Phase Transformation of Ni-Ti Shape Memory Alloy Investigated by Multi-Phase-Field Method and Microscopic Data

Multi-phase-field (MPF) method which is capable of using several phase-field variables is applied to simulate martensitic transition in micro-scale Ni-Ti shape-memory alloy (SMA). By modeling Ni-Ti SMA specimen in MPF simulation assuming only three major variants of martensite crystal in monoclinic...

Full description

Saved in:
Bibliographic Details
Published inTRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A Vol. 77; no. 780; pp. 1320 - 1330
Main Authors MATSUKI, Takanobu, SAITOH, Ken-ichi
Format Journal Article
LanguageJapanese
Published The Japan Society of Mechanical Engineers 2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-phase-field (MPF) method which is capable of using several phase-field variables is applied to simulate martensitic transition in micro-scale Ni-Ti shape-memory alloy (SMA). By modeling Ni-Ti SMA specimen in MPF simulation assuming only three major variants of martensite crystal in monoclinic structure, the detailed manner of forming martensite variants and interaction between them are observed. We adjust several free energy (densities) usually used for the phase-field functional to Ni-Ti SMA properties, e.g. chemical free energy, elastic strain energy, gradient energy, and double-well potential energy. Especially in the formulation of elastic strain energy, to express austenite (cubic)-to-martensite (monoclinic) transition of Ni-Ti alloy, microscopic parameter available from experimental result for lattice mismatch between austenite and martensite is brought into free energy functional. We discuss the different growth of martensite variants depending on initial condition for martensite nucleus, in which some arbitrary area in the computation domain is provided with random number. It is confirmed that a martensite variant with a positive lattice mismatch (i.e. the direction of larger edge in monoclinic unit) grows preferentially in the case of tensile loading in that direction. In compression, a variant with the most negative mismatch in the compressive direction grows strongly. The starting time of loading is sometimes a factor for the resulted variant structures. We found that, once a lamellae structure is formed, the relation between direction of further loading and that of lamellae interface plane dominates the resulted structural combination of variants.
AbstractList Multi-phase-field (MPF) method which is capable of using several phase-field variables is applied to simulate martensitic transition in micro-scale Ni-Ti shape-memory alloy (SMA). By modeling Ni-Ti SMA specimen in MPF simulation assuming only three major variants of martensite crystal in monoclinic structure, the detailed manner of forming martensite variants and interaction between them are observed. We adjust several free energy (densities) usually used for the phase-field functional to Ni-Ti SMA properties, e.g. chemical free energy, elastic strain energy, gradient energy, and double-well potential energy. Especially in the formulation of elastic strain energy, to express austenite (cubic)-to-martensite (monoclinic) transition of Ni-Ti alloy, microscopic parameter available from experimental result for lattice mismatch between austenite and martensite is brought into free energy functional. We discuss the different growth of martensite variants depending on initial condition for martensite nucleus, in which some arbitrary area in the computation domain is provided with random number. It is confirmed that a martensite variant with a positive lattice mismatch (i.e. the direction of larger edge in monoclinic unit) grows preferentially in the case of tensile loading in that direction. In compression, a variant with the most negative mismatch in the compressive direction grows strongly. The starting time of loading is sometimes a factor for the resulted variant structures. We found that, once a lamellae structure is formed, the relation between direction of further loading and that of lamellae interface plane dominates the resulted structural combination of variants.
Author MATSUKI, Takanobu
SAITOH, Ken-ichi
Author_xml – sequence: 1
  fullname: MATSUKI, Takanobu
  organization: Graduate School of Engineering, Kansai University
– sequence: 2
  fullname: SAITOH, Ken-ichi
BookMark eNp1kEtPwzAQhC1UJErplbP_QIodJ41zRDwKEgUkyjna2OvGJY0r2yDl39MHIITEXmYP881Ic0oGneuQkHPOJjwty4s3-wYWJkUx4SJlR2TIpcwSKYQckCETskhyxuQJGYewYtubMslZMSTdcwMB6cJDF4zza4jWddQZ-miThaUvDWyQznHtfE8v29b19L77wBDtEiJqWvd0_t5Gm-xjkluLrd7aY-M0hW77WuVdUG5jFb2GCGfk2EAbcPylI_J6e7O4uksenmb3V5cPiRI8Z0nKSpEzMDXXTGkspc6U1GmtZW7EVOaAWCPUKuW5RKHK0uR5xpWcGl1nGTdiRCaH3F198Giqjbdr8H3FWbUbrDoMVhVFtRtsC2R_AGXjfozowbb_Y7MDtgoRlvjTAj5a1eIveyHZt-zIH4dqwFfYiU8rf43F
CitedBy_id crossref_primary_10_1299_transjsme_17_00139
Cites_doi 10.1016/S1359-6454(00)00071-9
10.2472/jsms.54.193
10.1016/j.msea.2007.08.066
10.2320/matertrans.47.742
10.1016/j.pmatsci.2004.10.001
10.1103/PhysRevB.58.13590
10.2320/materia.42.397
10.1016/S0167-2789(97)00226-1
10.1088/0953-8984/22/39/395403
10.1016/S0167-2789(99)00129-3
10.1016/j.scriptamat.2010.02.001
10.2320/matertrans.44.2503
10.1002/mawe.200800368
10.2320/materia.48.555
10.2472/jsms.57.1217
ContentType Journal Article
Copyright 2011 The Japan Society of Mechanical Engineers
Copyright_xml – notice: 2011 The Japan Society of Mechanical Engineers
DBID AAYXX
CITATION
DOI 10.1299/kikaia.77.1320
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1884-8338
EndPage 1330
ExternalDocumentID 10_1299_kikaia_77_1320
article_kikaia_77_780_77_780_1320_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
AAYXX
CITATION
ID FETCH-LOGICAL-c3150-209350afb1d0cde98d4c8d2bd85f3685aeebeabc2158e3c99f5541c86fdb441f3
ISSN 0387-5008
IngestDate Tue Jul 01 02:13:35 EDT 2025
Thu Apr 24 22:59:41 EDT 2025
Wed Apr 05 04:51:35 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 780
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3150-209350afb1d0cde98d4c8d2bd85f3685aeebeabc2158e3c99f5541c86fdb441f3
OpenAccessLink https://www.jstage.jst.go.jp/article/kikaia/77/780/77_780_1320/_article/-char/en
PageCount 11
ParticipantIDs crossref_primary_10_1299_kikaia_77_1320
crossref_citationtrail_10_1299_kikaia_77_1320
jstage_primary_article_kikaia_77_780_77_780_1320_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011
2011-00-00
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011
PublicationDecade 2010
PublicationTitle TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A
PublicationTitleAlternate Trans.JSME, A
PublicationYear 2011
Publisher The Japan Society of Mechanical Engineers
Publisher_xml – name: The Japan Society of Mechanical Engineers
References (24) 船久保熙康,形状記憶合金 (1984), pp. 53-55, 産業図書
(33) 山中晃徳,高木知弘,冨田佳宏,“Phase-Field法によるマルテンサイト変態の3次元シミュレーション”,日本機械学会第22回計算力学講演会CD-ROM論文集 (2009), 1107.
(18) 高木知弘,“フェーズフィールド法の基礎と応用(14)-マルチフェーズフィールドモデルその1-”,機械の研究,vol. 62, No. 4 (2010), pp. 449-453.
(17) Steinbach, I. and Pezzolla, F., “A generalized field method for multiphase transformations using interface fields”, Physica D, Vol. 134 (1999), pp. 385-393.
(7) 木村英彦,秋庭義明,田中啓介,田中充,“TiNiの疲労き裂伝ぱにおよぼすマルテンサイトの影響”,日本機械学会年次大会講演論文集,vol. 1 (2005), pp. 455-456.
(20) 山中晃徳,高木知弘,冨田佳宏,“マルテンサイト変態による組織形成過程のPhase-Fieldシミュレーション”,日本機械学会計算力学講演会講演論文集,vol. 20 (2007), pp. 515-516.
(28) Janssens, K. G. G., Raabe, D., Kozeschnik, E. and Miodownik, M. A., Computational Materials Engineering (2007), Elsevier.
(1) 仲庭正義,“材料の素顔に迫る(身近な形状記憶合金)”,つうしん (2000), pp. 2-3, 住友金属テクノロジー
(32) 小山敏幸,“Phase-field法3(結晶変態,ドメイン形成)”, http://tkoyama.web.nitech.ac.jp/docs/Lecture_H20/H20_Chapter_13.pdf (参照日 2011年3月16日)
(25) Sanati, M., Albers, R.C. and Pinski, F.J., “Electronic and Crystal Structure of NiTi Martensite”, Phys.Rev.B, Vol. 58, No. 20 (1998), pp. 13590-13593.
(34) 小山敏幸,“弾性ひずみエネルギー評価法(1)”,http://tkoyama.web.nitech.ac.jp/docs/Lecture_H20/H20_Chapter_7.pdf (参照日 2011年3月16日)
(8) Gloanec, A.-L., Cerracchio, P., Reynier, B., Van, Herpen A. and Riberty, P., “Fatigue crack initiation and propagation of a TiNi shape memory alloy” , Scr. Mater., Vol. 62, No. 10 (2010), pp. 786-789.
(5) 戸伏壽昭,杉本義樹,伊達功祐,林俊一,“SMAとSMPによる形状記憶複合材料の作製と2方向変形特性”,日本機械学会東海支部総会講演会講演論文集,vol. 58 (2009), pp. 97-98.
(10) 都井裕,何劼,“形状記憶合金素子の動的繰返し応答シミュレーション”,生産研究,vol. 62, No. 1 (2010), pp. 107-110.
(15) 上原拓也,浅井千尋,大野信忠,“多結晶モデルによる形状記憶合金の変形挙動に関する分子動力学シミュレーション”,材料,vol. 57, No. 12 (2008), pp. 1217-1223.
(13) 佐藤知広,齋藤賢一,新家昇,“分子動力学法を用いたNi-Ti合金に対する相変態の観察と構造解析”,材料,vol. 54, No. 2 (2005), pp. 193-200.
(9) Otsuka, K., Ren, X., “Physical metallurgy of Ti-Ni-based shape memory alloys”, Progress in Materials Science, Vol. 50, No. 5 (2005), pp. 511-678.
(3) 西田稔,山内清,大方一三,“形状記憶合金の基礎と応用”,資源と素材,vol. 11, No. 10 (2005), pp. 713-718.
(4) 新谷研一ほか,“粉末冶金法と塑性加工により作製した傾斜機能TiNi形状記憶合金ワイヤの熱・力学的特性”,日本機械学会年次大会講演論文集,vol. 1 (2009), pp. 189-190.
(26) 高木知弘,“フェーズフィールド法の基礎と応用(1)-フェーズフィールド法とは?その1-”,機械の研究,vol. 61, No. 3 (2009), pp. 353-359.
(2) 戸伏壽昭,田中喜久昭,堀川宏,松本實,形状記憶材料とその応用 (1995), pp. 112-127, コロナ社
(16) Tiaden, J., Nestler, B., Diepers, H.J. and Steinbach, I., “The multiphase-field model with an integrated concept for modelling solute diffusion”, Physica D, Vol. 115 (1998), pp. 73-86.
(27) Emmeerich, H., The Diffuse Interface Approach in Materials Science —Thermodynamic Concepts and Applications of Phase-Field Models—, (2002), Springer.
(30) Koyama, T. and Onodera, H., “Phase-field simulation of microstructure changes in Ni2MnGa ferromagnetic alloy under external stress and magnetic fields”, Mater.Trans., Vol.44, No.12 (2003), pp.2503-2508.
(12) 都井裕,李 宗,田谷稔,“形状記憶合金はりの超弾性挙動の有限要素解析 その1 引張挙動と圧縮挙動が対称の場合”,生産研究,vol. 53, No. 5/6 (2001), pp. 306-309.
(6) 岡部洋二,“形状記憶合金を用いたスマート複合材料構造 -損傷抑制と形状制御-”,生産研究,vol. 61, No. 6 (2009), pp. 977-983.
(29) 小山敏幸,“Phase-field法に関する最近の進展と今後の展望”,まてりあ,vol. 42, No. 5 (2003), pp. 397-405.
(21) Yamanaka, A., Takaki, T., Tomita, Y., “Coupled simulation of microstructural formation and deformation behavior of ferrite-pearlite steel by phase-field method and homogenization method”, Mater.Sci.Eng.,A, Vol.480 (2008), pp.244-252.
(19) 山中晃徳,高木知弘,冨田佳宏,“Fe-C合金のγ→α変態による組織形成Phase-fieldシミュレーション”,日本機械学会計算力学講演会講演論文集,vol. 19 (2006), pp. 359-360.
(31) 小山敏幸,“Javaによる実践的化学技術プログラミング(III)-マルテンサイト変態のPhase-fieldシミュレーション-”,まてりあ,vol. 48, No. 11 (2009), pp. 555-560.
(11) Wang, X.M., Lu, Z.Z., Yue, Z.F., Deng, C.H., “FEM analysis of localized deformation behavior in pseudoelastic NiTi shape memory alloys ”, Mat.-wiss. u. Werkstofftech., Vol. 39 , No. 11 (2008), pp. 816-821.
(22) Artemev, A., Wang, Y., Khachaturyan, A. G., Acta Materialia, Vol. 48 (2000), pp. 2503-2518.
(14) Purja Pun G.P., Mishin, Y., “Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys”, J. Phys.: Condens. Matter, Vol. 22 , No. 39 (2010) , 395403.1-395403.7.
(23) Saitoh, K., Sato, T., Shinke, N., “Atomic dynamics and energetics of martensitic transformation in nickel-titanium shape memory alloy”, Mater. Trans., Vol.47, No.3 (2006), pp.742-749.
22
23
24
25
27
28
TAKAKI TOMOHIRO (18) 2010; 62
KOYAMA TOSHIYUKI (31) 2009; 48
TOI YUTAKA (12) 2001; 53
30
32
11
33
34
13
14
15
TAKAKI TOMOHIRO (26) 2009; 61
16
17
19
KOYAMA TOSHIYUKI (29) 2003; 42
TOI YUTAKA (10) 2010; 62
OKABE YOJI (6) 2009; 61
1
2
3
4
5
7
8
9
20
21
References_xml – reference: (24) 船久保熙康,形状記憶合金 (1984), pp. 53-55, 産業図書.
– reference: (30) Koyama, T. and Onodera, H., “Phase-field simulation of microstructure changes in Ni2MnGa ferromagnetic alloy under external stress and magnetic fields”, Mater.Trans., Vol.44, No.12 (2003), pp.2503-2508.
– reference: (29) 小山敏幸,“Phase-field法に関する最近の進展と今後の展望”,まてりあ,vol. 42, No. 5 (2003), pp. 397-405.
– reference: (2) 戸伏壽昭,田中喜久昭,堀川宏,松本實,形状記憶材料とその応用 (1995), pp. 112-127, コロナ社.
– reference: (8) Gloanec, A.-L., Cerracchio, P., Reynier, B., Van, Herpen A. and Riberty, P., “Fatigue crack initiation and propagation of a TiNi shape memory alloy” , Scr. Mater., Vol. 62, No. 10 (2010), pp. 786-789.
– reference: (7) 木村英彦,秋庭義明,田中啓介,田中充,“TiNiの疲労き裂伝ぱにおよぼすマルテンサイトの影響”,日本機械学会年次大会講演論文集,vol. 1 (2005), pp. 455-456.
– reference: (20) 山中晃徳,高木知弘,冨田佳宏,“マルテンサイト変態による組織形成過程のPhase-Fieldシミュレーション”,日本機械学会計算力学講演会講演論文集,vol. 20 (2007), pp. 515-516.
– reference: (23) Saitoh, K., Sato, T., Shinke, N., “Atomic dynamics and energetics of martensitic transformation in nickel-titanium shape memory alloy”, Mater. Trans., Vol.47, No.3 (2006), pp.742-749.
– reference: (13) 佐藤知広,齋藤賢一,新家昇,“分子動力学法を用いたNi-Ti合金に対する相変態の観察と構造解析”,材料,vol. 54, No. 2 (2005), pp. 193-200.
– reference: (22) Artemev, A., Wang, Y., Khachaturyan, A. G., Acta Materialia, Vol. 48 (2000), pp. 2503-2518.
– reference: (4) 新谷研一ほか,“粉末冶金法と塑性加工により作製した傾斜機能TiNi形状記憶合金ワイヤの熱・力学的特性”,日本機械学会年次大会講演論文集,vol. 1 (2009), pp. 189-190.
– reference: (28) Janssens, K. G. G., Raabe, D., Kozeschnik, E. and Miodownik, M. A., Computational Materials Engineering (2007), Elsevier.
– reference: (9) Otsuka, K., Ren, X., “Physical metallurgy of Ti-Ni-based shape memory alloys”, Progress in Materials Science, Vol. 50, No. 5 (2005), pp. 511-678.
– reference: (19) 山中晃徳,高木知弘,冨田佳宏,“Fe-C合金のγ→α変態による組織形成Phase-fieldシミュレーション”,日本機械学会計算力学講演会講演論文集,vol. 19 (2006), pp. 359-360.
– reference: (3) 西田稔,山内清,大方一三,“形状記憶合金の基礎と応用”,資源と素材,vol. 11, No. 10 (2005), pp. 713-718.
– reference: (21) Yamanaka, A., Takaki, T., Tomita, Y., “Coupled simulation of microstructural formation and deformation behavior of ferrite-pearlite steel by phase-field method and homogenization method”, Mater.Sci.Eng.,A, Vol.480 (2008), pp.244-252.
– reference: (33) 山中晃徳,高木知弘,冨田佳宏,“Phase-Field法によるマルテンサイト変態の3次元シミュレーション”,日本機械学会第22回計算力学講演会CD-ROM論文集 (2009), 1107.
– reference: (34) 小山敏幸,“弾性ひずみエネルギー評価法(1)”,http://tkoyama.web.nitech.ac.jp/docs/Lecture_H20/H20_Chapter_7.pdf (参照日 2011年3月16日).
– reference: (31) 小山敏幸,“Javaによる実践的化学技術プログラミング(III)-マルテンサイト変態のPhase-fieldシミュレーション-”,まてりあ,vol. 48, No. 11 (2009), pp. 555-560.
– reference: (16) Tiaden, J., Nestler, B., Diepers, H.J. and Steinbach, I., “The multiphase-field model with an integrated concept for modelling solute diffusion”, Physica D, Vol. 115 (1998), pp. 73-86.
– reference: (6) 岡部洋二,“形状記憶合金を用いたスマート複合材料構造 -損傷抑制と形状制御-”,生産研究,vol. 61, No. 6 (2009), pp. 977-983.
– reference: (15) 上原拓也,浅井千尋,大野信忠,“多結晶モデルによる形状記憶合金の変形挙動に関する分子動力学シミュレーション”,材料,vol. 57, No. 12 (2008), pp. 1217-1223.
– reference: (17) Steinbach, I. and Pezzolla, F., “A generalized field method for multiphase transformations using interface fields”, Physica D, Vol. 134 (1999), pp. 385-393.
– reference: (27) Emmeerich, H., The Diffuse Interface Approach in Materials Science —Thermodynamic Concepts and Applications of Phase-Field Models—, (2002), Springer.
– reference: (11) Wang, X.M., Lu, Z.Z., Yue, Z.F., Deng, C.H., “FEM analysis of localized deformation behavior in pseudoelastic NiTi shape memory alloys ”, Mat.-wiss. u. Werkstofftech., Vol. 39 , No. 11 (2008), pp. 816-821.
– reference: (32) 小山敏幸,“Phase-field法3(結晶変態,ドメイン形成)”, http://tkoyama.web.nitech.ac.jp/docs/Lecture_H20/H20_Chapter_13.pdf (参照日 2011年3月16日).
– reference: (12) 都井裕,李 宗,田谷稔,“形状記憶合金はりの超弾性挙動の有限要素解析 その1 引張挙動と圧縮挙動が対称の場合”,生産研究,vol. 53, No. 5/6 (2001), pp. 306-309.
– reference: (25) Sanati, M., Albers, R.C. and Pinski, F.J., “Electronic and Crystal Structure of NiTi Martensite”, Phys.Rev.B, Vol. 58, No. 20 (1998), pp. 13590-13593.
– reference: (5) 戸伏壽昭,杉本義樹,伊達功祐,林俊一,“SMAとSMPによる形状記憶複合材料の作製と2方向変形特性”,日本機械学会東海支部総会講演会講演論文集,vol. 58 (2009), pp. 97-98.
– reference: (26) 高木知弘,“フェーズフィールド法の基礎と応用(1)-フェーズフィールド法とは?その1-”,機械の研究,vol. 61, No. 3 (2009), pp. 353-359.
– reference: (1) 仲庭正義,“材料の素顔に迫る(身近な形状記憶合金)”,つうしん (2000), pp. 2-3, 住友金属テクノロジー.
– reference: (10) 都井裕,何劼,“形状記憶合金素子の動的繰返し応答シミュレーション”,生産研究,vol. 62, No. 1 (2010), pp. 107-110.
– reference: (18) 高木知弘,“フェーズフィールド法の基礎と応用(14)-マルチフェーズフィールドモデルその1-”,機械の研究,vol. 62, No. 4 (2010), pp. 449-453.
– reference: (14) Purja Pun G.P., Mishin, Y., “Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys”, J. Phys.: Condens. Matter, Vol. 22 , No. 39 (2010) , 395403.1-395403.7.
– ident: 2
– ident: 22
  doi: 10.1016/S1359-6454(00)00071-9
– ident: 4
– ident: 13
  doi: 10.2472/jsms.54.193
– volume: 61
  start-page: 353
  issn: 0368-5713
  issue: 3
  year: 2009
  ident: 26
– ident: 33
– ident: 28
– ident: 21
  doi: 10.1016/j.msea.2007.08.066
– ident: 23
  doi: 10.2320/matertrans.47.742
– ident: 24
– ident: 9
  doi: 10.1016/j.pmatsci.2004.10.001
– ident: 25
  doi: 10.1103/PhysRevB.58.13590
– volume: 42
  start-page: 397
  issn: 1340-2625
  issue: 5
  year: 2003
  ident: 29
  doi: 10.2320/materia.42.397
– ident: 7
– volume: 53
  start-page: 306
  issn: 0037-105X
  issue: 5
  year: 2001
  ident: 12
– ident: 16
  doi: 10.1016/S0167-2789(97)00226-1
– ident: 20
– ident: 14
  doi: 10.1088/0953-8984/22/39/395403
– ident: 3
– ident: 17
  doi: 10.1016/S0167-2789(99)00129-3
– ident: 5
– ident: 8
  doi: 10.1016/j.scriptamat.2010.02.001
– ident: 1
– volume: 62
  start-page: 107
  issn: 0037-105X
  issue: 1
  year: 2010
  ident: 10
– ident: 30
  doi: 10.2320/matertrans.44.2503
– ident: 19
– ident: 34
– volume: 62
  start-page: 449
  issn: 0368-5713
  issue: 4
  year: 2010
  ident: 18
– ident: 32
– volume: 61
  start-page: 977
  issn: 0037-105X
  issue: 6
  year: 2009
  ident: 6
– ident: 11
  doi: 10.1002/mawe.200800368
– ident: 27
– volume: 48
  start-page: 555
  issn: 1340-2625
  issue: 11
  year: 2009
  ident: 31
  doi: 10.2320/materia.48.555
– ident: 15
  doi: 10.2472/jsms.57.1217
SSID ssj0000608107
ssib006634344
ssj0000578916
Score 1.7908736
Snippet Multi-phase-field (MPF) method which is capable of using several phase-field variables is applied to simulate martensitic transition in micro-scale Ni-Ti...
SourceID crossref
jstage
SourceType Enrichment Source
Index Database
Publisher
StartPage 1320
SubjectTerms Computational Mechanics
Elasticity
Free Energy
Nickel and Titanium
Numerical Simulation
Phase Transformation
Phase-Field Method
Shape Memory Alloy
Title Phase Transformation of Ni-Ti Shape Memory Alloy Investigated by Multi-Phase-Field Method and Microscopic Data
URI https://www.jstage.jst.go.jp/article/kikaia/77/780/77_780_1320/_article/-char/en
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A, 2011, Vol.77(780), pp.1320-1330
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6FwgEOiFUtm-aAxAFNcGo7Ht-wqlRJq4RCHKmcIs9i1SRyKpQcwi_h5_LezNidQJAKUuREozeT5X1-W95CyFsR81IVvZSJKC5ZlEjJBE8Fwwi_ClFpKCwUHk_6w1l0dhlfdjo_vaylzVp05Y-9dSX_w1VYA75ilew_cLY9FBbgNfAXrsBhuN6KxxdXoINsf_K2CNGEACqWV9iL-RpuWkyl3b7PlsvV1uuqYQ1PU37LzDHsFHPZgBwnStv0C8zVw6qVSgI41oVvx-ZfssnUJqBMm8Shs-wim2BrhdEg_4qL48HJMJuYhgtN_6opCidwzm9CqOMsn87ORwY3xaKoV2LTRn2yUf5p6KqHWCWvKj9G4aSnq8oCIRYHgZWx2gpZziPGQ9vVpZHCbpiLRVtipzs5oYpV3p6CBq862Cv8QbMCxxbVoqiKbpJ0b_b5XbZ_035tTiJ6Q3DC3O6fJ8kc998hd4_BAUGRf_6Zt9E7sHJ5Y1hbnQ-mla3Nb76w6xAKR37Y_Ug7FtC9b-AENAmExqbJH5GHzhmhmUXWY9LR9RPywGtR-ZTUBhx0F2N0VVKDMWowRi3GqMEY9TFGxZb-gTFqMUYBY9TDGEWMPSOz00F-MmRuRgeTIfgScDumYRwUpeipQCqdchVJro6F4nGJsw0KDVKiEBIsS65DmaYl2K89yfulEmCJl-FzclCvan1IqAJjVcW6iPthP9Kl5lzKKFBKCoF-fnREWPO7zaVrYI9zVJbz_aw7Iu9a-mvbuuWvlB8tG1o6d0t7dADJ5gm3tBRYHAmy6MWt3-wluW__l8DHK3Kw_r7Rr8GwXYs3BmO_AHz2oTI
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Transformation+of+Ni-Ti+Shape+Memory+Alloy+Investigated+by+Multi-Phase-Field+Method+and+Microscopic+Data&rft.jtitle=TRANSACTIONS+OF+THE+JAPAN+SOCIETY+OF+MECHANICAL+ENGINEERS+Series+A&rft.au=MATSUKI%2C+Takanobu&rft.au=SAITOH%2C+Ken-ichi&rft.date=2011&rft.issn=0387-5008&rft.eissn=1884-8338&rft.volume=77&rft.issue=780&rft.spage=1320&rft.epage=1330&rft_id=info:doi/10.1299%2Fkikaia.77.1320&rft.externalDBID=n%2Fa&rft.externalDocID=10_1299_kikaia_77_1320
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0387-5008&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0387-5008&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0387-5008&client=summon