Repurposing Poloxamers as Antimicrobial Agents: A Comprehensive Review of Mechanisms and Applications
ABSTRACT In the last decades, the misuse and overuse of antimicrobial medications have precipitated the appearance of antimicrobial resistance, a phenomenon associated with around 4.95 million deaths per year worldwide. Control of this resistance represents the biggest challenge for antimicrobial th...
Saved in:
Published in | Drug development research Vol. 86; no. 5; pp. e70130 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
In the last decades, the misuse and overuse of antimicrobial medications have precipitated the appearance of antimicrobial resistance, a phenomenon associated with around 4.95 million deaths per year worldwide. Control of this resistance represents the biggest challenge for antimicrobial therapies and novel drug formulations. Poloxamers are nonionic synthetic triblock copolymers used as excipients for formulating antibiotics, mainly as emulsifying agents, gelling agents, surfactants, and humectants. It has been discovered that poloxamers may have antimicrobial activity as microbicides or micro biostatics or can also potentiate other germicide drugs' efficacy. This review aims to examine the use of poloxamers and synthesize their potential mechanisms of action as antimicrobial drugs for treating microbial infections. This review's methodology included sourcing articles from PubMed, Google Scholar, and Scopus, using specific medical subject headings terms to warranty precision and pertinence. Poloxamer action mechanisms include quorum sensing inhibition, cellular membrane disruption, bacterial biofilm inhibition, and disruptions in bacteria cell walls. Results of Molecular docking demonstrated that poloxamers could interact directly with active sites of adhesion proteins and alter their functioning. Our experimental tests showed that poloxamers 188 and 407 possess the potential to be antimicrobial agents by effectively inhibiting Staphylococcus aureus and Pseudomonas aeruginosa growth. Despite the convincing evidence, further research is required to overcome challenges related to poloxamers' bioavailability and establish effective dosing regimens for different poloxamers to warrant their use and safety as antimicrobial drugs. |
---|---|
AbstractList | In the last decades, the misuse and overuse of antimicrobial medications have precipitated the appearance of antimicrobial resistance, a phenomenon associated with around 4.95 million deaths per year worldwide. Control of this resistance represents the biggest challenge for antimicrobial therapies and novel drug formulations. Poloxamers are nonionic synthetic triblock copolymers used as excipients for formulating antibiotics, mainly as emulsifying agents, gelling agents, surfactants, and humectants. It has been discovered that poloxamers may have antimicrobial activity as microbicides or micro biostatics or can also potentiate other germicide drugs' efficacy. This review aims to examine the use of poloxamers and synthesize their potential mechanisms of action as antimicrobial drugs for treating microbial infections. This review's methodology included sourcing articles from PubMed, Google Scholar, and Scopus, using specific medical subject headings terms to warranty precision and pertinence. Poloxamer action mechanisms include quorum sensing inhibition, cellular membrane disruption, bacterial biofilm inhibition, and disruptions in bacteria cell walls. Results of Molecular docking demonstrated that poloxamers could interact directly with active sites of adhesion proteins and alter their functioning. Our experimental tests showed that poloxamers 188 and 407 possess the potential to be antimicrobial agents by effectively inhibiting Staphylococcus aureus and Pseudomonas aeruginosa growth. Despite the convincing evidence, further research is required to overcome challenges related to poloxamers' bioavailability and establish effective dosing regimens for different poloxamers to warrant their use and safety as antimicrobial drugs. ABSTRACT In the last decades, the misuse and overuse of antimicrobial medications have precipitated the appearance of antimicrobial resistance, a phenomenon associated with around 4.95 million deaths per year worldwide. Control of this resistance represents the biggest challenge for antimicrobial therapies and novel drug formulations. Poloxamers are nonionic synthetic triblock copolymers used as excipients for formulating antibiotics, mainly as emulsifying agents, gelling agents, surfactants, and humectants. It has been discovered that poloxamers may have antimicrobial activity as microbicides or micro biostatics or can also potentiate other germicide drugs' efficacy. This review aims to examine the use of poloxamers and synthesize their potential mechanisms of action as antimicrobial drugs for treating microbial infections. This review's methodology included sourcing articles from PubMed, Google Scholar, and Scopus, using specific medical subject headings terms to warranty precision and pertinence. Poloxamer action mechanisms include quorum sensing inhibition, cellular membrane disruption, bacterial biofilm inhibition, and disruptions in bacteria cell walls. Results of Molecular docking demonstrated that poloxamers could interact directly with active sites of adhesion proteins and alter their functioning. Our experimental tests showed that poloxamers 188 and 407 possess the potential to be antimicrobial agents by effectively inhibiting Staphylococcus aureus and Pseudomonas aeruginosa growth. Despite the convincing evidence, further research is required to overcome challenges related to poloxamers' bioavailability and establish effective dosing regimens for different poloxamers to warrant their use and safety as antimicrobial drugs. In the last decades, the misuse and overuse of antimicrobial medications have precipitated the appearance of antimicrobial resistance, a phenomenon associated with around 4.95 million deaths per year worldwide. Control of this resistance represents the biggest challenge for antimicrobial therapies and novel drug formulations. Poloxamers are nonionic synthetic triblock copolymers used as excipients for formulating antibiotics, mainly as emulsifying agents, gelling agents, surfactants, and humectants. It has been discovered that poloxamers may have antimicrobial activity as microbicides or micro biostatics or can also potentiate other germicide drugs' efficacy. This review aims to examine the use of poloxamers and synthesize their potential mechanisms of action as antimicrobial drugs for treating microbial infections. This review's methodology included sourcing articles from PubMed, Google Scholar, and Scopus, using specific medical subject headings terms to warranty precision and pertinence. Poloxamer action mechanisms include quorum sensing inhibition, cellular membrane disruption, bacterial biofilm inhibition, and disruptions in bacteria cell walls. Results of Molecular docking demonstrated that poloxamers could interact directly with active sites of adhesion proteins and alter their functioning. Our experimental tests showed that poloxamers 188 and 407 possess the potential to be antimicrobial agents by effectively inhibiting Staphylococcus aureus and Pseudomonas aeruginosa growth. Despite the convincing evidence, further research is required to overcome challenges related to poloxamers' bioavailability and establish effective dosing regimens for different poloxamers to warrant their use and safety as antimicrobial drugs.In the last decades, the misuse and overuse of antimicrobial medications have precipitated the appearance of antimicrobial resistance, a phenomenon associated with around 4.95 million deaths per year worldwide. Control of this resistance represents the biggest challenge for antimicrobial therapies and novel drug formulations. Poloxamers are nonionic synthetic triblock copolymers used as excipients for formulating antibiotics, mainly as emulsifying agents, gelling agents, surfactants, and humectants. It has been discovered that poloxamers may have antimicrobial activity as microbicides or micro biostatics or can also potentiate other germicide drugs' efficacy. This review aims to examine the use of poloxamers and synthesize their potential mechanisms of action as antimicrobial drugs for treating microbial infections. This review's methodology included sourcing articles from PubMed, Google Scholar, and Scopus, using specific medical subject headings terms to warranty precision and pertinence. Poloxamer action mechanisms include quorum sensing inhibition, cellular membrane disruption, bacterial biofilm inhibition, and disruptions in bacteria cell walls. Results of Molecular docking demonstrated that poloxamers could interact directly with active sites of adhesion proteins and alter their functioning. Our experimental tests showed that poloxamers 188 and 407 possess the potential to be antimicrobial agents by effectively inhibiting Staphylococcus aureus and Pseudomonas aeruginosa growth. Despite the convincing evidence, further research is required to overcome challenges related to poloxamers' bioavailability and establish effective dosing regimens for different poloxamers to warrant their use and safety as antimicrobial drugs. |
Author | Leyva‐Gómez, Gerardo Borbolla‐Jiménez, Fabiola V. Moreno, Angélica Duarte‐Peña, Lorena Del Prado‐Audelo, María Luisa Cortés, Hernán Romero‐Montero, Alejandra Peña Corona, Sheila I. Pérez‐Caltzontzin, Luis E. Hernández‐Parra, Hector Sharifi‐Rad, Javad González‐Torres, Maykel |
Author_xml | – sequence: 1 givenname: Sheila I. surname: Peña Corona fullname: Peña Corona, Sheila I. email: sheila.irais.pc@gmail.com organization: Universidad Nacional Autónoma de México – sequence: 2 givenname: Fabiola V. surname: Borbolla‐Jiménez fullname: Borbolla‐Jiménez, Fabiola V. organization: Universidad Nacional Autónoma de México – sequence: 3 givenname: Lorena surname: Duarte‐Peña fullname: Duarte‐Peña, Lorena organization: Universidad Nacional Autónoma de México – sequence: 4 givenname: Angélica surname: Moreno fullname: Moreno, Angélica organization: Universidad Nacional Autónoma de México – sequence: 5 givenname: Luis E. surname: Pérez‐Caltzontzin fullname: Pérez‐Caltzontzin, Luis E. organization: Universidad Nacional Autónoma de México – sequence: 6 givenname: María Luisa orcidid: 0000-0003-4238-2724 surname: Del Prado‐Audelo fullname: Del Prado‐Audelo, María Luisa organization: Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias – sequence: 7 givenname: Alejandra orcidid: 0000-0002-3953-3002 surname: Romero‐Montero fullname: Romero‐Montero, Alejandra organization: Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias – sequence: 8 givenname: Maykel orcidid: 0000-0003-3899-4410 surname: González‐Torres fullname: González‐Torres, Maykel organization: Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra – sequence: 9 givenname: Hernán orcidid: 0000-0002-6147-4109 surname: Cortés fullname: Cortés, Hernán organization: Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra – sequence: 10 givenname: Hector surname: Hernández‐Parra fullname: Hernández‐Parra, Hector organization: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV‐IPN) – sequence: 11 givenname: Javad orcidid: 0000-0002-7301-8151 surname: Sharifi‐Rad fullname: Sharifi‐Rad, Javad email: javadsharifirad@uees.edu.ec organization: Korea University – sequence: 12 givenname: Gerardo orcidid: 0000-0002-7940-1100 surname: Leyva‐Gómez fullname: Leyva‐Gómez, Gerardo email: leyva@quimica.unam.mx organization: Universidad Nacional Autónoma de México |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40719268$$D View this record in MEDLINE/PubMed |
BookMark | eNp10U1P3DAQBmCroioL5dA_UFnqBQ5hZ-xsPnqLlo9WArValXPk2BMwSuxgb1j4982ytAckTnN53tFo3gO257wjxr4gnCKAmBsTTnNACR_YDKEsEiHKco_NQOQiSWWJ--wgxnsAxLQoPrH9FHIsRVbMGK1oGMPgo3W3_Lfv_JPqKUSuIq_c2vZWB99Y1fHqltw6fucVX_p-CHRHLtpH4it6tLThvuXXpO-Us7Gf0s7wahg6q9Xaehc_s4-t6iIdvc5DdnNx_mf5I7n6dflzWV0lWuICElkuGhSGBLRaYKaxyIpcg6Acm8wgKqEaIC1TUI0GQ0Yak0ul2hxSXSqSh-x4t3cI_mGkuK57GzV1nXLkx1hLIVMJeYaLiX57Q-_9GNx03VYVZYESxaS-vqqx6cnUQ7C9Cs_1vwdO4GQHpj_FGKj9TxDqbTn1VE79Us5k5zu7sR09vw_rs7PVLvEX1J2Pxw |
Cites_doi | 10.2174/138945011795906615 10.2147/IDR.S234610 10.3389/bjbs.2023.11387 10.1016/j.molliq.2022.119717 10.1007/BF01024566 10.3390/polym14245353 10.3390/molecules23030596 10.3390/ph16111615 10.1007/s11095-006-9104-4 10.3390/pharmaceutics11120671 10.3390/jfb9010011 10.1111/iwj.12922 10.1016/S0006-3495(01)75737-2 10.3390/pharmaceutics13020191 10.14715/cmb/2021.67.1.14 10.1093/jac/dkaa434 10.1016/j.heliyon.2017.e00390 10.3109/17435390.2012.736547 10.1080/10837450.2022.2084554 10.1371/journal.pone.0133886 10.1016/j.nano.2011.01.017 10.1590/s2175-97902022e19731 10.1016/S0090-9556(25)05778-2 10.1111/jicd.12056 10.1155/jnt/4522031 10.3390/molecules27103063 10.1016/j.ejpb.2017.01.008 10.1647/2016-220 10.3390/gels8040241 10.1016/0731-7085(95)01621-x 10.1016/B978-0-12-817909-3.00011-X 10.1016/j.ejpb.2016.06.013 10.1021/acsnano.3c12928 10.3390/pharmaceutics15041271 10.2174/1381612825666181120161300 10.1002/jssc.202100552 10.3390/microorganisms10091757 10.1038/s41598-021-92081-7 10.1016/S2214-109X(23)00539-9 10.22207/JPAM.14.3.28 10.3109/10837450.2014.930489 10.1016/j.ijpharm.2021.120635 10.1021/acs.biomac.0c00760 10.1016/j.jpha.2020.02.007 10.1016/j.msec.2016.12.127 10.1016/j.imu.2022.101089 10.3390/pharmaceutics15071914 10.1016/j.jconrel.2021.12.033 10.1007/s12275-011-1064-7 10.1016/j.msec.2019.02.036 10.1021/acs.chemrev.5b00441 10.3390/gels8060360 10.3109/10717544.2014.971196 10.1080/10915810802244595 10.1128/AAC.37.12.2754 10.1007/978-1-4614-8993-1_13 10.1128/AAC.39.2.435 10.1016/s0196-0644(80)80228-9 10.3934/microbiol.2022001 10.3390/pathogens10101310 10.1021/acsomega.9b03695 10.4314/tjpr.v13i9.2 10.1002/app.49325 10.1016/j.msec.2018.07.023 10.1039/C2RA20799K 10.1007/s40262-023-01213-x 10.1016/j.actbio.2020.04.028 10.3390/polym15030782 10.1016/j.resmic.2005.11.003 10.1016/j.disamonth.2020.100971 10.1007/BF00172813 10.1016/j.antiviral.2022.105362 10.1007/s00289-019-03046-w 10.1016/j.addr.2021.113973 10.1002/slct.202201477 10.1016/S0378-5173(98)00345-7 10.1128/AAC.44.4.1093-1096.2000 10.1186/2228-5547-4-12 10.1016/j.apsusc.2014.02.123 10.1016/j.colsurfb.2019.02.056 10.3390/pharmaceutics13122021 10.1080/14787210.2022.2013809 10.1645/19-80 10.3390/antibiotics10010081 10.3389/fmicb.2020.613581 10.1080/10837450600767342 10.1002/bdd.297 10.3390/pathogens9110885 10.1016/0927-7757(94)03028-X 10.1016/j.exppara.2016.07.005 10.3390/gels9100817 10.1016/j.mib.2014.02.008 10.3390/molecules23102522 10.1016/j.bpj.2011.12.029 10.1016/j.mtcomm.2023.105318 10.1021/acsomega.3c08917 10.3390/polym3020779 10.1016/B978-0-323-46152-8.00027-5 |
ContentType | Journal Article |
Copyright | 2025 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2025 Wiley Periodicals LLC. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 |
DOI | 10.1002/ddr.70130 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1098-2299 |
EndPage | n/a |
ExternalDocumentID | 40719268 10_1002_ddr_70130 DDR70130 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: This paper was supported by the grant PAPIME, PE205524. Gerardo Leyva‐Gómez acknowledges the financial support by PAPIIT IN204722 and PAPIME PE205524 from DGAPA‐UNAM. – fundername: This paper was supported by the grant PAPIME, PE205524. Gerardo Leyva-Gómez acknowledges the financial support by PAPIIT IN204722 and PAPIME PE205524 from DGAPA-UNAM. |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GWYGA H.T H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LSO LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIK WJL WOHZO WQJ WVDHM WXSBR XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c3150-395b12de20fc216c18687c02e71b6d11a2ab0ec340abc0ded3dd73aaf704c9ae3 |
IEDL.DBID | DR2 |
ISSN | 0272-4391 1098-2299 |
IngestDate | Tue Jul 29 18:15:48 EDT 2025 Sat Aug 23 12:45:51 EDT 2025 Thu Jul 31 01:53:46 EDT 2025 Thu Aug 21 00:23:05 EDT 2025 Wed Aug 13 09:41:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | antibiotic antimicrobial poloxamer pluronic antimicrobial resistance |
Language | English |
License | 2025 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3150-395b12de20fc216c18687c02e71b6d11a2ab0ec340abc0ded3dd73aaf704c9ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3899-4410 0000-0002-7940-1100 0000-0002-3953-3002 0000-0002-7301-8151 0000-0003-4238-2724 0000-0002-6147-4109 |
PMID | 40719268 |
PQID | 3238981312 |
PQPubID | 866385 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_3234307615 proquest_journals_3238981312 pubmed_primary_40719268 crossref_primary_10_1002_ddr_70130 wiley_primary_10_1002_ddr_70130_DDR70130 |
PublicationCentury | 2000 |
PublicationDate | August 2025 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Drug development research |
PublicationTitleAlternate | Drug Dev Res |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 4 2017; 3 2021; 67 2023; 34 1995; 39 1987; 9 2019; 99 2019; 11 2019; 55 2016; 107 2019; 12 2023; 9 2000; 44 2021; 602 2020; 14 2011; 12 2022; 20 2020; 11 2020; 10 2013; 7 2017; 114 2022; 27 2023; 80 1993; 37 2022; 362 2018; 9 2023; 62 2020; 5 2017; 74 2021; 76 2006; 23 2019; 24 2024; 9 2020; 9 2020; 137 2014; 13 2016; 116 1999; 177 2014; 18 2022; 33 2018; 32 2022; 204 1975; 3 1995; 96 2021; 44 2012; 102 2019; 75 2023; 15 2006; 11 2023; 16 2015; 10 2020; 106 2020; 77 2024; 12 2016; 169 2022; 44 2018; 23 1996; 14 2011; 3 2024; 18 2011; 7 2025; 2025 2006; 157 2022; 342 2021; 13 2001; 81 2014; 303 2021; 10 2012; 2 2021; 11 2008; 27 Suppl 2 2021; 178 2020; 110 2002; 23 2022; 7 2015; 20 2022; 8 1995; 43 2018; 92 2019 2022; 14 2022; 58 2017 1980; 9 2020; 66 2014 2022; 10 2013 2020; 21 2011; 49 2018; 15 2019; 178 2016; 23 e_1_2_15_104_1 e_1_2_15_42_1 e_1_2_15_88_1 e_1_2_15_69_1 e_1_2_15_3_1 e_1_2_15_80_1 Capozzi C. (e_1_2_15_16_1) 2019; 75 e_1_2_15_27_1 e_1_2_15_61_1 e_1_2_15_46_1 e_1_2_15_84_1 e_1_2_15_23_1 e_1_2_15_65_1 e_1_2_15_7_1 e_1_2_15_31_1 e_1_2_15_77_1 e_1_2_15_58_1 e_1_2_15_100_1 e_1_2_15_39_1 e_1_2_15_50_1 e_1_2_15_92_1 e_1_2_15_35_1 e_1_2_15_73_1 e_1_2_15_12_1 e_1_2_15_54_1 e_1_2_15_96_1 Swanson E. (e_1_2_15_93_1) 2019; 55 e_1_2_15_20_1 e_1_2_15_43_1 e_1_2_15_66_1 e_1_2_15_89_1 e_1_2_15_28_1 e_1_2_15_81_1 e_1_2_15_2_1 e_1_2_15_24_1 e_1_2_15_47_1 e_1_2_15_62_1 e_1_2_15_85_1 e_1_2_15_6_1 e_1_2_15_32_1 e_1_2_15_55_1 e_1_2_15_78_1 e_1_2_15_59_1 e_1_2_15_17_1 e_1_2_15_70_1 e_1_2_15_101_1 e_1_2_15_13_1 e_1_2_15_36_1 e_1_2_15_51_1 e_1_2_15_74_1 e_1_2_15_97_1 Sarideechaigul W. (e_1_2_15_82_1) 2022; 44 e_1_2_15_21_1 e_1_2_15_67_1 e_1_2_15_40_1 e_1_2_15_29_1 e_1_2_15_48_1 e_1_2_15_25_1 e_1_2_15_63_1 e_1_2_15_44_1 e_1_2_15_86_1 e_1_2_15_9_1 e_1_2_15_90_1 e_1_2_15_5_1 e_1_2_15_10_1 e_1_2_15_56_1 e_1_2_15_79_1 e_1_2_15_18_1 e_1_2_15_94_1 e_1_2_15_102_1 e_1_2_15_37_1 e_1_2_15_71_1 e_1_2_15_14_1 e_1_2_15_52_1 e_1_2_15_98_1 e_1_2_15_33_1 e_1_2_15_75_1 e_1_2_15_103_1 e_1_2_15_19_1 e_1_2_15_41_1 e_1_2_15_68_1 e_1_2_15_26_1 e_1_2_15_49_1 e_1_2_15_60_1 e_1_2_15_83_1 e_1_2_15_22_1 e_1_2_15_45_1 e_1_2_15_64_1 e_1_2_15_87_1 e_1_2_15_8_1 e_1_2_15_4_1 e_1_2_15_30_1 e_1_2_15_57_1 e_1_2_15_99_1 e_1_2_15_15_1 e_1_2_15_38_1 e_1_2_15_72_1 e_1_2_15_91_1 e_1_2_15_11_1 e_1_2_15_34_1 e_1_2_15_53_1 e_1_2_15_76_1 e_1_2_15_95_1 |
References_xml | – volume: 15 start-page: 1271 issue: 4 year: 2023 article-title: Box–Behnken Design of Experiments of Polycaprolactone Nanoparticles Loaded With Irinotecan Hydrochloride publication-title: Pharmaceutics – volume: 14 start-page: 659 issue: 5 year: 1996 end-page: 665 article-title: Disposition of Poloxamer 407 in Rats Following a Single Intraperitoneal Injection Assessed Using a Simplified Colorimetric Assay publication-title: Journal of Pharmaceutical and Biomedical Analysis – volume: 8 start-page: 241 issue: 4 year: 2022 article-title: Development and Optimization of Hyaluronic Acid‐Poloxamer In‐Situ Gel Loaded With Voriconazole Cubosomes for Enhancement of Activity Against Ocular Fungal Infection publication-title: Gels – volume: 14 issue: 24 year: 2022 article-title: Investigation and Characterization of Factors Affecting Rheological Properties of Poloxamer‐Based Thermo‐Sensitive Hydrogel publication-title: Polymers – volume: 157 start-page: 99 year: 2006 end-page: 107 article-title: Bap: A Family of Surface Proteins Involved in Biofilm Formation publication-title: Research in Microbiology – volume: 10 start-page: 522 issue: 6 year: 2020 end-page: 531 article-title: Three‐Dimensional Aspects of Formulation Excipients in Drug Discovery: A Critical Assessment on Orphan Excipients, Matrix Effects and Drug Interactions publication-title: Journal of Pharmaceutical Analysis – volume: 43 start-page: 206 issue: 2 year: 1995 end-page: 210 article-title: Effect of Perfluorodecalin as An Oxygen Carrier on Actinorhodin Production by Streptomyces Coelicolor A3(2) publication-title: Applied Microbiology and Biotechnology – volume: 23 issue: 10 year: 2018 article-title: New N‐(Oxazolylmethyl)‐Thiazolidinedione Active Against Biofilm: Potential Als Proteins Inhibitors publication-title: Molecules – volume: 3 start-page: 536 issue: 6 year: 1975 end-page: 542 article-title: Disposition in Rats of a Polyoxypropylene‐Polyoxyethylene Copolymer Used in Plasma Fractionation publication-title: Drug Metabolism and Disposition – volume: 3 start-page: 779 issue: 2 year: 2011 end-page: 811 article-title: Thermosensitive Self‐Assembling Block Copolymers as Drug Delivery Systems publication-title: Polymers – volume: 11 start-page: 275 issue: 3 year: 2006 end-page: 284 article-title: The Importance of the Cosolvent Propylene Glycol on the Antimicrobial Preservative Efficacy of a Pharmaceutical Formulation by DOE‐Ruggedness Testing publication-title: Pharmaceutical Development and Technology – volume: 9 start-page: 23209 issue: 22 year: 2024 end-page: 23219 article-title: Poloxamer‐Based Mixed Micelles Loaded With Thymol or Eugenol for Topical Applications publication-title: ACS Omega – volume: 92 start-page: 621 year: 2018 end-page: 630 article-title: Evaluation of Anti‐Biofilm and Cytotoxic Effect of a Gel Formulation With Pluronic F‐127 and Silver Nanoparticles as a Potential Treatment for Skin Wounds publication-title: Materials Science and Engineering: C – volume: 204 year: 2022 article-title: Poloxamer 188—Quercetin Formulations Amplify In Vitro Ganciclovir Antiviral Activity Against Cytomegalovirus publication-title: Antiviral Research – volume: 32 start-page: 45 issue: 1 year: 2018 end-page: 49 article-title: Use of a Compounded Poloxamer 407 Antibiotic Topical Therapy as Part of the Successful Management of Chronic Ulcerative Dermatitis in a Congo African Grey Parrot ( ) publication-title: Journal of Avian Medicine and Surgery – volume: 362 year: 2022 article-title: Thermosensitive Gels of Pullulan and Poloxamer 407 as Potential Injectable Biomaterials publication-title: Journal of Molecular Liquids – volume: 23 start-page: 2709 year: 2006 end-page: 2728 article-title: A Review of Poloxamer 407 Pharmaceutical and Pharmacological Characteristics publication-title: Pharmaceutical Research – volume: 67 start-page: 96 issue: 1 year: 2021 end-page: 100 article-title: Development of Films From Natural Sources for Infections During Wound Healing publication-title: Cellular and Molecular Biology – volume: 13 start-page: 2021 issue: 12 year: 2021 article-title: Antimicrobial Activities of Propolis in Poloxamer Based Topical Gels publication-title: Pharmaceutics – volume: 20 start-page: 681 issue: 5 year: 2022 end-page: 706 article-title: The War Against Bacteria, From the Past to Present and Beyond publication-title: Expert Review of Anti‐Infective Therapy – volume: 75 start-page: 429 year: 2019 end-page: 450 article-title: Antimicrobial Resistance: It Is a Global Crisis, ‘A Slow Tsunami’ publication-title: Igiene e Sanita Pubblica – volume: 178 start-page: 214 year: 2019 end-page: 221 article-title: Transforming An Inert Nanopolymer Into Broad‐Spectrum Bactericidal by Superstructure Tuning publication-title: Colloids and Surfaces B: Biointerfaces – volume: 13 start-page: 191 issue: 2 year: 2021 article-title: Polycaprolactone Nanoparticles as Promising Candidates for Nanocarriers in Novel Nanomedicines publication-title: Pharmaceutics – volume: 7 start-page: 624 issue: 5 year: 2011 end-page: 637 article-title: Synergistic Encapsulation of the Anti‐HIV Agent Efavirenz Within Mixed Poloxamine/Poloxamer Polymeric Micelles publication-title: Nanomedicine: Nanotechnology, Biology and Medicine – volume: 33 year: 2022 article-title: Biological Activity of and Seed Extracts Against the Biofilm‐Associated Protein of : An In Vitro and In Silico Studies publication-title: Informatics in Medicine Unlocked – volume: 44 start-page: 1093 issue: 4 year: 2000 end-page: 1096 article-title: Control of Staphylococcal Adhesion to Polymethylmethacrylate and Enhancement of Susceptibility to Antibiotics by Poloxamer 407 publication-title: Antimicrobial Agents and Chemotherapy – volume: 116 start-page: 2170 issue: 4 year: 2016 end-page: 2243 article-title: Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation publication-title: Chemical Reviews – volume: 9 issue: 11 year: 2020 article-title: Poloxamer 338 Affects Cell Adhesion and Biofilm Formation in : Potential Applications in the Management of Catheter‐Associated Urinary Tract Infections publication-title: Pathogens – volume: 14 start-page: 1893 year: 2020 end-page: 1903 article-title: Battling Biofilm Forming Nosocomial Pathogens Using Chitosan and Pluronic F127 publication-title: Journal of Pure and Applied Microbiology – volume: 76 start-page: 443 issue: 2 year: 2021 end-page: 450 article-title: In Vitro Assessment of CSA‐131 and CSA‐131 Poloxamer Form for the Treatment of Stenotrophomonas Maltophilia Infections in Cystic Fibrosis publication-title: Journal of Antimicrobial Chemotherapy – volume: 106 start-page: 323 issue: 3 year: 2020 end-page: 333 article-title: Benznidazole/Poloxamer 407 Solid Dispersion as a New Strategy to Improve the Treatment of Experimental Trypanosoma Cruzi Infection publication-title: Journal of Parasitology – volume: 9 issue: 1 year: 2018 article-title: Formulation of Poloxamers for Drug Delivery publication-title: Journal of Functional Biomaterials – volume: 7 start-page: 1272 issue: 7 year: 2013 end-page: 1281 article-title: Generation of Toxic Degradation Products by Sonication of Pluronic Dispersants: Implications for Nanotoxicity Testing publication-title: Nanotoxicology – volume: 37 start-page: 2754 issue: 12 year: 1993 end-page: 2755 article-title: Effect of Scrubbing and Irrigation on Staphylococcal and Streptococcal Counts in Contaminated Lacerations publication-title: Antimicrobial Agents and Chemotherapy – volume: 16 issue: 11 year: 2023 article-title: Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review publication-title: Pharmaceuticals – volume: 10 issue: 7 year: 2015 article-title: Pluronics‐Formulated Farnesol Promotes Efficient Killing and Demonstrates Novel Interactions With Streptococcus Mutans Biofilms publication-title: PLoS One – volume: 8 start-page: 1 issue: 1 year: 2022 end-page: 4 article-title: Antimicrobial Agents and Microbial Ecology publication-title: AIMS Microbiology – volume: 107 start-page: 67 year: 2016 end-page: 79 article-title: Melatonin‐Loaded Chitosan/Pluronic F127 Microspheres as In Situ Forming Hydrogel: An Innovative Antimicrobial Wound Dressing publication-title: European Journal of Pharmaceutics and Biopharmaceutics – volume: 602 year: 2021 article-title: Highlights in Poloxamer‐Based Drug Delivery Systems as Strategy at Local Application for Vaginal Infections publication-title: International Journal of Pharmaceutics – volume: 303 start-page: 147 year: 2014 end-page: 154 article-title: Washing‐Resistant Surfactant Coated Surface Is Able to Inhibit Pathogenic Bacteria Adhesion publication-title: Applied Surface Science – volume: 137 start-page: 1 year: 2020 end-page: 14 article-title: Phase Behavior, in Vitro Drug Release, and Antibacterial Activity of Thermoresponsive Poloxamer–Polyvinyl Alcohol Hydrogel‐Loaded Mupirocin Nanoparticles publication-title: Journal of Applied Polymer Science – volume: 49 start-page: 171 issue: 2 year: 2011 end-page: 177 article-title: , a Major Human Fungal Pathogen publication-title: Journal of Microbiology – volume: 169 start-page: 34 year: 2016 end-page: 42 article-title: Poloxamer 407 (Pluronic F127)‐Based Polymeric Micelles for Amphotericin B: In Vitro Biological Activity, Toxicity and In Vivo Therapeutic Efficacy Against Murine Tegumentary Leishmaniasis publication-title: Experimental Parasitology – volume: 9 start-page: 817 issue: 10 year: 2023 article-title: Lamotrigine‐Loaded Poloxamer‐Based Thermo‐Responsive Sol–Gel: Formulation, In Vitro Assessment, Ex Vivo Permeation, and Toxicology Study publication-title: Gels – volume: 18 start-page: 7580 issue: 10 year: 2024 end-page: 7595 article-title: Digital Light Processing 4D Printing of Poloxamer Micelles for Facile Fabrication of Multifunctional Biocompatible Hydrogels as Tailored Wearable Sensors publication-title: ACS Nano – volume: 21 start-page: 2983 issue: 8 year: 2020 end-page: 3006 article-title: Natural Polymer‐Based Antimicrobial Hydrogels Without Synthetic Antibiotics as Wound Dressings publication-title: Biomacromolecules – year: 2013 – volume: 58 year: 2022 article-title: Poloxamer‐Enhanced Solubility of Griseofulvin and Its Related Antifungal Activity Against Trichophyton spp publication-title: Brazilian Journal of Pharmaceutical Sciences – volume: 177 start-page: 137 issue: 2 year: 1999 end-page: 159 article-title: Surfactants in Membrane Solubilisation publication-title: International Journal of Pharmaceutics – volume: 9 start-page: 572 issue: 11 year: 1980 end-page: 576 article-title: Pluronic F‐68: a Promising New Skin Wound Cleanser publication-title: Annals of Emergency Medicine – volume: 11 issue: 1 year: 2021 article-title: Evaluation of the Anti‐Biofilm Effect of Poloxamer‐Based Thermoreversible Gel of Silver Nanoparticles as a Potential Medication for Root Canal Therapy publication-title: Scientific Reports – volume: 15 start-page: 782 issue: 3 year: 2023 article-title: Coating Materials to Increase the Stability of Liposomes publication-title: Polymers – volume: 9 start-page: 195 year: 1987 end-page: 200 article-title: Effects of Emulsified Perfluorochemicals on Growth and Ultrastructure of Microbial Cells in Culture publication-title: Biotechnology Letters – volume: 2 start-page: 7166 year: 2012 end-page: 7173 article-title: Role of Block Copolymer Surfactant on the Pore Formation in Methylsilsesquioxane Aerogel Systems publication-title: RSC Advances – start-page: 597 year: 2017 end-page: 622 – volume: 10 year: 2021 article-title: Back to Nature: Combating Biofilm, Phospholipase and Hemolysin Using Plant Essential Oils publication-title: Antibiotics (USSR) – volume: 18 start-page: 96 year: 2014 end-page: 104 article-title: Biofilm Dispersion and Quorum Sensing publication-title: Current Opinion in Microbiology – volume: 102 start-page: 498 issue: 3 year: 2012 end-page: 506 article-title: Classifying Surfactants With Respect to Their Effect on Lipid Membrane Order publication-title: Biophysical Journal – volume: 44 start-page: 3822 issue: 20 year: 2021 end-page: 3829 article-title: Ultra‐High‐Performance Liquid Chromatography Coupled With Quadrupole Time of Flight Mass Spectrometry Method for Quantifying Polymer Poloxamer 124 and Its Application to Pharmacokinetic Study publication-title: Journal of Separation Science – volume: 74 start-page: 36 year: 2017 end-page: 46 article-title: A Novel Hydrogel of Poloxamer 407 and Chitosan Obtained by Gamma Irradiation Exhibits Physicochemical Properties for Wound Management publication-title: Materials Science and Engineering: C – start-page: 401 year: 2019 end-page: 447 – volume: 7 issue: 31 year: 2022 article-title: Synthesis, Characterization and Antimicrobial Activity of Poloxamer‐Assisted Copper Nanoparticles: Investigating the Effects of Different Concentrations of Poloxamer 407 publication-title: ChemistrySelect – volume: 8 issue: 6 year: 2022 article-title: Poloxamer‐Based Scaffolds for Tissue Engineering Applications: A Review publication-title: Gels – volume: 11 issue: 12 year: 2019 article-title: Poloxamer Hydrogels for Biomedical Applications publication-title: Pharmaceutics – volume: 96 start-page: 1 issue: 1 year: 1995 end-page: 46 article-title: Poly(Ethylene Oxide)‐Poly(Propylene Oxide)‐Poly(Ethylene Oxide) Block Copolymer Surfactants in Aqueous Solutions and at Interfaces: Thermodynamics, Structure, Dynamics, and Modeling publication-title: Colloids and Surfaces, A: Physicochemical and Engineering Aspects – volume: 81 start-page: 725 issue: 2 year: 2001 end-page: 736 article-title: Mesoscopic Simulation of Cell Membrane Damage, Morphology Change and Rupture by Nonionic Surfactants publication-title: Biophysical Journal – volume: 178 year: 2021 article-title: Challenges and Solutions in Polymer Drug Delivery for Bacterial Biofilm Treatment: A Tissue‐by‐Tissue Account publication-title: Advanced Drug Delivery Reviews – volume: 62 start-page: 209 issue: 2 year: 2023 end-page: 220 article-title: Pharmacokinetic Alterations Associated With Critical Illness publication-title: Clinical Pharmacokinetics – volume: 80 year: 2023 article-title: Antimicrobial Resistance (AMR) publication-title: British Journal of Biomedical Science – volume: 13 start-page: 1385 year: 2014 end-page: 1391 article-title: Evaluation of Hydrogels Based on Poloxamer 407 and Polyacrylic Acids for Enhanced Topical Activity of Gentamicin Against Susceptible Infections publication-title: Tropical Journal of Pharmaceutical Research – volume: 44 start-page: 1298 issue: 5 year: 2022 end-page: 1305 article-title: Effect of Oral Moisturizers Containing Chitosan and Poloxamer 407 on Biofilm Formation of Candida Species and Streptococcus Mutans: In Vitro publication-title: Songklanakarin Journal of Science & Technology – volume: 66 issue: 6 year: 2020 article-title: Antimicrobial Resistance, Mechanisms and Its Clinical Significance publication-title: Disease‐a‐Month – volume: 15 start-page: 749 issue: 5 year: 2018 end-page: 755 article-title: Mode of Action of Poloxamer‐Based Surfactants in Wound Care and Efficacy on Biofilms publication-title: International wound journal – volume: 12 start-page: 3903 year: 2019 end-page: 3910 article-title: Antimicrobial Resistance: Implications and Costs publication-title: Infection and Drug Resistance – volume: 20 start-page: 863 issue: 7 year: 2015 end-page: 871 article-title: Poloxamer‐Based Curcumin Solid Dispersions for Ex Tempore Preparation of Supersaturated Solutions Intended for Antimicrobial Photodynamic Therapy publication-title: Pharmaceutical Development and Technology – volume: 39 start-page: 435 issue: 2 year: 1995 end-page: 439 article-title: Enhancement of Antibiotic Susceptibility and Suppression of Mycobacterium Avium Complex Growth by Poloxamer 331 publication-title: Antimicrobial Agents and Chemotherapy – volume: 55 start-page: 1 year: 2019 end-page: 13 article-title: Novel Use of Poloxamer 407—Antibiotic Compounds to Treat Antimicrobial‐Resistant Soft Tissue Infections in Dogs publication-title: Biomedical Sciences Instrumentation – volume: 12 start-page: e201 issue: 2 year: 2024 end-page: e216 article-title: The Burden of Bacterial Antimicrobial Resistance in the WHO African Region in 2019: A Cross‐Country Systematic Analysis publication-title: Lancet Global Health – volume: 23 start-page: 2272 issue: 7 year: 2016 end-page: 2279 article-title: Non‐Ionic Surfactants as Novel Intranasal Absorption Enhancers: In Vitro and In Vivo Characterization publication-title: Drug Delivery – volume: 15 issue: 7 year: 2023 article-title: Films for Wound Healing Fabricated Using a Solvent Casting Technique publication-title: Pharmaceutics – volume: 12 start-page: 1112 issue: 8 year: 2011 end-page: 1130 article-title: PEO‐PPO Block Copolymers for Passive Micellar Targeting and Overcoming Multidrug Resistance in Cancer Therapy publication-title: Current Drug Targets – volume: 11 year: 2020 article-title: Revisiting Bap Multidomain Protein: More Than Sticking Bacteria Together publication-title: Frontiers in Microbiology – volume: 34 year: 2023 article-title: Pharmaceutical Polymers and P‐Glycoprotein: Current Trends and Possible Outcomes in Drug Delivery publication-title: Materials Today Communications – volume: 23 issue: 3 year: 2018 article-title: Antibacterial and Antifungal Activities of Poloxamer Micelles Containing Ceragenin CSA‐131 on Ciliated Tissues publication-title: Molecules – volume: 2025 issue: 1 year: 2025 article-title: Nano‐Boosted Oils: A New Frontline Against Biofilm Resistance publication-title: Journal of Nanotechnology – volume: 27 Suppl 2 start-page: 93 year: 2008 end-page: 128 article-title: Safety Assessment of Poloxamers 101, 105, 108, 122, 123, 124, 181, 182, 183, 184, 185, 188, 212, 215, 217, 231, 234, 235, 237, 238, 282, 284, 288, 331, 333, 334, 335, 338, 401, 402, 403, and 407, Poloxamer 105 Benzoate, and Poloxamer 182 Dibenzoate as Used in Cosmetics publication-title: International Journal of Toxicology – volume: 27 start-page: 525 issue: 5 year: 2022 end-page: 544 article-title: Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: A Review of the Methods of Manufacture and Routes of Administration publication-title: Pharmaceutical Development and Technology – volume: 27 start-page: 3063 issue: 10 year: 2022 article-title: Poloxamer 407/188 Binary Thermosensitive Gel as a Moxidectin Delivery System: In Vitro Release and In Vivo Evaluation publication-title: Molecules – volume: 10 issue: 10 year: 2021 article-title: Bacterial Antibiotic Resistance: The Most Critical Pathogens publication-title: Pathogens – volume: 10 start-page: 1757 issue: 9 year: 2022 article-title: The Multifunctional Role of Poloxamer P338 as a Biofilm Disrupter and Antibiotic Enhancer: A Small Step Forward Against the Big Trouble of Catheter‐Associated Urinary Tract Infections publication-title: Microorganisms – volume: 23 start-page: 87 issue: 3 year: 2002 end-page: 103 article-title: Pharmacokinetics of a Novel Surface‐Active Agent, Purified Poloxamer 188, in Rat, Rabbit, Dog and Man publication-title: Biopharmaceutics & Drug Disposition – volume: 3 issue: 8 year: 2017 article-title: Thermogelling Properties of Purified Poloxamer 407 publication-title: Heliyon – start-page: 281 year: 2014 end-page: 298 – volume: 99 start-page: 1350 year: 2019 end-page: 1361 article-title: Sodium Alginate on Oil‐Poloxamer Organogels for Intravaginal Drug Delivery: Influence on Structural Parameters, Drug Release Mechanisms, Cytotoxicity and In Vitro Antifungal Activity publication-title: Materials Science and Engineering: C – volume: 77 start-page: 5783 year: 2020 end-page: 5810 article-title: Self‐Assembly of Stimuli‐Responsive Block Copolymers in Aqueous Solutions: An Overview publication-title: Polymer Bulletin – volume: 5 start-page: 3108 issue: 7 year: 2020 end-page: 3115 article-title: Small‐Molecule Inhibition of Bacterial Biofilm publication-title: ACS Omega – volume: 4 start-page: 219 issue: 4 year: 2013 end-page: 224 article-title: Effectiveness of Artocarpus Lakoocha Extract, Poloxamer 407, on Enterococcus Faecalis In Vitro publication-title: Journal of Investigative and Clinical Dentistry – volume: 114 start-page: 119 year: 2017 end-page: 134 article-title: Poloxamer‐Based Thermoresponsive Ketorolac Tromethamine In Situ Gel Preparations: Design, Characterisation, Toxicity and Transcorneal Permeation Studies publication-title: European Journal of Pharmaceutics and Biopharmaceutics – volume: 110 start-page: 37 year: 2020 end-page: 67 article-title: Poloxamer: A Versatile Tri‐Block Copolymer for Biomedical Applications publication-title: Acta Biomaterialia – volume: 24 start-page: 3859 issue: 32 year: 2019 end-page: 3866 article-title: Antimicrobial, Anticancer Drug Carrying Properties of Biopolymers‐Based Nanocomposites—A Mini Review publication-title: Current Pharmaceutical Design – volume: 4 year: 2013 article-title: Micelles, Mixed Micelles, and Applications of Polyoxypropylene (Ppo)‐Polyoxyethylene (Peo)‐Polyoxypropylene (Ppo) Triblock Polymers publication-title: International Journal of Industrial Chemistry – volume: 342 start-page: 337 year: 2022 end-page: 344 article-title: Accelerated Blood Clearance and Hypersensitivity by PEGylated Liposomes Containing TLR Agonists publication-title: Journal of Controlled Release – ident: e_1_2_15_8_1 doi: 10.2174/138945011795906615 – ident: e_1_2_15_22_1 doi: 10.2147/IDR.S234610 – ident: e_1_2_15_94_1 doi: 10.3389/bjbs.2023.11387 – ident: e_1_2_15_11_1 doi: 10.1016/j.molliq.2022.119717 – ident: e_1_2_15_18_1 doi: 10.1007/BF01024566 – ident: e_1_2_15_19_1 doi: 10.3390/polym14245353 – ident: e_1_2_15_37_1 doi: 10.3390/molecules23030596 – ident: e_1_2_15_65_1 doi: 10.3390/ph16111615 – ident: e_1_2_15_28_1 doi: 10.1007/s11095-006-9104-4 – ident: e_1_2_15_80_1 doi: 10.3390/pharmaceutics11120671 – ident: e_1_2_15_12_1 doi: 10.3390/jfb9010011 – volume: 75 start-page: 429 year: 2019 ident: e_1_2_15_16_1 article-title: Antimicrobial Resistance: It Is a Global Crisis, ‘A Slow Tsunami’ publication-title: Igiene e Sanita Pubblica – ident: e_1_2_15_71_1 doi: 10.1111/iwj.12922 – ident: e_1_2_15_36_1 doi: 10.1016/S0006-3495(01)75737-2 – ident: e_1_2_15_3_1 – ident: e_1_2_15_57_1 doi: 10.3390/pharmaceutics13020191 – ident: e_1_2_15_51_1 doi: 10.14715/cmb/2021.67.1.14 – ident: e_1_2_15_68_1 doi: 10.1093/jac/dkaa434 – ident: e_1_2_15_32_1 doi: 10.1016/j.heliyon.2017.e00390 – ident: e_1_2_15_101_1 doi: 10.3109/17435390.2012.736547 – ident: e_1_2_15_4_1 doi: 10.1080/10837450.2022.2084554 – ident: e_1_2_15_62_1 doi: 10.1371/journal.pone.0133886 – ident: e_1_2_15_20_1 doi: 10.1016/j.nano.2011.01.017 – ident: e_1_2_15_73_1 doi: 10.1590/s2175-97902022e19731 – volume: 55 start-page: 1 year: 2019 ident: e_1_2_15_93_1 article-title: Novel Use of Poloxamer 407—Antibiotic Compounds to Treat Antimicrobial‐Resistant Soft Tissue Infections in Dogs publication-title: Biomedical Sciences Instrumentation – ident: e_1_2_15_102_1 doi: 10.1016/S0090-9556(25)05778-2 – ident: e_1_2_15_95_1 doi: 10.1111/jicd.12056 – ident: e_1_2_15_77_1 doi: 10.1155/jnt/4522031 – ident: e_1_2_15_79_1 doi: 10.3390/molecules27103063 – ident: e_1_2_15_33_1 doi: 10.1016/j.ejpb.2017.01.008 – ident: e_1_2_15_72_1 doi: 10.1647/2016-220 – ident: e_1_2_15_6_1 doi: 10.3390/gels8040241 – ident: e_1_2_15_53_1 doi: 10.1016/0731-7085(95)01621-x – ident: e_1_2_15_90_1 doi: 10.1016/B978-0-12-817909-3.00011-X – ident: e_1_2_15_78_1 doi: 10.1016/j.ejpb.2016.06.013 – ident: e_1_2_15_86_1 doi: 10.1021/acsnano.3c12928 – ident: e_1_2_15_42_1 – ident: e_1_2_15_58_1 doi: 10.3390/pharmaceutics15041271 – ident: e_1_2_15_81_1 doi: 10.2174/1381612825666181120161300 – ident: e_1_2_15_54_1 doi: 10.1002/jssc.202100552 – ident: e_1_2_15_38_1 doi: 10.3390/microorganisms10091757 – ident: e_1_2_15_56_1 doi: 10.1038/s41598-021-92081-7 – ident: e_1_2_15_83_1 doi: 10.1016/S2214-109X(23)00539-9 – ident: e_1_2_15_29_1 doi: 10.22207/JPAM.14.3.28 – ident: e_1_2_15_100_1 doi: 10.3109/10837450.2014.930489 – ident: e_1_2_15_17_1 doi: 10.1016/j.ijpharm.2021.120635 – ident: e_1_2_15_104_1 doi: 10.1021/acs.biomac.0c00760 – ident: e_1_2_15_98_1 doi: 10.1016/j.jpha.2020.02.007 – ident: e_1_2_15_52_1 doi: 10.1016/j.msec.2016.12.127 – ident: e_1_2_15_63_1 doi: 10.1016/j.imu.2022.101089 – ident: e_1_2_15_14_1 doi: 10.3390/pharmaceutics15071914 – ident: e_1_2_15_91_1 doi: 10.1016/j.jconrel.2021.12.033 – ident: e_1_2_15_47_1 doi: 10.1007/s12275-011-1064-7 – ident: e_1_2_15_74_1 doi: 10.1016/j.msec.2019.02.036 – ident: e_1_2_15_39_1 doi: 10.1021/acs.chemrev.5b00441 – ident: e_1_2_15_21_1 doi: 10.3390/gels8060360 – ident: e_1_2_15_55_1 doi: 10.3109/10717544.2014.971196 – ident: e_1_2_15_88_1 doi: 10.1080/10915810802244595 – ident: e_1_2_15_40_1 doi: 10.1128/AAC.37.12.2754 – ident: e_1_2_15_24_1 doi: 10.1007/978-1-4614-8993-1_13 – ident: e_1_2_15_41_1 doi: 10.1128/AAC.39.2.435 – ident: e_1_2_15_76_1 doi: 10.1016/s0196-0644(80)80228-9 – ident: e_1_2_15_26_1 doi: 10.3934/microbiol.2022001 – ident: e_1_2_15_59_1 doi: 10.3390/pathogens10101310 – ident: e_1_2_15_34_1 doi: 10.1021/acsomega.9b03695 – ident: e_1_2_15_67_1 doi: 10.4314/tjpr.v13i9.2 – ident: e_1_2_15_44_1 doi: 10.1002/app.49325 – ident: e_1_2_15_7_1 doi: 10.1016/j.msec.2018.07.023 – ident: e_1_2_15_49_1 doi: 10.1039/C2RA20799K – ident: e_1_2_15_64_1 doi: 10.1007/s40262-023-01213-x – ident: e_1_2_15_103_1 doi: 10.1016/j.actbio.2020.04.028 – ident: e_1_2_15_69_1 doi: 10.3390/polym15030782 – ident: e_1_2_15_50_1 doi: 10.1016/j.resmic.2005.11.003 – ident: e_1_2_15_2_1 doi: 10.1016/j.disamonth.2020.100971 – ident: e_1_2_15_31_1 doi: 10.1007/BF00172813 – ident: e_1_2_15_48_1 doi: 10.1016/j.antiviral.2022.105362 – ident: e_1_2_15_46_1 doi: 10.1007/s00289-019-03046-w – ident: e_1_2_15_45_1 doi: 10.1016/j.addr.2021.113973 – ident: e_1_2_15_70_1 doi: 10.1002/slct.202201477 – ident: e_1_2_15_43_1 doi: 10.1016/S0378-5173(98)00345-7 – ident: e_1_2_15_99_1 doi: 10.1128/AAC.44.4.1093-1096.2000 – ident: e_1_2_15_87_1 doi: 10.1186/2228-5547-4-12 – ident: e_1_2_15_96_1 doi: 10.1016/j.apsusc.2014.02.123 – ident: e_1_2_15_84_1 doi: 10.1016/j.colsurfb.2019.02.056 – ident: e_1_2_15_9_1 doi: 10.3390/pharmaceutics13122021 – ident: e_1_2_15_15_1 doi: 10.1080/14787210.2022.2013809 – ident: e_1_2_15_23_1 doi: 10.1645/19-80 – ident: e_1_2_15_30_1 doi: 10.3390/antibiotics10010081 – ident: e_1_2_15_97_1 doi: 10.3389/fmicb.2020.613581 – ident: e_1_2_15_25_1 doi: 10.1080/10837450600767342 – ident: e_1_2_15_35_1 doi: 10.1002/bdd.297 – ident: e_1_2_15_92_1 doi: 10.3390/pathogens9110885 – ident: e_1_2_15_5_1 doi: 10.1016/0927-7757(94)03028-X – ident: e_1_2_15_61_1 doi: 10.1016/j.exppara.2016.07.005 – ident: e_1_2_15_75_1 doi: 10.3390/gels9100817 – ident: e_1_2_15_89_1 doi: 10.1016/j.mib.2014.02.008 – ident: e_1_2_15_60_1 doi: 10.3390/molecules23102522 – ident: e_1_2_15_66_1 doi: 10.1016/j.bpj.2011.12.029 – volume: 44 start-page: 1298 issue: 5 year: 2022 ident: e_1_2_15_82_1 article-title: Effect of Oral Moisturizers Containing Chitosan and Poloxamer 407 on Biofilm Formation of Candida Species and Streptococcus Mutans: In Vitro publication-title: Songklanakarin Journal of Science & Technology – ident: e_1_2_15_10_1 doi: 10.1016/j.mtcomm.2023.105318 – ident: e_1_2_15_85_1 doi: 10.1021/acsomega.3c08917 – ident: e_1_2_15_13_1 doi: 10.3390/polym3020779 – ident: e_1_2_15_27_1 doi: 10.1016/B978-0-323-46152-8.00027-5 |
SSID | ssj0011488 |
Score | 2.4003334 |
SecondaryResourceType | review_article |
Snippet | ABSTRACT
In the last decades, the misuse and overuse of antimicrobial medications have precipitated the appearance of antimicrobial resistance, a phenomenon... In the last decades, the misuse and overuse of antimicrobial medications have precipitated the appearance of antimicrobial resistance, a phenomenon associated... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e70130 |
SubjectTerms | Animals Anti-Bacterial Agents - pharmacology Anti-Infective Agents - chemistry Anti-Infective Agents - pharmacology antibiotic Antibiotics antimicrobial Antimicrobial activity Antimicrobial agents Antimicrobial resistance Bacteria Bioavailability Biofilms Biofilms - drug effects Block copolymers Cell membranes Cell walls Disruption Drug Repositioning Effectiveness Emulsifying agents Humans Microbicides Microorganisms Molecular docking pluronic poloxamer Poloxamer - chemistry Poloxamer - pharmacology Poloxamers Quorum sensing |
Title | Repurposing Poloxamers as Antimicrobial Agents: A Comprehensive Review of Mechanisms and Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fddr.70130 https://www.ncbi.nlm.nih.gov/pubmed/40719268 https://www.proquest.com/docview/3238981312 https://www.proquest.com/docview/3234307615 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD6IT77YVm2b1spUivTBrMlMMrOjT0utiGBZRMGHQphb6FLMls0u1P76zpnZZLWlUHwLyUwucy7z5Zw53wB8kKamktcm9WDDpYUpTapLbVKqykLYWmTCYjXy5Rd-flNc3Ja3a3DS1cJEfog-4IaWEfw1GrjS7dGKNNTa2UBg3s37X1yrhYDoqqeOQpgfvDAVWBUk845VKKNHfc_Hc9FfAPMxXg0Tztkz-Nq9alxn8n2wmOuB-fUHi-MTv-U5bC6BKBlFzXkBa67ZgoNxZLK-PyTXq8Ks9pAckPGK4_p-G5wH7l5EU4w0kLE_-VNhAJyoloya-eRuEvid8P5YutUekxFBzzNz3-KCeRJzEmRak0uHxceT9s73biwZPcio78DN2efrT-fpcseG1DAv7JTJUufUOprVhubcIBe_MBl1Itfc5rmiSmfOsCJT2mTWWWatYEp5nSiMVI69hPVm2rjXQHhNFbe10tQWyHovlZJlLZjL3JAbrhPY72RX_YjEHFWkYKaVH84qDGcCu51Uq6VtthXzKEUOc5bTBN73l71VYapENW66CG0KhiGeMoFXURv6p-AvsKR8mMDHINN_P746Pb0KB2_-v-lb2KC4xXBYY7gL6_PZwr3zuGeu94KC_wZ_jP-2 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N8QAvML4DGxiEJh6WLrETu572UjGmAutUTZ20lynyV0SFlqKmlRh_PT6nSRkICfEWJXac-O7sn-98PwO8laakkpcm9mDDxZnJTaxzbWKq8kzYUiTCYjby6JQPz7NPF_nFBhy2uTANP0TncEPLCOM1Gjg6pPfXrKHWznsCA2-34Dae6B0WVGcdeRQC_TAOU4F5QTJteYUSut9VvTkb_QExbyLWMOUc34fL9mObnSZfe8uF7pkfv_E4_u_fbMG9FRYlg0Z5HsCGqx7C7rghs77eI5N1bla9R3bJeE1zff0InMfuXkozdDaQsb_5XaEPnKiaDKrF9GoaKJ7w_Zi9VR-QAcHBZ-6-NHvmSROWILOSjBzmH0_rK1-7smTwS1D9MZwff5i8H8arQxtiw7y8YyZznVLraFIamnKDdPzCJNSJVHObpooqnTjDskRpk1hnmbWCKeXVIjNSOfYENqtZ5Z4B4SVV3JZKU5sh8b1USualYC5xfW64juBNK7ziW8PNUTQszLTw3VmE7oxguxVrsTLPumAeqMh-ylIawevusTcsjJaoys2WoUzG0MuTR_C0UYeuFVwFS8r7EbwLQv1788XR0Vm4eP7vRV_BneFkdFKcfDz9_ALuUjxxOGw53IbNxXzpdjwMWuiXQdt_AmxGA-A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6DsZe1n3PXbdpY5Q91Kkt2VK0PoVloftoCaWFPhSMvsxCqVPiBNr99dPJsdNuDMbejC1Ztu5O-ulO9xPAe2lKKnlpYg82XJyZ3MQ61yamKs-ELUUiLGYjHxzy_ZPs62l-ugZ7bS5Mww_ROdzQMsJ4jQZ-acvdFWmotbOewLjbHbib8aSPKj086rijEOeHYZgKTAuSaUsrlNDdrurtyegPhHkbsIYZZ7QBZ-23NhtNznuLue6Zn7_ROP7nzzyEB0skSgaN6jyCNVc9hu1xQ2V9vUOOV5lZ9Q7ZJuMVyfX1E3AeuXsZTdHVQMb-5pVCDzhRNRlU88nFJBA84fsxd6v-SAYEh56Z-9HsmCdNUIJMS3LgMPt4Ul_42pUlgxsh9adwMvp8_Gk_Xh7ZEBvmpR0zmeuUWkeT0tCUGyTjFyahTqSa2zRVVOnEGZYlSpvEOsusFUwprxSZkcqxZ7BeTSv3AggvqeK2VJraDGnvpVIyLwVzietzw3UE71rZFZcNM0fRcDDTwndnEbozgq1WqsXSOOuCeZgi-ylLaQRvu8ferDBWoio3XYQyGUMfTx7B80YbulZwDSwp70fwIcj0780Xw-FRuNj896Jv4N54OCq-fzn89hLuUzxuOOw33IL1-WzhXnkMNNevg67_AoE3Apg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repurposing+Poloxamers+as+Antimicrobial+Agents%3A+A+Comprehensive+Review+of+Mechanisms+and+Applications&rft.jtitle=Drug+development+research&rft.au=Pe%C3%B1a+Corona%2C+Sheila+I.&rft.au=Borbolla%E2%80%90Jim%C3%A9nez%2C+Fabiola+V.&rft.au=Duarte%E2%80%90Pe%C3%B1a%2C+Lorena&rft.au=Moreno%2C+Ang%C3%A9lica&rft.date=2025-08-01&rft.issn=0272-4391&rft.eissn=1098-2299&rft.volume=86&rft.issue=5&rft_id=info:doi/10.1002%2Fddr.70130&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ddr_70130 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4391&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4391&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4391&client=summon |