Crystalline microporous small molecule semiconductors based on porphyrin for high-performance chemiresistive gas sensing

Organic small molecule semiconductor (OSMS) microporous crystals with strong π-π interactions are rare but have great potential in applications requiring both excellent mass and charge transport. To obtain such a microporous structure, effective molecule design and control over the packing of the OS...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 1; no. 24; pp. 12977 - 12983
Main Authors Deng, Wei-Hua, He, Liang, Chen, Er-Xia, Wang, Guan-E, Ye, Xiao-Liang, Fu, Zhi-Hua, Lin, Qipu, Xu, Gang
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic small molecule semiconductor (OSMS) microporous crystals with strong π-π interactions are rare but have great potential in applications requiring both excellent mass and charge transport. To obtain such a microporous structure, effective molecule design and control over the packing of the OSMS are necessary but still challenging. Herein, we report three meso -tetrakis (4-carboxyphenyl) porphyrin (TCPP) based porous OSMS materials, 1 , 2 and 3 , whose porosity and π-π interactions among TCPPs were modulated by varying the H-bonding linkage nodes. The relationship among the hydrogen bonding structure, packing mode and sensing performances has been carefully studied. With the largest overlap between porphyrin rings and strongest face-to-face π-π interactions in the prepared compound, 1 showed the best performances. Moreover, it also represents the first RT NO 2 chemiresistive sensing material that simultaneously achieved an experimental limit of detection as low as 20 ppb and a time of recovery as short as 0.6 min. This work revealed the key role of H-bonding linkage node in constructing a microporous OSMS and provides a new type of high-performance rt chemiresistive gas sensing material. Organic small molecule semiconductor (OSMS) microporous crystals with strong π-π interactions are rare but have great potential in applications requiring both excellent mass and charge transport.
AbstractList Organic small molecule semiconductor (OSMS) microporous crystals with strong π–π interactions are rare but have great potential in applications requiring both excellent mass and charge transport. To obtain such a microporous structure, effective molecule design and control over the packing of the OSMS are necessary but still challenging. Herein, we report three meso -tetrakis (4-carboxyphenyl) porphyrin (TCPP) based porous OSMS materials, 1, 2 and 3, whose porosity and π–π interactions among TCPPs were modulated by varying the H-bonding linkage nodes. The relationship among the hydrogen bonding structure, packing mode and sensing performances has been carefully studied. With the largest overlap between porphyrin rings and strongest face-to-face π–π interactions in the prepared compound, 1 showed the best performances. Moreover, it also represents the first RT NO 2 chemiresistive sensing material that simultaneously achieved an experimental limit of detection as low as 20 ppb and a time of recovery as short as 0.6 min. This work revealed the key role of H-bonding linkage node in constructing a microporous OSMS and provides a new type of high-performance rt chemiresistive gas sensing material.
Organic small molecule semiconductor (OSMS) microporous crystals with strong π-π interactions are rare but have great potential in applications requiring both excellent mass and charge transport. To obtain such a microporous structure, effective molecule design and control over the packing of the OSMS are necessary but still challenging. Herein, we report three meso -tetrakis (4-carboxyphenyl) porphyrin (TCPP) based porous OSMS materials, 1 , 2 and 3 , whose porosity and π-π interactions among TCPPs were modulated by varying the H-bonding linkage nodes. The relationship among the hydrogen bonding structure, packing mode and sensing performances has been carefully studied. With the largest overlap between porphyrin rings and strongest face-to-face π-π interactions in the prepared compound, 1 showed the best performances. Moreover, it also represents the first RT NO 2 chemiresistive sensing material that simultaneously achieved an experimental limit of detection as low as 20 ppb and a time of recovery as short as 0.6 min. This work revealed the key role of H-bonding linkage node in constructing a microporous OSMS and provides a new type of high-performance rt chemiresistive gas sensing material. Organic small molecule semiconductor (OSMS) microporous crystals with strong π-π interactions are rare but have great potential in applications requiring both excellent mass and charge transport.
Organic small molecule semiconductor (OSMS) microporous crystals with strong π–π interactions are rare but have great potential in applications requiring both excellent mass and charge transport. To obtain such a microporous structure, effective molecule design and control over the packing of the OSMS are necessary but still challenging. Herein, we report three meso-tetrakis (4-carboxyphenyl) porphyrin (TCPP) based porous OSMS materials, 1, 2 and 3, whose porosity and π–π interactions among TCPPs were modulated by varying the H-bonding linkage nodes. The relationship among the hydrogen bonding structure, packing mode and sensing performances has been carefully studied. With the largest overlap between porphyrin rings and strongest face-to-face π–π interactions in the prepared compound, 1 showed the best performances. Moreover, it also represents the first RT NO₂ chemiresistive sensing material that simultaneously achieved an experimental limit of detection as low as 20 ppb and a time of recovery as short as 0.6 min. This work revealed the key role of H-bonding linkage node in constructing a microporous OSMS and provides a new type of high-performance rt chemiresistive gas sensing material.
Organic small molecule semiconductor (OSMS) microporous crystals with strong π–π interactions are rare but have great potential in applications requiring both excellent mass and charge transport. To obtain such a microporous structure, effective molecule design and control over the packing of the OSMS are necessary but still challenging. Herein, we report three meso-tetrakis (4-carboxyphenyl) porphyrin (TCPP) based porous OSMS materials, 1, 2 and 3, whose porosity and π–π interactions among TCPPs were modulated by varying the H-bonding linkage nodes. The relationship among the hydrogen bonding structure, packing mode and sensing performances has been carefully studied. With the largest overlap between porphyrin rings and strongest face-to-face π–π interactions in the prepared compound, 1 showed the best performances. Moreover, it also represents the first RT NO2 chemiresistive sensing material that simultaneously achieved an experimental limit of detection as low as 20 ppb and a time of recovery as short as 0.6 min. This work revealed the key role of H-bonding linkage node in constructing a microporous OSMS and provides a new type of high-performance rt chemiresistive gas sensing material.
Author Ye, Xiao-Liang
Wang, Guan-E
Deng, Wei-Hua
Fu, Zhi-Hua
Lin, Qipu
Xu, Gang
He, Liang
Chen, Er-Xia
AuthorAffiliation State Key Laboratory of Structural Chemistry
Chinese Academy of Sciences
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
Fujian Institute of Research on the Structure of Matter
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: State Key Laboratory of Structural Chemistry
– name: University of Chinese Academy of Sciences
– name: Chinese Academy of Sciences
– name: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
– name: Fujian Institute of Research on the Structure of Matter
Author_xml – sequence: 1
  givenname: Wei-Hua
  surname: Deng
  fullname: Deng, Wei-Hua
– sequence: 2
  givenname: Liang
  surname: He
  fullname: He, Liang
– sequence: 3
  givenname: Er-Xia
  surname: Chen
  fullname: Chen, Er-Xia
– sequence: 4
  givenname: Guan-E
  surname: Wang
  fullname: Wang, Guan-E
– sequence: 5
  givenname: Xiao-Liang
  surname: Ye
  fullname: Ye, Xiao-Liang
– sequence: 6
  givenname: Zhi-Hua
  surname: Fu
  fullname: Fu, Zhi-Hua
– sequence: 7
  givenname: Qipu
  surname: Lin
  fullname: Lin, Qipu
– sequence: 8
  givenname: Gang
  surname: Xu
  fullname: Xu, Gang
BookMark eNptkc1LJDEQxcPiwuqsl70LAS8itJt0Ov1xlPETBvYye27SSfVMpDtpU2lx_nujIwpiLilSv_dI1TsiB847IOQPZxecieav4VFx1hSy_0EOcyZZVhVNefBR1_Uvcoz4wNKpGSub5pA8L8MOoxoG64COVgc_-eBnpDimRzr6AfQ8AEVITe_MrKMPSDuFYKh3NNHTdheso70PdGs322yCkOpROQ1Ub5MuAFqM9gnoRiVjcGjd5jf52asB4fj9XpD_N9fr5V22-nd7v7xcZVrwIma9EB30ja4UqKooGlH0sua6BAadESyXAiB1jZJ5aRgYxrnsOilNZTSTuhQLcrb3nYJ_nAFjO1rUMAzKQZqzzSte5zL5vqKnX9AHPweXftfmZVXXeZ0XVaLYnkq7QgzQt9pGFa13MSg7tJy1r2m0V3x9-ZbGTZKcf5FMwY4q7L6HT_ZwQP3BfUYrXgAujZly
CitedBy_id crossref_primary_10_1021_acssuschemeng_3c03608
crossref_primary_10_1021_acs_analchem_3c02786
crossref_primary_10_1002_adma_202309130
crossref_primary_10_1039_D3MA01024D
crossref_primary_10_1039_D3TA01390A
crossref_primary_10_1016_j_cej_2024_154457
crossref_primary_10_1016_j_inoche_2024_112352
crossref_primary_10_1039_D3TA01564E
crossref_primary_10_1016_j_greeac_2025_100260
crossref_primary_10_1038_s41467_023_44214_x
crossref_primary_10_1039_D3CC00778B
crossref_primary_10_3390_chemosensors11070369
Cites_doi 10.1021/nl072090c
10.1002/jhet.5570030422
10.1016/j.jcis.2017.12.075
10.1016/j.chempr.2019.04.013
10.1016/j.jhazmat.2020.122325
10.1002/adma.202007149
10.1016/j.snb.2017.09.118
10.1016/j.cattod.2007.12.095
10.1002/adma.201807161
10.1002/anie.202108388
10.1016/j.scib.2018.12.009
10.1038/ncomms5752
10.1081/CR-100100260
10.1038/s41586-021-03942-0
10.1021/jacs.9b12428
10.1021/jacs.6b12826
10.1002/adma.202005946
10.1002/anie.201914548
10.1021/acssensors.9b00769
10.3390/s19153405
10.1038/s41467-019-14136-8
10.1002/aelm.202000250
10.1126/sciadv.aaz1042
10.1039/C8TA02679C
10.1039/C8CS00406D
10.1039/D0CP02093A
10.1126/sciadv.abh4232
10.1016/j.snb.2017.12.101
10.1002/anie.201604534
10.1038/s41586-021-03399-1
10.1016/j.apcatb.2018.10.032
10.1038/s41563-020-0647-2
10.1021/jacs.0c02406
10.1002/anie.202014556
10.1039/C8CS00155C
10.1021/acsomega.8b02108
10.1039/c2cs15313k
10.1002/adfm.201603598
10.1002/admi.201900376
10.1039/C9CC09171H
10.31635/ccschem.021.202101242
10.1002/adma.201506457
10.1039/D0RA10310A
10.1002/adma.202008429
10.1002/admi.201600518
10.1021/ja110720f
10.1002/adfm.201200219
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/d1ta10945f
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 12983
ExternalDocumentID 10_1039_D1TA10945F
d1ta10945f
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c314t-f33bef9c7aea744934f581c6e0ebd30253ee9c7da526d0ed0115bb55d7dc05c63
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 13:46:21 EDT 2025
Mon Jun 30 11:57:47 EDT 2025
Thu Apr 24 23:03:40 EDT 2025
Tue Jul 01 01:13:26 EDT 2025
Wed Jun 22 04:21:10 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-f33bef9c7aea744934f581c6e0ebd30253ee9c7da526d0ed0115bb55d7dc05c63
Notes CCDC
1
2
and
https://doi.org/10.1039/d1ta10945f
for
For ESI and crystallographic data in CIF or other electronic format see
2127390
Electronic supplementary information (ESI) available: Experimental details and characterization data as well as the crystallographic data of
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8562-0724
0000-0002-7723-3676
0000-0002-4006-993X
PQID 2678828247
PQPubID 2047523
PageCount 7
ParticipantIDs rsc_primary_d1ta10945f
proquest_miscellaneous_2718259346
crossref_citationtrail_10_1039_D1TA10945F
proquest_journals_2678828247
crossref_primary_10_1039_D1TA10945F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-21
PublicationDateYYYYMMDD 2022-06-21
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-21
  day: 21
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Bin (D1TA10945F/cit6/1) 2021; 33
Qu (D1TA10945F/cit27/1) 2021; 60
Jiang (D1TA10945F/cit37/1) 2020; 22
Ozensoy (D1TA10945F/cit45/1) 2008; 136
Dattagupta (D1TA10945F/cit48/1) 1966; 3
Lin (D1TA10945F/cit1/1) 2012; 41
Hayashi (D1TA10945F/cit28/1) 2012; 22
Feng (D1TA10945F/cit19/1) 2020; 59
Wu (D1TA10945F/cit40/1) 2019; 4
Motoyama (D1TA10945F/cit4/1) 2011; 133
Wu (D1TA10945F/cit41/1) 2016; 26
Qin (D1TA10945F/cit9/1) 2021; 33
Li (D1TA10945F/cit20/1) 2020; 142
Koo (D1TA10945F/cit24/1) 2019; 5
Nasrallah (D1TA10945F/cit5/1) 2020; 6
Liu (D1TA10945F/cit32/1) 2019; 6
Fratini (D1TA10945F/cit10/1) 2020; 19
Zhang (D1TA10945F/cit15/1) 2020; 6
Lin (D1TA10945F/cit17/1) 2019; 48
Yao (D1TA10945F/cit26/1) 2016; 28
Zhou (D1TA10945F/cit35/1) 2018; 6
Giampiccolo (D1TA10945F/cit33/1) 2019; 243
Wang (D1TA10945F/cit30/1) 2021; 40
Lu (D1TA10945F/cit11/1) 2021; 33
Li (D1TA10945F/cit42/1) 2018; 255
Guo (D1TA10945F/cit3/1) 2021; 599
Zhang (D1TA10945F/cit18/1) 2020; 142
Karmakar (D1TA10945F/cit21/1) 2016; 55
Wang (D1TA10945F/cit2/1) 2019; 48
Wang (D1TA10945F/cit16/1) 2016; 3
Gomez-Navarro (D1TA10945F/cit39/1) 2009; 7
Li (D1TA10945F/cit29/1) 2020; 11
Kang (D1TA10945F/cit14/1) 2014; 5
Wang (D1TA10945F/cit22/1) 2021; 60
Liu (D1TA10945F/cit12/1) 2021; 3
Yuan (D1TA10945F/cit25/1) 2019; 31
Jiang (D1TA10945F/cit38/1) 2021; 11
Wu (D1TA10945F/cit34/1) 2018; 259
Hadjiivanov (D1TA10945F/cit47/1) 2000; 42
Guo (D1TA10945F/cit36/1) 2019; 64
Chia (D1TA10945F/cit43/1) 2019; 4
Wang (D1TA10945F/cit31/1) 2018; 514
Nguyen (D1TA10945F/cit7/1) 2021; 593
Bin (D1TA10945F/cit13/1) 2017; 139
Wang (D1TA10945F/cit23/1) 2020; 56
Sneyd (D1TA10945F/cit8/1) 2021; 7
Yang (D1TA10945F/cit46/1) 2019; 19
Liu (D1TA10945F/cit44/1) 2020; 393
References_xml – volume: 7
  start-page: 3499
  year: 2009
  ident: D1TA10945F/cit39/1
  publication-title: Nano Lett.
  doi: 10.1021/nl072090c
– volume: 3
  start-page: 495
  year: 1966
  ident: D1TA10945F/cit48/1
  publication-title: J. Heterocycl. Chem.
  doi: 10.1002/jhet.5570030422
– volume: 514
  start-page: 599
  year: 2018
  ident: D1TA10945F/cit31/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.12.075
– volume: 5
  start-page: 1938
  year: 2019
  ident: D1TA10945F/cit24/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.04.013
– volume: 40
  start-page: 1138
  year: 2021
  ident: D1TA10945F/cit30/1
  publication-title: Chin. J. Struct. Chem.
– volume: 393
  start-page: 122325
  year: 2020
  ident: D1TA10945F/cit44/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122325
– volume: 33
  start-page: 2007149
  year: 2021
  ident: D1TA10945F/cit9/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007149
– volume: 255
  start-page: 2963
  year: 2018
  ident: D1TA10945F/cit42/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.09.118
– volume: 136
  start-page: 46
  year: 2008
  ident: D1TA10945F/cit45/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2007.12.095
– volume: 31
  start-page: 1807161
  year: 2019
  ident: D1TA10945F/cit25/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807161
– volume: 60
  start-page: 21952
  year: 2021
  ident: D1TA10945F/cit22/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202108388
– volume: 64
  start-page: 128
  year: 2019
  ident: D1TA10945F/cit36/1
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.12.009
– volume: 5
  start-page: 4752
  year: 2014
  ident: D1TA10945F/cit14/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5752
– volume: 42
  start-page: 71
  year: 2000
  ident: D1TA10945F/cit47/1
  publication-title: Catal. Rev.
  doi: 10.1081/CR-100100260
– volume: 599
  start-page: 67
  year: 2021
  ident: D1TA10945F/cit3/1
  publication-title: Nature
  doi: 10.1038/s41586-021-03942-0
– volume: 142
  start-page: 633
  year: 2020
  ident: D1TA10945F/cit18/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12428
– volume: 139
  start-page: 5085
  year: 2017
  ident: D1TA10945F/cit13/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12826
– volume: 33
  start-page: 2005946
  year: 2021
  ident: D1TA10945F/cit11/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005946
– volume: 59
  start-page: 3840
  year: 2020
  ident: D1TA10945F/cit19/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201914548
– volume: 4
  start-page: 1889
  year: 2019
  ident: D1TA10945F/cit40/1
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b00769
– volume: 19
  start-page: 3405
  year: 2019
  ident: D1TA10945F/cit46/1
  publication-title: Sensors
  doi: 10.3390/s19153405
– volume: 11
  start-page: 261
  year: 2020
  ident: D1TA10945F/cit29/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14136-8
– volume: 6
  start-page: 2000250
  year: 2020
  ident: D1TA10945F/cit5/1
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202000250
– volume: 6
  start-page: eaaz1042
  year: 2020
  ident: D1TA10945F/cit15/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz1042
– volume: 6
  start-page: 10286
  year: 2018
  ident: D1TA10945F/cit35/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02679C
– volume: 48
  start-page: 1492
  year: 2019
  ident: D1TA10945F/cit2/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00406D
– volume: 22
  start-page: 18499
  year: 2020
  ident: D1TA10945F/cit37/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP02093A
– volume: 7
  start-page: eabh4232
  year: 2021
  ident: D1TA10945F/cit8/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abh4232
– volume: 259
  start-page: 526
  year: 2018
  ident: D1TA10945F/cit34/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.12.101
– volume: 55
  start-page: 10667
  year: 2016
  ident: D1TA10945F/cit21/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201604534
– volume: 593
  start-page: 61
  year: 2021
  ident: D1TA10945F/cit7/1
  publication-title: Nature
  doi: 10.1038/s41586-021-03399-1
– volume: 243
  start-page: 183
  year: 2019
  ident: D1TA10945F/cit33/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.10.032
– volume: 19
  start-page: 491
  year: 2020
  ident: D1TA10945F/cit10/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0647-2
– volume: 142
  start-page: 7218
  year: 2020
  ident: D1TA10945F/cit20/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c02406
– volume: 60
  start-page: 2
  year: 2021
  ident: D1TA10945F/cit27/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202014556
– volume: 48
  start-page: 1362
  year: 2019
  ident: D1TA10945F/cit17/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00155C
– volume: 4
  start-page: 10388
  year: 2019
  ident: D1TA10945F/cit43/1
  publication-title: Acs Omega
  doi: 10.1021/acsomega.8b02108
– volume: 41
  start-page: 4245
  year: 2012
  ident: D1TA10945F/cit1/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs15313k
– volume: 26
  start-page: 7462
  year: 2016
  ident: D1TA10945F/cit41/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201603598
– volume: 6
  start-page: 1900376
  year: 2019
  ident: D1TA10945F/cit32/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201900376
– volume: 56
  start-page: 703
  year: 2020
  ident: D1TA10945F/cit23/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC09171H
– volume: 3
  start-page: 2473
  year: 2021
  ident: D1TA10945F/cit12/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.021.202101242
– volume: 28
  start-page: 5229
  year: 2016
  ident: D1TA10945F/cit26/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506457
– volume: 11
  start-page: 5618
  year: 2021
  ident: D1TA10945F/cit38/1
  publication-title: RSC Adv.
  doi: 10.1039/D0RA10310A
– volume: 33
  start-page: 2008429
  year: 2021
  ident: D1TA10945F/cit6/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008429
– volume: 3
  start-page: 1600518
  year: 2016
  ident: D1TA10945F/cit16/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201600518
– volume: 133
  start-page: 5640
  year: 2011
  ident: D1TA10945F/cit4/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja110720f
– volume: 22
  start-page: 3539
  year: 2012
  ident: D1TA10945F/cit28/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200219
SSID ssj0000800699
Score 2.4357424
Snippet Organic small molecule semiconductor (OSMS) microporous crystals with strong π-π interactions are rare but have great potential in applications requiring both...
Organic small molecule semiconductor (OSMS) microporous crystals with strong π–π interactions are rare but have great potential in applications requiring both...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12977
SubjectTerms Charge transport
Crystals
detection limit
Gas sensors
hydrogen
Hydrogen bonding
Molecular structure
Nitrogen dioxide
Porosity
Porous materials
porous media
Porphyrins
semiconductors
Title Crystalline microporous small molecule semiconductors based on porphyrin for high-performance chemiresistive gas sensing
URI https://www.proquest.com/docview/2678828247
https://www.proquest.com/docview/2718259346
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67QUeELeJwkBG8IIqFzd2bo_V1qqgMl5S0bcoiZ2p0ppWvaCNX8TP5Jw4cVK2h8GLVcVO0vh89vlsnwshHxVQhkwmHktEqJn0AsVSnqYw3PMgCbUAioonut8uvclMfp27807nd8tqab9L-9mve_1K_keqcA3kil6y_yBZ-1C4AL9BvlCChKF8kIzPN7dA7q5LprhEyzog02jSul3igfPSZL7VvS0awK8KjOyKqXVQcSk8JIDW0MmbhbE1xMDFbN3yI8gwlgCsxnEW-Kl7Vwk8GM3dK113l9EC-TVfbW7FNHL93tB4BNU1ZYRx429YbtnX_ltoomt39y-0mYF-6AWb7K3imJik0ADoq8YqodpA2rD5otEw1SY44L9go_bGBqyJuceMt7SZ_xzucuZLk_DWTta8BUpH9tZ9ICy-z6AMRGsiLq-2tLqtv6MyuMCIq2qwSwaw1HXzRjHWxgCX3-PxbDqNo9E8OiInDixIYEY9GY6iL1O7n4fM2yvTldr_XUfDFeHn5vGH_KdZ1Bxt6owzJbOJnpInlQDp0ODrGeno4jl53ApU-YLctJBGW0ijJdJojTR6iDRaIo2uCmqRRkH-9G-k0UOkUUAarZD2kszGo-h8wqqcHSwTA7ljuRCpzsPMT3TiSxkKmbvBIPM016kSQLCF1lCrEtfxFNcKVyRp6rrKVxl3M0-ckuNiVehXhLrQUgvobZ4r6WZBKEPoWcW5Eh7qoi75VPdknFUB7TGvynVcGlaIML4YRMOy18dd8sG2XZswLve2OqsFElfDfBs7QOcCJ3Ck3yXvbTUMIjxZSwoNnR07wPAcFz7W65JTEKR9RyP31w-4-Q151AyEM3K82-z1W-C8u_RdBbc_G4i0OA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystalline+microporous+small+molecule+semiconductors+based+on+porphyrin+for+high-performance+chemiresistive+gas+sensing&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Deng%2C+Wei-Hua&rft.au=He%2C+Liang&rft.au=Chen%2C+Er-Xia&rft.au=Wang%2C+Guan-E&rft.date=2022-06-21&rft.issn=2050-7496&rft.volume=10&rft.issue=24+p.12977-12983&rft.spage=12977&rft.epage=12983&rft_id=info:doi/10.1039%2Fd1ta10945f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon