A green vehicle routing model based on modified particle swarm optimization for cold chain logistics
Purpose This paper studies green vehicle routing problems of cold chain logistics with the consideration of the full set of greenhouse gas (GHG) emissions and an optimization model of green vehicle routing for cold chain logistics (with an acronym of GVRPCCL) is developed. The purpose of this paper...
Saved in:
Published in | Industrial management + data systems Vol. 119; no. 3; pp. 473 - 494 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Wembley
Emerald Publishing Limited
08.04.2019
Emerald Group Publishing Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
This paper studies green vehicle routing problems of cold chain logistics with the consideration of the full set of greenhouse gas (GHG) emissions and an optimization model of green vehicle routing for cold chain logistics (with an acronym of GVRPCCL) is developed. The purpose of this paper is to minimize the total costs, which include vehicle operating cost, quality loss cost, product freshness cost, penalty cost, energy cost and GHG emissions cost. In addition, this research also investigates the effect of changing the vehicle maximum load in relation to cost and GHG emissions.
Design/methodology/approach
This study develops a mathematical optimization model, considering the total cost and GHG emission. The standard particle swarm optimization and modified particle swarm optimization (MPSO), based on an intelligent optimization algorithm, are applied in this study to solve the routing problem of a real case.
Findings
The results of this study show the extend of the proposed MPSO performing better in achieving green-focussed vehicle routing and that considering the full set of GHG costs in the objective functions will reduce the total costs and environmental-diminishing emissions of GHG through the comparative analysis. The research outputs also evaluated the effect of different enterprises’ conditions (e.g. customers’ locations and demand patterns) for better distribution routes planning.
Research limitations/implications
There are some limitations in the proposed model. This study assumes that the vehicle is at a constant speed and it does not consider uncertainties, such as weather conditions and road conditions.
Originality/value
Prior studies, particularly in green cold chain logistics vehicle routing problem, are fairly limited. The prior works revolved around GHG emissions problem have not considered methane and nitrous oxides. This study takes into account the characteristics of cold chain logistics and the full set of GHGs. |
---|---|
AbstractList | Purpose
This paper studies green vehicle routing problems of cold chain logistics with the consideration of the full set of greenhouse gas (GHG) emissions and an optimization model of green vehicle routing for cold chain logistics (with an acronym of GVRPCCL) is developed. The purpose of this paper is to minimize the total costs, which include vehicle operating cost, quality loss cost, product freshness cost, penalty cost, energy cost and GHG emissions cost. In addition, this research also investigates the effect of changing the vehicle maximum load in relation to cost and GHG emissions.
Design/methodology/approach
This study develops a mathematical optimization model, considering the total cost and GHG emission. The standard particle swarm optimization and modified particle swarm optimization (MPSO), based on an intelligent optimization algorithm, are applied in this study to solve the routing problem of a real case.
Findings
The results of this study show the extend of the proposed MPSO performing better in achieving green-focussed vehicle routing and that considering the full set of GHG costs in the objective functions will reduce the total costs and environmental-diminishing emissions of GHG through the comparative analysis. The research outputs also evaluated the effect of different enterprises’ conditions (e.g. customers’ locations and demand patterns) for better distribution routes planning.
Research limitations/implications
There are some limitations in the proposed model. This study assumes that the vehicle is at a constant speed and it does not consider uncertainties, such as weather conditions and road conditions.
Originality/value
Prior studies, particularly in green cold chain logistics vehicle routing problem, are fairly limited. The prior works revolved around GHG emissions problem have not considered methane and nitrous oxides. This study takes into account the characteristics of cold chain logistics and the full set of GHGs. PurposeThis paper studies green vehicle routing problems of cold chain logistics with the consideration of the full set of greenhouse gas (GHG) emissions and an optimization model of green vehicle routing for cold chain logistics (with an acronym of GVRPCCL) is developed. The purpose of this paper is to minimize the total costs, which include vehicle operating cost, quality loss cost, product freshness cost, penalty cost, energy cost and GHG emissions cost. In addition, this research also investigates the effect of changing the vehicle maximum load in relation to cost and GHG emissions.Design/methodology/approachThis study develops a mathematical optimization model, considering the total cost and GHG emission. The standard particle swarm optimization and modified particle swarm optimization (MPSO), based on an intelligent optimization algorithm, are applied in this study to solve the routing problem of a real case.FindingsThe results of this study show the extend of the proposed MPSO performing better in achieving green-focussed vehicle routing and that considering the full set of GHG costs in the objective functions will reduce the total costs and environmental-diminishing emissions of GHG through the comparative analysis. The research outputs also evaluated the effect of different enterprises’ conditions (e.g. customers’ locations and demand patterns) for better distribution routes planning.Research limitations/implicationsThere are some limitations in the proposed model. This study assumes that the vehicle is at a constant speed and it does not consider uncertainties, such as weather conditions and road conditions.Originality/valuePrior studies, particularly in green cold chain logistics vehicle routing problem, are fairly limited. The prior works revolved around GHG emissions problem have not considered methane and nitrous oxides. This study takes into account the characteristics of cold chain logistics and the full set of GHGs. |
Author | Tseng, Ming-Lang Li, Yan Lim, Ming K |
Author_xml | – sequence: 1 givenname: Yan surname: Li fullname: Li, Yan email: 2514691564@qq.com – sequence: 2 givenname: Ming K orcidid: 0000-0003-0809-9431 surname: Lim fullname: Lim, Ming K email: ming.lim@cqu.edu.cn – sequence: 3 givenname: Ming-Lang surname: Tseng fullname: Tseng, Ming-Lang email: tsengminglang@gmail.com |
BookMark | eNp9kctOwzAQRS1UJNrCB7CzxDpgx3HsLqvyqlTEgu6tSey0rpI42C4Ivp6kZQNCrDwenTuPOxM0al1rELqk5JpSIm-WT7cvCRFJSqhMCKPZCRpTwWXChWQjNCZpzhLOhThDkxB2hPSJNB8jPccbb0yL38zWlrXB3u2jbTe4cdrUuIBgNHbt8LWV7eMOfDyA4R18g10XbWM_IdoeqpzHpas1LrdgW1y7jQ09HM7RaQV1MBff7xSt7-_Wi8dk9fywXMxXSdkPHJNqpksKlOeCCV5IkUlNTQGk4DTPCgq8KnINRECRCw5VmaaCziRlYKTMoGBTdHUs23n3ujchqp3b-7bvqNKUZJJxyVlP0SNVeheCN5XqvG3AfyhK1OClGrxURKjBSzV42WvEL01p42Hn6MHW_yrJUWka46HWfzb7cTj2BVDhijw |
CitedBy_id | crossref_primary_10_1016_j_cie_2021_107663 crossref_primary_10_1109_ACCESS_2022_3141311 crossref_primary_10_3390_s22228641 crossref_primary_10_1108_IMDS_10_2021_0607 crossref_primary_10_3390_app11114790 crossref_primary_10_3390_pr12061127 crossref_primary_10_1016_j_tranpol_2022_02_003 crossref_primary_10_1007_s10898_021_01078_z crossref_primary_10_1016_j_tranpol_2022_11_007 crossref_primary_10_2298_YJOR211120016M crossref_primary_10_3390_su152316149 crossref_primary_10_1080_00207543_2021_1925173 crossref_primary_10_1038_s41598_024_72723_2 crossref_primary_10_1108_IMDS_03_2019_0149 crossref_primary_10_1080_0194262X_2020_1761933 crossref_primary_10_1108_IMDS_05_2021_0283 crossref_primary_10_3390_math12020332 crossref_primary_10_1109_TETCI_2022_3170520 crossref_primary_10_3390_su13148110 crossref_primary_10_3390_bs14090771 crossref_primary_10_1016_j_tre_2020_101886 crossref_primary_10_29130_dubited_1011735 crossref_primary_10_1016_j_eswa_2022_118378 crossref_primary_10_1016_j_orp_2024_100303 crossref_primary_10_3390_su12198068 crossref_primary_10_1016_j_wasman_2024_04_001 crossref_primary_10_1016_j_resconrec_2020_104715 crossref_primary_10_1007_s00500_020_05333_5 crossref_primary_10_1016_j_cie_2019_05_018 crossref_primary_10_1002_er_8031 crossref_primary_10_1016_j_bdr_2023_100417 crossref_primary_10_35784_acs_2020_05 crossref_primary_10_1080_13675567_2023_2289463 crossref_primary_10_1108_IJLM_02_2020_0092 crossref_primary_10_31202_ecjse_776314 crossref_primary_10_3390_su151511520 crossref_primary_10_1080_09544828_2022_2142903 crossref_primary_10_1088_1757_899X_787_1_012031 crossref_primary_10_1108_IMDS_02_2022_0105 crossref_primary_10_1080_03081060_2024_2375295 crossref_primary_10_3390_math12233831 crossref_primary_10_1080_23302674_2025_2466105 crossref_primary_10_1108_IJICC_08_2021_0163 crossref_primary_10_3934_mbe_2021100 crossref_primary_10_1142_S0219622024500020 crossref_primary_10_1007_s12351_024_00862_5 crossref_primary_10_4018_IJISSCM_318644 crossref_primary_10_1016_j_cie_2025_110972 crossref_primary_10_21923_jesd_1038906 crossref_primary_10_1016_j_resconrec_2019_104585 crossref_primary_10_3390_su13084528 crossref_primary_10_1080_00207543_2019_1650975 crossref_primary_10_1007_s10479_020_03599_4 crossref_primary_10_1016_j_cie_2024_110424 crossref_primary_10_1007_s10878_023_01056_z crossref_primary_10_1080_00207543_2024_2355325 crossref_primary_10_1016_j_scs_2021_103074 crossref_primary_10_3390_su12051967 crossref_primary_10_1108_MEQ_03_2022_0046 crossref_primary_10_1007_s11356_021_13059_6 crossref_primary_10_1108_K_11_2021_1111 crossref_primary_10_1016_j_resconrec_2021_105925 crossref_primary_10_2478_amns_2024_1480 crossref_primary_10_1007_s12667_024_00689_1 crossref_primary_10_1007_s12351_024_00851_8 crossref_primary_10_3390_logistics7040101 crossref_primary_10_1016_j_trpro_2023_11_905 crossref_primary_10_3390_en13246612 crossref_primary_10_4018_IJISSCM_305844 crossref_primary_10_1016_j_tre_2024_103838 crossref_primary_10_3390_math11092067 crossref_primary_10_3934_mbe_20210100 crossref_primary_10_1007_s00500_022_07072_1 crossref_primary_10_1109_TVT_2024_3391419 crossref_primary_10_3390_ijerph19148675 crossref_primary_10_1016_j_wasman_2020_09_045 crossref_primary_10_1038_s41598_023_31050_8 crossref_primary_10_1080_00207543_2022_2045377 crossref_primary_10_4018_JGIM_326557 |
Cites_doi | 10.1007/s11356-017-9740-8 10.1016/j.ijpe.2009.08.027 10.1016/j.ejor.2012.09.023 10.1016/j.resconrec.2017.12.028 10.1016/j.jclepro.2016.11.115 10.1016/j.scs.2018.04.016 10.1109/TEVC.2013.2260862 10.1016/j.ijpe.2014.11.003 10.1016/j.trb.2014.11.004 10.1016/j.proeng.2011.08.459 10.1016/j.eswa.2013.07.107 10.1108/MEQ-08-2013-0086 10.1007/s00521-015-1851-x 10.1016/j.trd.2014.07.016 10.1109/TSMCC.2011.2148712 10.1504/IJSCOR.2015.069938 10.1016/j.jocs.2017.04.003 10.1007/s11066-015-9099-2 10.1080/00207543.2013.855337 10.1016/j.trd.2008.01.005 10.1016/S1665-6423(14)72340-5 10.1016/j.trb.2016.09.012 10.1016/j.eswa.2018.01.052 10.1016/j.ijpe.2015.09.031 10.1109/MCI.2014.2326098 10.1016/j.asoc.2017.05.010 10.19026/ajfst.8.1611 |
ContentType | Journal Article |
Copyright | Emerald Publishing Limited Emerald Publishing Limited 2018 |
Copyright_xml | – notice: Emerald Publishing Limited – notice: Emerald Publishing Limited 2018 |
DBID | AAYXX CITATION 7SC 7WY 7WZ 7XB 8AO 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO F28 FR3 F~G GNUQQ GUQSH HCIFZ JQ2 K6~ K7- L.- L.0 L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1108/IMDS-07-2018-0314 |
DatabaseName | CrossRef Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database (Proquest) ABI/INFORM Professional Advanced ABI/INFORM Professional Standard Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Business |
EISSN | 1758-5783 |
EndPage | 494 |
ExternalDocumentID | 10_1108_IMDS_07_2018_0314 10.1108/IMDS-07-2018-0314 |
GroupedDBID | 0R 29I 3FY 4.4 5GY 5VS 70U 7WY 8AO 8FE 8FG 8R4 8R5 9E0 9F- AACOY AADTA AADXL AAGBP AALRV AAMCF AAUDR ABFLS ABIJV ABPPZ ABSDC ACGFS ACIWK ACMTK ADOMW AEBZA AEDOK AENEX AEUCW AFKRA AFZLO AJEBP ALMA_UNASSIGNED_HOLDINGS APPLU ARAPS ASMFL ASPJK ATGMP AUCOK AVELQ AZQEC BENPR BEZIV BGLVJ BLEHN BPHCQ BUONS CAG CS3 DU5 DWQXO EBS ECCUG EJD FNNZZ GEA GEB GEC GEI GMM GMN GMX GNUQQ GQ. GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH H13 HCIFZ HZ IAO IEA IGG IJT IOF IPNFZ J1Y JI- JL0 K6 K6V K7- KBGRL L7B LXL LXN M0C M0N M2O MS N95 O9- P2P P62 PADUT PQBIZ PQEST PQQKQ PQUKI PRINS PROAC Q2X Q3A RIG TDQ TEM TET TGG TMD TMF TMK TMT TN5 V1G VQA WU X Z11 Z12 Z21 ZYZAG -~X .DC .WU 0R~ 1XV AAKOT AAPSD AAXBI AAYXX ABCQX ABEAN ABJNI ABXQL ABYQI ACBMB ACTSA ADFLA ADFRT ADQHX ADWNT AEMMR AETHF AFNTC AFNZV AHMHQ AIAFM AILOG AJFKA AJZCB AODMV ASJQZ BTXLY CCPQU CITATION EOXHF HZ~ ITC K6~ M42 MS~ PHGZM PHGZT PQGLB SCAQC SDURG 7SC 7XB 8FD AAVEV F28 FR3 JQ2 L.- L.0 L7M L~C L~D MBDVC PKEHL Q9U |
ID | FETCH-LOGICAL-c314t-f9dc1a1567375b8748d1eba0b5164b1a5fb6da07ab675afc22719813ae884ab3 |
IEDL.DBID | ZYZAG |
ISSN | 0263-5577 |
IngestDate | Sat Aug 23 14:46:15 EDT 2025 Wed Jul 30 23:56:09 EDT 2025 Thu Apr 24 23:09:18 EDT 2025 Tue Oct 26 21:39:57 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Cold chain logistics Particle swarm optimization Green vehicle routing |
Language | English |
License | Licensed re-use rights only https://www.emerald.com/insight/site-policies |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-f9dc1a1567375b8748d1eba0b5164b1a5fb6da07ab675afc22719813ae884ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0809-9431 |
PQID | 2204835853 |
PQPubID | 47599 |
PageCount | 22 |
ParticipantIDs | crossref_primary_10_1108_IMDS_07_2018_0314 proquest_journals_2204835853 crossref_citationtrail_10_1108_IMDS_07_2018_0314 emerald_primary_10_1108_IMDS-07-2018-0314 |
PublicationCentury | 2000 |
PublicationDate | 2019-04-08 |
PublicationDateYYYYMMDD | 2019-04-08 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Wembley |
PublicationPlace_xml | – name: Wembley |
PublicationTitle | Industrial management + data systems |
PublicationYear | 2019 |
Publisher | Emerald Publishing Limited Emerald Group Publishing Limited |
Publisher_xml | – name: Emerald Publishing Limited – name: Emerald Group Publishing Limited |
References | key2020092405273873600_ref006 (key2020092405273873600_ref038) 2015; 170 (key2020092405273873600_ref042) 2015; 26 (key2020092405273873600_ref019) 2005 (key2020092405273873600_ref002) 2015; 42 (key2020092405273873600_ref005) 2011; 15 (key2020092405273873600_ref022) 2017; 21 (key2020092405273873600_ref021) 2011; 20 (key2020092405273873600_ref004) 2014; 21 (key2020092405273873600_ref026) 2018; 100 (key2020092405273873600_ref007) 2014; 18 (key2020092405273873600_ref009) 2017; 58 (key2020092405273873600_ref012) 2015; 1 (key2020092405273873600_ref013) 2018; 40 (key2020092405273873600_ref011) 2018; 39 (key2020092405273873600_ref033) 2017; 167 (key2020092405273873600_ref015) 2013; 225 (key2020092405273873600_ref041) 2014; 32 (key2020092405273873600_ref044) 2014; 9 (key2020092405273873600_ref047) 2015; 164 (key2020092405273873600_ref018) 2014; 41 (key2020092405273873600_ref045) 2014; 25 (key2020092405273873600_ref014) 2015 (key2020092405273873600_ref043) 2006; 9 (key2020092405273873600_ref010) 2015; 8 (key2020092405273873600_ref036) 2014; 52 (key2020092405273873600_ref003) 2017; 45 (key2020092405273873600_ref035) 2015 (key2020092405273873600_ref027) 1998 (key2020092405273873600_ref016) 2016; 94 (key2020092405273873600_ref037) 2015; 71 (key2020092405273873600_ref046) 2016; 17 (key2020092405273873600_ref017) 2017; 32 (key2020092405273873600_ref028) 2015 (key2020092405273873600_ref039) 2014; 12 (key2020092405273873600_ref040) 2017; 2017 (key2020092405273873600_ref032) 2016; 33 (key2020092405273873600_ref008) 2012; 42 key2020092405273873600_ref030 (key2020092405273873600_ref300) 2008; 13 (key2020092405273873600_ref001) 2017; 24 (key2020092405273873600_ref024) 2016; 11 (key2020092405273873600_ref023) 2016; 70 (key2020092405273873600_ref025) 2010; 128 (key2020092405273873600_ref029) 2017; 39 (key2020092405273873600_ref034) 2011; 39 (key2020092405273873600_ref020) 2016; 27 (key2020092405273873600_ref031) 2018; 131 (key2020092405273873600_ref048) 2011; 25 |
References_xml | – volume: 24 start-page: 21610 issue: 27 year: 2017 ident: key2020092405273873600_ref001 article-title: Model and algorithm for bi-fuel vehicle routing problem to reduce GHG emissions publication-title: Environmental Science & Pollution Research doi: 10.1007/s11356-017-9740-8 – year: 2015 ident: key2020092405273873600_ref028 article-title: Using the ant colony optimization algorithm for the capacitated vehicle routing problem – volume: 128 start-page: 31 issue: 1 year: 2010 ident: key2020092405273873600_ref025 article-title: Forecasting the carbon footprint of road freight transport in 2020 publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2009.08.027 – volume: 26 start-page: 3010 issue: 11 year: 2015 ident: key2020092405273873600_ref042 article-title: Research status and prospects of computational intelligence in big data analysis publication-title: Journal of Software – volume: 225 start-page: 199 issue: 2 year: 2013 ident: key2020092405273873600_ref015 article-title: A meta-heuristic algorithm for heterogeneous fleet vehicle routing problems with two-dimensional loading constraints publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2012.09.023 – volume: 25 start-page: 29 issue: 10 year: 2011 ident: key2020092405273873600_ref048 article-title: China cold-chain logistics energy consumption status and the countermeasures publication-title: China Circulation Economy – volume: 131 start-page: 146 year: 2018 ident: key2020092405273873600_ref031 article-title: Circular economy meets industry 4.0: can big data drive industrial symbiosis? publication-title: Resources, Conservation and Recycling doi: 10.1016/j.resconrec.2017.12.028 – volume: 70 start-page: 113 year: 2016 ident: key2020092405273873600_ref023 article-title: A multi-space sampling heuristic for the green vehicle routing problem publication-title: Transportation Research: Part C Emerging Technologies – volume: 167 start-page: 1450 year: 2017 ident: key2020092405273873600_ref033 article-title: A genetic algorithm with exact dynamic programming for the green vehicle routing & scheduling problem publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2016.11.115 – volume: 42 start-page: 45 issue: C year: 2015 ident: key2020092405273873600_ref002 article-title: GVNs for a real-world rich vehicle routing problem with time windows publication-title: Engineering Applications of Artificial Intelligence – volume: 40 start-page: 214 year: 2018 ident: key2020092405273873600_ref013 article-title: Incorporating driving cycle based fuel consumption estimation in green vehicle routing problems publication-title: Sustainable Cities & Society doi: 10.1016/j.scs.2018.04.016 – volume: 11 start-page: 1 issue: 1 year: 2016 ident: key2020092405273873600_ref024 article-title: Modified particle swarm optimization in a time-dependent vehicle routing problem: minimizing fuel consumption publication-title: Optimization Letters – volume: 45 start-page: 318 issue: 15 year: 2017 ident: key2020092405273873600_ref003 article-title: Optimization of distribution route of fresh agricultural products cold chain logistics based on artificial bee colony algorithm publication-title: Jiangsu Agricultural Sciences – volume: 18 start-page: 82 issue: 1 year: 2014 ident: key2020092405273873600_ref007 article-title: Complex network clustering by multiobjective discrete particle swarm optimization based on decomposition publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2013.2260862 – volume: 39 start-page: 1419 issue: 7 year: 2011 ident: key2020092405273873600_ref034 article-title: Development of a fuel consumption optimization model for the capacitated vehicle routing problem publication-title: Computer & Operations Research – volume: 164 start-page: 379 year: 2015 ident: key2020092405273873600_ref047 article-title: A block recombination approach to solve green vehicle routing problem publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2014.11.003 – volume: 71 start-page: 158 year: 2015 ident: key2020092405273873600_ref037 article-title: The load-dependent vehicle routing problem and its pick-up and delivery extension publication-title: Transport. Research Part B: Methodology doi: 10.1016/j.trb.2014.11.004 – volume: 15 start-page: 2444 year: 2011 ident: key2020092405273873600_ref005 article-title: An improved particle swarm algorithm and its application publication-title: Procedia Engineering doi: 10.1016/j.proeng.2011.08.459 – volume: 41 start-page: 1118 issue: 4 year: 2014 ident: key2020092405273873600_ref018 article-title: Survey of green vehicle routing problem: past and future trends publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.07.107 – volume: 9 start-page: 66 issue: 6 year: 2006 ident: key2020092405273873600_ref043 article-title: An optimum model for distribution system based on cargo damage constraints publication-title: Industrial Engineering Journal – volume: 25 start-page: 766 issue: 6 year: 2014 ident: key2020092405273873600_ref045 article-title: Reduction of carbon emissions in VRP by gravitational search algorithm publication-title: Management of Environmental Quality: An International Journal doi: 10.1108/MEQ-08-2013-0086 – volume: 27 start-page: 387 issue: 2 year: 2016 ident: key2020092405273873600_ref020 article-title: A hybrid approach to artificial bee colony algorithm publication-title: Neural Computing & Applications doi: 10.1007/s00521-015-1851-x – year: 2005 ident: key2020092405273873600_ref019 article-title: Catalytic combustion for reduction of fugitive methane emissions from natural gas compressor stations publication-title: Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies – volume: 32 start-page: 1047 issue: 1 year: 2017 ident: key2020092405273873600_ref017 article-title: On-line vehicle routing problems for carbon emissions reduction publication-title: Computer-aided Civil & Infrastructure Engineering – volume: 32 start-page: 334 year: 2014 ident: key2020092405273873600_ref041 article-title: Exploring the trade-off between greenhouse gas emissions and travel time in daily travel decisions: route and departure time choices publication-title: Transportation Research Part D: Transport and Environment doi: 10.1016/j.trd.2014.07.016 – year: 1998 ident: key2020092405273873600_ref027 article-title: A modified particle swarm optimizer – volume: 42 start-page: 254 issue: 2 year: 2012 ident: key2020092405273873600_ref008 article-title: Optimizing the vehicle routing problem with time windows: a discrete particle swarm optimization approach publication-title: IEEE Transactions on Systems Man & Cybernetics Part C doi: 10.1109/TSMCC.2011.2148712 – volume: 39 start-page: 74 issue: 1 year: 2018 ident: key2020092405273873600_ref011 article-title: Optimization of cold chain distribution route of fresh agricultural products under carbon tax and carbon limit rules publication-title: Journal of Shanghai Maritime University – volume: 21 start-page: 247 issue: 4 year: 2014 ident: key2020092405273873600_ref004 article-title: Optimized path transmission selection routing algorithm for reducing energy consumption in opportunity networks publication-title: Dynamics of Continuous Discrete & Impulsive Systems – volume: 2017 start-page: 1 issue: 2 year: 2017 ident: key2020092405273873600_ref040 article-title: Analysis of an automated vehicle routing problem in logistics considering path interruption publication-title: Journal of Advanced Transportation – volume: 1 start-page: 201 issue: 2 year: 2015 ident: key2020092405273873600_ref012 article-title: Managing tomorrow’s daily consumer goods logistics value network publication-title: International Journal of Supply Chain and Operations Resilience doi: 10.1504/IJSCOR.2015.069938 – volume: 21 start-page: 255 year: 2017 ident: key2020092405273873600_ref022 article-title: Solving vehicle routing problem by using improved genetic algorithm for optimal solution publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2017.04.003 – volume: 17 start-page: 29 issue: 1 year: 2016 ident: key2020092405273873600_ref046 article-title: Reducing the carbon footprint in a vehicle routing problem by pooling resources from different companies publication-title: Netnomics Economic Research & Electronic Networking doi: 10.1007/s11066-015-9099-2 – volume: 52 start-page: 2565 issue: 9 year: 2014 ident: key2020092405273873600_ref036 article-title: Solving the heterogeneous fixed fleet open vehicle routing problem by a combined metaheuristic algorithm publication-title: International Journal of Production Research doi: 10.1080/00207543.2013.855337 – volume: 13 start-page: 151 issue: 3 year: 2008 ident: key2020092405273873600_ref300 article-title: The effects of route choice decisions on vehicle energy consumption and emissions publication-title: Transportation Research Part D Transport & Environment doi: 10.1016/j.trd.2008.01.005 – volume: 12 start-page: 239 issue: 2 year: 2014 ident: key2020092405273873600_ref039 article-title: An optimization model for the vehicle routing problem in multi-product frozen food delivery publication-title: Journal of Applied Research & Technology doi: 10.1016/S1665-6423(14)72340-5 – volume: 94 start-page: 169 year: 2016 ident: key2020092405273873600_ref016 article-title: The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems publication-title: Transportation Research: Part B Methodological doi: 10.1016/j.trb.2016.09.012 – volume: 100 start-page: 131 year: 2018 ident: key2020092405273873600_ref026 article-title: A fuel efficient green vehicle routing problem with varying speed constraint (f-gvrp) publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.01.052 – volume: 170 start-page: 234 year: 2015 ident: key2020092405273873600_ref038 article-title: Vehicle routing problem with fuel consumption and carbon emission publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2015.09.031 – ident: key2020092405273873600_ref030 – volume: 9 start-page: 12 issue: 3 year: 2014 ident: key2020092405273873600_ref044 article-title: Computational intelligence in big data publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2014.2326098 – start-page: 1109 year: 2015 ident: key2020092405273873600_ref014 article-title: Analytic centre stabilization of column generation algorithm for the capacitated vehicle routing problem – volume: 39 start-page: 55 issue: 9 year: 2017 ident: key2020092405273873600_ref029 article-title: The front-end collection transportation optimization of cold chain logistics for fresh fruits and vegetables publication-title: Logistics Engineering & Management – year: 2015 ident: key2020092405273873600_ref035 article-title: Comparison study on algorithms for vehicle routing problem with time windows – volume: 20 start-page: 32 issue: 4 year: 2011 ident: key2020092405273873600_ref021 article-title: Study on optimization for cold-chain logistics distribution of 3PL publication-title: Operations and Management – volume: 58 start-page: 307 year: 2017 ident: key2020092405273873600_ref009 article-title: Minimizing total resource consumption and total tardiness penalty in a resource allocation supply chain scheduling and vehicle routing problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.05.010 – volume: 8 start-page: 802 issue: 11 year: 2015 ident: key2020092405273873600_ref010 article-title: The cold chain logistics for perishable agricultural products in china publication-title: Advance Journal of Food Science & Technology doi: 10.19026/ajfst.8.1611 – ident: key2020092405273873600_ref006 – volume: 33 start-page: 146 issue: 3 year: 2016 ident: key2020092405273873600_ref032 article-title: Optimization and efficiency of multi-temperature joint distribution of cold chain products: comparative study based on cold accumulation mode and mechanical refrigeration mode publication-title: Journal of Highway & Transportation Research & Development |
SSID | ssj0002626 |
Score | 2.5137985 |
Snippet | Purpose
This paper studies green vehicle routing problems of cold chain logistics with the consideration of the full set of greenhouse gas (GHG) emissions and... PurposeThis paper studies green vehicle routing problems of cold chain logistics with the consideration of the full set of greenhouse gas (GHG) emissions and... |
SourceID | proquest crossref emerald |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 473 |
SubjectTerms | Algorithms Cold Cold storage Cost analysis Costs Emissions Energy consumption Energy costs Freshness Global warming Greenhouse effect Greenhouse gases Logistics Nitrous oxide Operating costs Particle swarm optimization Refrigeration Route optimization Route planning Supply chains Trucks Vehicle routing Vehicles Weather |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8NAEF60gvjiURXrxT74ohDM5uhunqQeRQWLaIW-hb1iC5rUturfdybdtCjSp7BkN5CZ2Tl2Z-Yj5AS8ZKl0aD3BOAQomEcljOReJBOVWJYBo7FQ-KHTvH2J7ntxzx24jV1aZaUTS0VtCo1n5OcBdpgNwbkNL4YfHqJG4e2qg9BYJiugggUEXyuXN53Hp5kuDpol4Bo8Qy-OOXf3moh9c_dw_YyHdGABsciMRb8s05_y3LmKLu1Oe5OsO4eRtqYc3iJLNq-T1SpfvU42KlwG6rbpNjEt-orpNPTL9nERHRWfmN1MS9gbiobL0CLH4SADF5QOnfzQ8bccvdMC1Mi7q8-k4NRSEBZDdV8OcjqtGBro8Q7ptm-6V7eeQ1PwNPzcxMsSo5mEcI2HPFaCR8Iwq6SvYoiYFJNxpppG-lwqiCFkpoOAs0SwUFohIqnCXVLLi9zuEaqEsOCT-740QWS4llEWYRd4ZViijLYN4leETLXrNI6AF29pGXH4IkXapz5PkfYp0r5BzmZLhtM2G4smnzru_Dv3F1Mb5LDiX-p25zidy9L-4tcHZA2-VN4e-eKQ1CajT3sETshEHTtJ-wEC_9gJ priority: 102 providerName: ProQuest |
Title | A green vehicle routing model based on modified particle swarm optimization for cold chain logistics |
URI | https://www.emerald.com/insight/content/doi/10.1108/IMDS-07-2018-0314/full/html https://www.proquest.com/docview/2204835853 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB61iYS4UFpABEq0By4gufH6kV0fQ2naIrUgKFLpxdqXSUTjRIkDEr--M_Y6qFWFhMTJtrRre3dGM_PNzgPgNVrJSpvYBZILBCgURyWtEkGiMp05XiChKVH47Hx48jX5cJlebsHHNhemDqts3DG1nJ6WKwKpAwrcRim8KThA3WtOz95_ITcb6jBKE-PJgFzWg0k1u96GbsSHoexA9-rb1eh4I5yjYd2BDa9xkKZC-IPOe193S1Xdydf9I7NrRTTegUW7hCb-5MfButIH5ved6o7_cY2P4ZE3Wtmo4bJd2HLlHjxoY-b3YKftDcG8qHgCdsS-U0gP--kmNIkt52uKsGZ16x1GytOyeUmP0wLNYLbwPMxWv9RyxuYoymY-R5ShYc2QYS0zEzUtWZO1NDWrp3AxPro4PAl8R4fA4K9XQZFZwxVCRhGLVEuRSMudVqFOEbVprtJCD60KhdKIY1RhokjwTPJYOSkTpeNn0CnnpXsOTEvpEBeEobJRYoVRSZFQJXpteaatcT0IW9rlxlc7p6Yb13mNekKZ087mochpZ3Pa2R683UxZNKU-_jb4jSfhvWNvkawH-y3L5F5CrPKIKibHCNbiF__y3ZfwEO_r86xQ7kOnWq7dKzSLKt2HbTk-7kP33dH5p899z_g3dBUIMA |
linkProvider | Emerald |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIkEvPAqIQIE9wAEkC693nV0fKlRRQkKbXghSb6t9mUaidpqkrfqj-I-dcexWRai3nizLu3uYGc9j5_EBvEcv2TovYqK5wgCF6qh0sCqRtnBF5CUymhqFxwf94S_54zA_XIO_XS8MlVV2OrFR1KH2dEf-OaMJswKdW_FldpIQahRlVzsIjZVY7MWLcwzZFtujXeTvhywbfJt8HSYtqkDiBZfLpCyC5xbDFiVU7rSSOvDobOpyjBwct3np-sGmyjr0pW3ps0xhYM6FjVpL6wQeew_uSyEK-qH04PuV4s_6DbobPkWS50q1SVQC2hmNd3_SjSCaW-po4_KGGfynF_jaHjRGbvAEHrXeKdtZidNTWIvVJjzoiuM34XEHAsFanfAMwg77TbU77Cwe0SY2r0-plJo1GDuMrGRgdUWv0xL9XTZrhZUtzu38mNWos47bZlCGHjRDyQzMH9lpxVbtSVO_eA6TuyDyC1iv6iq-BOa0jhgApKkNmQzKW1lKGjnvAi9c8LEHaUdI49ux5oSu8cc04U2qDdHepMoQ7Q3RvgefrrbMVjM9blv8seXOf9feYGoPtjr-mVYVLMy14L66_fM7eDicjPfN_uhg7zVs4KlN2irVW7C-nJ_GN-j9LN3bRuYYmDuW8UtsPhM2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+green+vehicle+routing+model+based+on+modified+particle+swarm+optimization+for+cold+chain+logistics&rft.jtitle=Industrial+management+%2B+data+systems&rft.au=Li%2C+Yan&rft.au=Lim%2C+Ming+K.&rft.au=Tseng%2C+Ming-Lang&rft.date=2019-04-08&rft.issn=0263-5577&rft.volume=119&rft.issue=3&rft.spage=473&rft.epage=494&rft_id=info:doi/10.1108%2FIMDS-07-2018-0314&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_IMDS_07_2018_0314 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-5577&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-5577&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-5577&client=summon |