, Haelterman, Massar (b0140) 2014; 22
Chen, Yi, Ke, Yang, Yang, Huang, Zhuge, Hu (b0145) 2019; 27
Li, Dev, Kühl, Jamshidi, Pachnicke (b0220) 2021; 32
Ellis, Zhao, Cotter (b0005) 2010; 28
Dong, Rafayelyan, Krzakala, Gigan (b0120) 2020; 26
Song, Pan, Arieli, Motaghian, Havstad, Willner (b0255) 2005; 252
X. Guo, S. Xiang, Y. Zhang, L. Lin, A. Wen, Y. Hao, Four-channels reservoir computing based on polarization dynamics in mutually coupled VCSELs system, Opt. Exp. 27 (2019) 23293–23306, doi:10.1364/OE.27.023293.
S. Sackesyn, C. Ma, J. Dambre, P. Bienstman, Experimental realization of integrated photonic reservoir computing for nonlinear fiber distortion compensation, Opt. Exp. 29 (2021) 30991–30997, doi:10.13 64/OE.435013.
Wang, Fang, Wang (b0225) 2021; 495
W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations, Neural Comput. 14 (2022) 2531–2560, doi:10.1162/089976602760407955.
Ortín, Soriano, Pesquera, Brunner, San-Martín, Fischer, Mirasso, Gutiérrez (b0085) 2015; 5
Bueno, Brunner, Soriano, Fischer (b0110) 2017; 25
I Estébanez, S. Li, J. Schwind, I. Fischer, S. Pachnicke, A. Argyris, 56 GBaud PAM-4 100 km transmission system with photonic processing schemes, J. Lightw. Technol. 40 (2021) 55–62, doi:10.1109 /JLT.2021.3117921.
Du, Cai, Zidan, Ma, Lee, Lu (b0095) 2017; 8
Paquot, Duport, Smerieri, Dambre, Schrauwen, Haelterman, Massar (b0130) 2012; 2
Huang, Zhou, Yang, Li (b0190) 2023; 29
K. Harkhoe, G.V.D. Sande, Delay-based reservoir computing using multimode semiconductor lasers: exploiting the rich carrier dynamics, IEEE J. Sel. Top. Quant. Electron. 25 (2019) 1–9, doi:10.1109/JSTQE.2019.2952594.
Yi, Liao, Huang, Xue, Li, Hu (b0245) 2019; 37
Cai, Guo, Li, Bogris, Shore, Zhang, Wang (b0185) 2021; 9
Wang, Lima, Shastri, Prucnal, Huang (b0050) 2023; 29
Larger, Soriano, Brunner, Appeltant, Gutierrez, Pesquera, Mirasso, Fischer (b0135) 2012; 20
Grüner-Nielsen, Wandel, Kristensen, Jorgensen, Jorgensen, Edvold, Pálsdóttir, Jakobsen (b0230) 2005; 23
Freire, Neskornuik, Napoli, Spinnler, Costa, Khanna, Riccardi, Prilepsky, Turitsyn (b0035) 2021; 39
Katumba, Yin, Dambre, Bienstman (b0195) 2019; 37
Xu, Sun, Ji, Manton, Shieh (b0030) 2021; 39
Fan, Zhou, Gui, Lu, Lau (b0025) 2020; 11
Hou, Xia, Yang, Wang, Jayaprasath (b0165) 2018; 26
Turitsyn, Prilepsky, Le, Wahls, Frumin, Kamalian, Derevyanko (b0020) 2017; 4
Argyris, Cantero, Galletero, Pereda, Mirasso, Fischer, Soriano (b0205) 2020; 26
Lukoševičius, Jaeger (b0075) 2009; 3
Tanaka, Otani, Hayashi, Suzuki (b0235) 2002
Soriano, Ortín, Keuninckx, Appeltant, Danckaert, Pesquera, Sande (b0090) 2015; 26
Huang, Fujisawa, Lima, Tait, Blow, Tian, Bilodeau, Jha, Yaman, Peng, Batshon, Shastri, Inada, Wang, Prucnal (b0045) 2021; 4
Watts, Mikhailov, Savory, Bayvel, Glick, Lobel, Christensen, Kirkpatrick, Shang, Killey (b0240) 2005; 17
H. Zhang, X. Feng, B. Li, Y. Wang, K. Cui, F. Liu, W. Dou, Y. Huang, Integrated photonic reservoir computing based on hierarchical time-multiplexing structure, Opt. Exp. 22 (2014) 31356–31370, https://doi.o rg/10.1364/OE.22.031356.
Vandoorne, Mechet, Vaerenbergh, Fiers, Morthier, Verstraeten, Schrauwen, Dambre, Bienstman (b0150) 2014; 5
Sugano, Kanno, Uchida (b0180) 2020; 26
Winzer, Neilson, Chraplyvy (b0250) 2018; 26
Jaeger, Haas (b0060) 2004; 304
Nguimdo, Lacot, Jacquin, Hugon, Sande, Chatellus (b0105) 2017; 42
Verstraeten, Schrauwen, D’Haene, Stroobandt (b0070) 2007; 20
Huang, Sorger, Miscuglio, Al-Qadasi, Mukherjee, Lampe, Nichols, Tait, Lima, Marquez, Wang, Chrostowski, Fok, Brunner, Fan, Shekhar, Prucnal, Shastri (b0040) 2021; X 7
Argyris, Bueno, Fischer (b0200) 2019; 7
Röhm, Jaurigue, Lüdge (b0175) 2020; 26
Watts (10.1016/j.optlastec.2024.110697_b0240) 2005; 17
Huang (10.1016/j.optlastec.2024.110697_b0190) 2023; 29
Freire (10.1016/j.optlastec.2024.110697_b0035) 2021; 39
Verstraeten (10.1016/j.optlastec.2024.110697_b0065) 2005; 95
Chen (10.1016/j.optlastec.2024.110697_b0145) 2019; 27
Argyris (10.1016/j.optlastec.2024.110697_b0205) 2020; 26
Grüner-Nielsen (10.1016/j.optlastec.2024.110697_b0230) 2005; 23
Huang (10.1016/j.optlastec.2024.110697_b0045) 2021; 4
Turitsyn (10.1016/j.optlastec.2024.110697_b0020) 2017; 4
Larger (10.1016/j.optlastec.2024.110697_b0135) 2012; 20
Appeltant (10.1016/j.optlastec.2024.110697_b0080) 2011; 2
10.1016/j.optlastec.2024.110697_b0160
Nguimdo (10.1016/j.optlastec.2024.110697_b0105) 2017; 42
Xu (10.1016/j.optlastec.2024.110697_b0030) 2021; 39
Verstraeten (10.1016/j.optlastec.2024.110697_b0070) 2007; 20
Wang (10.1016/j.optlastec.2024.110697_b0225) 2021; 495
10.1016/j.optlastec.2024.110697_b0115
Sugano (10.1016/j.optlastec.2024.110697_b0180) 2020; 26
Wang (10.1016/j.optlastec.2024.110697_b0050) 2023; 29
Argyris (10.1016/j.optlastec.2024.110697_b0200) 2019; 7
Tanaka (10.1016/j.optlastec.2024.110697_b0235) 2002
Ip (10.1016/j.optlastec.2024.110697_b0010) 2008; 26
Paquot (10.1016/j.optlastec.2024.110697_b0130) 2012; 2
Jaeger (10.1016/j.optlastec.2024.110697_b0060) 2004; 304
Ortín (10.1016/j.optlastec.2024.110697_b0085) 2015; 5
Yi (10.1016/j.optlastec.2024.110697_b0245) 2019; 37
Fan (10.1016/j.optlastec.2024.110697_b0025) 2020; 11
Soriano (10.1016/j.optlastec.2024.110697_b0090) 2015; 26
Vandoorne (10.1016/j.optlastec.2024.110697_b0150) 2014; 5
Dong (10.1016/j.optlastec.2024.110697_b0120) 2020; 26
Du (10.1016/j.optlastec.2024.110697_b0095) 2017; 8
Li (10.1016/j.optlastec.2024.110697_b0220) 2021; 32
Song (10.1016/j.optlastec.2024.110697_b0255) 2005; 252
Winzer (10.1016/j.optlastec.2024.110697_b0250) 2018; 26
10.1016/j.optlastec.2024.110697_b0100
10.1016/j.optlastec.2024.110697_b0215
Bueno (10.1016/j.optlastec.2024.110697_b0110) 2017; 25
Vatin (10.1016/j.optlastec.2024.110697_b0125) 2020; 5
Ellis (10.1016/j.optlastec.2024.110697_b0005) 2010; 28
Nguimdo (10.1016/j.optlastec.2024.110697_b0155) 2014; 22
Huang (10.1016/j.optlastec.2024.110697_b0040) 2021; X 7
Lukoševičius (10.1016/j.optlastec.2024.110697_b0075) 2009; 3
Dejonckheere (10.1016/j.optlastec.2024.110697_b0140) 2014; 22
10.1016/j.optlastec.2024.110697_b0170
Liu (10.1016/j.optlastec.2024.110697_b0015) 2012; 30
Röhm (10.1016/j.optlastec.2024.110697_b0175) 2020; 26
10.1016/j.optlastec.2024.110697_b0055
Hou (10.1016/j.optlastec.2024.110697_b0165) 2018; 26
Cai (10.1016/j.optlastec.2024.110697_b0185) 2021; 9
Katumba (10.1016/j.optlastec.2024.110697_b0195) 2019; 37
10.1016/j.optlastec.2024.110697_b0210
References_xml – volume: 22
  start-page: 10868
  year: 2014
  end-page: 10881
  ident: b0140
  article-title: All-optical reservoir computer based on saturation of absorption
  publication-title: Opt. Exp.
– volume: 39
  start-page: 475
  year: 2021
  end-page: 480
  ident: b0030
  article-title: Feedforward and recurrent neural network-based transfer learning for nonlinear equalization in short-reach optical links
  publication-title: J. Lightw. Technol.
– volume: 28
  start-page: 423
  year: 2010
  end-page: 433
  ident: b0005
  article-title: Approaching the non-linear Shannon limit
  publication-title: J. Lightw. Technol.
– reference: I Estébanez, S. Li, J. Schwind, I. Fischer, S. Pachnicke, A. Argyris, 56 GBaud PAM-4 100 km transmission system with photonic processing schemes, J. Lightw. Technol. 40 (2021) 55–62, doi:10.1109 /JLT.2021.3117921.
– volume: 32
  start-page: 978
  year: 2021
  end-page: 981
  ident: b0220
  article-title: Micro-ring resonator based photonic reservoir computing for PAM equalization
  publication-title: IEEE Photon. Technol. Lett.
– start-page: 262
  year: 2002
  end-page: 264
  ident: b0235
  article-title: Optical signal processing with electro-absorption modulators
  publication-title: OFC 2002 Tech. Dig.
– volume: 3
  start-page: 127
  year: 2009
  end-page: 149
  ident: b0075
  article-title: Reservoir computing approaches to recurrent neural network training
  publication-title: Comput. Sci. Rev.
– volume: 25
  start-page: 2401
  year: 2017
  end-page: 2412
  ident: b0110
  article-title: Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback
  publication-title: Opt. Exp.
– reference: S. Sackesyn, C. Ma, J. Dambre, P. Bienstman, Experimental realization of integrated photonic reservoir computing for nonlinear fiber distortion compensation, Opt. Exp. 29 (2021) 30991–30997, doi:10.13 64/OE.435013.
– volume: 30
  start-page: 310
  year: 2012
  end-page: 316
  ident: b0015
  article-title: Intrachannel nonlinearity compensation by inverse Volterra series transfer function
  publication-title: J. Lightw. Technol.
– volume: X 7
  start-page: 1
  year: 2021
  end-page: 63
  ident: b0040
  article-title: Prospects and applications of photonic neural networks
  publication-title: Adv. Phys.
– volume: 29
  start-page: 1
  year: 2023
  end-page: 9
  ident: b0190
  article-title: Enhanced performance of reservoir computing using multiple self-injection and mutual injection VCSELs
  publication-title: IEEE J. Sel. Topics Quant. Electron.
– reference: M.C. Soriano, S. Ortín, D. Brunner, L. Larger, C.R. Mirasso, I. Fischer, L. Pesquera, Optoelectronic reservoir computing: tackling noise-induced performance degradation, Opt. Exp. 21 (2013) 12–20, doi:10.1364/OE.21.000012.
– volume: 2
  start-page: 287
  year: 2012
  ident: b0130
  article-title: Optoelectronic reservoir computing
  publication-title: Sci. Rep.
– volume: 26
  start-page: 3416
  year: 2008
  end-page: 3425
  ident: b0010
  article-title: Compensation of dispersion and nonlinear impairments using digital backpropagation
  publication-title: J. Lightw. Technol.
– volume: 20
  start-page: 391
  year: 2007
  end-page: 403
  ident: b0070
  article-title: An experimental unification of reservoir computing methods
  publication-title: Neural Netw.
– volume: 42
  start-page: 375
  year: 2017
  end-page: 378
  ident: b0105
  article-title: Prediction performance of reservoir computing systems based on a diode-pumped erbium-doped microchip laser subject to optical feedback
  publication-title: Opt. Lett.
– reference: X. Guo, S. Xiang, Y. Zhang, L. Lin, A. Wen, Y. Hao, Four-channels reservoir computing based on polarization dynamics in mutually coupled VCSELs system, Opt. Exp. 27 (2019) 23293–23306, doi:10.1364/OE.27.023293.
– volume: 26
  start-page: 10211
  year: 2018
  end-page: 10219
  ident: b0165
  article-title: Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection
  publication-title: Opt. Exp.
– volume: 4
  start-page: 307
  year: 2017
  end-page: 322
  ident: b0020
  article-title: Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives
  publication-title: Optica
– volume: 20
  start-page: 3241
  year: 2012
  end-page: 3249
  ident: b0135
  article-title: Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing
  publication-title: Opt. Exp.
– volume: 5
  start-page: 14945
  year: 2015
  ident: b0085
  article-title: A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron
  publication-title: Sci. Rep.
– volume: 495
  year: 2021
  ident: b0225
  article-title: Signal recovery based on optoelectronic reservoir computing for high speed optical fiber communication system
  publication-title: Opt. Commun.
– volume: 304
  start-page: 78
  year: 2004
  end-page: 80
  ident: b0060
  article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
– volume: 2
  start-page: 468
  year: 2011
  ident: b0080
  article-title: Information processing using a single dynamical node as complex system
  publication-title: Nat. Commun.
– volume: 11
  start-page: 3694
  year: 2020
  ident: b0025
  article-title: Advancing theoretical understanding and practical performance of signal processing for nonlinear optical communications through machine learning
  publication-title: Nat. Commun.
– volume: 26
  start-page: 1
  year: 2020
  end-page: 9
  ident: b0180
  article-title: Reservoir computing using multiple lasers with feedback on a photonic integrated circuit
  publication-title: IEEE J. Sel. Topics Quant. Electron.
– volume: 95
  start-page: 521
  year: 2005
  end-page: 528
  ident: b0065
  article-title: Isolated word recognition with the liquid state machine: a case study
  publication-title: Inform. Process Lett.
– reference: H. Zhang, X. Feng, B. Li, Y. Wang, K. Cui, F. Liu, W. Dou, Y. Huang, Integrated photonic reservoir computing based on hierarchical time-multiplexing structure, Opt. Exp. 22 (2014) 31356–31370, https://doi.o rg/10.1364/OE.22.031356.
– volume: 22
  start-page: 8672
  year: 2014
  end-page: 8686
  ident: b0155
  article-title: Fast photonic information processing using semiconductor lasers with delayed optical feedback: Role of phase dynamics
  publication-title: Opt. Exp.
– volume: 252
  start-page: 162
  year: 2005
  end-page: 166
  ident: b0255
  article-title: Immunization of WDM systems to nonlinearity-induced crosstalk using optical polarization-shift-keying
  publication-title: Opt. Commun.
– volume: 5
  start-page: 3541
  year: 2014
  ident: b0150
  article-title: Experimental demonstration of reservoir computing on a silicon photonics chip
  publication-title: Nat. Commun.
– reference: K. Harkhoe, G.V.D. Sande, Delay-based reservoir computing using multimode semiconductor lasers: exploiting the rich carrier dynamics, IEEE J. Sel. Top. Quant. Electron. 25 (2019) 1–9, doi:10.1109/JSTQE.2019.2952594.
– volume: 23
  start-page: 3566
  year: 2005
  end-page: 3579
  ident: b0230
  article-title: Dispersion-compensating fibers
  publication-title: J. Lightw. Technol.
– volume: 17
  start-page: 2206
  year: 2005
  end-page: 2208
  ident: b0240
  article-title: Performance of single-mode fiber links using electronic feed-forward and decision feedback equalizers
  publication-title: IEEE Photon. Technol. Lett.
– volume: 26
  start-page: 1
  year: 2020
  end-page: 12
  ident: b0120
  article-title: Optical reservoir computing using multiple light scattering for chaotic systems prediction
  publication-title: IEEE J. Sel. Topics Quant. Electron.
– volume: 7
  start-page: 37017
  year: 2019
  end-page: 37025
  ident: b0200
  article-title: PAM-4 transmission at 1550 nm using photonic reservoir computing post-processing
  publication-title: IEEE Access
– volume: 29
  start-page: 1
  year: 2023
  end-page: 12
  ident: b0050
  article-title: Multi-wavelength photonic neuromorphic computing for intra and inter-channel distortion compensations in WDM optical communication systems
  publication-title: IEEE J. Sel. Topics Quant. Electron.
– volume: 5
  year: 2020
  ident: b0125
  article-title: Experimental realization of dual task processing with a photonic reservoir computer
  publication-title: APL Photon.
– volume: 26
  start-page: 1
  year: 2020
  end-page: 8
  ident: b0175
  article-title: Reservoir computing using laser networks
  publication-title: IEEE J. Sel. Top. Quant. Electron.
– volume: 26
  start-page: 24190
  year: 2018
  end-page: 24239
  ident: b0250
  article-title: Fiber-optic transmission and networking: the previous 20 and the next 20 years
  publication-title: Opt. Exp.
– volume: 39
  start-page: 1696
  year: 2021
  end-page: 1705
  ident: b0035
  article-title: Complex-valued neural network design for mitigation of signal distortions in optical links
  publication-title: J. Lightw. Technol.
– volume: 9
  start-page: B1
  year: 2021
  end-page: B8
  ident: b0185
  article-title: Modulation format identification in fiber communications using single dynamical node-based photonic reservoir computing
  publication-title: Photon. Res.
– reference: W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations, Neural Comput. 14 (2022) 2531–2560, doi:10.1162/089976602760407955.
– volume: 37
  start-page: 1621
  year: 2019
  end-page: 1630
  ident: b0245
  article-title: Machine learning for 100 Gb/s/λ passive optical network
  publication-title: J. Lightw. Technol.
– volume: 4
  start-page: 837
  year: 2021
  end-page: 844
  ident: b0045
  article-title: A silicon photonic–electronic neural network for fibre nonlinearity compensation
  publication-title: Nat. Electron.
– volume: 37
  start-page: 2232
  year: 2019
  end-page: 2239
  ident: b0195
  article-title: A neuromorphic silicon photonics nonlinear equalizer for optical communications with intensity modulation and direct detection
  publication-title: J. Lightw. Technol.
– volume: 8
  start-page: 2204
  year: 2017
  ident: b0095
  article-title: Reservoir computing using dynamic memristors for temporal information processing
  publication-title: Nat. Commun.
– volume: 26
  start-page: 1
  year: 2020
  end-page: 9
  ident: b0205
  article-title: Comparison of photonic reservoir computing systems for fiber transmission equalization
  publication-title: IEEE J. Sel. Top. Quant. Electron.
– volume: 26
  start-page: 388
  year: 2015
  end-page: 393
  ident: b0090
  article-title: Delay-based reservoir computing: noise effects in a combined analog and digital implementation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 27
  start-page: 27431
  year: 2019
  end-page: 27440
  ident: b0145
  article-title: Reservoir computing system with double optoelectronic feedback loops
  publication-title: Opt. Exp.
– volume: X 7
  start-page: 1
  year: 2021
  ident: 10.1016/j.optlastec.2024.110697_b0040
  article-title: Prospects and applications of photonic neural networks
  publication-title: Adv. Phys.
– volume: 7
  start-page: 37017
  year: 2019
  ident: 10.1016/j.optlastec.2024.110697_b0200
  article-title: PAM-4 transmission at 1550 nm using photonic reservoir computing post-processing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2905422
– volume: 25
  start-page: 2401
  year: 2017
  ident: 10.1016/j.optlastec.2024.110697_b0110
  article-title: Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback
  publication-title: Opt. Exp.
  doi: 10.1364/OE.25.002401
– volume: 42
  start-page: 375
  year: 2017
  ident: 10.1016/j.optlastec.2024.110697_b0105
  article-title: Prediction performance of reservoir computing systems based on a diode-pumped erbium-doped microchip laser subject to optical feedback
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.000375
– ident: 10.1016/j.optlastec.2024.110697_b0215
  doi: 10.1364/OE.435013
– volume: 26
  start-page: 10211
  year: 2018
  ident: 10.1016/j.optlastec.2024.110697_b0165
  article-title: Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection
  publication-title: Opt. Exp.
  doi: 10.1364/OE.26.010211
– volume: 26
  start-page: 3416
  year: 2008
  ident: 10.1016/j.optlastec.2024.110697_b0010
  article-title: Compensation of dispersion and nonlinear impairments using digital backpropagation
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2008.927791
– ident: 10.1016/j.optlastec.2024.110697_b0210
  doi: 10.1109/JLT.2021.3117921
– volume: 495
  year: 2021
  ident: 10.1016/j.optlastec.2024.110697_b0225
  article-title: Signal recovery based on optoelectronic reservoir computing for high speed optical fiber communication system
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2021.127082
– volume: 37
  start-page: 2232
  year: 2019
  ident: 10.1016/j.optlastec.2024.110697_b0195
  article-title: A neuromorphic silicon photonics nonlinear equalizer for optical communications with intensity modulation and direct detection
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2019.2900568
– volume: 39
  start-page: 1696
  year: 2021
  ident: 10.1016/j.optlastec.2024.110697_b0035
  article-title: Complex-valued neural network design for mitigation of signal distortions in optical links
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2020.3042414
– volume: 4
  start-page: 837
  year: 2021
  ident: 10.1016/j.optlastec.2024.110697_b0045
  article-title: A silicon photonic–electronic neural network for fibre nonlinearity compensation
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-021-00661-2
– volume: 30
  start-page: 310
  year: 2012
  ident: 10.1016/j.optlastec.2024.110697_b0015
  article-title: Intrachannel nonlinearity compensation by inverse Volterra series transfer function
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2011.2182038
– volume: 3
  start-page: 127
  year: 2009
  ident: 10.1016/j.optlastec.2024.110697_b0075
  article-title: Reservoir computing approaches to recurrent neural network training
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2009.03.005
– volume: 26
  start-page: 1
  year: 2020
  ident: 10.1016/j.optlastec.2024.110697_b0175
  article-title: Reservoir computing using laser networks
  publication-title: IEEE J. Sel. Top. Quant. Electron.
  doi: 10.1109/JSTQE.2019.2927578
– ident: 10.1016/j.optlastec.2024.110697_b0170
  doi: 10.1364/OE.27.023293
– volume: 26
  start-page: 1
  year: 2020
  ident: 10.1016/j.optlastec.2024.110697_b0205
  article-title: Comparison of photonic reservoir computing systems for fiber transmission equalization
  publication-title: IEEE J. Sel. Top. Quant. Electron.
  doi: 10.1109/JSTQE.2019.2936947
– volume: 95
  start-page: 521
  year: 2005
  ident: 10.1016/j.optlastec.2024.110697_b0065
  article-title: Isolated word recognition with the liquid state machine: a case study
  publication-title: Inform. Process Lett.
  doi: 10.1016/j.ipl.2005.05.019
– volume: 9
  start-page: B1
  year: 2021
  ident: 10.1016/j.optlastec.2024.110697_b0185
  article-title: Modulation format identification in fiber communications using single dynamical node-based photonic reservoir computing
  publication-title: Photon. Res.
  doi: 10.1364/PRJ.409114
– volume: 8
  start-page: 2204
  year: 2017
  ident: 10.1016/j.optlastec.2024.110697_b0095
  article-title: Reservoir computing using dynamic memristors for temporal information processing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02337-y
– volume: 252
  start-page: 162
  year: 2005
  ident: 10.1016/j.optlastec.2024.110697_b0255
  article-title: Immunization of WDM systems to nonlinearity-induced crosstalk using optical polarization-shift-keying
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2005.04.010
– volume: 5
  start-page: 14945
  year: 2015
  ident: 10.1016/j.optlastec.2024.110697_b0085
  article-title: A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron
  publication-title: Sci. Rep.
  doi: 10.1038/srep14945
– start-page: 262
  year: 2002
  ident: 10.1016/j.optlastec.2024.110697_b0235
  article-title: Optical signal processing with electro-absorption modulators
  publication-title: OFC 2002 Tech. Dig.
– volume: 17
  start-page: 2206
  year: 2005
  ident: 10.1016/j.optlastec.2024.110697_b0240
  article-title: Performance of single-mode fiber links using electronic feed-forward and decision feedback equalizers
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2005.856326
– volume: 39
  start-page: 475
  year: 2021
  ident: 10.1016/j.optlastec.2024.110697_b0030
  article-title: Feedforward and recurrent neural network-based transfer learning for nonlinear equalization in short-reach optical links
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2020.3031363
– volume: 2
  start-page: 468
  year: 2011
  ident: 10.1016/j.optlastec.2024.110697_b0080
  article-title: Information processing using a single dynamical node as complex system
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1476
– volume: 5
  start-page: 3541
  year: 2014
  ident: 10.1016/j.optlastec.2024.110697_b0150
  article-title: Experimental demonstration of reservoir computing on a silicon photonics chip
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4541
– volume: 26
  start-page: 1
  year: 2020
  ident: 10.1016/j.optlastec.2024.110697_b0180
  article-title: Reservoir computing using multiple lasers with feedback on a photonic integrated circuit
  publication-title: IEEE J. Sel. Topics Quant. Electron.
  doi: 10.1109/JSTQE.2019.2929179
– volume: 20
  start-page: 3241
  year: 2012
  ident: 10.1016/j.optlastec.2024.110697_b0135
  article-title: Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing
  publication-title: Opt. Exp.
  doi: 10.1364/OE.20.003241
– volume: 37
  start-page: 1621
  year: 2019
  ident: 10.1016/j.optlastec.2024.110697_b0245
  article-title: Machine learning for 100 Gb/s/λ passive optical network
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2018.2888547
– volume: 32
  start-page: 978
  year: 2021
  ident: 10.1016/j.optlastec.2024.110697_b0220
  article-title: Micro-ring resonator based photonic reservoir computing for PAM equalization
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2021.3087323
– volume: 29
  start-page: 1
  year: 2023
  ident: 10.1016/j.optlastec.2024.110697_b0190
  article-title: Enhanced performance of reservoir computing using multiple self-injection and mutual injection VCSELs
  publication-title: IEEE J. Sel. Topics Quant. Electron.
– volume: 28
  start-page: 423
  year: 2010
  ident: 10.1016/j.optlastec.2024.110697_b0005
  article-title: Approaching the non-linear Shannon limit
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2009.2030693
– volume: 29
  start-page: 1
  year: 2023
  ident: 10.1016/j.optlastec.2024.110697_b0050
  article-title: Multi-wavelength photonic neuromorphic computing for intra and inter-channel distortion compensations in WDM optical communication systems
  publication-title: IEEE J. Sel. Topics Quant. Electron.
– ident: 10.1016/j.optlastec.2024.110697_b0100
  doi: 10.1364/OE.21.000012
– volume: 2
  start-page: 287
  year: 2012
  ident: 10.1016/j.optlastec.2024.110697_b0130
  article-title: Optoelectronic reservoir computing
  publication-title: Sci. Rep.
  doi: 10.1038/srep00287
– volume: 22
  start-page: 10868
  year: 2014
  ident: 10.1016/j.optlastec.2024.110697_b0140
  article-title: All-optical reservoir computer based on saturation of absorption
  publication-title: Opt. Exp.
  doi: 10.1364/OE.22.010868
– volume: 304
  start-page: 78
  year: 2004
  ident: 10.1016/j.optlastec.2024.110697_b0060
  article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
  doi: 10.1126/science.1091277
– volume: 4
  start-page: 307
  year: 2017
  ident: 10.1016/j.optlastec.2024.110697_b0020
  article-title: Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives
  publication-title: Optica
  doi: 10.1364/OPTICA.4.000307
– volume: 20
  start-page: 391
  year: 2007
  ident: 10.1016/j.optlastec.2024.110697_b0070
  article-title: An experimental unification of reservoir computing methods
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2007.04.003
– volume: 27
  start-page: 27431
  year: 2019
  ident: 10.1016/j.optlastec.2024.110697_b0145
  article-title: Reservoir computing system with double optoelectronic feedback loops
  publication-title: Opt. Exp.
  doi: 10.1364/OE.27.027431
– volume: 11
  start-page: 3694
  year: 2020
  ident: 10.1016/j.optlastec.2024.110697_b0025
  article-title: Advancing theoretical understanding and practical performance of signal processing for nonlinear optical communications through machine learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17516-7
– volume: 26
  start-page: 388
  year: 2015
  ident: 10.1016/j.optlastec.2024.110697_b0090
  article-title: Delay-based reservoir computing: noise effects in a combined analog and digital implementation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2311855
– ident: 10.1016/j.optlastec.2024.110697_b0055
  doi: 10.1162/089976602760407955
– ident: 10.1016/j.optlastec.2024.110697_b0115
  doi: 10.1109/JSTQE.2019.2952594
– volume: 5
  year: 2020
  ident: 10.1016/j.optlastec.2024.110697_b0125
  article-title: Experimental realization of dual task processing with a photonic reservoir computer
  publication-title: APL Photon.
  doi: 10.1063/5.0017574
– volume: 23
  start-page: 3566
  year: 2005
  ident: 10.1016/j.optlastec.2024.110697_b0230
  article-title: Dispersion-compensating fibers
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2005.855873
– volume: 26
  start-page: 1
  year: 2020
  ident: 10.1016/j.optlastec.2024.110697_b0120
  article-title: Optical reservoir computing using multiple light scattering for chaotic systems prediction
  publication-title: IEEE J. Sel. Topics Quant. Electron.
  doi: 10.1109/JSTQE.2019.2936281
– ident: 10.1016/j.optlastec.2024.110697_b0160
  doi: 10.1364/OE.22.031356
– volume: 22
  start-page: 8672
  year: 2014
  ident: 10.1016/j.optlastec.2024.110697_b0155
  article-title: Fast photonic information processing using semiconductor lasers with delayed optical feedback: Role of phase dynamics
  publication-title: Opt. Exp.
  doi: 10.1364/OE.22.008672
– volume: 26
  start-page: 24190
  year: 2018
  ident: 10.1016/j.optlastec.2024.110697_b0250
  article-title: Fiber-optic transmission and networking: the previous 20 and the next 20 years
  publication-title: Opt. Exp.
  doi: 10.1364/OE.26.024190
SSID ssj0004653
Score 2.3877065
Snippet •A reservoir computing (RC) is operated optically without O/E/O conversion.•The all-optical RC mitigates nonlinear distortion in a 3960-km fiber link.•Phase...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110697
SubjectTerms Long-haul transmission
Nonlinear equalization
Nonlinearity mitigation
Optical fiber communication
Photonic reservoir computing
Title Coherent all-optical reservoir computing for nonlinear equalization in long-haul optical fiber communication systems
URI https://dx.doi.org/10.1016/j.optlastec.2024.110697
Volume 174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF2KIuhBtCrWj7IHr2s33Xx6K8VSFXuy0FvYbDYaCWlJU4_-dmeySW1B6MHjhkyy7Cwz7_DeG0LuYh7rII5iBt1YMlslUAc9z2K-H3PXd6SQFRnzdeKOp_bzzJm1yLDRwiCtsq79pqZX1bp-0qtPs7dIU9T4QvlFW1W7avwoNLdtD2_5_be1oY2snSgF1Bt4e4vjNV-UgFFLjV6GfRsp8S66P_3VoTa6zuiEHNdwkQ7Mjk5JS-dtcrRhItgmBxWJUy3PSIlaC3RbojLLGPwVE0BRX1R8zdOCqmqCAwRRQKo0NyYZsqC6UlYaPSZNc5rN83f2IVcZbb6RIK8E43_FJNR4QC_PyXT0-DYcs3qqAlPCckpmyb6ME4E4w9LCFbbLA2UlWgE4UDqQyvMioaTteY5KFOAHnriKK1gL7WgeiAuyBzvUl4RGToJ2dlzoAGBV34145KvA0wAyHBELv0Pc5iRDVVuO4-SLLGy4ZZ_hOgUhpiA0KegQvg5cGNeN3SEPTarCrQsUQm_YFXz1n-Brcogrw-G9IXtlsdK3gFTKqFtdxS7ZHzy9jCc_1hHrwg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gxqgHo6gRn3vwWtmyfXozRIIKnCDh1my3W8U0QKB49Lc70wdCYsLBYx_Tbnbame_wfd8A3Ec80n4URgZ2Y2lYKsY66Lqm4XkRdzxbCpmRMXt9pzO0Xkf2qAKtUgtDtMqi9uc1PavWxZlGsZuN2XhMGl8sv2SramWN396BXQt_Xxpj8PBtrokjCytKgQUHb98geU1nKYLUVJOZYdMiTrxD9k9_tai1ttM-hqMCL7KnfEknUNGTGhyuuQjWYC9jcarFKaQktiC7JSaTxMC3UgYYCYzmX9PxnKlshAMGMYSqbJK7ZMg505m0MhdksvGEJdPJu_EhlwkrnxETsYTif9UkLDeBXpzBsP08aHWMYqyCoYRpp4YpmzKKBQENUwtHWA73lRlrhehAaV8q1w2Fkpbr2ipWCCB47Ciu8FhoW3NfnEMVV6gvgIV2TH52XGgfcVXTCXnoKd_ViDJsEQmvDk65k4EqPMdp9EUSlOSyz2CVgoBSEOQpqANfBc5y243tIY9lqoKNLyjA5rAt-PI_wXew3xn0ukH3pf92BQd0JSf0XkM1nS_1DcKWNLzNPssfQZztUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherent+all-optical+reservoir+computing+for+nonlinear+equalization+in+long-haul+optical+fiber+communication+systems&rft.jtitle=Optics+and+laser+technology&rft.au=Peng%2C+Guanju&rft.au=Liu%2C+Yaping&rft.au=Li%2C+Zheng&rft.au=Zhu%2C+Kunpeng&rft.date=2024-07-01&rft.issn=0030-3992&rft.volume=174&rft.spage=110697&rft_id=info:doi/10.1016%2Fj.optlastec.2024.110697&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlastec_2024_110697
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon