Improving the building energy flexibility using PCM-enhanced envelopes

Pre-formed internal insulative panels with impregnated phase change materials (PCM) can significantly increase both the thermal resistance and thermal capacitance of existing or new building envelopes, thereby improving the overall energy performance of buildings. A further advantage is that such me...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 217; p. 119092
Main Authors Saffari, Mohammad, Roe, Conor, Finn, Donal P.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 25.11.2022
Subjects
Online AccessGet full text
ISSN1359-4311
DOI10.1016/j.applthermaleng.2022.119092

Cover

Loading…
Abstract Pre-formed internal insulative panels with impregnated phase change materials (PCM) can significantly increase both the thermal resistance and thermal capacitance of existing or new building envelopes, thereby improving the overall energy performance of buildings. A further advantage is that such measures have the potential to enhance the energy flexibility of the building, thereby offering the possibility of participation in demand side management measures such as demand response programmes. The current literature on building envelope physics lacks research on energy flexibility and demand response, especially in the context of the building envelope integrated design with high latent heat materials such as PCM for demand response applications. The objective of the current study is to examine how the addition of PCM impregnated building envelopes affects both the thermal performance of the building envelope, as well as the wider building energy characteristics when subject to different demand response events. A reference building is utilised, which is a residential detached house with a floor area of 160 m2 and a south-easterly facing aspect. Another contribution of this study is proposing new energy flexibility indicators taking into consideration envelope pre-cooling and pre-heating periods prior to the demand response event. Simulation results show that shorter envelope pre-cooling periods (0.5 hr) together with longer demand response periods (4 h) are preferable for all envelopes to achieve the maximum power curtailment for cooling. PCM-enhanced envelopes are shown to give best cooling demand shifting and energy flexibility efficiency. The MW PCM-1 and MW PCM-2 envelopes have the highest flexibility efficiency with a value of 244%. For heating, gypsum board enhanced with PCM retrofitted on the envelopes are shown to give an overall good performance in energy flexibility efficiency and in power curtailment compared to the other building envelopes in all durations of an energy flexibility event. For heating, the maximum energy flexibility efficiencies range from 250% for the LW Gypsum Board envelope to 356% for the LW PCM-2 envelope. •Energy flexibility is mapped for building envelopes with sensible and latent TES.•Building envelopes are optimised for different demand response events.•An energy flexibility sensitivity analysis algorithm is developed in EnergyPlus.•In buildings with only sensible TES short demand response events should be used.•Envelopes with PCM have better energy flexibility in long demand response events.
AbstractList Pre-formed internal insulative panels with impregnated phase change materials (PCM) can significantly increase both the thermal resistance and thermal capacitance of existing or new building envelopes, thereby improving the overall energy performance of buildings. A further advantage is that such measures have the potential to enhance the energy flexibility of the building, thereby offering the possibility of participation in demand side management measures such as demand response programmes. The current literature on building envelope physics lacks research on energy flexibility and demand response, especially in the context of the building envelope integrated design with high latent heat materials such as PCM for demand response applications. The objective of the current study is to examine how the addition of PCM impregnated building envelopes affects both the thermal performance of the building envelope, as well as the wider building energy characteristics when subject to different demand response events. A reference building is utilised, which is a residential detached house with a floor area of 160 m2 and a south-easterly facing aspect. Another contribution of this study is proposing new energy flexibility indicators taking into consideration envelope pre-cooling and pre-heating periods prior to the demand response event. Simulation results show that shorter envelope pre-cooling periods (0.5 hr) together with longer demand response periods (4 h) are preferable for all envelopes to achieve the maximum power curtailment for cooling. PCM-enhanced envelopes are shown to give best cooling demand shifting and energy flexibility efficiency. The MW PCM-1 and MW PCM-2 envelopes have the highest flexibility efficiency with a value of 244%. For heating, gypsum board enhanced with PCM retrofitted on the envelopes are shown to give an overall good performance in energy flexibility efficiency and in power curtailment compared to the other building envelopes in all durations of an energy flexibility event. For heating, the maximum energy flexibility efficiencies range from 250% for the LW Gypsum Board envelope to 356% for the LW PCM-2 envelope. •Energy flexibility is mapped for building envelopes with sensible and latent TES.•Building envelopes are optimised for different demand response events.•An energy flexibility sensitivity analysis algorithm is developed in EnergyPlus.•In buildings with only sensible TES short demand response events should be used.•Envelopes with PCM have better energy flexibility in long demand response events.
ArticleNumber 119092
Author Finn, Donal P.
Saffari, Mohammad
Roe, Conor
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0003-3583-6484
  surname: Saffari
  fullname: Saffari, Mohammad
  email: mohammad.saffari@dcu.ie
  organization: School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland
– sequence: 2
  givenname: Conor
  surname: Roe
  fullname: Roe, Conor
  email: conor.roe.1@ucdconnect.ie
  organization: School of Mechanical and Materials Engineering, University College Dublin, Ireland
– sequence: 3
  givenname: Donal P.
  surname: Finn
  fullname: Finn, Donal P.
  email: donal.finn@ucd.ie
  organization: School of Mechanical and Materials Engineering, University College Dublin, Ireland
BookMark eNqNkD1PwzAQhj0UibbwHzKwJvgjH47EAhWFSkUwwGw5zrl15TqR7Vb035OoLDB1Op3ufR_pnhmauM4BQncEZwST8n6Xyb63cQt-Ly24TUYxpRkhNa7pBE0JK-o0Z4Rco1kIO4wJ5VU-RcvVvvfd0bhNMnST5mBsOy7gwG9OibbwbRpjTTwlhzAePhZvKbitdAraIXUE2_UQbtCVljbA7e-co6_l8-fiNV2_v6wWj-tUMZLHVHNZNKpQnLIaiKYKU2BEA-dV2ZYVB-B5UzCuVaEbRgnNa1mpsqxUDhXXmM3Rw5mrfBeCBy16b_bSnwTBYvQgduKvBzF6EGcPQ_3pX12ZKKPpXPTS2EshyzMEhkePBrwIysDow3hQUbSduQz0A_ITi0g
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2023_120559
crossref_primary_10_1016_j_applthermaleng_2023_120512
crossref_primary_10_1016_j_applthermaleng_2022_119923
crossref_primary_10_1016_j_est_2024_111987
crossref_primary_10_1016_j_jclepro_2024_141494
crossref_primary_10_1186_s40807_024_00138_8
crossref_primary_10_1016_j_energy_2024_130955
crossref_primary_10_1177_17442591251324485
crossref_primary_10_1016_j_est_2024_113561
crossref_primary_10_1080_19401493_2024_2404638
crossref_primary_10_2478_rtuect_2022_0096
crossref_primary_10_1080_00038628_2023_2243245
crossref_primary_10_3390_coatings15030288
crossref_primary_10_1016_j_applthermaleng_2023_122098
crossref_primary_10_1016_j_est_2023_109506
crossref_primary_10_1088_1742_6596_2592_1_012015
crossref_primary_10_1016_j_applthermaleng_2022_119798
crossref_primary_10_1016_j_energy_2024_130461
crossref_primary_10_1016_j_jobe_2024_111259
crossref_primary_10_3390_en16114442
crossref_primary_10_1016_j_icheatmasstransfer_2023_106922
crossref_primary_10_3390_buildings13020488
crossref_primary_10_3390_buildings13102663
crossref_primary_10_1016_j_est_2024_112761
crossref_primary_10_1016_j_applthermaleng_2024_124583
crossref_primary_10_1016_j_ecmx_2023_100464
crossref_primary_10_1016_j_buildenv_2023_110841
crossref_primary_10_3390_buildings12111830
crossref_primary_10_1016_j_energy_2023_126753
crossref_primary_10_1016_j_apenergy_2023_121985
crossref_primary_10_1016_j_buildenv_2024_112243
crossref_primary_10_3390_en16135236
crossref_primary_10_1016_j_applthermaleng_2023_120682
crossref_primary_10_1016_j_renene_2023_119262
crossref_primary_10_1016_j_jobe_2024_109928
crossref_primary_10_1016_j_rser_2024_115290
Cites_doi 10.1016/j.apenergy.2015.11.016
10.1016/j.est.2015.08.003
10.1016/j.enbuild.2016.08.007
10.1016/j.egypro.2017.07.360
10.1016/j.apenergy.2017.04.061
10.1127/0941-2948/2006/0130
10.1016/j.apenergy.2019.113437
10.1016/j.egypro.2017.07.483
10.1177/1744259113480133
10.1016/j.enbuild.2017.08.044
10.1016/j.scs.2019.101815
10.1016/j.applthermaleng.2021.116568
10.1016/j.enbuild.2015.06.007
10.1016/j.rser.2020.109861
10.1016/j.enbuild.2018.09.030
10.1016/j.apenergy.2017.05.107
10.1007/s12053-017-9550-3
10.1016/j.apenergy.2017.01.060
10.1016/j.applthermaleng.2019.114560
10.1016/j.ijinfomgt.2021.102456
10.1016/j.applthermaleng.2020.115870
10.1016/j.esr.2022.100857
10.1016/j.rser.2020.110183
10.1016/j.enbuild.2019.02.026
10.1016/j.apenergy.2018.11.002
10.1016/j.renene.2019.05.124
10.1016/j.energy.2018.04.093
10.1016/j.energy.2019.116054
10.1016/j.enbuild.2018.02.040
10.1016/j.solener.2019.09.003
10.1016/j.solmat.2017.07.023
10.1016/j.apenergy.2018.12.074
10.26868/25222708.2013.1371
10.1016/j.apenergy.2017.04.024
10.1016/j.buildenv.2012.02.019
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2022.119092
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_applthermaleng_2022_119092
S1359431122010225
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
R2-
RIG
SEW
SSH
ID FETCH-LOGICAL-c314t-f8a5bc5c8239e1f2c02e31fe8876d678ee84b538fc5fb321249a7c667c4e78f03
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Tue Jul 01 02:05:37 EDT 2025
Thu Apr 24 23:12:01 EDT 2025
Fri Feb 23 02:36:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Passive energy building
PCM thermal mass
Demand response
Energy flexibility
Energy efficiency
Sustainability
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-f8a5bc5c8239e1f2c02e31fe8876d678ee84b538fc5fb321249a7c667c4e78f03
ORCID 0000-0003-3583-6484
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1359431122010225
ParticipantIDs crossref_primary_10_1016_j_applthermaleng_2022_119092
crossref_citationtrail_10_1016_j_applthermaleng_2022_119092
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2022_119092
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-25
PublicationDateYYYYMMDD 2022-11-25
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-25
  day: 25
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References EnergyPlus (b45) 2022
Hirmiz, Teamah, Lightstone, Cotton (b15) 2019; 190
Chhugani, Klinker, Weinlaeder, Reim (b56) 2017; 122
Clauß, Stinner, Sartori, Georges (b17) 2019
Kathirgamanathan, De Rosa, Mangina, Finn (b8) 2021; vol. 135
Sources (b42) 2022
Vázquez-Canteli, Nagy (b5) 2019; 235
Devaux, Farid (b34) 2017
Barreneche, Navarro, Cabeza, Fernández (b24) 2015; 3
Mariano-Hernández, Hernández-Callejo, Zorita-Lamadrid, Duque-Pérez, Santos García (b9) 2021; 33
Silva, Faria, Vale, Corchado (b11) 2022; 41
Kottek, Grieser, Beck, Rudolf, Rubel (b43) 2006; 15
Dwivedi, Hughes, Kar, Baabdullah, Grover, Abbas, Andreini, Abumoghli, Barlette, Bunker, Chandra Kruse, Constantiou, Davison, De, Dubey, Fenby-Taylor, Gupta, He, Kodama, Mäntymäki, Metri, Michael, Olaisen, Panteli, Pekkola, Nishant, Raman, Rana, Rowe, Sarker, Scholtz, Sein, Shah, Teo, Tiwari, Vendelø, Wade (b1) 2022; 63
Python (b41) 2022
Darby (b27) 2018; 11
Rahimpour, Faccani, Azuatalam, Chapman, Verbič (b28) 2017; 121
Chen, Chen, Xu, Li, Sha, Yang, Li, Hu (b33) 2019; 188
Markarian, Fazelpour (b29) 2019; 191
U.S. Department of Energy (DoE) (b49) 2022
Kośny (b54) 2015
Wang, Lu, Wu, Zhang (b26) 2020; 145
Vivian, Chiodarelli, Emmi, Zarrella (b16) 2020
Commission (b7) 2018
Saffari, de Gracia, Fernández, Cabeza (b58) 2017; 202
Tabares-Velasco, P. C Christensen, C. Bianchi (b51) 2012
Tabares-Velasco, Christensen, Bianchi (b47) 2012; 54
Feustel (b57) 1995
Kishore, Bianchi, Booten, Vidal, Jackson (b37) 2020; 180
Groppi, Pfeifer, Garcia, Krajačić, Duić (b12) 2021; 135
Fawcett, Eyre, Layberry (b4) 2015
U. S. Department of Energy (DoE) (b38) 2022
de Gracia, Cabeza (b23) 2015; 103
Rodrigues, Fernandes, Gaspar, Gomes, Costa (b22) 2019
EN ISO 13786 (b46) 2017
Union (b3) 2018; June 2018
Arıcı, Bilgin, Nižetić, Karabay (b35) 2020
Costanzo, Evola, Marletta, Nocera (b52) 2018; vol. 11
Pallonetto, De Rosa, D’Ettorre, Finn (b13) 2020; 127
U.S. Department of Energy (DoE) (b48) 2022
RUBITHERM (b53) 2022
H. Wolisz, H. Harb, P. Matthes, R. Streblow, D. Müller, Dynamic simulation of thermal capacity and charging/discharging performance for sensible heat storage in building wall mass, in: Proceedings of BS 2013: 13th Conference of the International Building Performance Simulation Association, 2013, pp. 2716–2723.
Kishore, Bianchi, Booten, Vidal, Jackson (b36) 2021; 187
Reilly, Kinnane (b19) 2017
Dominković, Gianniou, Münster, Heller, Rode (b30) 2018
ANSI/ASHRAE Standard 55-2013, ANSI/ASHRAE Standard 55-2013 Thermal Environmental Conditions for Human Occupancy, Atlanta, GA, 2013, p. 58,.
15251:2007 (b39) 2007
A. Handbook, ASHRAE Handbook–Fundamentals, Atlanta, GA, 2009.
C.O. Pedersen, Advanced zone simulation in Energyplus: Incorporation of variable properties and phase change material, PCM capability, in: 10 Th International IBPSA Conference, 2007, pp. 1–5.
Reynders, Amaral Lopes, Marszal-Pomianowska, Aelenei, Martins, Saelens (b61) 2018; 166
Marin, Saffari, de Gracia, Zhu, Farid, Cabeza, Ushak (b18) 2016; 129
Foteinaki, Li, Heller, Rode (b14) 2018
Barzin, Chen, Young, Farid (b62) 2016
Reynders, Diriken, Saelens (b32) 2017; 198
(b10) 2022
Ellis, Torcellini, Crawley (b60) 2007
Knauf (b55) 2022
Commission (b2) 2019
Kant, Shukla, Sharma (b25) 2017; 172
SketchUp (b40) 2022
Becker (b20) 2014; 37
Jensen, Marszal-Pomianowska, Lollini, Pasut, Knotzer, Engelmann, Stafford, Reynders (b6) 2017
Mehling, Cabeza (b21) 2008
10.1016/j.applthermaleng.2022.119092_b31
Commission (10.1016/j.applthermaleng.2022.119092_b2) 2019
Jensen (10.1016/j.applthermaleng.2022.119092_b6) 2017
Hirmiz (10.1016/j.applthermaleng.2022.119092_b15) 2019; 190
Ellis (10.1016/j.applthermaleng.2022.119092_b60) 2007
SketchUp (10.1016/j.applthermaleng.2022.119092_b40) 2022
Foteinaki (10.1016/j.applthermaleng.2022.119092_b14) 2018
Vázquez-Canteli (10.1016/j.applthermaleng.2022.119092_b5) 2019; 235
RUBITHERM (10.1016/j.applthermaleng.2022.119092_b53) 2022
Kishore (10.1016/j.applthermaleng.2022.119092_b37) 2020; 180
Saffari (10.1016/j.applthermaleng.2022.119092_b58) 2017; 202
Pallonetto (10.1016/j.applthermaleng.2022.119092_b13) 2020; 127
Devaux (10.1016/j.applthermaleng.2022.119092_b34) 2017
Groppi (10.1016/j.applthermaleng.2022.119092_b12) 2021; 135
Chhugani (10.1016/j.applthermaleng.2022.119092_b56) 2017; 122
Becker (10.1016/j.applthermaleng.2022.119092_b20) 2014; 37
EN ISO 13786 (10.1016/j.applthermaleng.2022.119092_b46) 2017
U.S. Department of Energy (DoE) (10.1016/j.applthermaleng.2022.119092_b49) 2022
U. S. Department of Energy (DoE) (10.1016/j.applthermaleng.2022.119092_b38) 2022
Vivian (10.1016/j.applthermaleng.2022.119092_b16) 2020
Reilly (10.1016/j.applthermaleng.2022.119092_b19) 2017
10.1016/j.applthermaleng.2022.119092_b44
Costanzo (10.1016/j.applthermaleng.2022.119092_b52) 2018; vol. 11
Reynders (10.1016/j.applthermaleng.2022.119092_b32) 2017; 198
Rahimpour (10.1016/j.applthermaleng.2022.119092_b28) 2017; 121
Darby (10.1016/j.applthermaleng.2022.119092_b27) 2018; 11
Mariano-Hernández (10.1016/j.applthermaleng.2022.119092_b9) 2021; 33
Feustel (10.1016/j.applthermaleng.2022.119092_b57) 1995
Tabares-Velasco (10.1016/j.applthermaleng.2022.119092_b47) 2012; 54
Tabares-Velasco, P. C Christensen, C. Bianchi (10.1016/j.applthermaleng.2022.119092_b51) 2012
Markarian (10.1016/j.applthermaleng.2022.119092_b29) 2019; 191
Marin (10.1016/j.applthermaleng.2022.119092_b18) 2016; 129
Mehling (10.1016/j.applthermaleng.2022.119092_b21) 2008
Arıcı (10.1016/j.applthermaleng.2022.119092_b35) 2020
Dwivedi (10.1016/j.applthermaleng.2022.119092_b1) 2022; 63
15251:2007 (10.1016/j.applthermaleng.2022.119092_b39) 2007
Reynders (10.1016/j.applthermaleng.2022.119092_b61) 2018; 166
Rodrigues (10.1016/j.applthermaleng.2022.119092_b22) 2019
Fawcett (10.1016/j.applthermaleng.2022.119092_b4) 2015
Union (10.1016/j.applthermaleng.2022.119092_b3) 2018; June 2018
Python (10.1016/j.applthermaleng.2022.119092_b41) 2022
10.1016/j.applthermaleng.2022.119092_b50
EnergyPlus (10.1016/j.applthermaleng.2022.119092_b45) 2022
Dominković (10.1016/j.applthermaleng.2022.119092_b30) 2018
10.1016/j.applthermaleng.2022.119092_b59
Commission (10.1016/j.applthermaleng.2022.119092_b7) 2018
Barzin (10.1016/j.applthermaleng.2022.119092_b62) 2016
Sources (10.1016/j.applthermaleng.2022.119092_b42) 2022
Kośny (10.1016/j.applthermaleng.2022.119092_b54) 2015
Kishore (10.1016/j.applthermaleng.2022.119092_b36) 2021; 187
Kathirgamanathan (10.1016/j.applthermaleng.2022.119092_b8) 2021; vol. 135
de Gracia (10.1016/j.applthermaleng.2022.119092_b23) 2015; 103
Kant (10.1016/j.applthermaleng.2022.119092_b25) 2017; 172
Chen (10.1016/j.applthermaleng.2022.119092_b33) 2019; 188
(10.1016/j.applthermaleng.2022.119092_b10) 2022
Silva (10.1016/j.applthermaleng.2022.119092_b11) 2022; 41
Knauf (10.1016/j.applthermaleng.2022.119092_b55) 2022
Kottek (10.1016/j.applthermaleng.2022.119092_b43) 2006; 15
Wang (10.1016/j.applthermaleng.2022.119092_b26) 2020; 145
Barreneche (10.1016/j.applthermaleng.2022.119092_b24) 2015; 3
Clauß (10.1016/j.applthermaleng.2022.119092_b17) 2019
U.S. Department of Energy (DoE) (10.1016/j.applthermaleng.2022.119092_b48) 2022
References_xml – start-page: 1385
  year: 2015
  end-page: 1389
  ident: b4
  article-title: Heat pumps and global residential heating
  publication-title: Eceee 2015
– year: 2019
  ident: b17
  article-title: Predictive rule-based control to activate the energy flexibility of norwegian residential buildings: Case of an air-source heat pump and direct electric heating
  publication-title: Appl. Energy
– start-page: 1
  year: 2007
  end-page: 52
  ident: b39
  article-title: Indoor environmental input parameters for design and assessment of energy performance of buildings- addressing indoor air quality , thermal environment , lighting and acoustics
– volume: 122
  start-page: 625
  year: 2017
  end-page: 630
  ident: b56
  article-title: Energetic performance of two different PCM wallboards and their regeneration behavior in office rooms
  publication-title: Energy Procedia
– volume: 135
  year: 2021
  ident: b12
  article-title: A review on energy storage and demand side management solutions in smart energy islands
  publication-title: Renew. Sustain. Energy Rev.
– year: 2022
  ident: b48
  article-title: EnergyPlus input output reference: The encyclopedic reference to EnergyPlus input and output
– volume: June 2018
  start-page: 1
  year: 2018
  end-page: 17
  ident: b3
  article-title: Directive (EU) 2018/844 of the European parliament and of the council of 30 may 2018
  publication-title: Off. J. Eur. Union
– volume: 121
  start-page: 102
  year: 2017
  end-page: 109
  ident: b28
  article-title: Using thermal inertia of buildings with phase change material for demand response
  publication-title: Energy Procedia
– year: 2022
  ident: b42
  article-title: EnergyPlus weather (EPW) data sources
– volume: 235
  start-page: 1072
  year: 2019
  end-page: 1089
  ident: b5
  article-title: Reinforcement learning for demand response: A review of algorithms and modeling techniques
  publication-title: Appl. Energy
– volume: 191
  start-page: 481
  year: 2019
  end-page: 496
  ident: b29
  article-title: Multi-objective optimization of energy performance of a building considering different configurations and types of PCM
  publication-title: Sol. Energy
– start-page: 1
  year: 2019
  end-page: 24
  ident: b2
  article-title: Clean energy for all Europeans
  publication-title: Publ. Off. Eur. Union
– year: 1995
  ident: b57
  article-title: Simplified Numerical Description of Latent Storage Characteristics for Phase Change Wallboard
– year: 2018
  ident: b7
  article-title: A Clean Planet for all A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy
– year: 2017
  ident: b34
  article-title: Benefits of PCM underfloor heating with PCM wallboards for space heating in winter
  publication-title: Appl. Energy
– volume: 129
  start-page: 274
  year: 2016
  end-page: 283
  ident: b18
  article-title: Energy savings due to the use of PCM for relocatable lightweight buildings passive heating and cooling in different weather conditions
  publication-title: Energy Build.
– year: 2022
  ident: b45
  article-title: ASHRAE materials dataset in EnergyPlus dynamic building simulation
– year: 2020
  ident: b16
  article-title: A sensitivity analysis on the heating and cooling energy flexibility of residential buildings
  publication-title: Sustainable Cities Soc.
– volume: 202
  start-page: 420
  year: 2017
  end-page: 434
  ident: b58
  article-title: Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings
  publication-title: Appl. Energy
– volume: 198
  start-page: 192
  year: 2017
  end-page: 202
  ident: b32
  article-title: Generic characterization method for energy flexibility: Applied to structural thermal storage in residential buildings
  publication-title: Appl. Energy
– year: 2022
  ident: b41
  article-title: Python programming language
– volume: 103
  start-page: 414
  year: 2015
  end-page: 419
  ident: b23
  article-title: Phase change materials and thermal energy storage for buildings
  publication-title: Energy Build.
– year: 2022
  ident: b38
  article-title: EnergyPlus whole building energy simulation software
– volume: 187
  year: 2021
  ident: b36
  article-title: Parametric and sensitivity analysis of a PCM-integrated wall for optimal thermal load modulation in lightweight buildings
  publication-title: Appl. Therm. Eng.
– year: 2020
  ident: b35
  article-title: PCM integrated to external building walls: An optimization study on maximum activation of latent heat
  publication-title: Appl. Therm. Eng.
– start-page: 271
  year: 2015
  ident: b54
  article-title: PCM-Enhanced Building Components - An Application of Phase Change Materials in Building Envelopes and Internal Structures
– volume: 41
  year: 2022
  ident: b11
  article-title: Demand response performance and uncertainty: A systematic literature review
  publication-title: Energy Strategy Rev.
– volume: 190
  start-page: 103
  year: 2019
  end-page: 118
  ident: b15
  article-title: Performance of heat pump integrated phase change material thermal storage for electric load shifting in building demand side management
  publication-title: Energy Build.
– year: 2017
  ident: b19
  article-title: The impact of thermal mass on building energy consumption
  publication-title: Appl. Energy
– year: 2018
  ident: b14
  article-title: Heating system energy flexibility of low-energy residential buildings
  publication-title: Energy Build.
– volume: vol. 11
  start-page: 1145
  year: 2018
  end-page: 1161
  ident: b52
  article-title: The effectiveness of phase change materials in relation to summer thermal comfort in air-conditioned office buildings
  publication-title: Building Simulation 2018 11:6
– reference: ANSI/ASHRAE Standard 55-2013, ANSI/ASHRAE Standard 55-2013 Thermal Environmental Conditions for Human Occupancy, Atlanta, GA, 2013, p. 58,.
– reference: C.O. Pedersen, Advanced zone simulation in Energyplus: Incorporation of variable properties and phase change material, PCM capability, in: 10 Th International IBPSA Conference, 2007, pp. 1–5.
– year: 2022
  ident: b55
  article-title: Knauf comfortboard
– volume: 37
  start-page: 296
  year: 2014
  end-page: 324
  ident: b20
  article-title: Improving thermal and energy performance of buildings in summer with internal phase change materials
  publication-title: J. Build. Phys.
– reference: H. Wolisz, H. Harb, P. Matthes, R. Streblow, D. Müller, Dynamic simulation of thermal capacity and charging/discharging performance for sensible heat storage in building wall mass, in: Proceedings of BS 2013: 13th Conference of the International Building Performance Simulation Association, 2013, pp. 2716–2723.
– year: 2017
  ident: b46
  article-title: ISO 13786:2017(en), thermal performance of building components — Dynamic thermal characteristics — Calculation methods
– start-page: 1774
  year: 2022
  ident: b10
  article-title: The european parliament and of the council of the european union
  publication-title: Off. J. Eur. Union
– volume: 33
  year: 2021
  ident: b9
  article-title: A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis
  publication-title: J. Build. Eng.
– year: 2018
  ident: b30
  article-title: Utilizing thermal building mass for storage in district heating systems: Combined building level simulations and system level optimization
  publication-title: Energy
– year: 2022
  ident: b40
  article-title: Sketchup: 3D design software — 3D modeling on the web
– volume: 127
  year: 2020
  ident: b13
  article-title: On the assessment and control optimisation of demand response programs in residential buildings
  publication-title: Renew. Sustain. Energy Rev.
– volume: 188
  year: 2019
  ident: b33
  article-title: Quantification of electricity flexibility in demand response: Office building case study
  publication-title: Energy
– volume: 54
  start-page: 186
  year: 2012
  end-page: 196
  ident: b47
  article-title: Verification and validation of EnergyPlus phase change material model for opaque wall assemblies
  publication-title: Build. Environ.
– volume: 15
  start-page: 259
  year: 2006
  end-page: 263
  ident: b43
  article-title: World map of the Köppen-Geiger climate classification updated
  publication-title: Meteorol. Z.
– year: 2008
  ident: b21
  article-title: Heat and Cold Storage with PCM: An Up to Date Introduction Into Basics and Applications
– reference: A. Handbook, ASHRAE Handbook–Fundamentals, Atlanta, GA, 2009.
– start-page: 1
  year: 2012
  end-page: 10
  ident: b51
  article-title: Validation methodology to allow simulated peak reduction and energy performance analysis of residential building envelope with phase change materials
  publication-title: 2012 ASHRAE Annual Conference June 23-27
– year: 2022
  ident: b49
  article-title: EnergyPlus engineering reference
– year: 2017
  ident: b6
  article-title: IEA EBC annex 67 energy flexible buildings
  publication-title: Energy Build.
– year: 2022
  ident: b53
  article-title: Rubitherm® technologies GmbH
– volume: 145
  start-page: 52
  year: 2020
  end-page: 64
  ident: b26
  article-title: Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai
  publication-title: Renew. Energy
– volume: 63
  year: 2022
  ident: b1
  article-title: Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action
  publication-title: Int. J. Inf. Manage.
– volume: 180
  year: 2020
  ident: b37
  article-title: Modulating thermal load through lightweight residential building walls using thermal energy storage and controlled precooling strategy
  publication-title: Appl. Therm. Eng.
– year: 2016
  ident: b62
  article-title: Application of weather forecast in conjunction with price-based method for PCM solar passive buildings - An experimental study
  publication-title: Appl. Energy
– year: 2019
  ident: b22
  article-title: Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass
  publication-title: Appl. Energy
– start-page: 1346
  year: 2007
  end-page: 1353
  ident: b60
  article-title: Simulation of energy management systems in EnergyPlus
  publication-title: Building Simulation 2007
– volume: 166
  start-page: 372
  year: 2018
  end-page: 390
  ident: b61
  article-title: Energy flexible buildings: An evaluation of definitions and quantification methodologies applied to thermal storage
  publication-title: Energy Build.
– volume: vol. 135
  start-page: 110120
  year: 2021
  ident: b8
  article-title: Data-driven predictive control for unlocking building energy flexibility: A review
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 3
  start-page: 18
  year: 2015
  end-page: 24
  ident: b24
  article-title: New database to select phase change materials: Chemical nature, properties, and applications
  publication-title: J. Energy Storage
– volume: 172
  start-page: 82
  year: 2017
  end-page: 92
  ident: b25
  article-title: Advancement in phase change materials for thermal energy storage applications
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 11
  start-page: 67
  year: 2018
  end-page: 77
  ident: b27
  article-title: Smart electric storage heating and potential for residential demand response
  publication-title: Energy Effic.
– year: 2016
  ident: 10.1016/j.applthermaleng.2022.119092_b62
  article-title: Application of weather forecast in conjunction with price-based method for PCM solar passive buildings - An experimental study
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.11.016
– volume: 3
  start-page: 18
  year: 2015
  ident: 10.1016/j.applthermaleng.2022.119092_b24
  article-title: New database to select phase change materials: Chemical nature, properties, and applications
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2015.08.003
– year: 2008
  ident: 10.1016/j.applthermaleng.2022.119092_b21
– year: 2017
  ident: 10.1016/j.applthermaleng.2022.119092_b46
– volume: 129
  start-page: 274
  year: 2016
  ident: 10.1016/j.applthermaleng.2022.119092_b18
  article-title: Energy savings due to the use of PCM for relocatable lightweight buildings passive heating and cooling in different weather conditions
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.08.007
– start-page: 1385
  year: 2015
  ident: 10.1016/j.applthermaleng.2022.119092_b4
  article-title: Heat pumps and global residential heating
– year: 2022
  ident: 10.1016/j.applthermaleng.2022.119092_b45
– volume: 122
  start-page: 625
  year: 2017
  ident: 10.1016/j.applthermaleng.2022.119092_b56
  article-title: Energetic performance of two different PCM wallboards and their regeneration behavior in office rooms
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.07.360
– volume: 198
  start-page: 192
  year: 2017
  ident: 10.1016/j.applthermaleng.2022.119092_b32
  article-title: Generic characterization method for energy flexibility: Applied to structural thermal storage in residential buildings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.04.061
– volume: 15
  start-page: 259
  year: 2006
  ident: 10.1016/j.applthermaleng.2022.119092_b43
  article-title: World map of the Köppen-Geiger climate classification updated
  publication-title: Meteorol. Z.
  doi: 10.1127/0941-2948/2006/0130
– year: 2019
  ident: 10.1016/j.applthermaleng.2022.119092_b22
  article-title: Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113437
– volume: 121
  start-page: 102
  year: 2017
  ident: 10.1016/j.applthermaleng.2022.119092_b28
  article-title: Using thermal inertia of buildings with phase change material for demand response
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.07.483
– volume: 37
  start-page: 296
  year: 2014
  ident: 10.1016/j.applthermaleng.2022.119092_b20
  article-title: Improving thermal and energy performance of buildings in summer with internal phase change materials
  publication-title: J. Build. Phys.
  doi: 10.1177/1744259113480133
– start-page: 1
  year: 2007
  ident: 10.1016/j.applthermaleng.2022.119092_b39
– year: 2022
  ident: 10.1016/j.applthermaleng.2022.119092_b41
– year: 2017
  ident: 10.1016/j.applthermaleng.2022.119092_b6
  article-title: IEA EBC annex 67 energy flexible buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.08.044
– year: 2022
  ident: 10.1016/j.applthermaleng.2022.119092_b38
– year: 2020
  ident: 10.1016/j.applthermaleng.2022.119092_b16
  article-title: A sensitivity analysis on the heating and cooling energy flexibility of residential buildings
  publication-title: Sustainable Cities Soc.
  doi: 10.1016/j.scs.2019.101815
– volume: 187
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.119092_b36
  article-title: Parametric and sensitivity analysis of a PCM-integrated wall for optimal thermal load modulation in lightweight buildings
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.116568
– volume: vol. 11
  start-page: 1145
  year: 2018
  ident: 10.1016/j.applthermaleng.2022.119092_b52
  article-title: The effectiveness of phase change materials in relation to summer thermal comfort in air-conditioned office buildings
– volume: 103
  start-page: 414
  year: 2015
  ident: 10.1016/j.applthermaleng.2022.119092_b23
  article-title: Phase change materials and thermal energy storage for buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.06.007
– start-page: 1346
  year: 2007
  ident: 10.1016/j.applthermaleng.2022.119092_b60
  article-title: Simulation of energy management systems in EnergyPlus
– volume: 127
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.119092_b13
  article-title: On the assessment and control optimisation of demand response programs in residential buildings
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.109861
– year: 2018
  ident: 10.1016/j.applthermaleng.2022.119092_b14
  article-title: Heating system energy flexibility of low-energy residential buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.09.030
– start-page: 1774
  year: 2022
  ident: 10.1016/j.applthermaleng.2022.119092_b10
  article-title: The european parliament and of the council of the european union
  publication-title: Off. J. Eur. Union
– volume: 202
  start-page: 420
  year: 2017
  ident: 10.1016/j.applthermaleng.2022.119092_b58
  article-title: Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.107
– start-page: 1
  year: 2012
  ident: 10.1016/j.applthermaleng.2022.119092_b51
  article-title: Validation methodology to allow simulated peak reduction and energy performance analysis of residential building envelope with phase change materials
– year: 2022
  ident: 10.1016/j.applthermaleng.2022.119092_b42
– ident: 10.1016/j.applthermaleng.2022.119092_b44
– volume: 11
  start-page: 67
  year: 2018
  ident: 10.1016/j.applthermaleng.2022.119092_b27
  article-title: Smart electric storage heating and potential for residential demand response
  publication-title: Energy Effic.
  doi: 10.1007/s12053-017-9550-3
– year: 2017
  ident: 10.1016/j.applthermaleng.2022.119092_b34
  article-title: Benefits of PCM underfloor heating with PCM wallboards for space heating in winter
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.01.060
– start-page: 271
  year: 2015
  ident: 10.1016/j.applthermaleng.2022.119092_b54
– year: 2020
  ident: 10.1016/j.applthermaleng.2022.119092_b35
  article-title: PCM integrated to external building walls: An optimization study on maximum activation of latent heat
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114560
– volume: 63
  year: 2022
  ident: 10.1016/j.applthermaleng.2022.119092_b1
  article-title: Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action
  publication-title: Int. J. Inf. Manage.
  doi: 10.1016/j.ijinfomgt.2021.102456
– volume: 180
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.119092_b37
  article-title: Modulating thermal load through lightweight residential building walls using thermal energy storage and controlled precooling strategy
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115870
– volume: 33
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.119092_b9
  article-title: A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis
  publication-title: J. Build. Eng.
– volume: 41
  year: 2022
  ident: 10.1016/j.applthermaleng.2022.119092_b11
  article-title: Demand response performance and uncertainty: A systematic literature review
  publication-title: Energy Strategy Rev.
  doi: 10.1016/j.esr.2022.100857
– volume: 135
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.119092_b12
  article-title: A review on energy storage and demand side management solutions in smart energy islands
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110183
– volume: 190
  start-page: 103
  year: 2019
  ident: 10.1016/j.applthermaleng.2022.119092_b15
  article-title: Performance of heat pump integrated phase change material thermal storage for electric load shifting in building demand side management
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.02.026
– volume: 235
  start-page: 1072
  year: 2019
  ident: 10.1016/j.applthermaleng.2022.119092_b5
  article-title: Reinforcement learning for demand response: A review of algorithms and modeling techniques
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.11.002
– year: 2018
  ident: 10.1016/j.applthermaleng.2022.119092_b7
– volume: 145
  start-page: 52
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.119092_b26
  article-title: Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.05.124
– volume: June 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.applthermaleng.2022.119092_b3
  article-title: Directive (EU) 2018/844 of the European parliament and of the council of 30 may 2018
  publication-title: Off. J. Eur. Union
– ident: 10.1016/j.applthermaleng.2022.119092_b50
– volume: vol. 135
  start-page: 110120
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.119092_b8
  article-title: Data-driven predictive control for unlocking building energy flexibility: A review
– year: 2018
  ident: 10.1016/j.applthermaleng.2022.119092_b30
  article-title: Utilizing thermal building mass for storage in district heating systems: Combined building level simulations and system level optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.093
– volume: 188
  year: 2019
  ident: 10.1016/j.applthermaleng.2022.119092_b33
  article-title: Quantification of electricity flexibility in demand response: Office building case study
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116054
– year: 2022
  ident: 10.1016/j.applthermaleng.2022.119092_b48
– year: 2022
  ident: 10.1016/j.applthermaleng.2022.119092_b53
– volume: 166
  start-page: 372
  year: 2018
  ident: 10.1016/j.applthermaleng.2022.119092_b61
  article-title: Energy flexible buildings: An evaluation of definitions and quantification methodologies applied to thermal storage
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.02.040
– year: 2022
  ident: 10.1016/j.applthermaleng.2022.119092_b49
– start-page: 1
  year: 2019
  ident: 10.1016/j.applthermaleng.2022.119092_b2
  article-title: Clean energy for all Europeans
  publication-title: Publ. Off. Eur. Union
– volume: 191
  start-page: 481
  year: 2019
  ident: 10.1016/j.applthermaleng.2022.119092_b29
  article-title: Multi-objective optimization of energy performance of a building considering different configurations and types of PCM
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.09.003
– volume: 172
  start-page: 82
  year: 2017
  ident: 10.1016/j.applthermaleng.2022.119092_b25
  article-title: Advancement in phase change materials for thermal energy storage applications
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.07.023
– year: 2019
  ident: 10.1016/j.applthermaleng.2022.119092_b17
  article-title: Predictive rule-based control to activate the energy flexibility of norwegian residential buildings: Case of an air-source heat pump and direct electric heating
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.12.074
– year: 2022
  ident: 10.1016/j.applthermaleng.2022.119092_b40
– ident: 10.1016/j.applthermaleng.2022.119092_b59
– year: 2022
  ident: 10.1016/j.applthermaleng.2022.119092_b55
– ident: 10.1016/j.applthermaleng.2022.119092_b31
  doi: 10.26868/25222708.2013.1371
– year: 1995
  ident: 10.1016/j.applthermaleng.2022.119092_b57
– year: 2017
  ident: 10.1016/j.applthermaleng.2022.119092_b19
  article-title: The impact of thermal mass on building energy consumption
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.04.024
– volume: 54
  start-page: 186
  year: 2012
  ident: 10.1016/j.applthermaleng.2022.119092_b47
  article-title: Verification and validation of EnergyPlus phase change material model for opaque wall assemblies
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.02.019
SSID ssj0012874
Score 2.5318642
Snippet Pre-formed internal insulative panels with impregnated phase change materials (PCM) can significantly increase both the thermal resistance and thermal...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119092
SubjectTerms Demand response
Energy efficiency
Energy flexibility
Passive energy building
PCM thermal mass
Sustainability
Title Improving the building energy flexibility using PCM-enhanced envelopes
URI https://dx.doi.org/10.1016/j.applthermaleng.2022.119092
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FQfQgPrE-Sg69xjavzQYPUoqlKi2CFnpbNtlEK7oWrQcv_naT7G5twUPB44YkuwzDN5PNN98A0MwE1USrDGmWGS-qjZFygRYxLZSKhY3iUJU2GEb9EbsZ83ENdKtaGE-rLLG_wPSA1uVIq7RmazqZtO4x5dKFP0xI0EXzheaMCe_l599zmgf2eu7h0MUl8rM3QPOX4-UviX2e9Zr6tiXutEiIwxDZluTvMLUQeno7YLvMGWGn-KxdUDP5HthaUBLcB735zwHo3gRV2ewamlDaB62XvQw02C_ome6P8K47QCZ_Cvf_blZgDpmPAzDqXT10-6hskYA0xWyGbJxypbmOCZUGW6LbxFBsjYOOKHNxyJiYKYdpVnOrKPGdplOho0hoZkRs2_QQrOVvuTkCEGdSKCxopnXEpHUYriVLFeY2jZjDhTq4qCyS6FI_3LexeEkqothzsmzPxNszKexZB3y-elroaKy47rIyfrLkF4mD_JV2OP73Didg0z_5CkTCT8Ha7P3TnLlUZKYawdcaYL1zfdsf_gD--OG5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MDbw8iFec1zzstWxJk17wQcZwdO6C4AZ7K02a6ETr0PngvzdJ2-nAh4GvbU9aPsJ3kuY73wFopL4riOCpI2gqjak2drhOtA4VPueBr7zAVqUNR140oXdTNq1Ap6yFMbLKgvtzTrdsXVxpFmg257NZ8wG7LNTpDxNifdHYBtSMOxWrQq3d60ej5WGCsXS3-y4WOiZgExo_Mi9zTmyWWq-J6VyiN4yEaBoJWyH5O1P9yj7dPdgtlo2onX_ZPlRkdgA7v8wED6G7_D-A9JsQL_pdI2mr-5AyzpdWCfuFjNj9Ed13ho7MnqwEQD9lxUPy4wgm3dtxJ3KKLgmOcDFdOCpIGBdMBMQNJVZEtIh0sZKaPbxUpyIpA8o1rSnBFHeJaTad-MLzfEGlH6iWewzV7C2TJ4BwGvoc-24qhEdDpWlchDThmKnEo5oa6nBdIhKLwkLcdLJ4iUut2HO8imds8IxzPOvAltHz3EpjzbibEvx4ZWrEmvXXGuH03yNcwVY0Hg7iQW_UP4Ntc8cUJBJ2DtXF-6e80CuTBb8sZt43u2rkag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+building+energy+flexibility+using+PCM-enhanced+envelopes&rft.jtitle=Applied+thermal+engineering&rft.au=Saffari%2C+Mohammad&rft.au=Roe%2C+Conor&rft.au=Finn%2C+Donal+P.&rft.date=2022-11-25&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=217&rft_id=info:doi/10.1016%2Fj.applthermaleng.2022.119092&rft.externalDocID=S1359431122010225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon