Improving the building energy flexibility using PCM-enhanced envelopes
Pre-formed internal insulative panels with impregnated phase change materials (PCM) can significantly increase both the thermal resistance and thermal capacitance of existing or new building envelopes, thereby improving the overall energy performance of buildings. A further advantage is that such me...
Saved in:
Published in | Applied thermal engineering Vol. 217; p. 119092 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
25.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1359-4311 |
DOI | 10.1016/j.applthermaleng.2022.119092 |
Cover
Loading…
Abstract | Pre-formed internal insulative panels with impregnated phase change materials (PCM) can significantly increase both the thermal resistance and thermal capacitance of existing or new building envelopes, thereby improving the overall energy performance of buildings. A further advantage is that such measures have the potential to enhance the energy flexibility of the building, thereby offering the possibility of participation in demand side management measures such as demand response programmes. The current literature on building envelope physics lacks research on energy flexibility and demand response, especially in the context of the building envelope integrated design with high latent heat materials such as PCM for demand response applications. The objective of the current study is to examine how the addition of PCM impregnated building envelopes affects both the thermal performance of the building envelope, as well as the wider building energy characteristics when subject to different demand response events. A reference building is utilised, which is a residential detached house with a floor area of 160 m2 and a south-easterly facing aspect. Another contribution of this study is proposing new energy flexibility indicators taking into consideration envelope pre-cooling and pre-heating periods prior to the demand response event. Simulation results show that shorter envelope pre-cooling periods (0.5 hr) together with longer demand response periods (4 h) are preferable for all envelopes to achieve the maximum power curtailment for cooling. PCM-enhanced envelopes are shown to give best cooling demand shifting and energy flexibility efficiency. The MW PCM-1 and MW PCM-2 envelopes have the highest flexibility efficiency with a value of 244%. For heating, gypsum board enhanced with PCM retrofitted on the envelopes are shown to give an overall good performance in energy flexibility efficiency and in power curtailment compared to the other building envelopes in all durations of an energy flexibility event. For heating, the maximum energy flexibility efficiencies range from 250% for the LW Gypsum Board envelope to 356% for the LW PCM-2 envelope.
•Energy flexibility is mapped for building envelopes with sensible and latent TES.•Building envelopes are optimised for different demand response events.•An energy flexibility sensitivity analysis algorithm is developed in EnergyPlus.•In buildings with only sensible TES short demand response events should be used.•Envelopes with PCM have better energy flexibility in long demand response events. |
---|---|
AbstractList | Pre-formed internal insulative panels with impregnated phase change materials (PCM) can significantly increase both the thermal resistance and thermal capacitance of existing or new building envelopes, thereby improving the overall energy performance of buildings. A further advantage is that such measures have the potential to enhance the energy flexibility of the building, thereby offering the possibility of participation in demand side management measures such as demand response programmes. The current literature on building envelope physics lacks research on energy flexibility and demand response, especially in the context of the building envelope integrated design with high latent heat materials such as PCM for demand response applications. The objective of the current study is to examine how the addition of PCM impregnated building envelopes affects both the thermal performance of the building envelope, as well as the wider building energy characteristics when subject to different demand response events. A reference building is utilised, which is a residential detached house with a floor area of 160 m2 and a south-easterly facing aspect. Another contribution of this study is proposing new energy flexibility indicators taking into consideration envelope pre-cooling and pre-heating periods prior to the demand response event. Simulation results show that shorter envelope pre-cooling periods (0.5 hr) together with longer demand response periods (4 h) are preferable for all envelopes to achieve the maximum power curtailment for cooling. PCM-enhanced envelopes are shown to give best cooling demand shifting and energy flexibility efficiency. The MW PCM-1 and MW PCM-2 envelopes have the highest flexibility efficiency with a value of 244%. For heating, gypsum board enhanced with PCM retrofitted on the envelopes are shown to give an overall good performance in energy flexibility efficiency and in power curtailment compared to the other building envelopes in all durations of an energy flexibility event. For heating, the maximum energy flexibility efficiencies range from 250% for the LW Gypsum Board envelope to 356% for the LW PCM-2 envelope.
•Energy flexibility is mapped for building envelopes with sensible and latent TES.•Building envelopes are optimised for different demand response events.•An energy flexibility sensitivity analysis algorithm is developed in EnergyPlus.•In buildings with only sensible TES short demand response events should be used.•Envelopes with PCM have better energy flexibility in long demand response events. |
ArticleNumber | 119092 |
Author | Finn, Donal P. Saffari, Mohammad Roe, Conor |
Author_xml | – sequence: 1 givenname: Mohammad orcidid: 0000-0003-3583-6484 surname: Saffari fullname: Saffari, Mohammad email: mohammad.saffari@dcu.ie organization: School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland – sequence: 2 givenname: Conor surname: Roe fullname: Roe, Conor email: conor.roe.1@ucdconnect.ie organization: School of Mechanical and Materials Engineering, University College Dublin, Ireland – sequence: 3 givenname: Donal P. surname: Finn fullname: Finn, Donal P. email: donal.finn@ucd.ie organization: School of Mechanical and Materials Engineering, University College Dublin, Ireland |
BookMark | eNqNkD1PwzAQhj0UibbwHzKwJvgjH47EAhWFSkUwwGw5zrl15TqR7Vb035OoLDB1Op3ufR_pnhmauM4BQncEZwST8n6Xyb63cQt-Ly24TUYxpRkhNa7pBE0JK-o0Z4Rco1kIO4wJ5VU-RcvVvvfd0bhNMnST5mBsOy7gwG9OibbwbRpjTTwlhzAePhZvKbitdAraIXUE2_UQbtCVljbA7e-co6_l8-fiNV2_v6wWj-tUMZLHVHNZNKpQnLIaiKYKU2BEA-dV2ZYVB-B5UzCuVaEbRgnNa1mpsqxUDhXXmM3Rw5mrfBeCBy16b_bSnwTBYvQgduKvBzF6EGcPQ_3pX12ZKKPpXPTS2EshyzMEhkePBrwIysDow3hQUbSduQz0A_ITi0g |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2023_120559 crossref_primary_10_1016_j_applthermaleng_2023_120512 crossref_primary_10_1016_j_applthermaleng_2022_119923 crossref_primary_10_1016_j_est_2024_111987 crossref_primary_10_1016_j_jclepro_2024_141494 crossref_primary_10_1186_s40807_024_00138_8 crossref_primary_10_1016_j_energy_2024_130955 crossref_primary_10_1177_17442591251324485 crossref_primary_10_1016_j_est_2024_113561 crossref_primary_10_1080_19401493_2024_2404638 crossref_primary_10_2478_rtuect_2022_0096 crossref_primary_10_1080_00038628_2023_2243245 crossref_primary_10_3390_coatings15030288 crossref_primary_10_1016_j_applthermaleng_2023_122098 crossref_primary_10_1016_j_est_2023_109506 crossref_primary_10_1088_1742_6596_2592_1_012015 crossref_primary_10_1016_j_applthermaleng_2022_119798 crossref_primary_10_1016_j_energy_2024_130461 crossref_primary_10_1016_j_jobe_2024_111259 crossref_primary_10_3390_en16114442 crossref_primary_10_1016_j_icheatmasstransfer_2023_106922 crossref_primary_10_3390_buildings13020488 crossref_primary_10_3390_buildings13102663 crossref_primary_10_1016_j_est_2024_112761 crossref_primary_10_1016_j_applthermaleng_2024_124583 crossref_primary_10_1016_j_ecmx_2023_100464 crossref_primary_10_1016_j_buildenv_2023_110841 crossref_primary_10_3390_buildings12111830 crossref_primary_10_1016_j_energy_2023_126753 crossref_primary_10_1016_j_apenergy_2023_121985 crossref_primary_10_1016_j_buildenv_2024_112243 crossref_primary_10_3390_en16135236 crossref_primary_10_1016_j_applthermaleng_2023_120682 crossref_primary_10_1016_j_renene_2023_119262 crossref_primary_10_1016_j_jobe_2024_109928 crossref_primary_10_1016_j_rser_2024_115290 |
Cites_doi | 10.1016/j.apenergy.2015.11.016 10.1016/j.est.2015.08.003 10.1016/j.enbuild.2016.08.007 10.1016/j.egypro.2017.07.360 10.1016/j.apenergy.2017.04.061 10.1127/0941-2948/2006/0130 10.1016/j.apenergy.2019.113437 10.1016/j.egypro.2017.07.483 10.1177/1744259113480133 10.1016/j.enbuild.2017.08.044 10.1016/j.scs.2019.101815 10.1016/j.applthermaleng.2021.116568 10.1016/j.enbuild.2015.06.007 10.1016/j.rser.2020.109861 10.1016/j.enbuild.2018.09.030 10.1016/j.apenergy.2017.05.107 10.1007/s12053-017-9550-3 10.1016/j.apenergy.2017.01.060 10.1016/j.applthermaleng.2019.114560 10.1016/j.ijinfomgt.2021.102456 10.1016/j.applthermaleng.2020.115870 10.1016/j.esr.2022.100857 10.1016/j.rser.2020.110183 10.1016/j.enbuild.2019.02.026 10.1016/j.apenergy.2018.11.002 10.1016/j.renene.2019.05.124 10.1016/j.energy.2018.04.093 10.1016/j.energy.2019.116054 10.1016/j.enbuild.2018.02.040 10.1016/j.solener.2019.09.003 10.1016/j.solmat.2017.07.023 10.1016/j.apenergy.2018.12.074 10.26868/25222708.2013.1371 10.1016/j.apenergy.2017.04.024 10.1016/j.buildenv.2012.02.019 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.applthermaleng.2022.119092 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_applthermaleng_2022_119092 S1359431122010225 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- RIG SEW SSH |
ID | FETCH-LOGICAL-c314t-f8a5bc5c8239e1f2c02e31fe8876d678ee84b538fc5fb321249a7c667c4e78f03 |
IEDL.DBID | .~1 |
ISSN | 1359-4311 |
IngestDate | Tue Jul 01 02:05:37 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 Fri Feb 23 02:36:39 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Passive energy building PCM thermal mass Demand response Energy flexibility Energy efficiency Sustainability |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-f8a5bc5c8239e1f2c02e31fe8876d678ee84b538fc5fb321249a7c667c4e78f03 |
ORCID | 0000-0003-3583-6484 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1359431122010225 |
ParticipantIDs | crossref_primary_10_1016_j_applthermaleng_2022_119092 crossref_citationtrail_10_1016_j_applthermaleng_2022_119092 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2022_119092 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-25 |
PublicationDateYYYYMMDD | 2022-11-25 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | EnergyPlus (b45) 2022 Hirmiz, Teamah, Lightstone, Cotton (b15) 2019; 190 Chhugani, Klinker, Weinlaeder, Reim (b56) 2017; 122 Clauß, Stinner, Sartori, Georges (b17) 2019 Kathirgamanathan, De Rosa, Mangina, Finn (b8) 2021; vol. 135 Sources (b42) 2022 Vázquez-Canteli, Nagy (b5) 2019; 235 Devaux, Farid (b34) 2017 Barreneche, Navarro, Cabeza, Fernández (b24) 2015; 3 Mariano-Hernández, Hernández-Callejo, Zorita-Lamadrid, Duque-Pérez, Santos García (b9) 2021; 33 Silva, Faria, Vale, Corchado (b11) 2022; 41 Kottek, Grieser, Beck, Rudolf, Rubel (b43) 2006; 15 Dwivedi, Hughes, Kar, Baabdullah, Grover, Abbas, Andreini, Abumoghli, Barlette, Bunker, Chandra Kruse, Constantiou, Davison, De, Dubey, Fenby-Taylor, Gupta, He, Kodama, Mäntymäki, Metri, Michael, Olaisen, Panteli, Pekkola, Nishant, Raman, Rana, Rowe, Sarker, Scholtz, Sein, Shah, Teo, Tiwari, Vendelø, Wade (b1) 2022; 63 Python (b41) 2022 Darby (b27) 2018; 11 Rahimpour, Faccani, Azuatalam, Chapman, Verbič (b28) 2017; 121 Chen, Chen, Xu, Li, Sha, Yang, Li, Hu (b33) 2019; 188 Markarian, Fazelpour (b29) 2019; 191 U.S. Department of Energy (DoE) (b49) 2022 Kośny (b54) 2015 Wang, Lu, Wu, Zhang (b26) 2020; 145 Vivian, Chiodarelli, Emmi, Zarrella (b16) 2020 Commission (b7) 2018 Saffari, de Gracia, Fernández, Cabeza (b58) 2017; 202 Tabares-Velasco, P. C Christensen, C. Bianchi (b51) 2012 Tabares-Velasco, Christensen, Bianchi (b47) 2012; 54 Feustel (b57) 1995 Kishore, Bianchi, Booten, Vidal, Jackson (b37) 2020; 180 Groppi, Pfeifer, Garcia, Krajačić, Duić (b12) 2021; 135 Fawcett, Eyre, Layberry (b4) 2015 U. S. Department of Energy (DoE) (b38) 2022 de Gracia, Cabeza (b23) 2015; 103 Rodrigues, Fernandes, Gaspar, Gomes, Costa (b22) 2019 EN ISO 13786 (b46) 2017 Union (b3) 2018; June 2018 Arıcı, Bilgin, Nižetić, Karabay (b35) 2020 Costanzo, Evola, Marletta, Nocera (b52) 2018; vol. 11 Pallonetto, De Rosa, D’Ettorre, Finn (b13) 2020; 127 U.S. Department of Energy (DoE) (b48) 2022 RUBITHERM (b53) 2022 H. Wolisz, H. Harb, P. Matthes, R. Streblow, D. Müller, Dynamic simulation of thermal capacity and charging/discharging performance for sensible heat storage in building wall mass, in: Proceedings of BS 2013: 13th Conference of the International Building Performance Simulation Association, 2013, pp. 2716–2723. Kishore, Bianchi, Booten, Vidal, Jackson (b36) 2021; 187 Reilly, Kinnane (b19) 2017 Dominković, Gianniou, Münster, Heller, Rode (b30) 2018 ANSI/ASHRAE Standard 55-2013, ANSI/ASHRAE Standard 55-2013 Thermal Environmental Conditions for Human Occupancy, Atlanta, GA, 2013, p. 58,. 15251:2007 (b39) 2007 A. Handbook, ASHRAE Handbook–Fundamentals, Atlanta, GA, 2009. C.O. Pedersen, Advanced zone simulation in Energyplus: Incorporation of variable properties and phase change material, PCM capability, in: 10 Th International IBPSA Conference, 2007, pp. 1–5. Reynders, Amaral Lopes, Marszal-Pomianowska, Aelenei, Martins, Saelens (b61) 2018; 166 Marin, Saffari, de Gracia, Zhu, Farid, Cabeza, Ushak (b18) 2016; 129 Foteinaki, Li, Heller, Rode (b14) 2018 Barzin, Chen, Young, Farid (b62) 2016 Reynders, Diriken, Saelens (b32) 2017; 198 (b10) 2022 Ellis, Torcellini, Crawley (b60) 2007 Knauf (b55) 2022 Commission (b2) 2019 Kant, Shukla, Sharma (b25) 2017; 172 SketchUp (b40) 2022 Becker (b20) 2014; 37 Jensen, Marszal-Pomianowska, Lollini, Pasut, Knotzer, Engelmann, Stafford, Reynders (b6) 2017 Mehling, Cabeza (b21) 2008 10.1016/j.applthermaleng.2022.119092_b31 Commission (10.1016/j.applthermaleng.2022.119092_b2) 2019 Jensen (10.1016/j.applthermaleng.2022.119092_b6) 2017 Hirmiz (10.1016/j.applthermaleng.2022.119092_b15) 2019; 190 Ellis (10.1016/j.applthermaleng.2022.119092_b60) 2007 SketchUp (10.1016/j.applthermaleng.2022.119092_b40) 2022 Foteinaki (10.1016/j.applthermaleng.2022.119092_b14) 2018 Vázquez-Canteli (10.1016/j.applthermaleng.2022.119092_b5) 2019; 235 RUBITHERM (10.1016/j.applthermaleng.2022.119092_b53) 2022 Kishore (10.1016/j.applthermaleng.2022.119092_b37) 2020; 180 Saffari (10.1016/j.applthermaleng.2022.119092_b58) 2017; 202 Pallonetto (10.1016/j.applthermaleng.2022.119092_b13) 2020; 127 Devaux (10.1016/j.applthermaleng.2022.119092_b34) 2017 Groppi (10.1016/j.applthermaleng.2022.119092_b12) 2021; 135 Chhugani (10.1016/j.applthermaleng.2022.119092_b56) 2017; 122 Becker (10.1016/j.applthermaleng.2022.119092_b20) 2014; 37 EN ISO 13786 (10.1016/j.applthermaleng.2022.119092_b46) 2017 U.S. Department of Energy (DoE) (10.1016/j.applthermaleng.2022.119092_b49) 2022 U. S. Department of Energy (DoE) (10.1016/j.applthermaleng.2022.119092_b38) 2022 Vivian (10.1016/j.applthermaleng.2022.119092_b16) 2020 Reilly (10.1016/j.applthermaleng.2022.119092_b19) 2017 10.1016/j.applthermaleng.2022.119092_b44 Costanzo (10.1016/j.applthermaleng.2022.119092_b52) 2018; vol. 11 Reynders (10.1016/j.applthermaleng.2022.119092_b32) 2017; 198 Rahimpour (10.1016/j.applthermaleng.2022.119092_b28) 2017; 121 Darby (10.1016/j.applthermaleng.2022.119092_b27) 2018; 11 Mariano-Hernández (10.1016/j.applthermaleng.2022.119092_b9) 2021; 33 Feustel (10.1016/j.applthermaleng.2022.119092_b57) 1995 Tabares-Velasco (10.1016/j.applthermaleng.2022.119092_b47) 2012; 54 Tabares-Velasco, P. C Christensen, C. Bianchi (10.1016/j.applthermaleng.2022.119092_b51) 2012 Markarian (10.1016/j.applthermaleng.2022.119092_b29) 2019; 191 Marin (10.1016/j.applthermaleng.2022.119092_b18) 2016; 129 Mehling (10.1016/j.applthermaleng.2022.119092_b21) 2008 Arıcı (10.1016/j.applthermaleng.2022.119092_b35) 2020 Dwivedi (10.1016/j.applthermaleng.2022.119092_b1) 2022; 63 15251:2007 (10.1016/j.applthermaleng.2022.119092_b39) 2007 Reynders (10.1016/j.applthermaleng.2022.119092_b61) 2018; 166 Rodrigues (10.1016/j.applthermaleng.2022.119092_b22) 2019 Fawcett (10.1016/j.applthermaleng.2022.119092_b4) 2015 Union (10.1016/j.applthermaleng.2022.119092_b3) 2018; June 2018 Python (10.1016/j.applthermaleng.2022.119092_b41) 2022 10.1016/j.applthermaleng.2022.119092_b50 EnergyPlus (10.1016/j.applthermaleng.2022.119092_b45) 2022 Dominković (10.1016/j.applthermaleng.2022.119092_b30) 2018 10.1016/j.applthermaleng.2022.119092_b59 Commission (10.1016/j.applthermaleng.2022.119092_b7) 2018 Barzin (10.1016/j.applthermaleng.2022.119092_b62) 2016 Sources (10.1016/j.applthermaleng.2022.119092_b42) 2022 Kośny (10.1016/j.applthermaleng.2022.119092_b54) 2015 Kishore (10.1016/j.applthermaleng.2022.119092_b36) 2021; 187 Kathirgamanathan (10.1016/j.applthermaleng.2022.119092_b8) 2021; vol. 135 de Gracia (10.1016/j.applthermaleng.2022.119092_b23) 2015; 103 Kant (10.1016/j.applthermaleng.2022.119092_b25) 2017; 172 Chen (10.1016/j.applthermaleng.2022.119092_b33) 2019; 188 (10.1016/j.applthermaleng.2022.119092_b10) 2022 Silva (10.1016/j.applthermaleng.2022.119092_b11) 2022; 41 Knauf (10.1016/j.applthermaleng.2022.119092_b55) 2022 Kottek (10.1016/j.applthermaleng.2022.119092_b43) 2006; 15 Wang (10.1016/j.applthermaleng.2022.119092_b26) 2020; 145 Barreneche (10.1016/j.applthermaleng.2022.119092_b24) 2015; 3 Clauß (10.1016/j.applthermaleng.2022.119092_b17) 2019 U.S. Department of Energy (DoE) (10.1016/j.applthermaleng.2022.119092_b48) 2022 |
References_xml | – start-page: 1385 year: 2015 end-page: 1389 ident: b4 article-title: Heat pumps and global residential heating publication-title: Eceee 2015 – year: 2019 ident: b17 article-title: Predictive rule-based control to activate the energy flexibility of norwegian residential buildings: Case of an air-source heat pump and direct electric heating publication-title: Appl. Energy – start-page: 1 year: 2007 end-page: 52 ident: b39 article-title: Indoor environmental input parameters for design and assessment of energy performance of buildings- addressing indoor air quality , thermal environment , lighting and acoustics – volume: 122 start-page: 625 year: 2017 end-page: 630 ident: b56 article-title: Energetic performance of two different PCM wallboards and their regeneration behavior in office rooms publication-title: Energy Procedia – volume: 135 year: 2021 ident: b12 article-title: A review on energy storage and demand side management solutions in smart energy islands publication-title: Renew. Sustain. Energy Rev. – year: 2022 ident: b48 article-title: EnergyPlus input output reference: The encyclopedic reference to EnergyPlus input and output – volume: June 2018 start-page: 1 year: 2018 end-page: 17 ident: b3 article-title: Directive (EU) 2018/844 of the European parliament and of the council of 30 may 2018 publication-title: Off. J. Eur. Union – volume: 121 start-page: 102 year: 2017 end-page: 109 ident: b28 article-title: Using thermal inertia of buildings with phase change material for demand response publication-title: Energy Procedia – year: 2022 ident: b42 article-title: EnergyPlus weather (EPW) data sources – volume: 235 start-page: 1072 year: 2019 end-page: 1089 ident: b5 article-title: Reinforcement learning for demand response: A review of algorithms and modeling techniques publication-title: Appl. Energy – volume: 191 start-page: 481 year: 2019 end-page: 496 ident: b29 article-title: Multi-objective optimization of energy performance of a building considering different configurations and types of PCM publication-title: Sol. Energy – start-page: 1 year: 2019 end-page: 24 ident: b2 article-title: Clean energy for all Europeans publication-title: Publ. Off. Eur. Union – year: 1995 ident: b57 article-title: Simplified Numerical Description of Latent Storage Characteristics for Phase Change Wallboard – year: 2018 ident: b7 article-title: A Clean Planet for all A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy – year: 2017 ident: b34 article-title: Benefits of PCM underfloor heating with PCM wallboards for space heating in winter publication-title: Appl. Energy – volume: 129 start-page: 274 year: 2016 end-page: 283 ident: b18 article-title: Energy savings due to the use of PCM for relocatable lightweight buildings passive heating and cooling in different weather conditions publication-title: Energy Build. – year: 2022 ident: b45 article-title: ASHRAE materials dataset in EnergyPlus dynamic building simulation – year: 2020 ident: b16 article-title: A sensitivity analysis on the heating and cooling energy flexibility of residential buildings publication-title: Sustainable Cities Soc. – volume: 202 start-page: 420 year: 2017 end-page: 434 ident: b58 article-title: Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings publication-title: Appl. Energy – volume: 198 start-page: 192 year: 2017 end-page: 202 ident: b32 article-title: Generic characterization method for energy flexibility: Applied to structural thermal storage in residential buildings publication-title: Appl. Energy – year: 2022 ident: b41 article-title: Python programming language – volume: 103 start-page: 414 year: 2015 end-page: 419 ident: b23 article-title: Phase change materials and thermal energy storage for buildings publication-title: Energy Build. – year: 2022 ident: b38 article-title: EnergyPlus whole building energy simulation software – volume: 187 year: 2021 ident: b36 article-title: Parametric and sensitivity analysis of a PCM-integrated wall for optimal thermal load modulation in lightweight buildings publication-title: Appl. Therm. Eng. – year: 2020 ident: b35 article-title: PCM integrated to external building walls: An optimization study on maximum activation of latent heat publication-title: Appl. Therm. Eng. – start-page: 271 year: 2015 ident: b54 article-title: PCM-Enhanced Building Components - An Application of Phase Change Materials in Building Envelopes and Internal Structures – volume: 41 year: 2022 ident: b11 article-title: Demand response performance and uncertainty: A systematic literature review publication-title: Energy Strategy Rev. – volume: 190 start-page: 103 year: 2019 end-page: 118 ident: b15 article-title: Performance of heat pump integrated phase change material thermal storage for electric load shifting in building demand side management publication-title: Energy Build. – year: 2017 ident: b19 article-title: The impact of thermal mass on building energy consumption publication-title: Appl. Energy – year: 2018 ident: b14 article-title: Heating system energy flexibility of low-energy residential buildings publication-title: Energy Build. – volume: vol. 11 start-page: 1145 year: 2018 end-page: 1161 ident: b52 article-title: The effectiveness of phase change materials in relation to summer thermal comfort in air-conditioned office buildings publication-title: Building Simulation 2018 11:6 – reference: ANSI/ASHRAE Standard 55-2013, ANSI/ASHRAE Standard 55-2013 Thermal Environmental Conditions for Human Occupancy, Atlanta, GA, 2013, p. 58,. – reference: C.O. Pedersen, Advanced zone simulation in Energyplus: Incorporation of variable properties and phase change material, PCM capability, in: 10 Th International IBPSA Conference, 2007, pp. 1–5. – year: 2022 ident: b55 article-title: Knauf comfortboard – volume: 37 start-page: 296 year: 2014 end-page: 324 ident: b20 article-title: Improving thermal and energy performance of buildings in summer with internal phase change materials publication-title: J. Build. Phys. – reference: H. Wolisz, H. Harb, P. Matthes, R. Streblow, D. Müller, Dynamic simulation of thermal capacity and charging/discharging performance for sensible heat storage in building wall mass, in: Proceedings of BS 2013: 13th Conference of the International Building Performance Simulation Association, 2013, pp. 2716–2723. – year: 2017 ident: b46 article-title: ISO 13786:2017(en), thermal performance of building components — Dynamic thermal characteristics — Calculation methods – start-page: 1774 year: 2022 ident: b10 article-title: The european parliament and of the council of the european union publication-title: Off. J. Eur. Union – volume: 33 year: 2021 ident: b9 article-title: A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis publication-title: J. Build. Eng. – year: 2018 ident: b30 article-title: Utilizing thermal building mass for storage in district heating systems: Combined building level simulations and system level optimization publication-title: Energy – year: 2022 ident: b40 article-title: Sketchup: 3D design software — 3D modeling on the web – volume: 127 year: 2020 ident: b13 article-title: On the assessment and control optimisation of demand response programs in residential buildings publication-title: Renew. Sustain. Energy Rev. – volume: 188 year: 2019 ident: b33 article-title: Quantification of electricity flexibility in demand response: Office building case study publication-title: Energy – volume: 54 start-page: 186 year: 2012 end-page: 196 ident: b47 article-title: Verification and validation of EnergyPlus phase change material model for opaque wall assemblies publication-title: Build. Environ. – volume: 15 start-page: 259 year: 2006 end-page: 263 ident: b43 article-title: World map of the Köppen-Geiger climate classification updated publication-title: Meteorol. Z. – year: 2008 ident: b21 article-title: Heat and Cold Storage with PCM: An Up to Date Introduction Into Basics and Applications – reference: A. Handbook, ASHRAE Handbook–Fundamentals, Atlanta, GA, 2009. – start-page: 1 year: 2012 end-page: 10 ident: b51 article-title: Validation methodology to allow simulated peak reduction and energy performance analysis of residential building envelope with phase change materials publication-title: 2012 ASHRAE Annual Conference June 23-27 – year: 2022 ident: b49 article-title: EnergyPlus engineering reference – year: 2017 ident: b6 article-title: IEA EBC annex 67 energy flexible buildings publication-title: Energy Build. – year: 2022 ident: b53 article-title: Rubitherm® technologies GmbH – volume: 145 start-page: 52 year: 2020 end-page: 64 ident: b26 article-title: Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai publication-title: Renew. Energy – volume: 63 year: 2022 ident: b1 article-title: Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action publication-title: Int. J. Inf. Manage. – volume: 180 year: 2020 ident: b37 article-title: Modulating thermal load through lightweight residential building walls using thermal energy storage and controlled precooling strategy publication-title: Appl. Therm. Eng. – year: 2016 ident: b62 article-title: Application of weather forecast in conjunction with price-based method for PCM solar passive buildings - An experimental study publication-title: Appl. Energy – year: 2019 ident: b22 article-title: Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass publication-title: Appl. Energy – start-page: 1346 year: 2007 end-page: 1353 ident: b60 article-title: Simulation of energy management systems in EnergyPlus publication-title: Building Simulation 2007 – volume: 166 start-page: 372 year: 2018 end-page: 390 ident: b61 article-title: Energy flexible buildings: An evaluation of definitions and quantification methodologies applied to thermal storage publication-title: Energy Build. – volume: vol. 135 start-page: 110120 year: 2021 ident: b8 article-title: Data-driven predictive control for unlocking building energy flexibility: A review publication-title: Renewable and Sustainable Energy Reviews – volume: 3 start-page: 18 year: 2015 end-page: 24 ident: b24 article-title: New database to select phase change materials: Chemical nature, properties, and applications publication-title: J. Energy Storage – volume: 172 start-page: 82 year: 2017 end-page: 92 ident: b25 article-title: Advancement in phase change materials for thermal energy storage applications publication-title: Sol. Energy Mater. Sol. Cells – volume: 11 start-page: 67 year: 2018 end-page: 77 ident: b27 article-title: Smart electric storage heating and potential for residential demand response publication-title: Energy Effic. – year: 2016 ident: 10.1016/j.applthermaleng.2022.119092_b62 article-title: Application of weather forecast in conjunction with price-based method for PCM solar passive buildings - An experimental study publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.11.016 – volume: 3 start-page: 18 year: 2015 ident: 10.1016/j.applthermaleng.2022.119092_b24 article-title: New database to select phase change materials: Chemical nature, properties, and applications publication-title: J. Energy Storage doi: 10.1016/j.est.2015.08.003 – year: 2008 ident: 10.1016/j.applthermaleng.2022.119092_b21 – year: 2017 ident: 10.1016/j.applthermaleng.2022.119092_b46 – volume: 129 start-page: 274 year: 2016 ident: 10.1016/j.applthermaleng.2022.119092_b18 article-title: Energy savings due to the use of PCM for relocatable lightweight buildings passive heating and cooling in different weather conditions publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.08.007 – start-page: 1385 year: 2015 ident: 10.1016/j.applthermaleng.2022.119092_b4 article-title: Heat pumps and global residential heating – year: 2022 ident: 10.1016/j.applthermaleng.2022.119092_b45 – volume: 122 start-page: 625 year: 2017 ident: 10.1016/j.applthermaleng.2022.119092_b56 article-title: Energetic performance of two different PCM wallboards and their regeneration behavior in office rooms publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.07.360 – volume: 198 start-page: 192 year: 2017 ident: 10.1016/j.applthermaleng.2022.119092_b32 article-title: Generic characterization method for energy flexibility: Applied to structural thermal storage in residential buildings publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.04.061 – volume: 15 start-page: 259 year: 2006 ident: 10.1016/j.applthermaleng.2022.119092_b43 article-title: World map of the Köppen-Geiger climate classification updated publication-title: Meteorol. Z. doi: 10.1127/0941-2948/2006/0130 – year: 2019 ident: 10.1016/j.applthermaleng.2022.119092_b22 article-title: Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113437 – volume: 121 start-page: 102 year: 2017 ident: 10.1016/j.applthermaleng.2022.119092_b28 article-title: Using thermal inertia of buildings with phase change material for demand response publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.07.483 – volume: 37 start-page: 296 year: 2014 ident: 10.1016/j.applthermaleng.2022.119092_b20 article-title: Improving thermal and energy performance of buildings in summer with internal phase change materials publication-title: J. Build. Phys. doi: 10.1177/1744259113480133 – start-page: 1 year: 2007 ident: 10.1016/j.applthermaleng.2022.119092_b39 – year: 2022 ident: 10.1016/j.applthermaleng.2022.119092_b41 – year: 2017 ident: 10.1016/j.applthermaleng.2022.119092_b6 article-title: IEA EBC annex 67 energy flexible buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.08.044 – year: 2022 ident: 10.1016/j.applthermaleng.2022.119092_b38 – year: 2020 ident: 10.1016/j.applthermaleng.2022.119092_b16 article-title: A sensitivity analysis on the heating and cooling energy flexibility of residential buildings publication-title: Sustainable Cities Soc. doi: 10.1016/j.scs.2019.101815 – volume: 187 year: 2021 ident: 10.1016/j.applthermaleng.2022.119092_b36 article-title: Parametric and sensitivity analysis of a PCM-integrated wall for optimal thermal load modulation in lightweight buildings publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116568 – volume: vol. 11 start-page: 1145 year: 2018 ident: 10.1016/j.applthermaleng.2022.119092_b52 article-title: The effectiveness of phase change materials in relation to summer thermal comfort in air-conditioned office buildings – volume: 103 start-page: 414 year: 2015 ident: 10.1016/j.applthermaleng.2022.119092_b23 article-title: Phase change materials and thermal energy storage for buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.06.007 – start-page: 1346 year: 2007 ident: 10.1016/j.applthermaleng.2022.119092_b60 article-title: Simulation of energy management systems in EnergyPlus – volume: 127 year: 2020 ident: 10.1016/j.applthermaleng.2022.119092_b13 article-title: On the assessment and control optimisation of demand response programs in residential buildings publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.109861 – year: 2018 ident: 10.1016/j.applthermaleng.2022.119092_b14 article-title: Heating system energy flexibility of low-energy residential buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.09.030 – start-page: 1774 year: 2022 ident: 10.1016/j.applthermaleng.2022.119092_b10 article-title: The european parliament and of the council of the european union publication-title: Off. J. Eur. Union – volume: 202 start-page: 420 year: 2017 ident: 10.1016/j.applthermaleng.2022.119092_b58 article-title: Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.107 – start-page: 1 year: 2012 ident: 10.1016/j.applthermaleng.2022.119092_b51 article-title: Validation methodology to allow simulated peak reduction and energy performance analysis of residential building envelope with phase change materials – year: 2022 ident: 10.1016/j.applthermaleng.2022.119092_b42 – ident: 10.1016/j.applthermaleng.2022.119092_b44 – volume: 11 start-page: 67 year: 2018 ident: 10.1016/j.applthermaleng.2022.119092_b27 article-title: Smart electric storage heating and potential for residential demand response publication-title: Energy Effic. doi: 10.1007/s12053-017-9550-3 – year: 2017 ident: 10.1016/j.applthermaleng.2022.119092_b34 article-title: Benefits of PCM underfloor heating with PCM wallboards for space heating in winter publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.01.060 – start-page: 271 year: 2015 ident: 10.1016/j.applthermaleng.2022.119092_b54 – year: 2020 ident: 10.1016/j.applthermaleng.2022.119092_b35 article-title: PCM integrated to external building walls: An optimization study on maximum activation of latent heat publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114560 – volume: 63 year: 2022 ident: 10.1016/j.applthermaleng.2022.119092_b1 article-title: Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action publication-title: Int. J. Inf. Manage. doi: 10.1016/j.ijinfomgt.2021.102456 – volume: 180 year: 2020 ident: 10.1016/j.applthermaleng.2022.119092_b37 article-title: Modulating thermal load through lightweight residential building walls using thermal energy storage and controlled precooling strategy publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115870 – volume: 33 year: 2021 ident: 10.1016/j.applthermaleng.2022.119092_b9 article-title: A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis publication-title: J. Build. Eng. – volume: 41 year: 2022 ident: 10.1016/j.applthermaleng.2022.119092_b11 article-title: Demand response performance and uncertainty: A systematic literature review publication-title: Energy Strategy Rev. doi: 10.1016/j.esr.2022.100857 – volume: 135 year: 2021 ident: 10.1016/j.applthermaleng.2022.119092_b12 article-title: A review on energy storage and demand side management solutions in smart energy islands publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110183 – volume: 190 start-page: 103 year: 2019 ident: 10.1016/j.applthermaleng.2022.119092_b15 article-title: Performance of heat pump integrated phase change material thermal storage for electric load shifting in building demand side management publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.02.026 – volume: 235 start-page: 1072 year: 2019 ident: 10.1016/j.applthermaleng.2022.119092_b5 article-title: Reinforcement learning for demand response: A review of algorithms and modeling techniques publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.11.002 – year: 2018 ident: 10.1016/j.applthermaleng.2022.119092_b7 – volume: 145 start-page: 52 year: 2020 ident: 10.1016/j.applthermaleng.2022.119092_b26 article-title: Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai publication-title: Renew. Energy doi: 10.1016/j.renene.2019.05.124 – volume: June 2018 start-page: 1 year: 2018 ident: 10.1016/j.applthermaleng.2022.119092_b3 article-title: Directive (EU) 2018/844 of the European parliament and of the council of 30 may 2018 publication-title: Off. J. Eur. Union – ident: 10.1016/j.applthermaleng.2022.119092_b50 – volume: vol. 135 start-page: 110120 year: 2021 ident: 10.1016/j.applthermaleng.2022.119092_b8 article-title: Data-driven predictive control for unlocking building energy flexibility: A review – year: 2018 ident: 10.1016/j.applthermaleng.2022.119092_b30 article-title: Utilizing thermal building mass for storage in district heating systems: Combined building level simulations and system level optimization publication-title: Energy doi: 10.1016/j.energy.2018.04.093 – volume: 188 year: 2019 ident: 10.1016/j.applthermaleng.2022.119092_b33 article-title: Quantification of electricity flexibility in demand response: Office building case study publication-title: Energy doi: 10.1016/j.energy.2019.116054 – year: 2022 ident: 10.1016/j.applthermaleng.2022.119092_b48 – year: 2022 ident: 10.1016/j.applthermaleng.2022.119092_b53 – volume: 166 start-page: 372 year: 2018 ident: 10.1016/j.applthermaleng.2022.119092_b61 article-title: Energy flexible buildings: An evaluation of definitions and quantification methodologies applied to thermal storage publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.02.040 – year: 2022 ident: 10.1016/j.applthermaleng.2022.119092_b49 – start-page: 1 year: 2019 ident: 10.1016/j.applthermaleng.2022.119092_b2 article-title: Clean energy for all Europeans publication-title: Publ. Off. Eur. Union – volume: 191 start-page: 481 year: 2019 ident: 10.1016/j.applthermaleng.2022.119092_b29 article-title: Multi-objective optimization of energy performance of a building considering different configurations and types of PCM publication-title: Sol. Energy doi: 10.1016/j.solener.2019.09.003 – volume: 172 start-page: 82 year: 2017 ident: 10.1016/j.applthermaleng.2022.119092_b25 article-title: Advancement in phase change materials for thermal energy storage applications publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.07.023 – year: 2019 ident: 10.1016/j.applthermaleng.2022.119092_b17 article-title: Predictive rule-based control to activate the energy flexibility of norwegian residential buildings: Case of an air-source heat pump and direct electric heating publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.12.074 – year: 2022 ident: 10.1016/j.applthermaleng.2022.119092_b40 – ident: 10.1016/j.applthermaleng.2022.119092_b59 – year: 2022 ident: 10.1016/j.applthermaleng.2022.119092_b55 – ident: 10.1016/j.applthermaleng.2022.119092_b31 doi: 10.26868/25222708.2013.1371 – year: 1995 ident: 10.1016/j.applthermaleng.2022.119092_b57 – year: 2017 ident: 10.1016/j.applthermaleng.2022.119092_b19 article-title: The impact of thermal mass on building energy consumption publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.04.024 – volume: 54 start-page: 186 year: 2012 ident: 10.1016/j.applthermaleng.2022.119092_b47 article-title: Verification and validation of EnergyPlus phase change material model for opaque wall assemblies publication-title: Build. Environ. doi: 10.1016/j.buildenv.2012.02.019 |
SSID | ssj0012874 |
Score | 2.5318642 |
Snippet | Pre-formed internal insulative panels with impregnated phase change materials (PCM) can significantly increase both the thermal resistance and thermal... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 119092 |
SubjectTerms | Demand response Energy efficiency Energy flexibility Passive energy building PCM thermal mass Sustainability |
Title | Improving the building energy flexibility using PCM-enhanced envelopes |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2022.119092 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FQfQgPrE-Sg69xjavzQYPUoqlKi2CFnpbNtlEK7oWrQcv_naT7G5twUPB44YkuwzDN5PNN98A0MwE1USrDGmWGS-qjZFygRYxLZSKhY3iUJU2GEb9EbsZ83ENdKtaGE-rLLG_wPSA1uVIq7RmazqZtO4x5dKFP0xI0EXzheaMCe_l599zmgf2eu7h0MUl8rM3QPOX4-UviX2e9Zr6tiXutEiIwxDZluTvMLUQeno7YLvMGWGn-KxdUDP5HthaUBLcB735zwHo3gRV2ewamlDaB62XvQw02C_ome6P8K47QCZ_Cvf_blZgDpmPAzDqXT10-6hskYA0xWyGbJxypbmOCZUGW6LbxFBsjYOOKHNxyJiYKYdpVnOrKPGdplOho0hoZkRs2_QQrOVvuTkCEGdSKCxopnXEpHUYriVLFeY2jZjDhTq4qCyS6FI_3LexeEkqothzsmzPxNszKexZB3y-elroaKy47rIyfrLkF4mD_JV2OP73Didg0z_5CkTCT8Ha7P3TnLlUZKYawdcaYL1zfdsf_gD--OG5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MDbw8iFec1zzstWxJk17wQcZwdO6C4AZ7K02a6ETr0PngvzdJ2-nAh4GvbU9aPsJ3kuY73wFopL4riOCpI2gqjak2drhOtA4VPueBr7zAVqUNR140oXdTNq1Ap6yFMbLKgvtzTrdsXVxpFmg257NZ8wG7LNTpDxNifdHYBtSMOxWrQq3d60ej5WGCsXS3-y4WOiZgExo_Mi9zTmyWWq-J6VyiN4yEaBoJWyH5O1P9yj7dPdgtlo2onX_ZPlRkdgA7v8wED6G7_D-A9JsQL_pdI2mr-5AyzpdWCfuFjNj9Ed13ho7MnqwEQD9lxUPy4wgm3dtxJ3KKLgmOcDFdOCpIGBdMBMQNJVZEtIh0sZKaPbxUpyIpA8o1rSnBFHeJaTad-MLzfEGlH6iWewzV7C2TJ4BwGvoc-24qhEdDpWlchDThmKnEo5oa6nBdIhKLwkLcdLJ4iUut2HO8imds8IxzPOvAltHz3EpjzbibEvx4ZWrEmvXXGuH03yNcwVY0Hg7iQW_UP4Ntc8cUJBJ2DtXF-6e80CuTBb8sZt43u2rkag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+building+energy+flexibility+using+PCM-enhanced+envelopes&rft.jtitle=Applied+thermal+engineering&rft.au=Saffari%2C+Mohammad&rft.au=Roe%2C+Conor&rft.au=Finn%2C+Donal+P.&rft.date=2022-11-25&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=217&rft_id=info:doi/10.1016%2Fj.applthermaleng.2022.119092&rft.externalDocID=S1359431122010225 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |