High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors
CD8+ T cells infiltrating tumors are largely dysfunctional, but whether a subset maintains superior functionality remains ill defined. By high-dimensional single cell analysis of millions of CD8+ T cells from 53 individuals with lung cancer, we defined those subsets that are enriched in tumors compa...
Saved in:
Published in | The Journal of experimental medicine Vol. 215; no. 10; pp. 2520 - 2535 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
01.10.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | CD8+ T cells infiltrating tumors are largely dysfunctional, but whether a subset maintains superior functionality remains ill defined. By high-dimensional single cell analysis of millions of CD8+ T cells from 53 individuals with lung cancer, we defined those subsets that are enriched in tumors compared with cancer-free tissues and blood. Besides exhausted and activated cells, we identified CXCR5+ TIM-3– CD8+ T cells with a partial exhausted phenotype, while retaining gene networks responsible for stem-like plasticity and cytotoxicity, as revealed by single cell sequencing of the whole transcriptome. Ex vivo, CXCR5+ TIM-3– CD8+ T cells displayed enhanced self-renewal and multipotency compared with more differentiated subsets and were largely polyfunctional. Analysis of inhibitory and costimulatory receptors revealed PD-1, TIGIT, and CD27 as possible targets of immunotherapy. We thus demonstrate a hierarchy of differentiation in the context of T cell exhaustion in human cancer similar to that of chronically infected mice, which is further shown to disappear with disease progression. |
---|---|
AbstractList | CD8+ T cells infiltrating tumors are largely dysfunctional, but whether a subset maintains superior functionality remains ill defined. By high-dimensional single cell analysis of millions of CD8+ T cells from 53 individuals with lung cancer, we defined those subsets that are enriched in tumors compared with cancer-free tissues and blood. Besides exhausted and activated cells, we identified CXCR5+ TIM-3- CD8+ T cells with a partial exhausted phenotype, while retaining gene networks responsible for stem-like plasticity and cytotoxicity, as revealed by single cell sequencing of the whole transcriptome. Ex vivo, CXCR5+ TIM-3- CD8+ T cells displayed enhanced self-renewal and multipotency compared with more differentiated subsets and were largely polyfunctional. Analysis of inhibitory and costimulatory receptors revealed PD-1, TIGIT, and CD27 as possible targets of immunotherapy. We thus demonstrate a hierarchy of differentiation in the context of T cell exhaustion in human cancer similar to that of chronically infected mice, which is further shown to disappear with disease progression.CD8+ T cells infiltrating tumors are largely dysfunctional, but whether a subset maintains superior functionality remains ill defined. By high-dimensional single cell analysis of millions of CD8+ T cells from 53 individuals with lung cancer, we defined those subsets that are enriched in tumors compared with cancer-free tissues and blood. Besides exhausted and activated cells, we identified CXCR5+ TIM-3- CD8+ T cells with a partial exhausted phenotype, while retaining gene networks responsible for stem-like plasticity and cytotoxicity, as revealed by single cell sequencing of the whole transcriptome. Ex vivo, CXCR5+ TIM-3- CD8+ T cells displayed enhanced self-renewal and multipotency compared with more differentiated subsets and were largely polyfunctional. Analysis of inhibitory and costimulatory receptors revealed PD-1, TIGIT, and CD27 as possible targets of immunotherapy. We thus demonstrate a hierarchy of differentiation in the context of T cell exhaustion in human cancer similar to that of chronically infected mice, which is further shown to disappear with disease progression. CD8 + T cells infiltrating tumors are largely dysfunctional. Brummelman and Mazza et al. identify partially exhausted CXCR5 + TIM-3 – CD8 + T cells with enhanced stem-like properties and cytotoxicity infiltrating human solid tumors. These cells express candidate immunotherapeutic targets (PD-1, TIGIT and CD27) for their reinvigoration. CD8 + T cells infiltrating tumors are largely dysfunctional, but whether a subset maintains superior functionality remains ill defined. By high-dimensional single cell analysis of millions of CD8 + T cells from 53 individuals with lung cancer, we defined those subsets that are enriched in tumors compared with cancer-free tissues and blood. Besides exhausted and activated cells, we identified CXCR5 + TIM-3 – CD8 + T cells with a partial exhausted phenotype, while retaining gene networks responsible for stem-like plasticity and cytotoxicity, as revealed by single cell sequencing of the whole transcriptome. Ex vivo, CXCR5 + TIM-3 – CD8 + T cells displayed enhanced self-renewal and multipotency compared with more differentiated subsets and were largely polyfunctional. Analysis of inhibitory and costimulatory receptors revealed PD-1, TIGIT, and CD27 as possible targets of immunotherapy. We thus demonstrate a hierarchy of differentiation in the context of T cell exhaustion in human cancer similar to that of chronically infected mice, which is further shown to disappear with disease progression. CD8 T cells infiltrating tumors are largely dysfunctional, but whether a subset maintains superior functionality remains ill defined. By high-dimensional single cell analysis of millions of CD8 T cells from 53 individuals with lung cancer, we defined those subsets that are enriched in tumors compared with cancer-free tissues and blood. Besides exhausted and activated cells, we identified CXCR5 TIM-3 CD8 T cells with a partial exhausted phenotype, while retaining gene networks responsible for stem-like plasticity and cytotoxicity, as revealed by single cell sequencing of the whole transcriptome. Ex vivo, CXCR5 TIM-3 CD8 T cells displayed enhanced self-renewal and multipotency compared with more differentiated subsets and were largely polyfunctional. Analysis of inhibitory and costimulatory receptors revealed PD-1, TIGIT, and CD27 as possible targets of immunotherapy. We thus demonstrate a hierarchy of differentiation in the context of T cell exhaustion in human cancer similar to that of chronically infected mice, which is further shown to disappear with disease progression. CD8+ T cells infiltrating tumors are largely dysfunctional, but whether a subset maintains superior functionality remains ill defined. By high-dimensional single cell analysis of millions of CD8+ T cells from 53 individuals with lung cancer, we defined those subsets that are enriched in tumors compared with cancer-free tissues and blood. Besides exhausted and activated cells, we identified CXCR5+ TIM-3– CD8+ T cells with a partial exhausted phenotype, while retaining gene networks responsible for stem-like plasticity and cytotoxicity, as revealed by single cell sequencing of the whole transcriptome. Ex vivo, CXCR5+ TIM-3– CD8+ T cells displayed enhanced self-renewal and multipotency compared with more differentiated subsets and were largely polyfunctional. Analysis of inhibitory and costimulatory receptors revealed PD-1, TIGIT, and CD27 as possible targets of immunotherapy. We thus demonstrate a hierarchy of differentiation in the context of T cell exhaustion in human cancer similar to that of chronically infected mice, which is further shown to disappear with disease progression. |
Author | Brummelman, Jolanda Mazza, Emilia M.C. Colombo, Federico S. Lopci, Egesta Ferrari, Francesco Mikulak, Joanna Mavilio, Domenico Grilli, Andrea Alloisio, Marco Alvisi, Giorgia Veronesi, Giulia Novellis, Pierluigi Lugli, Enrico |
AuthorAffiliation | 6 Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy 7 Division of Thoracic Surgery, Humanitas Clinical and Research Center, Rozzano, Milan, Italy 8 IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy 2 Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy 5 Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy 1 Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy 9 Nuclear Medicine Department, Humanitas Clinical and Research Hospital, Milan, Italy 3 Department of Biological Sciences, University of Modena and Reggio Emilia, Modena, Italy 4 PhD Program of Molecular and Translational Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy |
AuthorAffiliation_xml | – name: 1 Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy – name: 2 Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy – name: 5 Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy – name: 7 Division of Thoracic Surgery, Humanitas Clinical and Research Center, Rozzano, Milan, Italy – name: 9 Nuclear Medicine Department, Humanitas Clinical and Research Hospital, Milan, Italy – name: 8 IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy – name: 3 Department of Biological Sciences, University of Modena and Reggio Emilia, Modena, Italy – name: 6 Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy – name: 4 PhD Program of Molecular and Translational Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy |
Author_xml | – sequence: 1 givenname: Jolanda orcidid: 0000-0003-3581-4816 surname: Brummelman fullname: Brummelman, Jolanda – sequence: 2 givenname: Emilia M.C. surname: Mazza fullname: Mazza, Emilia M.C. – sequence: 3 givenname: Giorgia surname: Alvisi fullname: Alvisi, Giorgia – sequence: 4 givenname: Federico S. orcidid: 0000-0003-4480-3481 surname: Colombo fullname: Colombo, Federico S. – sequence: 5 givenname: Andrea orcidid: 0000-0002-6219-0714 surname: Grilli fullname: Grilli, Andrea – sequence: 6 givenname: Joanna surname: Mikulak fullname: Mikulak, Joanna – sequence: 7 givenname: Domenico orcidid: 0000-0001-6147-0952 surname: Mavilio fullname: Mavilio, Domenico – sequence: 8 givenname: Marco surname: Alloisio fullname: Alloisio, Marco – sequence: 9 givenname: Francesco surname: Ferrari fullname: Ferrari, Francesco – sequence: 10 givenname: Egesta surname: Lopci fullname: Lopci, Egesta – sequence: 11 givenname: Pierluigi surname: Novellis fullname: Novellis, Pierluigi – sequence: 12 givenname: Giulia surname: Veronesi fullname: Veronesi, Giulia – sequence: 13 givenname: Enrico orcidid: 0000-0002-1964-7678 surname: Lugli fullname: Lugli, Enrico |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30154266$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1P3DAQxa0KVBbaW8_IRyQaOnYSJ7kgoW35kJB6oWfLcezdAceG2Km6_z3e8qEWcbI0_s17M_P2yY4P3hDyhcEJg7b6dmvGEw6sBdFWH8iC1RUUXV22O2QBwHnBAJo9sh_jLQCrqlp8JHslZIwLsSB3l7haFwOOxkcMXjka0a-codo4R1UubCJGioPxCS2aSGMyY-HwLiObFFL4g5ouv7fH9OZvT2a9RZcmlbIQXc-j8jTNY5jiJ7JrlYvm8_N7QH6d_7hZXhbXPy-ulmfXhS5ZlQprLXS97gQb2oEP0OTlKtXxQdteNYw3A-ubVpSqF63hTc3LzjLNSmGFLQUX5QE5fdK9n_vRDDqPPikn7ycc1bSRQaH8_8fjWq7CbylY9mq6LHD0LDCFh9nEJEeM2-WUN2GOkkMn6oZ3sEUP__V6NXm5cAa-PgF6CjFOxr4iDOQ2QJkDlC8BZpy_wTWmfMqwnRTd-02PrBmgXw |
CitedBy_id | crossref_primary_10_1146_annurev_immunol_110519_071134 crossref_primary_10_1016_j_celrep_2023_112944 crossref_primary_10_1038_s43856_024_00525_8 crossref_primary_10_3389_fimmu_2021_758386 crossref_primary_10_3389_fimmu_2020_592569 crossref_primary_10_1016_j_xcrm_2020_100127 crossref_primary_10_1038_s41375_023_01808_0 crossref_primary_10_1038_s41551_023_01165_4 crossref_primary_10_1002_eji_201847758 crossref_primary_10_1038_s41571_020_00460_2 crossref_primary_10_1038_s41467_021_21928_4 crossref_primary_10_3389_fimmu_2020_622509 crossref_primary_10_3389_fimmu_2022_1003626 crossref_primary_10_1016_j_cell_2024_05_038 crossref_primary_10_3389_fimmu_2021_802080 crossref_primary_10_1016_j_immuni_2022_12_002 crossref_primary_10_1038_s41590_018_0311_z crossref_primary_10_1016_j_iotech_2022_100071 crossref_primary_10_1016_j_it_2023_02_006 crossref_primary_10_1126_sciimmunol_abg7836 crossref_primary_10_3390_ijms20194931 crossref_primary_10_1186_s12964_024_01848_8 crossref_primary_10_3389_fimmu_2022_886646 crossref_primary_10_1038_s42003_021_02595_z crossref_primary_10_1038_s41590_022_01194_2 crossref_primary_10_1016_j_coisb_2019_03_003 crossref_primary_10_1038_s41392_023_01471_y crossref_primary_10_1007_s00210_024_03208_2 crossref_primary_10_1016_j_crmeth_2024_100743 crossref_primary_10_1126_sciimmunol_abo5558 crossref_primary_10_1038_s41577_023_00884_8 crossref_primary_10_1016_j_cell_2024_04_023 crossref_primary_10_1016_j_semcancer_2020_05_019 crossref_primary_10_3389_fimmu_2021_656010 crossref_primary_10_1016_j_celrep_2024_114141 crossref_primary_10_4110_in_2020_20_e2 crossref_primary_10_1016_j_celrep_2023_112123 crossref_primary_10_1038_s41416_021_01475_x crossref_primary_10_1038_s41416_024_02712_9 crossref_primary_10_1126_scitranslmed_abk1900 crossref_primary_10_1186_s13045_023_01504_7 crossref_primary_10_2147_JHC_S464806 crossref_primary_10_1084_jem_20211574 crossref_primary_10_1172_JCI126295 crossref_primary_10_1126_sciimmunol_adh1306 crossref_primary_10_1016_j_iotech_2023_100397 crossref_primary_10_1080_21645515_2020_1840254 crossref_primary_10_1172_JCI130426 crossref_primary_10_1016_j_it_2018_10_002 crossref_primary_10_1126_sciimmunol_adg0539 crossref_primary_10_1016_j_immuni_2018_11_014 crossref_primary_10_1016_j_immuni_2024_01_010 crossref_primary_10_1158_2326_6066_CIR_22_0406 crossref_primary_10_1126_scitranslmed_aay3575 crossref_primary_10_1084_jem_20221927 crossref_primary_10_1016_j_smim_2021_101480 crossref_primary_10_1186_s12967_024_04965_7 crossref_primary_10_3389_fgene_2020_548719 crossref_primary_10_1038_s41577_019_0224_6 crossref_primary_10_1093_intimm_dxac016 crossref_primary_10_1038_s42003_023_04631_6 crossref_primary_10_1016_j_ccell_2025_01_001 crossref_primary_10_1038_s43018_021_00292_8 crossref_primary_10_1136_jitc_2020_001136 crossref_primary_10_1038_s41392_022_00990_4 crossref_primary_10_1016_j_immuni_2023_09_005 crossref_primary_10_3389_fimmu_2022_907172 crossref_primary_10_1038_s41541_024_00853_9 crossref_primary_10_1172_JCI140508 crossref_primary_10_1038_s43018_020_0066_y crossref_primary_10_1084_jem_20201329 crossref_primary_10_3389_fimmu_2024_1426418 crossref_primary_10_1016_j_it_2019_11_004 crossref_primary_10_1038_s41467_021_26282_z crossref_primary_10_1158_1078_0432_CCR_23_1316 crossref_primary_10_3389_fimmu_2020_583382 crossref_primary_10_1016_j_immuni_2018_12_021 crossref_primary_10_1136_bmjonc_2024_000328 crossref_primary_10_4103_jcrt_jcrt_2453_23 crossref_primary_10_3389_fimmu_2019_01595 crossref_primary_10_1093_intimm_dxac024 crossref_primary_10_3324_haematol_2020_267914 crossref_primary_10_3389_fimmu_2021_626199 crossref_primary_10_1038_s41422_020_0277_x crossref_primary_10_1038_s41590_021_00930_4 crossref_primary_10_1126_sciimmunol_abb9726 crossref_primary_10_1126_scitranslmed_aay6863 crossref_primary_10_3389_fimmu_2024_1295309 crossref_primary_10_1155_2022_1178874 crossref_primary_10_1002_cyto_b_21984 crossref_primary_10_1038_s42255_020_00280_9 crossref_primary_10_1126_sciimmunol_adk2954 crossref_primary_10_1172_jci_insight_140179 crossref_primary_10_1016_j_immuni_2018_12_029 crossref_primary_10_1016_j_cell_2021_11_007 crossref_primary_10_1038_s41577_019_0223_7 crossref_primary_10_1016_j_celrep_2021_109871 crossref_primary_10_1016_j_celrep_2021_109992 crossref_primary_10_1038_s41467_023_35948_9 crossref_primary_10_1038_s41568_023_00615_0 crossref_primary_10_4049_jimmunol_2100082 crossref_primary_10_1007_s00262_021_02939_y crossref_primary_10_1016_j_celrep_2019_10_131 crossref_primary_10_1016_j_immuni_2020_04_007 crossref_primary_10_1158_2326_6066_CIR_24_0089 crossref_primary_10_1016_j_cmet_2020_10_013 crossref_primary_10_1158_2159_8290_CD_20_1248 crossref_primary_10_1038_s41596_019_0166_2 crossref_primary_10_1016_j_smim_2020_101435 crossref_primary_10_1016_j_xcrm_2022_100620 crossref_primary_10_1101_cshperspect_a037747 crossref_primary_10_1038_s41591_019_0382_x crossref_primary_10_1038_s41568_019_0235_4 crossref_primary_10_3390_cancers13235911 crossref_primary_10_1126_sciimmunol_ade5872 crossref_primary_10_1016_j_molcel_2021_03_045 crossref_primary_10_1016_j_bbadis_2024_167646 crossref_primary_10_1038_s41590_020_0791_5 crossref_primary_10_1038_s41590_019_0543_6 crossref_primary_10_1080_2162402X_2023_2230666 crossref_primary_10_1038_s41590_019_0312_6 crossref_primary_10_1002_advs_202400702 crossref_primary_10_1016_j_patter_2021_100372 crossref_primary_10_1038_s41577_021_00539_6 crossref_primary_10_1172_jci_insight_146973 crossref_primary_10_1111_cei_13561 crossref_primary_10_1016_j_jhep_2022_05_043 crossref_primary_10_1038_s41467_021_23356_w crossref_primary_10_1042_EBC20220247 crossref_primary_10_1073_pnas_1902701116 crossref_primary_10_1158_2326_6066_CIR_21_0515 crossref_primary_10_1016_j_immuni_2019_11_002 crossref_primary_10_1111_imcb_12787 crossref_primary_10_1126_sciimmunol_abq2630 crossref_primary_10_1084_jem_20210749 crossref_primary_10_3892_or_2024_8757 crossref_primary_10_1080_10428194_2022_2081326 crossref_primary_10_1080_2162402X_2020_1810489 crossref_primary_10_3389_fimmu_2023_1148061 crossref_primary_10_1126_sciimmunol_aaz6894 crossref_primary_10_32604_biocell_2024_048946 crossref_primary_10_1038_s41586_024_08076_7 crossref_primary_10_3389_fimmu_2021_701085 crossref_primary_10_2217_bmm_2023_0202 crossref_primary_10_1172_JCI160025 crossref_primary_10_1186_s12865_022_00488_2 crossref_primary_10_1016_j_it_2019_10_006 crossref_primary_10_1038_s41586_021_03862_z crossref_primary_10_1126_sciadv_aax3160 crossref_primary_10_1038_s41423_020_00565_9 crossref_primary_10_1016_j_ccell_2024_06_009 crossref_primary_10_1136_jitc_2021_002709 crossref_primary_10_1016_j_ccell_2021_08_011 crossref_primary_10_3390_ijms21197357 crossref_primary_10_1016_j_ccell_2024_09_010 crossref_primary_10_1038_s41577_019_0221_9 crossref_primary_10_1093_intimm_dxac038 crossref_primary_10_1136_jitc_2022_005398 crossref_primary_10_1186_s12943_024_02104_w crossref_primary_10_1038_s41590_022_01219_w crossref_primary_10_1016_j_immuni_2022_02_005 crossref_primary_10_1016_j_jaut_2022_102950 crossref_primary_10_3389_fimmu_2020_00340 crossref_primary_10_1158_2326_6066_CIR_23_0752 crossref_primary_10_3389_fimmu_2023_1117092 crossref_primary_10_1093_infdis_jiaa395 crossref_primary_10_1016_j_ejca_2022_07_004 crossref_primary_10_1038_s41590_019_0480_4 crossref_primary_10_1038_s41590_023_01685_w crossref_primary_10_1093_discim_kyad004 crossref_primary_10_1002_eji_202170126 crossref_primary_10_1038_s41423_020_0436_5 crossref_primary_10_1172_jci_insight_127867 crossref_primary_10_1097_MD_0000000000023714 crossref_primary_10_1038_s41419_022_04645_8 crossref_primary_10_1111_imm_13064 crossref_primary_10_1158_0008_5472_CAN_23_2455 crossref_primary_10_1101_cshperspect_a037770 crossref_primary_10_1093_intimm_dxac043 crossref_primary_10_1158_2767_9764_CRC_22_0514 crossref_primary_10_1146_annurev_anchem_061417_125927 crossref_primary_10_2147_OTT_S295102 crossref_primary_10_4049_jimmunol_1901072 crossref_primary_10_1002_JLB_6MR0320_234R crossref_primary_10_1016_j_canlet_2024_217278 crossref_primary_10_1038_s41590_021_00949_7 crossref_primary_10_1146_annurev_immunol_090122_041354 crossref_primary_10_1016_j_immuni_2019_12_010 crossref_primary_10_1007_s00262_020_02563_2 crossref_primary_10_1002_JLB_1MR0520_746R crossref_primary_10_1038_s41590_020_00810_3 crossref_primary_10_1016_j_trecan_2022_04_003 crossref_primary_10_1016_j_trecan_2022_04_004 crossref_primary_10_1080_2162402X_2022_2038403 crossref_primary_10_1002_JLB_5MR1120_778R crossref_primary_10_1038_s41590_020_0760_z crossref_primary_10_1172_jci_insight_127807 crossref_primary_10_1038_s41577_021_00563_6 crossref_primary_10_1084_jem_20232104 crossref_primary_10_1111_imr_13356 crossref_primary_10_1038_s41590_024_01923_9 crossref_primary_10_1002_eji_202048761 crossref_primary_10_1007_s00262_020_02502_1 crossref_primary_10_1038_s41467_024_53034_6 crossref_primary_10_1158_1078_0432_CCR_21_1893 crossref_primary_10_1007_s12026_020_09120_0 crossref_primary_10_1016_j_jconrel_2022_01_020 crossref_primary_10_1007_s00432_020_03150_9 crossref_primary_10_3389_fphar_2021_670900 crossref_primary_10_1126_sciimmunol_adf4726 crossref_primary_10_1016_j_cell_2023_02_021 crossref_primary_10_3390_cancers13195011 crossref_primary_10_1038_s41577_021_00574_3 crossref_primary_10_1038_s41467_022_34655_1 crossref_primary_10_4110_in_2023_23_e35 crossref_primary_10_1158_2159_8290_CD_20_1554 crossref_primary_10_1038_s41467_020_20751_7 crossref_primary_10_1002_eji_202048994 crossref_primary_10_1101_cshperspect_a036269 crossref_primary_10_1038_s43018_023_00566_3 crossref_primary_10_1002_pmic_201900270 crossref_primary_10_1016_j_isci_2024_110754 crossref_primary_10_1007_s00262_024_03887_z crossref_primary_10_3389_fimmu_2022_884148 crossref_primary_10_1038_s41586_019_1836_5 crossref_primary_10_1136_jitc_2020_001631 crossref_primary_10_1016_j_coi_2019_04_014 crossref_primary_10_1084_jem_20211538 crossref_primary_10_1016_j_ccell_2023_08_001 crossref_primary_10_1038_s12276_023_01105_x crossref_primary_10_1016_j_ccell_2021_01_015 crossref_primary_10_1038_s41571_022_00689_z crossref_primary_10_3389_fimmu_2021_715234 crossref_primary_10_1038_s41467_023_40398_4 crossref_primary_10_1101_cshperspect_a035725 crossref_primary_10_1007_s12272_019_01140_1 crossref_primary_10_1073_pnas_1917298117 crossref_primary_10_1038_s41467_020_14442_6 crossref_primary_10_3389_fmed_2022_1034764 crossref_primary_10_1038_s41467_023_40790_0 crossref_primary_10_3390_ijms21186497 crossref_primary_10_3389_fimmu_2020_01350 crossref_primary_10_1080_2162402X_2020_1737369 crossref_primary_10_1084_jem_20201730 crossref_primary_10_1016_j_ccell_2023_04_010 crossref_primary_10_3390_ijms22158351 crossref_primary_10_1016_j_coviro_2020_10_003 crossref_primary_10_1073_pnas_2315419121 |
Cites_doi | 10.1007/s00259-016-3425-2 10.1016/j.cell.2017.04.016 10.1084/jem.192.7.1027 10.1007/s00262-007-0343-y 10.1038/nm.4466 10.1038/nri3567 10.1016/j.immuni.2013.10.003 10.1038/nature24633 10.1189/jlb.0208107 10.1038/nprot.2012.143 10.1371/journal.pone.0146195 10.1126/scitranslmed.aaa3700 10.1002/eji.201343751 10.1016/j.immuni.2013.07.008 10.1016/j.cell.2017.07.024 10.1126/sciimmunol.aai8593 10.1016/j.cell.2017.11.006 10.1093/nar/gkv007 10.1038/nbt.3192 10.1126/science.1129139 10.1016/j.cell.2017.04.014 10.1056/NEJMoa051424 10.1007/978-1-4939-6548-9_3 10.1073/pnas.0506580102 10.1126/science.271.5256.1734 10.1056/NEJMoa1003466 10.1038/nature19330 10.1038/nm1326 10.1038/ni.2035 10.1038/ni.2703 10.1158/0008-5472.CAN-15-3130 10.1038/s41467-017-00608-2 10.1126/scitranslmed.aac8265 10.1038/nbt.2594 10.1126/science.aad0501 10.1038/ni.3543 10.1371/journal.pcbi.1005112 10.1126/science.aaa8172 10.1200/JCO.2007.15.0284 10.1073/pnas.0611533104 10.1158/0008-5472.CAN-15-1498 10.1016/j.immuni.2016.07.007 10.1172/JCI24480 10.1056/NEJMoa1200690 10.1016/j.cell.2017.05.035 10.1093/biostatistics/4.2.249 10.1016/j.cell.2015.05.047 10.1016/j.immuni.2016.07.021 10.1038/nature19317 10.1126/scitranslmed.3004916 10.4049/jimmunol.177.7.4330 10.1038/nm1592 10.1016/j.cell.2014.10.026 10.1038/ni.3775 10.1038/nm.2446 10.1007/s00259-013-2672-8 |
ContentType | Journal Article |
Copyright | 2018 Brummelman et al. 2018 Brummelman et al. 2018 |
Copyright_xml | – notice: 2018 Brummelman et al. – notice: 2018 Brummelman et al. 2018 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1084/jem.20180684 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Stem-like CD8+ T cells in solid tumors |
EISSN | 1540-9538 |
EndPage | 2535 |
ExternalDocumentID | PMC6170179 30154266 10_1084_jem_20180684 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: IG20607; IG14687; MFAG189323 – fundername: ; – fundername: Bristol Myers Squibb grantid: CA209-9YM – fundername: Italian Ministry of Health grantid: PE-2016-02363915 – fundername: Italian Ministry of Health grantid: 82/2015 – fundername: International Society for the Advancement of Cytometry |
GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EJD EMB F5P F9R GX1 H13 HYE IH2 K-O KQ8 L7B N9A O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ NPM 7X8 5PM |
ID | FETCH-LOGICAL-c314t-fff09bc961d8d2d070184a92dcfba7127d1b7863ab68e275239f1c136f6f36263 |
ISSN | 0022-1007 1540-9538 |
IngestDate | Thu Aug 21 18:34:16 EDT 2025 Fri Jul 11 01:25:06 EDT 2025 Mon Jul 21 05:59:18 EDT 2025 Tue Jul 01 00:41:11 EDT 2025 Thu Apr 24 22:54:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 2018 Brummelman et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-fff09bc961d8d2d070184a92dcfba7127d1b7863ab68e275239f1c136f6f36263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 J. Brummelman and E.M.C. Mazza contributed equally to this paper. |
ORCID | 0000-0003-3581-4816 0000-0003-4480-3481 0000-0002-1964-7678 0000-0002-6219-0714 0000-0001-6147-0952 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6170179 |
PMID | 30154266 |
PQID | 2096572909 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6170179 proquest_miscellaneous_2096572909 pubmed_primary_30154266 crossref_primary_10_1084_jem_20180684 crossref_citationtrail_10_1084_jem_20180684 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 2018-Oct-01 20181001 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of experimental medicine |
PublicationTitleAlternate | J Exp Med |
PublicationYear | 2018 |
Publisher | Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press |
References | Bindea (2023072604013984800_bib4) 2013; 39 Gattinoni (2023072604013984800_bib20) 2011; 17 Zhang (2023072604013984800_bib57) 2005; 11 Akondy (2023072604013984800_bib2) 2017; 552 Krieg (2023072604013984800_bib27) 2018; 24 Utzschneider (2023072604013984800_bib52) 2016; 45 Dieu-Nosjean (2023072604013984800_bib11) 2008; 26 Farber (2023072604013984800_bib12) 2014; 14 Chattopadhyay (2023072604013984800_bib6) 2009; 85 Topalian (2023072604013984800_bib51) 2012; 366 Amir (2023072604013984800_bib3) 2013; 31 Wei (2023072604013984800_bib53) 2017; 170 Singer (2023072604013984800_bib45) 2017; 171 Lavin (2023072604013984800_bib28) 2017; 169 Lugli (2023072604013984800_bib34) 2013; 123 Mahnke (2023072604013984800_bib37) 2013; 43 Liu (2023072604013984800_bib32) 2016; 11 Leach (2023072604013984800_bib29) 1996; 271 Satija (2023072604013984800_bib42) 2015; 33 Croci (2023072604013984800_bib9) 2007; 56 Hamanishi (2023072604013984800_bib21) 2007; 104 Ritchie (2023072604013984800_bib41) 2015; 43 Sharma (2023072604013984800_bib44) 2015; 348 Im (2023072604013984800_bib24) 2016; 537 Hodi (2023072604013984800_bib23) 2010; 363 Fuertes Marraco (2023072604013984800_bib14) 2015; 7 Freeman (2023072604013984800_bib13) 2000; 192 Jacquelot (2023072604013984800_bib26) 2017; 8 Leong (2023072604013984800_bib30) 2016; 17 Wu (2023072604013984800_bib56) 2016; 1 Irizarry (2023072604013984800_bib25) 2003; 4 Levine (2023072604013984800_bib31) 2015; 162 Darrah (2023072604013984800_bib10) 2007; 13 Lugli (2023072604013984800_bib36) 2017; 1514 Schumacher (2023072604013984800_bib43) 2001; 61 Zheng (2023072604013984800_bib58) 2017; 169 Subramanian (2023072604013984800_bib46) 2005; 102 Gattinoni (2023072604013984800_bib19) 2005; 115 Ahrends (2023072604013984800_bib1) 2016; 76 Galon (2023072604013984800_bib17) 2013; 39 Takata (2023072604013984800_bib47) 2006; 177 Chapuis (2023072604013984800_bib5) 2013; 5 Pagès (2023072604013984800_bib39) 2005; 353 Oliveira (2023072604013984800_bib38) 2015; 7 Pilipow (2023072604013984800_bib40) 2015; 75 Wherry (2023072604013984800_bib54) 2011; 12 Tirosh (2023072604013984800_bib50) 2016; 352 Chevrier (2023072604013984800_bib8) 2017; 169 Chen (2023072604013984800_bib7) 2016; 12 Ganesan (2023072604013984800_bib18) 2017; 18 Takeuchi (2023072604013984800_bib48) 2014; 41 Lopci (2023072604013984800_bib33) 2016; 43 Wong (2023072604013984800_bib55) 2016; 45 Thome (2023072604013984800_bib49) 2014; 159 He (2023072604013984800_bib22) 2016; 537 Galon (2023072604013984800_bib16) 2006; 313 Gajewski (2023072604013984800_bib15) 2013; 14 Lugli (2023072604013984800_bib35) 2013; 8 |
References_xml | – volume: 43 start-page: 1954 year: 2016 ident: 2023072604013984800_bib33 article-title: Correlation of metabolic information on FDG-PET with tissue expression of immune markers in patients with non-small cell lung cancer (NSCLC) who are candidates for upfront surgery publication-title: Eur. J. Nucl. Med. Mol. Imaging. doi: 10.1007/s00259-016-3425-2 – volume: 169 start-page: 736 year: 2017 ident: 2023072604013984800_bib8 article-title: An Immune Atlas of Clear Cell Renal Cell Carcinoma publication-title: Cell. doi: 10.1016/j.cell.2017.04.016 – volume: 192 start-page: 1027 year: 2000 ident: 2023072604013984800_bib13 article-title: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation publication-title: J. Exp. Med. doi: 10.1084/jem.192.7.1027 – volume: 56 start-page: 1687 year: 2007 ident: 2023072604013984800_bib9 article-title: Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-007-0343-y – volume: 61 start-page: 3932 year: 2001 ident: 2023072604013984800_bib43 article-title: Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas publication-title: Cancer Res. – volume: 24 start-page: 144 year: 2018 ident: 2023072604013984800_bib27 article-title: High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy publication-title: Nat. Med. doi: 10.1038/nm.4466 – volume: 14 start-page: 24 year: 2014 ident: 2023072604013984800_bib12 article-title: Human memory T cells: generation, compartmentalization and homeostasis publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3567 – volume: 39 start-page: 782 year: 2013 ident: 2023072604013984800_bib4 article-title: Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer publication-title: Immunity. doi: 10.1016/j.immuni.2013.10.003 – volume: 552 start-page: 362 year: 2017 ident: 2023072604013984800_bib2 article-title: Origin and differentiation of human memory CD8 T cells after vaccination publication-title: Nature. doi: 10.1038/nature24633 – volume: 85 start-page: 88 year: 2009 ident: 2023072604013984800_bib6 article-title: The cytolytic enzymes granyzme A, granzyme B, and perforin: expression patterns, cell distribution, and their relationship to cell maturity and bright CD57 expression publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0208107 – volume: 8 start-page: 33 year: 2013 ident: 2023072604013984800_bib35 article-title: Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.143 – volume: 11 start-page: e0146195 year: 2016 ident: 2023072604013984800_bib32 article-title: Prognostic Value of 18F-FDG PET/CT in Surgical Non-Small Cell Lung Cancer: A Meta-Analysis publication-title: PLoS One. doi: 10.1371/journal.pone.0146195 – volume: 7 start-page: 282ra48 year: 2015 ident: 2023072604013984800_bib14 article-title: Long-lasting stem cell-like memory CD8+ T cells with a naïve-like profile upon yellow fever vaccination publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa3700 – volume: 43 start-page: 2797 year: 2013 ident: 2023072604013984800_bib37 article-title: The who’s who of T-cell differentiation: human memory T-cell subsets publication-title: Eur. J. Immunol. doi: 10.1002/eji.201343751 – volume: 39 start-page: 11 year: 2013 ident: 2023072604013984800_bib17 article-title: The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures publication-title: Immunity. doi: 10.1016/j.immuni.2013.07.008 – volume: 170 start-page: 1120 year: 2017 ident: 2023072604013984800_bib53 article-title: Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade publication-title: Cell. doi: 10.1016/j.cell.2017.07.024 – volume: 1 start-page: eaai8593 year: 2016 ident: 2023072604013984800_bib56 article-title: The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aai8593 – volume: 171 start-page: 1221 year: 2017 ident: 2023072604013984800_bib45 article-title: A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells publication-title: Cell. doi: 10.1016/j.cell.2017.11.006 – volume: 43 start-page: e47 year: 2015 ident: 2023072604013984800_bib41 article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv007 – volume: 123 start-page: 594 year: 2013 ident: 2023072604013984800_bib34 article-title: Superior T memory stem cell persistence supports long-lived T cell memory publication-title: J. Clin. Invest. – volume: 33 start-page: 495 year: 2015 ident: 2023072604013984800_bib42 article-title: Spatial reconstruction of single-cell gene expression data publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3192 – volume: 313 start-page: 1960 year: 2006 ident: 2023072604013984800_bib16 article-title: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome publication-title: Science. doi: 10.1126/science.1129139 – volume: 169 start-page: 750 year: 2017 ident: 2023072604013984800_bib28 article-title: Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses publication-title: Cell. doi: 10.1016/j.cell.2017.04.014 – volume: 353 start-page: 2654 year: 2005 ident: 2023072604013984800_bib39 article-title: Effector memory T cells, early metastasis, and survival in colorectal cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa051424 – volume: 1514 start-page: 31 year: 2017 ident: 2023072604013984800_bib36 article-title: FACS Analysis of Memory T Lymphocytes publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-6548-9_3 – volume: 102 start-page: 15545 year: 2005 ident: 2023072604013984800_bib46 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0506580102 – volume: 271 start-page: 1734 year: 1996 ident: 2023072604013984800_bib29 article-title: Enhancement of antitumor immunity by CTLA-4 blockade publication-title: Science. doi: 10.1126/science.271.5256.1734 – volume: 363 start-page: 711 year: 2010 ident: 2023072604013984800_bib23 article-title: Improved survival with ipilimumab in patients with metastatic melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1003466 – volume: 537 start-page: 417 year: 2016 ident: 2023072604013984800_bib24 article-title: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy publication-title: Nature. doi: 10.1038/nature19330 – volume: 11 start-page: 1299 year: 2005 ident: 2023072604013984800_bib57 article-title: Host-reactive CD8+ memory stem cells in graft-versus-host disease publication-title: Nat. Med. doi: 10.1038/nm1326 – volume: 12 start-page: 492 year: 2011 ident: 2023072604013984800_bib54 article-title: T cell exhaustion publication-title: Nat. Immunol. doi: 10.1038/ni.2035 – volume: 14 start-page: 1014 year: 2013 ident: 2023072604013984800_bib15 article-title: Innate and adaptive immune cells in the tumor microenvironment publication-title: Nat. Immunol. doi: 10.1038/ni.2703 – volume: 76 start-page: 2921 year: 2016 ident: 2023072604013984800_bib1 article-title: CD27 Agonism Plus PD-1 Blockade Recapitulates CD4+ T-cell Help in Therapeutic Anticancer Vaccination publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-3130 – volume: 8 start-page: 592 year: 2017 ident: 2023072604013984800_bib26 article-title: Predictors of responses to immune checkpoint blockade in advanced melanoma publication-title: Nat. Commun. doi: 10.1038/s41467-017-00608-2 – volume: 7 start-page: 317ra198 year: 2015 ident: 2023072604013984800_bib38 article-title: Tracking genetically engineered lymphocytes long-term reveals the dynamics of T cell immunological memory publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aac8265 – volume: 31 start-page: 545 year: 2013 ident: 2023072604013984800_bib3 article-title: viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2594 – volume: 352 start-page: 189 year: 2016 ident: 2023072604013984800_bib50 article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq publication-title: Science. doi: 10.1126/science.aad0501 – volume: 17 start-page: 1187 year: 2016 ident: 2023072604013984800_bib30 article-title: CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles publication-title: Nat. Immunol. doi: 10.1038/ni.3543 – volume: 12 start-page: e1005112 year: 2016 ident: 2023072604013984800_bib7 article-title: Cytofkit: A Bioconductor Package for an Integrated Mass Cytometry Data Analysis Pipeline publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1005112 – volume: 348 start-page: 56 year: 2015 ident: 2023072604013984800_bib44 article-title: The future of immune checkpoint therapy publication-title: Science. doi: 10.1126/science.aaa8172 – volume: 26 start-page: 4410 year: 2008 ident: 2023072604013984800_bib11 article-title: Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2007.15.0284 – volume: 104 start-page: 3360 year: 2007 ident: 2023072604013984800_bib21 article-title: Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0611533104 – volume: 75 start-page: 5187 year: 2015 ident: 2023072604013984800_bib40 article-title: IL15 and T-cell Stemness in T-cell-Based Cancer Immunotherapy publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-1498 – volume: 45 start-page: 442 year: 2016 ident: 2023072604013984800_bib55 article-title: A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-Specific Trafficking and Cytokine Signatures publication-title: Immunity. doi: 10.1016/j.immuni.2016.07.007 – volume: 115 start-page: 1616 year: 2005 ident: 2023072604013984800_bib19 article-title: Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells publication-title: J. Clin. Invest. doi: 10.1172/JCI24480 – volume: 366 start-page: 2443 year: 2012 ident: 2023072604013984800_bib51 article-title: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1200690 – volume: 169 start-page: 1342 year: 2017 ident: 2023072604013984800_bib58 article-title: Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing publication-title: Cell. doi: 10.1016/j.cell.2017.05.035 – volume: 4 start-page: 249 year: 2003 ident: 2023072604013984800_bib25 article-title: Exploration, normalization, and summaries of high density oligonucleotide array probe level data publication-title: Biostatistics. doi: 10.1093/biostatistics/4.2.249 – volume: 162 start-page: 184 year: 2015 ident: 2023072604013984800_bib31 article-title: Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis publication-title: Cell. doi: 10.1016/j.cell.2015.05.047 – volume: 45 start-page: 415 year: 2016 ident: 2023072604013984800_bib52 article-title: T Cell Factor 1-Expressing Memory-like CD8(+) T Cells Sustain the Immune Response to Chronic Viral Infections publication-title: Immunity. doi: 10.1016/j.immuni.2016.07.021 – volume: 537 start-page: 412 year: 2016 ident: 2023072604013984800_bib22 article-title: Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection publication-title: Nature. doi: 10.1038/nature19317 – volume: 5 start-page: 174ra27 year: 2013 ident: 2023072604013984800_bib5 article-title: Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3004916 – volume: 177 start-page: 4330 year: 2006 ident: 2023072604013984800_bib47 article-title: Three memory subsets of human CD8+ T cells differently expressing three cytolytic effector molecules publication-title: J. Immunol. doi: 10.4049/jimmunol.177.7.4330 – volume: 13 start-page: 843 year: 2007 ident: 2023072604013984800_bib10 article-title: Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major publication-title: Nat. Med. doi: 10.1038/nm1592 – volume: 159 start-page: 814 year: 2014 ident: 2023072604013984800_bib49 article-title: Spatial map of human T cell compartmentalization and maintenance over decades of life publication-title: Cell. doi: 10.1016/j.cell.2014.10.026 – volume: 18 start-page: 940 year: 2017 ident: 2023072604013984800_bib18 article-title: Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer publication-title: Nat. Immunol. doi: 10.1038/ni.3775 – volume: 17 start-page: 1290 year: 2011 ident: 2023072604013984800_bib20 article-title: A human memory T cell subset with stem cell-like properties publication-title: Nat. Med. doi: 10.1038/nm.2446 – volume: 41 start-page: 906 year: 2014 ident: 2023072604013984800_bib48 article-title: Impact of initial PET/CT staging in terms of clinical stage, management plan, and prognosis in 592 patients with non-small-cell lung cancer publication-title: Eur. J. Nucl. Med. Mol. Imaging. doi: 10.1007/s00259-013-2672-8 |
SSID | ssj0014456 |
Score | 2.651775 |
Snippet | CD8+ T cells infiltrating tumors are largely dysfunctional, but whether a subset maintains superior functionality remains ill defined. By high-dimensional... CD8 T cells infiltrating tumors are largely dysfunctional, but whether a subset maintains superior functionality remains ill defined. By high-dimensional... CD8 + T cells infiltrating tumors are largely dysfunctional. Brummelman and Mazza et al. identify partially exhausted CXCR5 + TIM-3 – CD8 + T cells with... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2520 |
Title | High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30154266 https://www.proquest.com/docview/2096572909 https://pubmed.ncbi.nlm.nih.gov/PMC6170179 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAviG_Kl4zEnqKU2Ekc5xHKpmlSeaGT9lbFjjPC0gRtqQT9w_j7ONuJm7ZDGrxEVXtOW98vvjv77ncIvZcBhYcmjHwmYgYBChE-pyr3GRWUhCqRkTRZvl_YyVl0eh6fj0a_B1lLq1ZM5PrGupL_0Sq8B3rVVbL_oFl3U3gDXoN-4QoahuutdKyTNPxc8_Nbbg1PB_6V8vRuvJf1dCNlbjOC1LWnWZv9qrwEkV9t0zY_S-lNP_ND-smbm1EmO6usDJdufdF18GtXy6Y79Pm-AdfAld1qE7B_Wg8zoqpup_W00amUzhbMsvXauK9Hy7IqM282mU4cBitd-G427svm6qLc5BTBgr0UZo_3WHNhAJi9r5Ph_gXhLhNuWE-gczWsReqW4SjQB8t8uE5TW_fZAzIYLrsxDQYmnMaWAmXPPAQ80uZBaQoCwgNmu9Nts3DvWEeXs2hO63m0gNGLfvQddJdCeGKKzM9dahHEqKZrsPtnXcEFjP4w_O5tV2gvvtlN0x34PfOH6EGnZfzRou8RGqn6Mbo365T8BF3ughBbEGINJ9yDEG9AiB0IsQMhBhB6eG7GgOwAgthAEFsIPkVnx0fz6YnfdfDwZUii1i-KIkiFTBnJeU5zMC-ER1lKc1mILCE0yYlIOAszwbiiSUzDtCCShKxgheFJeoYO6qZWLxCOSUYEFxLmW3fNK9IoSVUeUarCPJOCjJHXT-ZCdvT2ustKtbhJcWN06KR_WFqXv8i96_WygHVXz0JWq2Z1DRIpiyEyDdIxem715O4U6sAEPN8xSrY06AQ0p_v2J3X5zXC7m_4ISfrylr_vFbq_eaZeo4P2aqXegJfcircGkn8AkxXAlA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-dimensional+single+cell+analysis+identifies+stem-like+cytotoxic+CD8%2B+T+cells+infiltrating+human+tumors&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Brummelman%2C+Jolanda&rft.au=Mazza%2C+Emilia+M.C.&rft.au=Alvisi%2C+Giorgia&rft.au=Colombo%2C+Federico+S.&rft.date=2018-10-01&rft.issn=0022-1007&rft.eissn=1540-9538&rft.volume=215&rft.issue=10&rft.spage=2520&rft.epage=2535&rft_id=info:doi/10.1084%2Fjem.20180684&rft.externalDBID=n%2Fa&rft.externalDocID=10_1084_jem_20180684 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |