A green vehicle routing model based on modified particle swarm optimization for cold chain logistics

Purpose This paper studies green vehicle routing problems of cold chain logistics with the consideration of the full set of greenhouse gas (GHG) emissions and an optimization model of green vehicle routing for cold chain logistics (with an acronym of GVRPCCL) is developed. The purpose of this paper...

Full description

Saved in:
Bibliographic Details
Published inIndustrial management + data systems Vol. 119; no. 3; pp. 473 - 494
Main Authors Li, Yan, Lim, Ming K, Tseng, Ming-Lang
Format Journal Article
LanguageEnglish
Published Wembley Emerald Publishing Limited 08.04.2019
Emerald Group Publishing Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose This paper studies green vehicle routing problems of cold chain logistics with the consideration of the full set of greenhouse gas (GHG) emissions and an optimization model of green vehicle routing for cold chain logistics (with an acronym of GVRPCCL) is developed. The purpose of this paper is to minimize the total costs, which include vehicle operating cost, quality loss cost, product freshness cost, penalty cost, energy cost and GHG emissions cost. In addition, this research also investigates the effect of changing the vehicle maximum load in relation to cost and GHG emissions. Design/methodology/approach This study develops a mathematical optimization model, considering the total cost and GHG emission. The standard particle swarm optimization and modified particle swarm optimization (MPSO), based on an intelligent optimization algorithm, are applied in this study to solve the routing problem of a real case. Findings The results of this study show the extend of the proposed MPSO performing better in achieving green-focussed vehicle routing and that considering the full set of GHG costs in the objective functions will reduce the total costs and environmental-diminishing emissions of GHG through the comparative analysis. The research outputs also evaluated the effect of different enterprises’ conditions (e.g. customers’ locations and demand patterns) for better distribution routes planning. Research limitations/implications There are some limitations in the proposed model. This study assumes that the vehicle is at a constant speed and it does not consider uncertainties, such as weather conditions and road conditions. Originality/value Prior studies, particularly in green cold chain logistics vehicle routing problem, are fairly limited. The prior works revolved around GHG emissions problem have not considered methane and nitrous oxides. This study takes into account the characteristics of cold chain logistics and the full set of GHGs.
AbstractList Purpose This paper studies green vehicle routing problems of cold chain logistics with the consideration of the full set of greenhouse gas (GHG) emissions and an optimization model of green vehicle routing for cold chain logistics (with an acronym of GVRPCCL) is developed. The purpose of this paper is to minimize the total costs, which include vehicle operating cost, quality loss cost, product freshness cost, penalty cost, energy cost and GHG emissions cost. In addition, this research also investigates the effect of changing the vehicle maximum load in relation to cost and GHG emissions. Design/methodology/approach This study develops a mathematical optimization model, considering the total cost and GHG emission. The standard particle swarm optimization and modified particle swarm optimization (MPSO), based on an intelligent optimization algorithm, are applied in this study to solve the routing problem of a real case. Findings The results of this study show the extend of the proposed MPSO performing better in achieving green-focussed vehicle routing and that considering the full set of GHG costs in the objective functions will reduce the total costs and environmental-diminishing emissions of GHG through the comparative analysis. The research outputs also evaluated the effect of different enterprises’ conditions (e.g. customers’ locations and demand patterns) for better distribution routes planning. Research limitations/implications There are some limitations in the proposed model. This study assumes that the vehicle is at a constant speed and it does not consider uncertainties, such as weather conditions and road conditions. Originality/value Prior studies, particularly in green cold chain logistics vehicle routing problem, are fairly limited. The prior works revolved around GHG emissions problem have not considered methane and nitrous oxides. This study takes into account the characteristics of cold chain logistics and the full set of GHGs.
PurposeThis paper studies green vehicle routing problems of cold chain logistics with the consideration of the full set of greenhouse gas (GHG) emissions and an optimization model of green vehicle routing for cold chain logistics (with an acronym of GVRPCCL) is developed. The purpose of this paper is to minimize the total costs, which include vehicle operating cost, quality loss cost, product freshness cost, penalty cost, energy cost and GHG emissions cost. In addition, this research also investigates the effect of changing the vehicle maximum load in relation to cost and GHG emissions.Design/methodology/approachThis study develops a mathematical optimization model, considering the total cost and GHG emission. The standard particle swarm optimization and modified particle swarm optimization (MPSO), based on an intelligent optimization algorithm, are applied in this study to solve the routing problem of a real case.FindingsThe results of this study show the extend of the proposed MPSO performing better in achieving green-focussed vehicle routing and that considering the full set of GHG costs in the objective functions will reduce the total costs and environmental-diminishing emissions of GHG through the comparative analysis. The research outputs also evaluated the effect of different enterprises’ conditions (e.g. customers’ locations and demand patterns) for better distribution routes planning.Research limitations/implicationsThere are some limitations in the proposed model. This study assumes that the vehicle is at a constant speed and it does not consider uncertainties, such as weather conditions and road conditions.Originality/valuePrior studies, particularly in green cold chain logistics vehicle routing problem, are fairly limited. The prior works revolved around GHG emissions problem have not considered methane and nitrous oxides. This study takes into account the characteristics of cold chain logistics and the full set of GHGs.
Author Tseng, Ming-Lang
Li, Yan
Lim, Ming K
Author_xml – sequence: 1
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  email: 2514691564@qq.com
– sequence: 2
  givenname: Ming K
  orcidid: 0000-0003-0809-9431
  surname: Lim
  fullname: Lim, Ming K
  email: ming.lim@cqu.edu.cn
– sequence: 3
  givenname: Ming-Lang
  surname: Tseng
  fullname: Tseng, Ming-Lang
  email: tsengminglang@gmail.com
BookMark eNp9kctOwzAQRS1UJNrCB7CzxDpgx3HsLqvyqlTEgu6tSey0rpI42C4Ivp6kZQNCrDwenTuPOxM0al1rELqk5JpSIm-WT7cvCRFJSqhMCKPZCRpTwWXChWQjNCZpzhLOhThDkxB2hPSJNB8jPccbb0yL38zWlrXB3u2jbTe4cdrUuIBgNHbt8LWV7eMOfDyA4R18g10XbWM_IdoeqpzHpas1LrdgW1y7jQ09HM7RaQV1MBff7xSt7-_Wi8dk9fywXMxXSdkPHJNqpksKlOeCCV5IkUlNTQGk4DTPCgq8KnINRECRCw5VmaaCziRlYKTMoGBTdHUs23n3ujchqp3b-7bvqNKUZJJxyVlP0SNVeheCN5XqvG3AfyhK1OClGrxURKjBSzV42WvEL01p42Hn6MHW_yrJUWka46HWfzb7cTj2BVDhijw
CitedBy_id crossref_primary_10_1016_j_cie_2021_107663
crossref_primary_10_1109_ACCESS_2022_3141311
crossref_primary_10_3390_s22228641
crossref_primary_10_1108_IMDS_10_2021_0607
crossref_primary_10_3390_app11114790
crossref_primary_10_3390_pr12061127
crossref_primary_10_1016_j_tranpol_2022_02_003
crossref_primary_10_1007_s10898_021_01078_z
crossref_primary_10_1016_j_tranpol_2022_11_007
crossref_primary_10_2298_YJOR211120016M
crossref_primary_10_3390_su152316149
crossref_primary_10_1080_00207543_2021_1925173
crossref_primary_10_1038_s41598_024_72723_2
crossref_primary_10_1108_IMDS_03_2019_0149
crossref_primary_10_1080_0194262X_2020_1761933
crossref_primary_10_1108_IMDS_05_2021_0283
crossref_primary_10_3390_math12020332
crossref_primary_10_1109_TETCI_2022_3170520
crossref_primary_10_3390_su13148110
crossref_primary_10_3390_bs14090771
crossref_primary_10_1016_j_tre_2020_101886
crossref_primary_10_29130_dubited_1011735
crossref_primary_10_1016_j_eswa_2022_118378
crossref_primary_10_1016_j_orp_2024_100303
crossref_primary_10_3390_su12198068
crossref_primary_10_1016_j_wasman_2024_04_001
crossref_primary_10_1016_j_resconrec_2020_104715
crossref_primary_10_1007_s00500_020_05333_5
crossref_primary_10_1016_j_cie_2019_05_018
crossref_primary_10_1002_er_8031
crossref_primary_10_1016_j_bdr_2023_100417
crossref_primary_10_35784_acs_2020_05
crossref_primary_10_1080_13675567_2023_2289463
crossref_primary_10_1108_IJLM_02_2020_0092
crossref_primary_10_31202_ecjse_776314
crossref_primary_10_3390_su151511520
crossref_primary_10_1080_09544828_2022_2142903
crossref_primary_10_1088_1757_899X_787_1_012031
crossref_primary_10_1108_IMDS_02_2022_0105
crossref_primary_10_1080_03081060_2024_2375295
crossref_primary_10_3390_math12233831
crossref_primary_10_1080_23302674_2025_2466105
crossref_primary_10_1108_IJICC_08_2021_0163
crossref_primary_10_3934_mbe_2021100
crossref_primary_10_1142_S0219622024500020
crossref_primary_10_1007_s12351_024_00862_5
crossref_primary_10_4018_IJISSCM_318644
crossref_primary_10_1016_j_cie_2025_110972
crossref_primary_10_21923_jesd_1038906
crossref_primary_10_1016_j_resconrec_2019_104585
crossref_primary_10_3390_su13084528
crossref_primary_10_1080_00207543_2019_1650975
crossref_primary_10_1007_s10479_020_03599_4
crossref_primary_10_1016_j_cie_2024_110424
crossref_primary_10_1007_s10878_023_01056_z
crossref_primary_10_1080_00207543_2024_2355325
crossref_primary_10_1016_j_scs_2021_103074
crossref_primary_10_3390_su12051967
crossref_primary_10_1108_MEQ_03_2022_0046
crossref_primary_10_1007_s11356_021_13059_6
crossref_primary_10_1108_K_11_2021_1111
crossref_primary_10_1016_j_resconrec_2021_105925
crossref_primary_10_2478_amns_2024_1480
crossref_primary_10_1007_s12667_024_00689_1
crossref_primary_10_1007_s12351_024_00851_8
crossref_primary_10_3390_logistics7040101
crossref_primary_10_1016_j_trpro_2023_11_905
crossref_primary_10_3390_en13246612
crossref_primary_10_4018_IJISSCM_305844
crossref_primary_10_1016_j_tre_2024_103838
crossref_primary_10_3390_math11092067
crossref_primary_10_3934_mbe_20210100
crossref_primary_10_1007_s00500_022_07072_1
crossref_primary_10_1109_TVT_2024_3391419
crossref_primary_10_3390_ijerph19148675
crossref_primary_10_1016_j_wasman_2020_09_045
crossref_primary_10_1038_s41598_023_31050_8
crossref_primary_10_1080_00207543_2022_2045377
crossref_primary_10_4018_JGIM_326557
Cites_doi 10.1007/s11356-017-9740-8
10.1016/j.ijpe.2009.08.027
10.1016/j.ejor.2012.09.023
10.1016/j.resconrec.2017.12.028
10.1016/j.jclepro.2016.11.115
10.1016/j.scs.2018.04.016
10.1109/TEVC.2013.2260862
10.1016/j.ijpe.2014.11.003
10.1016/j.trb.2014.11.004
10.1016/j.proeng.2011.08.459
10.1016/j.eswa.2013.07.107
10.1108/MEQ-08-2013-0086
10.1007/s00521-015-1851-x
10.1016/j.trd.2014.07.016
10.1109/TSMCC.2011.2148712
10.1504/IJSCOR.2015.069938
10.1016/j.jocs.2017.04.003
10.1007/s11066-015-9099-2
10.1080/00207543.2013.855337
10.1016/j.trd.2008.01.005
10.1016/S1665-6423(14)72340-5
10.1016/j.trb.2016.09.012
10.1016/j.eswa.2018.01.052
10.1016/j.ijpe.2015.09.031
10.1109/MCI.2014.2326098
10.1016/j.asoc.2017.05.010
10.19026/ajfst.8.1611
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited 2018
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited 2018
DBID AAYXX
CITATION
7SC
7WY
7WZ
7XB
8AO
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
F28
FR3
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K6~
K7-
L.-
L.0
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1108/IMDS-07-2018-0314
DatabaseName CrossRef
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database (Proquest)
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Business
EISSN 1758-5783
EndPage 494
ExternalDocumentID 10_1108_IMDS_07_2018_0314
10.1108/IMDS-07-2018-0314
GroupedDBID 0R
29I
3FY
4.4
5GY
5VS
70U
7WY
8AO
8FE
8FG
8R4
8R5
9E0
9F-
AACOY
AADTA
AADXL
AAGBP
AALRV
AAMCF
AAUDR
ABFLS
ABIJV
ABPPZ
ABSDC
ACGFS
ACIWK
ACMTK
ADOMW
AEBZA
AEDOK
AENEX
AEUCW
AFKRA
AFZLO
AJEBP
ALMA_UNASSIGNED_HOLDINGS
APPLU
ARAPS
ASMFL
ASPJK
ATGMP
AUCOK
AVELQ
AZQEC
BENPR
BEZIV
BGLVJ
BLEHN
BPHCQ
BUONS
CAG
CS3
DU5
DWQXO
EBS
ECCUG
EJD
FNNZZ
GEA
GEB
GEC
GEI
GMM
GMN
GMX
GNUQQ
GQ.
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
H13
HCIFZ
HZ
IAO
IEA
IGG
IJT
IOF
IPNFZ
J1Y
JI-
JL0
K6
K6V
K7-
KBGRL
L7B
LXL
LXN
M0C
M0N
M2O
MS
N95
O9-
P2P
P62
PADUT
PQBIZ
PQEST
PQQKQ
PQUKI
PRINS
PROAC
Q2X
Q3A
RIG
TDQ
TEM
TET
TGG
TMD
TMF
TMK
TMT
TN5
V1G
VQA
WU
X
Z11
Z12
Z21
ZYZAG
-~X
.DC
.WU
0R~
1XV
AAKOT
AAPSD
AAXBI
AAYXX
ABCQX
ABEAN
ABJNI
ABXQL
ABYQI
ACBMB
ACTSA
ADFLA
ADFRT
ADQHX
ADWNT
AEMMR
AETHF
AFNTC
AFNZV
AHMHQ
AIAFM
AILOG
AJFKA
AJZCB
AODMV
ASJQZ
BTXLY
CCPQU
CITATION
EOXHF
HZ~
ITC
K6~
M42
MS~
PHGZM
PHGZT
PQGLB
SCAQC
SDURG
7SC
7XB
8FD
AAVEV
F28
FR3
JQ2
L.-
L.0
L7M
L~C
L~D
MBDVC
PKEHL
Q9U
ID FETCH-LOGICAL-c314t-f9dc1a1567375b8748d1eba0b5164b1a5fb6da07ab675afc22719813ae884ab3
IEDL.DBID ZYZAG
ISSN 0263-5577
IngestDate Sat Aug 23 14:46:15 EDT 2025
Wed Jul 30 23:56:09 EDT 2025
Thu Apr 24 23:09:18 EDT 2025
Tue Oct 26 21:39:57 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Cold chain logistics
Particle swarm optimization
Green vehicle routing
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-f9dc1a1567375b8748d1eba0b5164b1a5fb6da07ab675afc22719813ae884ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0809-9431
PQID 2204835853
PQPubID 47599
PageCount 22
ParticipantIDs crossref_primary_10_1108_IMDS_07_2018_0314
proquest_journals_2204835853
crossref_citationtrail_10_1108_IMDS_07_2018_0314
emerald_primary_10_1108_IMDS-07-2018-0314
PublicationCentury 2000
PublicationDate 2019-04-08
PublicationDateYYYYMMDD 2019-04-08
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-08
  day: 08
PublicationDecade 2010
PublicationPlace Wembley
PublicationPlace_xml – name: Wembley
PublicationTitle Industrial management + data systems
PublicationYear 2019
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References key2020092405273873600_ref006
(key2020092405273873600_ref038) 2015; 170
(key2020092405273873600_ref042) 2015; 26
(key2020092405273873600_ref019) 2005
(key2020092405273873600_ref002) 2015; 42
(key2020092405273873600_ref005) 2011; 15
(key2020092405273873600_ref022) 2017; 21
(key2020092405273873600_ref021) 2011; 20
(key2020092405273873600_ref004) 2014; 21
(key2020092405273873600_ref026) 2018; 100
(key2020092405273873600_ref007) 2014; 18
(key2020092405273873600_ref009) 2017; 58
(key2020092405273873600_ref012) 2015; 1
(key2020092405273873600_ref013) 2018; 40
(key2020092405273873600_ref011) 2018; 39
(key2020092405273873600_ref033) 2017; 167
(key2020092405273873600_ref015) 2013; 225
(key2020092405273873600_ref041) 2014; 32
(key2020092405273873600_ref044) 2014; 9
(key2020092405273873600_ref047) 2015; 164
(key2020092405273873600_ref018) 2014; 41
(key2020092405273873600_ref045) 2014; 25
(key2020092405273873600_ref014) 2015
(key2020092405273873600_ref043) 2006; 9
(key2020092405273873600_ref010) 2015; 8
(key2020092405273873600_ref036) 2014; 52
(key2020092405273873600_ref003) 2017; 45
(key2020092405273873600_ref035) 2015
(key2020092405273873600_ref027) 1998
(key2020092405273873600_ref016) 2016; 94
(key2020092405273873600_ref037) 2015; 71
(key2020092405273873600_ref046) 2016; 17
(key2020092405273873600_ref017) 2017; 32
(key2020092405273873600_ref028) 2015
(key2020092405273873600_ref039) 2014; 12
(key2020092405273873600_ref040) 2017; 2017
(key2020092405273873600_ref032) 2016; 33
(key2020092405273873600_ref008) 2012; 42
key2020092405273873600_ref030
(key2020092405273873600_ref300) 2008; 13
(key2020092405273873600_ref001) 2017; 24
(key2020092405273873600_ref024) 2016; 11
(key2020092405273873600_ref023) 2016; 70
(key2020092405273873600_ref025) 2010; 128
(key2020092405273873600_ref029) 2017; 39
(key2020092405273873600_ref034) 2011; 39
(key2020092405273873600_ref020) 2016; 27
(key2020092405273873600_ref031) 2018; 131
(key2020092405273873600_ref048) 2011; 25
References_xml – volume: 24
  start-page: 21610
  issue: 27
  year: 2017
  ident: key2020092405273873600_ref001
  article-title: Model and algorithm for bi-fuel vehicle routing problem to reduce GHG emissions
  publication-title: Environmental Science & Pollution Research
  doi: 10.1007/s11356-017-9740-8
– year: 2015
  ident: key2020092405273873600_ref028
  article-title: Using the ant colony optimization algorithm for the capacitated vehicle routing problem
– volume: 128
  start-page: 31
  issue: 1
  year: 2010
  ident: key2020092405273873600_ref025
  article-title: Forecasting the carbon footprint of road freight transport in 2020
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2009.08.027
– volume: 26
  start-page: 3010
  issue: 11
  year: 2015
  ident: key2020092405273873600_ref042
  article-title: Research status and prospects of computational intelligence in big data analysis
  publication-title: Journal of Software
– volume: 225
  start-page: 199
  issue: 2
  year: 2013
  ident: key2020092405273873600_ref015
  article-title: A meta-heuristic algorithm for heterogeneous fleet vehicle routing problems with two-dimensional loading constraints
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.09.023
– volume: 25
  start-page: 29
  issue: 10
  year: 2011
  ident: key2020092405273873600_ref048
  article-title: China cold-chain logistics energy consumption status and the countermeasures
  publication-title: China Circulation Economy
– volume: 131
  start-page: 146
  year: 2018
  ident: key2020092405273873600_ref031
  article-title: Circular economy meets industry 4.0: can big data drive industrial symbiosis?
  publication-title: Resources, Conservation and Recycling
  doi: 10.1016/j.resconrec.2017.12.028
– volume: 70
  start-page: 113
  year: 2016
  ident: key2020092405273873600_ref023
  article-title: A multi-space sampling heuristic for the green vehicle routing problem
  publication-title: Transportation Research: Part C Emerging Technologies
– volume: 167
  start-page: 1450
  year: 2017
  ident: key2020092405273873600_ref033
  article-title: A genetic algorithm with exact dynamic programming for the green vehicle routing & scheduling problem
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2016.11.115
– volume: 42
  start-page: 45
  issue: C
  year: 2015
  ident: key2020092405273873600_ref002
  article-title: GVNs for a real-world rich vehicle routing problem with time windows
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 40
  start-page: 214
  year: 2018
  ident: key2020092405273873600_ref013
  article-title: Incorporating driving cycle based fuel consumption estimation in green vehicle routing problems
  publication-title: Sustainable Cities & Society
  doi: 10.1016/j.scs.2018.04.016
– volume: 11
  start-page: 1
  issue: 1
  year: 2016
  ident: key2020092405273873600_ref024
  article-title: Modified particle swarm optimization in a time-dependent vehicle routing problem: minimizing fuel consumption
  publication-title: Optimization Letters
– volume: 45
  start-page: 318
  issue: 15
  year: 2017
  ident: key2020092405273873600_ref003
  article-title: Optimization of distribution route of fresh agricultural products cold chain logistics based on artificial bee colony algorithm
  publication-title: Jiangsu Agricultural Sciences
– volume: 18
  start-page: 82
  issue: 1
  year: 2014
  ident: key2020092405273873600_ref007
  article-title: Complex network clustering by multiobjective discrete particle swarm optimization based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2260862
– volume: 39
  start-page: 1419
  issue: 7
  year: 2011
  ident: key2020092405273873600_ref034
  article-title: Development of a fuel consumption optimization model for the capacitated vehicle routing problem
  publication-title: Computer & Operations Research
– volume: 164
  start-page: 379
  year: 2015
  ident: key2020092405273873600_ref047
  article-title: A block recombination approach to solve green vehicle routing problem
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2014.11.003
– volume: 71
  start-page: 158
  year: 2015
  ident: key2020092405273873600_ref037
  article-title: The load-dependent vehicle routing problem and its pick-up and delivery extension
  publication-title: Transport. Research Part B: Methodology
  doi: 10.1016/j.trb.2014.11.004
– volume: 15
  start-page: 2444
  year: 2011
  ident: key2020092405273873600_ref005
  article-title: An improved particle swarm algorithm and its application
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2011.08.459
– volume: 41
  start-page: 1118
  issue: 4
  year: 2014
  ident: key2020092405273873600_ref018
  article-title: Survey of green vehicle routing problem: past and future trends
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.07.107
– volume: 9
  start-page: 66
  issue: 6
  year: 2006
  ident: key2020092405273873600_ref043
  article-title: An optimum model for distribution system based on cargo damage constraints
  publication-title: Industrial Engineering Journal
– volume: 25
  start-page: 766
  issue: 6
  year: 2014
  ident: key2020092405273873600_ref045
  article-title: Reduction of carbon emissions in VRP by gravitational search algorithm
  publication-title: Management of Environmental Quality: An International Journal
  doi: 10.1108/MEQ-08-2013-0086
– volume: 27
  start-page: 387
  issue: 2
  year: 2016
  ident: key2020092405273873600_ref020
  article-title: A hybrid approach to artificial bee colony algorithm
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-015-1851-x
– year: 2005
  ident: key2020092405273873600_ref019
  article-title: Catalytic combustion for reduction of fugitive methane emissions from natural gas compressor stations
  publication-title: Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies
– volume: 32
  start-page: 1047
  issue: 1
  year: 2017
  ident: key2020092405273873600_ref017
  article-title: On-line vehicle routing problems for carbon emissions reduction
  publication-title: Computer-aided Civil & Infrastructure Engineering
– volume: 32
  start-page: 334
  year: 2014
  ident: key2020092405273873600_ref041
  article-title: Exploring the trade-off between greenhouse gas emissions and travel time in daily travel decisions: route and departure time choices
  publication-title: Transportation Research Part D: Transport and Environment
  doi: 10.1016/j.trd.2014.07.016
– year: 1998
  ident: key2020092405273873600_ref027
  article-title: A modified particle swarm optimizer
– volume: 42
  start-page: 254
  issue: 2
  year: 2012
  ident: key2020092405273873600_ref008
  article-title: Optimizing the vehicle routing problem with time windows: a discrete particle swarm optimization approach
  publication-title: IEEE Transactions on Systems Man & Cybernetics Part C
  doi: 10.1109/TSMCC.2011.2148712
– volume: 39
  start-page: 74
  issue: 1
  year: 2018
  ident: key2020092405273873600_ref011
  article-title: Optimization of cold chain distribution route of fresh agricultural products under carbon tax and carbon limit rules
  publication-title: Journal of Shanghai Maritime University
– volume: 21
  start-page: 247
  issue: 4
  year: 2014
  ident: key2020092405273873600_ref004
  article-title: Optimized path transmission selection routing algorithm for reducing energy consumption in opportunity networks
  publication-title: Dynamics of Continuous Discrete & Impulsive Systems
– volume: 2017
  start-page: 1
  issue: 2
  year: 2017
  ident: key2020092405273873600_ref040
  article-title: Analysis of an automated vehicle routing problem in logistics considering path interruption
  publication-title: Journal of Advanced Transportation
– volume: 1
  start-page: 201
  issue: 2
  year: 2015
  ident: key2020092405273873600_ref012
  article-title: Managing tomorrow’s daily consumer goods logistics value network
  publication-title: International Journal of Supply Chain and Operations Resilience
  doi: 10.1504/IJSCOR.2015.069938
– volume: 21
  start-page: 255
  year: 2017
  ident: key2020092405273873600_ref022
  article-title: Solving vehicle routing problem by using improved genetic algorithm for optimal solution
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2017.04.003
– volume: 17
  start-page: 29
  issue: 1
  year: 2016
  ident: key2020092405273873600_ref046
  article-title: Reducing the carbon footprint in a vehicle routing problem by pooling resources from different companies
  publication-title: Netnomics Economic Research & Electronic Networking
  doi: 10.1007/s11066-015-9099-2
– volume: 52
  start-page: 2565
  issue: 9
  year: 2014
  ident: key2020092405273873600_ref036
  article-title: Solving the heterogeneous fixed fleet open vehicle routing problem by a combined metaheuristic algorithm
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2013.855337
– volume: 13
  start-page: 151
  issue: 3
  year: 2008
  ident: key2020092405273873600_ref300
  article-title: The effects of route choice decisions on vehicle energy consumption and emissions
  publication-title: Transportation Research Part D Transport & Environment
  doi: 10.1016/j.trd.2008.01.005
– volume: 12
  start-page: 239
  issue: 2
  year: 2014
  ident: key2020092405273873600_ref039
  article-title: An optimization model for the vehicle routing problem in multi-product frozen food delivery
  publication-title: Journal of Applied Research & Technology
  doi: 10.1016/S1665-6423(14)72340-5
– volume: 94
  start-page: 169
  year: 2016
  ident: key2020092405273873600_ref016
  article-title: The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems
  publication-title: Transportation Research: Part B Methodological
  doi: 10.1016/j.trb.2016.09.012
– volume: 100
  start-page: 131
  year: 2018
  ident: key2020092405273873600_ref026
  article-title: A fuel efficient green vehicle routing problem with varying speed constraint (f-gvrp)
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.01.052
– volume: 170
  start-page: 234
  year: 2015
  ident: key2020092405273873600_ref038
  article-title: Vehicle routing problem with fuel consumption and carbon emission
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2015.09.031
– ident: key2020092405273873600_ref030
– volume: 9
  start-page: 12
  issue: 3
  year: 2014
  ident: key2020092405273873600_ref044
  article-title: Computational intelligence in big data
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2014.2326098
– start-page: 1109
  year: 2015
  ident: key2020092405273873600_ref014
  article-title: Analytic centre stabilization of column generation algorithm for the capacitated vehicle routing problem
– volume: 39
  start-page: 55
  issue: 9
  year: 2017
  ident: key2020092405273873600_ref029
  article-title: The front-end collection transportation optimization of cold chain logistics for fresh fruits and vegetables
  publication-title: Logistics Engineering & Management
– year: 2015
  ident: key2020092405273873600_ref035
  article-title: Comparison study on algorithms for vehicle routing problem with time windows
– volume: 20
  start-page: 32
  issue: 4
  year: 2011
  ident: key2020092405273873600_ref021
  article-title: Study on optimization for cold-chain logistics distribution of 3PL
  publication-title: Operations and Management
– volume: 58
  start-page: 307
  year: 2017
  ident: key2020092405273873600_ref009
  article-title: Minimizing total resource consumption and total tardiness penalty in a resource allocation supply chain scheduling and vehicle routing problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.05.010
– volume: 8
  start-page: 802
  issue: 11
  year: 2015
  ident: key2020092405273873600_ref010
  article-title: The cold chain logistics for perishable agricultural products in china
  publication-title: Advance Journal of Food Science & Technology
  doi: 10.19026/ajfst.8.1611
– ident: key2020092405273873600_ref006
– volume: 33
  start-page: 146
  issue: 3
  year: 2016
  ident: key2020092405273873600_ref032
  article-title: Optimization and efficiency of multi-temperature joint distribution of cold chain products: comparative study based on cold accumulation mode and mechanical refrigeration mode
  publication-title: Journal of Highway & Transportation Research & Development
SSID ssj0002626
Score 2.5137985
Snippet Purpose This paper studies green vehicle routing problems of cold chain logistics with the consideration of the full set of greenhouse gas (GHG) emissions and...
PurposeThis paper studies green vehicle routing problems of cold chain logistics with the consideration of the full set of greenhouse gas (GHG) emissions and...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 473
SubjectTerms Algorithms
Cold
Cold storage
Cost analysis
Costs
Emissions
Energy consumption
Energy costs
Freshness
Global warming
Greenhouse effect
Greenhouse gases
Logistics
Nitrous oxide
Operating costs
Particle swarm optimization
Refrigeration
Route optimization
Route planning
Supply chains
Trucks
Vehicle routing
Vehicles
Weather
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8NAEF60gvjiURXrxT74ohDM5uhunqQeRQWLaIW-hb1iC5rUturfdybdtCjSp7BkN5CZ2Tl2Z-Yj5AS8ZKl0aD3BOAQomEcljOReJBOVWJYBo7FQ-KHTvH2J7ntxzx24jV1aZaUTS0VtCo1n5OcBdpgNwbkNL4YfHqJG4e2qg9BYJiugggUEXyuXN53Hp5kuDpol4Bo8Qy-OOXf3moh9c_dw_YyHdGABsciMRb8s05_y3LmKLu1Oe5OsO4eRtqYc3iJLNq-T1SpfvU42KlwG6rbpNjEt-orpNPTL9nERHRWfmN1MS9gbiobL0CLH4SADF5QOnfzQ8bccvdMC1Mi7q8-k4NRSEBZDdV8OcjqtGBro8Q7ptm-6V7eeQ1PwNPzcxMsSo5mEcI2HPFaCR8Iwq6SvYoiYFJNxpppG-lwqiCFkpoOAs0SwUFohIqnCXVLLi9zuEaqEsOCT-740QWS4llEWYRd4ZViijLYN4leETLXrNI6AF29pGXH4IkXapz5PkfYp0r5BzmZLhtM2G4smnzru_Dv3F1Mb5LDiX-p25zidy9L-4tcHZA2-VN4e-eKQ1CajT3sETshEHTtJ-wEC_9gJ
  priority: 102
  providerName: ProQuest
Title A green vehicle routing model based on modified particle swarm optimization for cold chain logistics
URI https://www.emerald.com/insight/content/doi/10.1108/IMDS-07-2018-0314/full/html
https://www.proquest.com/docview/2204835853
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB61iYS4UFpABEq0By4gufH6kV0fQ2naIrUgKFLpxdqXSUTjRIkDEr--M_Y6qFWFhMTJtrRre3dGM_PNzgPgNVrJSpvYBZILBCgURyWtEkGiMp05XiChKVH47Hx48jX5cJlebsHHNhemDqts3DG1nJ6WKwKpAwrcRim8KThA3WtOz95_ITcb6jBKE-PJgFzWg0k1u96GbsSHoexA9-rb1eh4I5yjYd2BDa9xkKZC-IPOe193S1Xdydf9I7NrRTTegUW7hCb-5MfButIH5ved6o7_cY2P4ZE3Wtmo4bJd2HLlHjxoY-b3YKftDcG8qHgCdsS-U0gP--kmNIkt52uKsGZ16x1GytOyeUmP0wLNYLbwPMxWv9RyxuYoymY-R5ShYc2QYS0zEzUtWZO1NDWrp3AxPro4PAl8R4fA4K9XQZFZwxVCRhGLVEuRSMudVqFOEbVprtJCD60KhdKIY1RhokjwTPJYOSkTpeNn0CnnpXsOTEvpEBeEobJRYoVRSZFQJXpteaatcT0IW9rlxlc7p6Yb13mNekKZ087mochpZ3Pa2R683UxZNKU-_jb4jSfhvWNvkawH-y3L5F5CrPKIKibHCNbiF__y3ZfwEO_r86xQ7kOnWq7dKzSLKt2HbTk-7kP33dH5p899z_g3dBUIMA
linkProvider Emerald
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIkEvPAqIQIE9wAEkC693nV0fKlRRQkKbXghSb6t9mUaidpqkrfqj-I-dcexWRai3nizLu3uYGc9j5_EBvEcv2TovYqK5wgCF6qh0sCqRtnBF5CUymhqFxwf94S_54zA_XIO_XS8MlVV2OrFR1KH2dEf-OaMJswKdW_FldpIQahRlVzsIjZVY7MWLcwzZFtujXeTvhywbfJt8HSYtqkDiBZfLpCyC5xbDFiVU7rSSOvDobOpyjBwct3np-sGmyjr0pW3ps0xhYM6FjVpL6wQeew_uSyEK-qH04PuV4s_6DbobPkWS50q1SVQC2hmNd3_SjSCaW-po4_KGGfynF_jaHjRGbvAEHrXeKdtZidNTWIvVJjzoiuM34XEHAsFanfAMwg77TbU77Cwe0SY2r0-plJo1GDuMrGRgdUWv0xL9XTZrhZUtzu38mNWos47bZlCGHjRDyQzMH9lpxVbtSVO_eA6TuyDyC1iv6iq-BOa0jhgApKkNmQzKW1lKGjnvAi9c8LEHaUdI49ux5oSu8cc04U2qDdHepMoQ7Q3RvgefrrbMVjM9blv8seXOf9feYGoPtjr-mVYVLMy14L66_fM7eDicjPfN_uhg7zVs4KlN2irVW7C-nJ_GN-j9LN3bRuYYmDuW8UtsPhM2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+green+vehicle+routing+model+based+on+modified+particle+swarm+optimization+for+cold+chain+logistics&rft.jtitle=Industrial+management+%2B+data+systems&rft.au=Li%2C+Yan&rft.au=Lim%2C+Ming+K.&rft.au=Tseng%2C+Ming-Lang&rft.date=2019-04-08&rft.issn=0263-5577&rft.volume=119&rft.issue=3&rft.spage=473&rft.epage=494&rft_id=info:doi/10.1108%2FIMDS-07-2018-0314&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_IMDS_07_2018_0314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-5577&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-5577&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-5577&client=summon