Molecular Dynamics Study on Deformation Mechanism of Grain Boundaries in Magnesium Crystal: Based on Coincidence Site Lattice Theory
As for magnesium (Mg) alloys, it has been noted that they are inferior to plastic deformation, but improvement in the mechanical properties by further refinement of grain size has been recently suggested. It means the importance of atomistic view of polycrystalline interface of Mg crystal. In this s...
Saved in:
Published in | Journal of materials Vol. 2018; pp. 1 - 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
01.01.2018
John Wiley & Sons, Inc Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As for magnesium (Mg) alloys, it has been noted that they are inferior to plastic deformation, but improvement in the mechanical properties by further refinement of grain size has been recently suggested. It means the importance of atomistic view of polycrystalline interface of Mg crystal. In this study, to discuss the deformation mechanism of polycrystalline Mg, atomistic grain boundary (GB) models by using coincidence site lattice (CSL) theory are constructed and are simulated for their relaxed and deformatted structures. First, GB structures in which the axis of rotation is in [11¯00] direction are relaxed at 10 Kelvin, and the GB energies are evaluated. Then, the deformation mechanism of each GB model under uniaxial tensile loading is observed by using the molecular dynamics (MD) method. The present MD simulations are based on embedded atom method (EAM) potential for Mg crystal. As a result, we were able to observe atomistically a variety of GB structures and to recognize significant difference in deformation mechanism between low-angle GBs and high-angle GBs. A close scrutiny is made on phenomena of dislocation emission processes peculiar to each atomistic local structure in high-angle GBs. |
---|---|
AbstractList | As for magnesium (Mg) alloys, it has been noted that they are inferior to plastic deformation, but improvement in the mechanical properties by further refinement of grain size has been recently suggested. It means the importance of atomistic view of polycrystalline interface of Mg crystal. In this study, to discuss the deformation mechanism of polycrystalline Mg, atomistic grain boundary (GB) models by using coincidence site lattice (CSL) theory are constructed and are simulated for their relaxed and deformatted structures. First, GB structures in which the axis of rotation is in [1100] direction are relaxed at 10 Kelvin, and the GB energies are evaluated. Then, the deformation mechanism of each GB model under uniaxial tensile loading is observed by using the molecular dynamics (MD) method. The present MD simulations are based on embedded atom method (EAM) potential for Mg crystal. As a result, we were able to observe atomistically a variety of GB structures and to recognize significant difference in deformation mechanism between low-angle GBs and high-angle GBs. A close scrutiny is made on phenomena of dislocation emission processes peculiar to each atomistic local structure in high-angle GBs. As for magnesium (Mg) alloys, it has been noted that they are inferior to plastic deformation, but improvement in the mechanical properties by further refinement of grain size has been recently suggested. It means the importance of atomistic view of polycrystalline interface of Mg crystal. In this study, to discuss the deformation mechanism of polycrystalline Mg, atomistic grain boundary (GB) models by using coincidence site lattice (CSL) theory are constructed and are simulated for their relaxed and deformatted structures. First, GB structures in which the axis of rotation is in [11¯00] direction are relaxed at 10 Kelvin, and the GB energies are evaluated. Then, the deformation mechanism of each GB model under uniaxial tensile loading is observed by using the molecular dynamics (MD) method. The present MD simulations are based on embedded atom method (EAM) potential for Mg crystal. As a result, we were able to observe atomistically a variety of GB structures and to recognize significant difference in deformation mechanism between low-angle GBs and high-angle GBs. A close scrutiny is made on phenomena of dislocation emission processes peculiar to each atomistic local structure in high-angle GBs. As for magnesium (Mg) alloys, it has been noted that they are inferior to plastic deformation, but improvement in the mechanical properties by further refinement of grain size has been recently suggested. It means the importance of atomistic view of polycrystalline interface of Mg crystal. In this study, to discuss the deformation mechanism of polycrystalline Mg, atomistic grain boundary (GB) models by using coincidence site lattice (CSL) theory are constructed and are simulated for their relaxed and deformatted structures. First, GB structures in which the axis of rotation is in [ 1 1 ¯ 00 ] direction are relaxed at 10 Kelvin, and the GB energies are evaluated. Then, the deformation mechanism of each GB model under uniaxial tensile loading is observed by using the molecular dynamics (MD) method. The present MD simulations are based on embedded atom method (EAM) potential for Mg crystal. As a result, we were able to observe atomistically a variety of GB structures and to recognize significant difference in deformation mechanism between low-angle GBs and high-angle GBs. A close scrutiny is made on phenomena of dislocation emission processes peculiar to each atomistic local structure in high-angle GBs. |
Audience | Academic |
Author | Takahashi, Yoshimasa Saitoh, Ken-ichi Takuma, Masanori Kuramitsu, Kohei Sato, Tomohiro |
Author_xml | – sequence: 1 givenname: Ken-ichi orcidid: 0000-0001-6308-7367 surname: Saitoh fullname: Saitoh, Ken-ichi organization: Department of Mechanical Engineering Faculty of Engineering Kansai University 3-3-35 Yamate-cho Suita Osaka 564-8680 Japan kansai-u.ac.jp – sequence: 2 givenname: Kohei surname: Kuramitsu fullname: Kuramitsu, Kohei organization: Mitsubishi Electric Corporation Japan mitsubishielectric.com – sequence: 3 givenname: Tomohiro surname: Sato fullname: Sato, Tomohiro organization: Department of Mechanical Engineering Faculty of Engineering Kansai University 3-3-35 Yamate-cho Suita Osaka 564-8680 Japan kansai-u.ac.jp – sequence: 4 givenname: Masanori orcidid: 0000-0003-4774-3234 surname: Takuma fullname: Takuma, Masanori organization: Department of Mechanical Engineering Faculty of Engineering Kansai University 3-3-35 Yamate-cho Suita Osaka 564-8680 Japan kansai-u.ac.jp – sequence: 5 givenname: Yoshimasa surname: Takahashi fullname: Takahashi, Yoshimasa organization: Department of Mechanical Engineering Faculty of Engineering Kansai University 3-3-35 Yamate-cho Suita Osaka 564-8680 Japan kansai-u.ac.jp |
BookMark | eNp9kctuFDEQRVsoSISQHR9giSVM4mc_2CUTCEgzYpGwttzucqaibjvYbqHe8-F4mAgEAlSLqrLOLUv3Pq-OfPBQVS8ZPWNMqXNOWXsumRKylk-qYy6YXMm2kUc_57p-Vp2mdE8pZVw1jZDH1bdtGMHOo4nkavFmQpvITZ6HhQRPrsCFOJmMZd6C3RmPaSLBketo0JPLMPvBRIREyrY1dx4SzhNZxyVlM74llybBsD-0DugtDuAtkBvMQDYmZyzL7Q5CXF5UT50ZE5w-9pPq8_t3t-sPq82n64_ri83KCqbkSkHf2lYI1queN3WvGHdGmq5rGiqHWikrqRK9abnrHO2G3jXMCaeg4y1I68RJ9epw9yGGLzOkrO_DHH35UnMmeMeklOoXdWdG0OhdyNHYCZPVF6rtRDGONoU6-wtVaoBiYonGYXn_TcAPAhtDShGctph_eFuEOGpG9T5Hvc9RP-ZYRG_-ED1EnExc_oW_PuA7LMl8xf_T3wHa1qsh |
CitedBy_id | crossref_primary_10_32604_cmes_2022_017756 |
Cites_doi | 10.2320/jinstmet.69.303 10.1007/s11837-013-0803-0 10.1016/j.commatsci.2009.04.025 10.1557/jmr.2009.0422 10.1080/14786430902936707 10.2320/matertrans1960.5.14 10.1103/PhysRevLett.103.035503 10.1063/1.3687908 10.1088/0965-0393/4/3/004 10.1080/14786436708229748 10.1103/physrevb.29.6443 10.1021/j100303a014 10.1016/j.actamat.2014.03.014 10.1016/j.actamat.2010.07.036 10.1016/j.scriptamat.2010.01.047 10.1016/j.actamat.2014.01.014 10.1016/j.msea.2007.12.046 10.1016/j.jmps.2012.06.015 10.1016/0921-5093(94)90957-1 10.1021/nl203937t 10.1016/S0921-5093(00)01351-4 10.1016/j.msea.2011.02.082 10.1016/j.commatsci.2016.03.012 10.1016/j.actamat.2015.04.005 10.5940/jcrsj.22.270 10.1080/14786431003630835 10.1080/09500839.2013.833353 10.1016/S1359-6462(02)00282-8 10.1016/0036-9748(89)90303-7 10.1016/j.msea.2011.05.050 10.1016/j.commatsci.2017.01.027 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Ken-ichi Saitoh et al. COPYRIGHT 2018 John Wiley & Sons, Inc. Copyright © 2018 Ken-ichi Saitoh et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2018 Ken-ichi Saitoh et al. – notice: COPYRIGHT 2018 John Wiley & Sons, Inc. – notice: Copyright © 2018 Ken-ichi Saitoh et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1155/2018/4153464 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2314-4874 |
Editor | Fang, Te-Hua |
Editor_xml | – sequence: 1 givenname: Te-Hua surname: Fang fullname: Fang, Te-Hua |
EndPage | 10 |
ExternalDocumentID | A589377307 10_1155_2018_4153464 |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 16K05994 – fundername: Nippon Steel & Sumitomo Metal Corporation – fundername: Kansai University |
GroupedDBID | 4.4 5VS AAJEY ALMA_UNASSIGNED_HOLDINGS BENPR EBS EJD GROUPED_DOAJ HCIFZ IAO IHR KQ8 OK1 PIMPY RHU RHW RHX RNS TUS 0R~ 24P AAYXX ACCMX ADMLS CITATION H13 8FE 8FG ABJCF AFKRA BGLVJ CCPQU D1I IGS ITC KB. PDBOC PHGZM PHGZT PMFND PROAC AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c3154-5eb8c8331b5b276b512fa4a997704d655c4053ba82f9f09dbf71f3f5e928e4cf3 |
IEDL.DBID | BENPR |
ISSN | 2314-4866 |
IngestDate | Fri Jul 25 11:48:49 EDT 2025 Tue Jun 17 22:03:46 EDT 2025 Tue Jun 10 21:04:21 EDT 2025 Tue Jul 01 04:30:08 EDT 2025 Thu Apr 24 22:51:23 EDT 2025 Sun Jun 02 18:55:00 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3154-5eb8c8331b5b276b512fa4a997704d655c4053ba82f9f09dbf71f3f5e928e4cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4774-3234 0000-0001-6308-7367 |
OpenAccessLink | https://www.proquest.com/docview/2132914445?pq-origsite=%requestingapplication% |
PQID | 2132914445 |
PQPubID | 2069522 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2132914445 gale_infotracmisc_A589377307 gale_infotracacademiconefile_A589377307 crossref_citationtrail_10_1155_2018_4153464 crossref_primary_10_1155_2018_4153464 hindawi_primary_10_1155_2018_4153464 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 20180101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials |
PublicationYear | 2018 |
Publisher | Hindawi John Wiley & Sons, Inc Hindawi Limited |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Hindawi Limited |
References | 22 23 24 25 26 (28) 1980; 22 29 (8) 2016; 118 30 31 10 32 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 9 20 21 |
References_xml | – ident: 7 doi: 10.2320/jinstmet.69.303 – ident: 18 doi: 10.1007/s11837-013-0803-0 – ident: 29 doi: 10.1016/j.commatsci.2009.04.025 – ident: 19 doi: 10.1557/jmr.2009.0422 – ident: 16 doi: 10.1080/14786430902936707 – ident: 2 doi: 10.2320/matertrans1960.5.14 – ident: 15 doi: 10.1103/PhysRevLett.103.035503 – ident: 23 doi: 10.1063/1.3687908 – ident: 25 doi: 10.1088/0965-0393/4/3/004 – ident: 26 doi: 10.1080/14786436708229748 – ident: 24 doi: 10.1103/physrevb.29.6443 – ident: 30 doi: 10.1021/j100303a014 – ident: 11 doi: 10.1016/j.actamat.2014.03.014 – ident: 20 doi: 10.1016/j.actamat.2010.07.036 – ident: 13 doi: 10.1016/j.scriptamat.2010.01.047 – ident: 17 doi: 10.1016/j.actamat.2014.01.014 – ident: 5 doi: 10.1016/j.msea.2007.12.046 – ident: 22 doi: 10.1016/j.jmps.2012.06.015 – ident: 31 doi: 10.1016/0921-5093(94)90957-1 – ident: 10 doi: 10.1021/nl203937t – ident: 1 doi: 10.1016/S0921-5093(00)01351-4 – ident: 21 doi: 10.1016/j.msea.2011.02.082 – volume: 118 start-page: 124 year: 2016 ident: 8 publication-title: Computational Materials Science doi: 10.1016/j.commatsci.2016.03.012 – ident: 12 doi: 10.1016/j.actamat.2015.04.005 – volume: 22 start-page: 270 year: 1980 ident: 28 publication-title: Journal of the Crystallographic Society of Japan doi: 10.5940/jcrsj.22.270 – ident: 9 doi: 10.1080/14786431003630835 – ident: 14 doi: 10.1080/09500839.2013.833353 – ident: 4 doi: 10.1016/S1359-6462(02)00282-8 – ident: 3 doi: 10.1016/0036-9748(89)90303-7 – ident: 6 doi: 10.1016/j.msea.2011.05.050 – ident: 32 doi: 10.1016/j.commatsci.2017.01.027 |
SSID | ssj0001257734 |
Score | 2.0148425 |
Snippet | As for magnesium (Mg) alloys, it has been noted that they are inferior to plastic deformation, but improvement in the mechanical properties by further... |
SourceID | proquest gale crossref hindawi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Alloys Analysis Axes of rotation Computer simulation Crystal lattices Defects Deformation Deformation mechanisms Dislocations Embedded atom method Grain boundaries Lattice theory Loads (forces) Magnesium Magnesium base alloys Materials science Mechanical properties Metals Molecular dynamics Physics Plastic deformation Polycrystals Researchers Simulation Studies Twinning (Crystallography) |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA4qCHoQn1itkoPiQRa7eW3WW1sfRawXFXpbNtlEC9qKrYh3f7gzu6lYRfQYNpt9TDLzTTIzHyF7Dhm1nfFRyhyLhBWgB5WMI--YRcajBs_LaIsr1bkVFz3ZC0WSRj-P8MHagXse6yOwM1woMUtmYYKhU97pfdlKkUlSnh8DWBGR0EpNQty_3T5lfIIKnr9H5_e1_0MZlxbmbJksBWhIm5UsV8iMG6ySxS8FA9fIe3fCZktPKir5EcVIwDc6HNAT95mJSLsOM3r7o0c69PQcaSBoqyRQQs-YQqub34GS67880vbzGyDEh2PaAoNW4EDtIW7Al2Sj9BogKb3MxxgjR6tE_nVye3Z60-5EgUchshwQUiSd0VZzHhtpWKIM2HifizwF6NcQhZLSAmrjJtfMp76RFsYnsedeupRpJ6znG2RuMBy4TUJ9oZTXrogZuFmWW6MbxhunmE3AM-O6Rg4nPzizocg4cl08ZKWzIWWG4siCOGpk_7P3U1Vc45d-ByirDNccjGbzkDoA74TVq7KmRNQFuiqpkfpUT1grduryXpD2H8-rT6ZCFpb0KGPgt6fwkUJu_W-UbbKAzWq_pk7mxs8vbgcQzNjslvP3A9bK5fI priority: 102 providerName: Hindawi Publishing |
Title | Molecular Dynamics Study on Deformation Mechanism of Grain Boundaries in Magnesium Crystal: Based on Coincidence Site Lattice Theory |
URI | https://dx.doi.org/10.1155/2018/4153464 https://www.proquest.com/docview/2132914445 |
Volume | 2018 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fT9swELYGCGl7mDa2aWUd8gOIhymi8a84e0G0UKpB0caG1LcoduytEjRAiibe-cN3lziMaoK9RLJiOZHPvvvufOePkE2HjNrO-ChljkXCCtCDSsaRd8wi41GP53W2xYkanYkvEzkJAbcqpFW2OrFW1EVpMUa-w5ARHdC_kLuXVxGyRuHpaqDQWCIroII1OF8r_YOTr6cPoiwySeqjZcAxIhJaqTb7XUpw_GO9AxaMCyUW7FLQzqu_0C_-Pf1HT9fGZ_iKvAyoke41Yn5NnrnZGnnx4C7BNbJa53La6g25G7eUt3S_4ZuvKKYL3tJyRvfdfbkiHTss-51WF7T09BC5Imi_ZllC95lCa5z_BE04vbmgg-tbgJHnn2kfrF6BAw1KjNLXjKT0O8wRPc7nmEhHm2r_t-RsePBjMIoC2UJkOcCoSDqjreY8NtKwRBkAAj4XeQr4sCcKJaUFaMdNrplPfS8tjE9iz710KdNOWM_fkeVZOXPvCfWFUl67Imbgi1luje4Zb5xiNgEBct0hn9qpzmy4iRwJMc6z2iORMkPBZEEwHbJ13_uyuYHjkX7bKLUMNyaMZvNQXwD_hFdcZXsSoRkotKRDugs9YUPZhdebQe7_-V63XRRZ2PdV9neVrj_9-gN5joM1wZwuWZ5f37iPAG_mZoMs6eHhRljJ0Dr6puF5Opr8AWMt93c |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbG0AQ8IBggCgX8sIkHFLX1rzhICG0tXcfavbBJe8tix2aVtmZbOk195-_hb-TOScYqBDztMbJ1iXLnu-_s832EbDhk1HbGRwlzLBJWgB9Ushd5xywyHnV5Fqot9tXoUHw9kkcr5GdzFwbLKhufGBx1XljcI-8wZEQH9C_k5_OLCFmj8HS1odCozGLPLa4hZSs_7Q5Av5uMDb8c9EdRzSoQWQ54IZLOaKs57xlpWKwMRDyfiSwBINQVuZLSAobhJtPMJ76b5MbHPc-9dAnTTljPQe49cl9wnuCK0sOdW3s6Mo7DQTagJhEJrVRTay9lB0Kt7kC85EKJpShYx4K1E8zCr6d_RIUQ6oZPyOMao9KtyqiekhU3WyePbnUuXCdroXLUls_Ij0lDsEsHFbt9SbE4cUGLGR24m8uRdOLwkvG0PKOFpzvITEG3A6cTJusUnibZd_C706sz2r9cAGg9_Ui3IcbmKKhf4JlA4D-l30AjdJzNsWyPVr0FnpPDO1HCC7I6K2buJaE-V8prl_cYZH6WW6O7xhunmI3BXLhukQ_Nr05t3fcc6TdO05D_SJmiYtJaMS2yeTP7vOr38Zd571FrKboBkGaz-jYDfBM21Eq3JAJBcJ9xi7SXZsLytUvDG7Xe__O-dmMUae1lyvT3mnj17-F35MHoYDJOx7v7e6_JQxRcbSO1yer88sq9AWA1N2-DNVNyfNfL5xc_uC9- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGpyF4QDBAFAr4YRMPKGrqX0mQEFrblY2t1QRM2luIHXurtDVj6TT1nb-Kv467xBmrEPC0x8jWJcqd776zz_cRsmGRUdtqFyTMskAYAX5QyV7gLDPIeBTyrKq2mKidQ_HpSB6tkJ_NXRgsq2x8YuWo88LgHnmXISM6oH8hu86XRRwMRx_OvwfIIIUnrQ2dRm0ie3ZxBelb-X53CLreZGy0_XWwE3iGgcBwwA6BtDo2Mec9LTWLlIbo5zKRJQCKQpErKQ3gGa6zmLnEhUmuXdRz3EmbsNgK4zjIvUNWI8iKwhZZ7W9PDj7f2OGRUVQdawOGEoGIlWoq76XsQuCNuxA9uVBiKSb6yLB2gjn51fSPGFEFvtFD8sAjVrpVm9gjsmJn6-T-jT6G62StqiM15WPyY9zQ7dJhzXVfUixVXNBiRof2-qokHVu8cjwtz2jh6EfkqaD9iuEJU3cKT-PsGLzw9PKMDi4WAGFP39E-RNwcBQ0KPCGo2FDpF9AJ3c_mWMRH604DT8jhrajhKWnNipl9RqjLlXKxzXsM8kDDjY5D7bRVzERgPDxuk7fNr06N74KOZBynaZUNSZmiYlKvmDbZvJ59Xnf_-Mu8N6i1FJ0CSDOZv9sA34TttdItibAQnGnUJp2lmbCYzdLwhtf7f97XaYwi9T6nTH-vkOf_Hn5N7sLSSfd3J3svyD2UW-8pdUhrfnFpXwLKmutX3pwp-XbbK-gXtrw1EA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Dynamics+Study+on+Deformation+Mechanism+of+Grain+Boundaries+in+Magnesium+Crystal%3A+Based+on+Coincidence+Site+Lattice+Theory&rft.jtitle=Journal+of+materials&rft.au=Saitoh%2C+Ken-ichi&rft.au=Kuramitsu%2C+Kohei&rft.au=Sato%2C+Tomohiro&rft.au=Takuma%2C+Masanori&rft.date=2018-01-01&rft.pub=Hindawi+Limited&rft.issn=2314-4866&rft.eissn=2314-4874&rft.volume=2018&rft_id=info:doi/10.1155%2F2018%2F4153464&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2314-4866&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2314-4866&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2314-4866&client=summon |