Crystalline microporous small molecule semiconductors based on porphyrin for high-performance chemiresistive gas sensing
Organic small molecule semiconductor (OSMS) microporous crystals with strong π-π interactions are rare but have great potential in applications requiring both excellent mass and charge transport. To obtain such a microporous structure, effective molecule design and control over the packing of the OS...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 1; no. 24; pp. 12977 - 12983 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
21.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic small molecule semiconductor (OSMS) microporous crystals with strong π-π interactions are rare but have great potential in applications requiring both excellent mass and charge transport. To obtain such a microporous structure, effective molecule design and control over the packing of the OSMS are necessary but still challenging. Herein, we report three
meso
-tetrakis (4-carboxyphenyl) porphyrin (TCPP) based porous OSMS materials,
1
,
2
and
3
, whose porosity and π-π interactions among TCPPs were modulated by varying the H-bonding linkage nodes. The relationship among the hydrogen bonding structure, packing mode and sensing performances has been carefully studied. With the largest overlap between porphyrin rings and strongest face-to-face π-π interactions in the prepared compound,
1
showed the best performances. Moreover, it also represents the first RT NO
2
chemiresistive sensing material that simultaneously achieved an experimental limit of detection as low as 20 ppb and a time of recovery as short as 0.6 min. This work revealed the key role of H-bonding linkage node in constructing a microporous OSMS and provides a new type of high-performance rt chemiresistive gas sensing material.
Organic small molecule semiconductor (OSMS) microporous crystals with strong π-π interactions are rare but have great potential in applications requiring both excellent mass and charge transport. |
---|---|
AbstractList | Organic small molecule semiconductor (OSMS) microporous crystals with strong π–π interactions are rare but have great potential in applications requiring both excellent mass and charge transport. To obtain such a microporous structure, effective molecule design and control over the packing of the OSMS are necessary but still challenging. Herein, we report three
meso
-tetrakis (4-carboxyphenyl) porphyrin (TCPP) based porous OSMS materials, 1, 2 and 3, whose porosity and π–π interactions among TCPPs were modulated by varying the H-bonding linkage nodes. The relationship among the hydrogen bonding structure, packing mode and sensing performances has been carefully studied. With the largest overlap between porphyrin rings and strongest face-to-face π–π interactions in the prepared compound, 1 showed the best performances. Moreover, it also represents the first RT NO
2
chemiresistive sensing material that simultaneously achieved an experimental limit of detection as low as 20 ppb and a time of recovery as short as 0.6 min. This work revealed the key role of H-bonding linkage node in constructing a microporous OSMS and provides a new type of high-performance rt chemiresistive gas sensing material. Organic small molecule semiconductor (OSMS) microporous crystals with strong π-π interactions are rare but have great potential in applications requiring both excellent mass and charge transport. To obtain such a microporous structure, effective molecule design and control over the packing of the OSMS are necessary but still challenging. Herein, we report three meso -tetrakis (4-carboxyphenyl) porphyrin (TCPP) based porous OSMS materials, 1 , 2 and 3 , whose porosity and π-π interactions among TCPPs were modulated by varying the H-bonding linkage nodes. The relationship among the hydrogen bonding structure, packing mode and sensing performances has been carefully studied. With the largest overlap between porphyrin rings and strongest face-to-face π-π interactions in the prepared compound, 1 showed the best performances. Moreover, it also represents the first RT NO 2 chemiresistive sensing material that simultaneously achieved an experimental limit of detection as low as 20 ppb and a time of recovery as short as 0.6 min. This work revealed the key role of H-bonding linkage node in constructing a microporous OSMS and provides a new type of high-performance rt chemiresistive gas sensing material. Organic small molecule semiconductor (OSMS) microporous crystals with strong π-π interactions are rare but have great potential in applications requiring both excellent mass and charge transport. Organic small molecule semiconductor (OSMS) microporous crystals with strong π–π interactions are rare but have great potential in applications requiring both excellent mass and charge transport. To obtain such a microporous structure, effective molecule design and control over the packing of the OSMS are necessary but still challenging. Herein, we report three meso-tetrakis (4-carboxyphenyl) porphyrin (TCPP) based porous OSMS materials, 1, 2 and 3, whose porosity and π–π interactions among TCPPs were modulated by varying the H-bonding linkage nodes. The relationship among the hydrogen bonding structure, packing mode and sensing performances has been carefully studied. With the largest overlap between porphyrin rings and strongest face-to-face π–π interactions in the prepared compound, 1 showed the best performances. Moreover, it also represents the first RT NO₂ chemiresistive sensing material that simultaneously achieved an experimental limit of detection as low as 20 ppb and a time of recovery as short as 0.6 min. This work revealed the key role of H-bonding linkage node in constructing a microporous OSMS and provides a new type of high-performance rt chemiresistive gas sensing material. Organic small molecule semiconductor (OSMS) microporous crystals with strong π–π interactions are rare but have great potential in applications requiring both excellent mass and charge transport. To obtain such a microporous structure, effective molecule design and control over the packing of the OSMS are necessary but still challenging. Herein, we report three meso-tetrakis (4-carboxyphenyl) porphyrin (TCPP) based porous OSMS materials, 1, 2 and 3, whose porosity and π–π interactions among TCPPs were modulated by varying the H-bonding linkage nodes. The relationship among the hydrogen bonding structure, packing mode and sensing performances has been carefully studied. With the largest overlap between porphyrin rings and strongest face-to-face π–π interactions in the prepared compound, 1 showed the best performances. Moreover, it also represents the first RT NO2 chemiresistive sensing material that simultaneously achieved an experimental limit of detection as low as 20 ppb and a time of recovery as short as 0.6 min. This work revealed the key role of H-bonding linkage node in constructing a microporous OSMS and provides a new type of high-performance rt chemiresistive gas sensing material. |
Author | Ye, Xiao-Liang Wang, Guan-E Deng, Wei-Hua Fu, Zhi-Hua Lin, Qipu Xu, Gang He, Liang Chen, Er-Xia |
AuthorAffiliation | State Key Laboratory of Structural Chemistry Chinese Academy of Sciences Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fujian Institute of Research on the Structure of Matter University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: State Key Laboratory of Structural Chemistry – name: University of Chinese Academy of Sciences – name: Chinese Academy of Sciences – name: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China – name: Fujian Institute of Research on the Structure of Matter |
Author_xml | – sequence: 1 givenname: Wei-Hua surname: Deng fullname: Deng, Wei-Hua – sequence: 2 givenname: Liang surname: He fullname: He, Liang – sequence: 3 givenname: Er-Xia surname: Chen fullname: Chen, Er-Xia – sequence: 4 givenname: Guan-E surname: Wang fullname: Wang, Guan-E – sequence: 5 givenname: Xiao-Liang surname: Ye fullname: Ye, Xiao-Liang – sequence: 6 givenname: Zhi-Hua surname: Fu fullname: Fu, Zhi-Hua – sequence: 7 givenname: Qipu surname: Lin fullname: Lin, Qipu – sequence: 8 givenname: Gang surname: Xu fullname: Xu, Gang |
BookMark | eNptkc1LJDEQxcPiwuqsl70LAS8itJt0Ov1xlPETBvYye27SSfVMpDtpU2lx_nujIwpiLilSv_dI1TsiB847IOQPZxecieav4VFx1hSy_0EOcyZZVhVNefBR1_Uvcoz4wNKpGSub5pA8L8MOoxoG64COVgc_-eBnpDimRzr6AfQ8AEVITe_MrKMPSDuFYKh3NNHTdheso70PdGs322yCkOpROQ1Ub5MuAFqM9gnoRiVjcGjd5jf52asB4fj9XpD_N9fr5V22-nd7v7xcZVrwIma9EB30ja4UqKooGlH0sua6BAadESyXAiB1jZJ5aRgYxrnsOilNZTSTuhQLcrb3nYJ_nAFjO1rUMAzKQZqzzSte5zL5vqKnX9AHPweXftfmZVXXeZ0XVaLYnkq7QgzQt9pGFa13MSg7tJy1r2m0V3x9-ZbGTZKcf5FMwY4q7L6HT_ZwQP3BfUYrXgAujZly |
CitedBy_id | crossref_primary_10_1021_acssuschemeng_3c03608 crossref_primary_10_1021_acs_analchem_3c02786 crossref_primary_10_1002_adma_202309130 crossref_primary_10_1039_D3MA01024D crossref_primary_10_1039_D3TA01390A crossref_primary_10_1016_j_cej_2024_154457 crossref_primary_10_1016_j_inoche_2024_112352 crossref_primary_10_1039_D3TA01564E crossref_primary_10_1016_j_greeac_2025_100260 crossref_primary_10_1038_s41467_023_44214_x crossref_primary_10_1039_D3CC00778B crossref_primary_10_3390_chemosensors11070369 |
Cites_doi | 10.1021/nl072090c 10.1002/jhet.5570030422 10.1016/j.jcis.2017.12.075 10.1016/j.chempr.2019.04.013 10.1016/j.jhazmat.2020.122325 10.1002/adma.202007149 10.1016/j.snb.2017.09.118 10.1016/j.cattod.2007.12.095 10.1002/adma.201807161 10.1002/anie.202108388 10.1016/j.scib.2018.12.009 10.1038/ncomms5752 10.1081/CR-100100260 10.1038/s41586-021-03942-0 10.1021/jacs.9b12428 10.1021/jacs.6b12826 10.1002/adma.202005946 10.1002/anie.201914548 10.1021/acssensors.9b00769 10.3390/s19153405 10.1038/s41467-019-14136-8 10.1002/aelm.202000250 10.1126/sciadv.aaz1042 10.1039/C8TA02679C 10.1039/C8CS00406D 10.1039/D0CP02093A 10.1126/sciadv.abh4232 10.1016/j.snb.2017.12.101 10.1002/anie.201604534 10.1038/s41586-021-03399-1 10.1016/j.apcatb.2018.10.032 10.1038/s41563-020-0647-2 10.1021/jacs.0c02406 10.1002/anie.202014556 10.1039/C8CS00155C 10.1021/acsomega.8b02108 10.1039/c2cs15313k 10.1002/adfm.201603598 10.1002/admi.201900376 10.1039/C9CC09171H 10.31635/ccschem.021.202101242 10.1002/adma.201506457 10.1039/D0RA10310A 10.1002/adma.202008429 10.1002/admi.201600518 10.1021/ja110720f 10.1002/adfm.201200219 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/d1ta10945f |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 12983 |
ExternalDocumentID | 10_1039_D1TA10945F d1ta10945f |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c314t-f33bef9c7aea744934f581c6e0ebd30253ee9c7da526d0ed0115bb55d7dc05c63 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 13:46:21 EDT 2025 Mon Jun 30 11:57:47 EDT 2025 Thu Apr 24 23:03:40 EDT 2025 Tue Jul 01 01:13:26 EDT 2025 Wed Jun 22 04:21:10 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-f33bef9c7aea744934f581c6e0ebd30253ee9c7da526d0ed0115bb55d7dc05c63 |
Notes | CCDC 1 2 and https://doi.org/10.1039/d1ta10945f for For ESI and crystallographic data in CIF or other electronic format see 2127390 Electronic supplementary information (ESI) available: Experimental details and characterization data as well as the crystallographic data of ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8562-0724 0000-0002-7723-3676 0000-0002-4006-993X |
PQID | 2678828247 |
PQPubID | 2047523 |
PageCount | 7 |
ParticipantIDs | rsc_primary_d1ta10945f proquest_miscellaneous_2718259346 crossref_citationtrail_10_1039_D1TA10945F proquest_journals_2678828247 crossref_primary_10_1039_D1TA10945F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-21 |
PublicationDateYYYYMMDD | 2022-06-21 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Bin (D1TA10945F/cit6/1) 2021; 33 Qu (D1TA10945F/cit27/1) 2021; 60 Jiang (D1TA10945F/cit37/1) 2020; 22 Ozensoy (D1TA10945F/cit45/1) 2008; 136 Dattagupta (D1TA10945F/cit48/1) 1966; 3 Lin (D1TA10945F/cit1/1) 2012; 41 Hayashi (D1TA10945F/cit28/1) 2012; 22 Feng (D1TA10945F/cit19/1) 2020; 59 Wu (D1TA10945F/cit40/1) 2019; 4 Motoyama (D1TA10945F/cit4/1) 2011; 133 Wu (D1TA10945F/cit41/1) 2016; 26 Qin (D1TA10945F/cit9/1) 2021; 33 Li (D1TA10945F/cit20/1) 2020; 142 Koo (D1TA10945F/cit24/1) 2019; 5 Nasrallah (D1TA10945F/cit5/1) 2020; 6 Liu (D1TA10945F/cit32/1) 2019; 6 Fratini (D1TA10945F/cit10/1) 2020; 19 Zhang (D1TA10945F/cit15/1) 2020; 6 Lin (D1TA10945F/cit17/1) 2019; 48 Yao (D1TA10945F/cit26/1) 2016; 28 Zhou (D1TA10945F/cit35/1) 2018; 6 Giampiccolo (D1TA10945F/cit33/1) 2019; 243 Wang (D1TA10945F/cit30/1) 2021; 40 Lu (D1TA10945F/cit11/1) 2021; 33 Li (D1TA10945F/cit42/1) 2018; 255 Guo (D1TA10945F/cit3/1) 2021; 599 Zhang (D1TA10945F/cit18/1) 2020; 142 Karmakar (D1TA10945F/cit21/1) 2016; 55 Wang (D1TA10945F/cit2/1) 2019; 48 Wang (D1TA10945F/cit16/1) 2016; 3 Gomez-Navarro (D1TA10945F/cit39/1) 2009; 7 Li (D1TA10945F/cit29/1) 2020; 11 Kang (D1TA10945F/cit14/1) 2014; 5 Wang (D1TA10945F/cit22/1) 2021; 60 Liu (D1TA10945F/cit12/1) 2021; 3 Yuan (D1TA10945F/cit25/1) 2019; 31 Jiang (D1TA10945F/cit38/1) 2021; 11 Wu (D1TA10945F/cit34/1) 2018; 259 Hadjiivanov (D1TA10945F/cit47/1) 2000; 42 Guo (D1TA10945F/cit36/1) 2019; 64 Chia (D1TA10945F/cit43/1) 2019; 4 Wang (D1TA10945F/cit31/1) 2018; 514 Nguyen (D1TA10945F/cit7/1) 2021; 593 Bin (D1TA10945F/cit13/1) 2017; 139 Wang (D1TA10945F/cit23/1) 2020; 56 Sneyd (D1TA10945F/cit8/1) 2021; 7 Yang (D1TA10945F/cit46/1) 2019; 19 Liu (D1TA10945F/cit44/1) 2020; 393 |
References_xml | – volume: 7 start-page: 3499 year: 2009 ident: D1TA10945F/cit39/1 publication-title: Nano Lett. doi: 10.1021/nl072090c – volume: 3 start-page: 495 year: 1966 ident: D1TA10945F/cit48/1 publication-title: J. Heterocycl. Chem. doi: 10.1002/jhet.5570030422 – volume: 514 start-page: 599 year: 2018 ident: D1TA10945F/cit31/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.12.075 – volume: 5 start-page: 1938 year: 2019 ident: D1TA10945F/cit24/1 publication-title: Chem doi: 10.1016/j.chempr.2019.04.013 – volume: 40 start-page: 1138 year: 2021 ident: D1TA10945F/cit30/1 publication-title: Chin. J. Struct. Chem. – volume: 393 start-page: 122325 year: 2020 ident: D1TA10945F/cit44/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122325 – volume: 33 start-page: 2007149 year: 2021 ident: D1TA10945F/cit9/1 publication-title: Adv. Mater. doi: 10.1002/adma.202007149 – volume: 255 start-page: 2963 year: 2018 ident: D1TA10945F/cit42/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.09.118 – volume: 136 start-page: 46 year: 2008 ident: D1TA10945F/cit45/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2007.12.095 – volume: 31 start-page: 1807161 year: 2019 ident: D1TA10945F/cit25/1 publication-title: Adv. Mater. doi: 10.1002/adma.201807161 – volume: 60 start-page: 21952 year: 2021 ident: D1TA10945F/cit22/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202108388 – volume: 64 start-page: 128 year: 2019 ident: D1TA10945F/cit36/1 publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.12.009 – volume: 5 start-page: 4752 year: 2014 ident: D1TA10945F/cit14/1 publication-title: Nat. Commun. doi: 10.1038/ncomms5752 – volume: 42 start-page: 71 year: 2000 ident: D1TA10945F/cit47/1 publication-title: Catal. Rev. doi: 10.1081/CR-100100260 – volume: 599 start-page: 67 year: 2021 ident: D1TA10945F/cit3/1 publication-title: Nature doi: 10.1038/s41586-021-03942-0 – volume: 142 start-page: 633 year: 2020 ident: D1TA10945F/cit18/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b12428 – volume: 139 start-page: 5085 year: 2017 ident: D1TA10945F/cit13/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12826 – volume: 33 start-page: 2005946 year: 2021 ident: D1TA10945F/cit11/1 publication-title: Adv. Mater. doi: 10.1002/adma.202005946 – volume: 59 start-page: 3840 year: 2020 ident: D1TA10945F/cit19/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201914548 – volume: 4 start-page: 1889 year: 2019 ident: D1TA10945F/cit40/1 publication-title: ACS Sens. doi: 10.1021/acssensors.9b00769 – volume: 19 start-page: 3405 year: 2019 ident: D1TA10945F/cit46/1 publication-title: Sensors doi: 10.3390/s19153405 – volume: 11 start-page: 261 year: 2020 ident: D1TA10945F/cit29/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-14136-8 – volume: 6 start-page: 2000250 year: 2020 ident: D1TA10945F/cit5/1 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202000250 – volume: 6 start-page: eaaz1042 year: 2020 ident: D1TA10945F/cit15/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz1042 – volume: 6 start-page: 10286 year: 2018 ident: D1TA10945F/cit35/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02679C – volume: 48 start-page: 1492 year: 2019 ident: D1TA10945F/cit2/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00406D – volume: 22 start-page: 18499 year: 2020 ident: D1TA10945F/cit37/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP02093A – volume: 7 start-page: eabh4232 year: 2021 ident: D1TA10945F/cit8/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abh4232 – volume: 259 start-page: 526 year: 2018 ident: D1TA10945F/cit34/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.12.101 – volume: 55 start-page: 10667 year: 2016 ident: D1TA10945F/cit21/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201604534 – volume: 593 start-page: 61 year: 2021 ident: D1TA10945F/cit7/1 publication-title: Nature doi: 10.1038/s41586-021-03399-1 – volume: 243 start-page: 183 year: 2019 ident: D1TA10945F/cit33/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.10.032 – volume: 19 start-page: 491 year: 2020 ident: D1TA10945F/cit10/1 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0647-2 – volume: 142 start-page: 7218 year: 2020 ident: D1TA10945F/cit20/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c02406 – volume: 60 start-page: 2 year: 2021 ident: D1TA10945F/cit27/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202014556 – volume: 48 start-page: 1362 year: 2019 ident: D1TA10945F/cit17/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00155C – volume: 4 start-page: 10388 year: 2019 ident: D1TA10945F/cit43/1 publication-title: Acs Omega doi: 10.1021/acsomega.8b02108 – volume: 41 start-page: 4245 year: 2012 ident: D1TA10945F/cit1/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15313k – volume: 26 start-page: 7462 year: 2016 ident: D1TA10945F/cit41/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201603598 – volume: 6 start-page: 1900376 year: 2019 ident: D1TA10945F/cit32/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201900376 – volume: 56 start-page: 703 year: 2020 ident: D1TA10945F/cit23/1 publication-title: Chem. Commun. doi: 10.1039/C9CC09171H – volume: 3 start-page: 2473 year: 2021 ident: D1TA10945F/cit12/1 publication-title: CCS Chem. doi: 10.31635/ccschem.021.202101242 – volume: 28 start-page: 5229 year: 2016 ident: D1TA10945F/cit26/1 publication-title: Adv. Mater. doi: 10.1002/adma.201506457 – volume: 11 start-page: 5618 year: 2021 ident: D1TA10945F/cit38/1 publication-title: RSC Adv. doi: 10.1039/D0RA10310A – volume: 33 start-page: 2008429 year: 2021 ident: D1TA10945F/cit6/1 publication-title: Adv. Mater. doi: 10.1002/adma.202008429 – volume: 3 start-page: 1600518 year: 2016 ident: D1TA10945F/cit16/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201600518 – volume: 133 start-page: 5640 year: 2011 ident: D1TA10945F/cit4/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110720f – volume: 22 start-page: 3539 year: 2012 ident: D1TA10945F/cit28/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200219 |
SSID | ssj0000800699 |
Score | 2.4357424 |
Snippet | Organic small molecule semiconductor (OSMS) microporous crystals with strong π-π interactions are rare but have great potential in applications requiring both... Organic small molecule semiconductor (OSMS) microporous crystals with strong π–π interactions are rare but have great potential in applications requiring both... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12977 |
SubjectTerms | Charge transport Crystals detection limit Gas sensors hydrogen Hydrogen bonding Molecular structure Nitrogen dioxide Porosity Porous materials porous media Porphyrins semiconductors |
Title | Crystalline microporous small molecule semiconductors based on porphyrin for high-performance chemiresistive gas sensing |
URI | https://www.proquest.com/docview/2678828247 https://www.proquest.com/docview/2718259346 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67QUeELeJwkBG8IIqFzd2bo_V1qqgMl5S0bcoiZ2p0ppWvaCNX8TP5Jw4cVK2h8GLVcVO0vh89vlsnwshHxVQhkwmHktEqJn0AsVSnqYw3PMgCbUAioonut8uvclMfp27807nd8tqab9L-9mve_1K_keqcA3kil6y_yBZ-1C4AL9BvlCChKF8kIzPN7dA7q5LprhEyzog02jSul3igfPSZL7VvS0awK8KjOyKqXVQcSk8JIDW0MmbhbE1xMDFbN3yI8gwlgCsxnEW-Kl7Vwk8GM3dK113l9EC-TVfbW7FNHL93tB4BNU1ZYRx429YbtnX_ltoomt39y-0mYF-6AWb7K3imJik0ADoq8YqodpA2rD5otEw1SY44L9go_bGBqyJuceMt7SZ_xzucuZLk_DWTta8BUpH9tZ9ICy-z6AMRGsiLq-2tLqtv6MyuMCIq2qwSwaw1HXzRjHWxgCX3-PxbDqNo9E8OiInDixIYEY9GY6iL1O7n4fM2yvTldr_XUfDFeHn5vGH_KdZ1Bxt6owzJbOJnpInlQDp0ODrGeno4jl53ApU-YLctJBGW0ijJdJojTR6iDRaIo2uCmqRRkH-9G-k0UOkUUAarZD2kszGo-h8wqqcHSwTA7ljuRCpzsPMT3TiSxkKmbvBIPM016kSQLCF1lCrEtfxFNcKVyRp6rrKVxl3M0-ckuNiVehXhLrQUgvobZ4r6WZBKEPoWcW5Eh7qoi75VPdknFUB7TGvynVcGlaIML4YRMOy18dd8sG2XZswLve2OqsFElfDfBs7QOcCJ3Ck3yXvbTUMIjxZSwoNnR07wPAcFz7W65JTEKR9RyP31w-4-Q151AyEM3K82-z1W-C8u_RdBbc_G4i0OA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystalline+microporous+small+molecule+semiconductors+based+on+porphyrin+for+high-performance+chemiresistive+gas+sensing&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Deng%2C+Wei-Hua&rft.au=He%2C+Liang&rft.au=Chen%2C+Er-Xia&rft.au=Wang%2C+Guan-E&rft.date=2022-06-21&rft.issn=2050-7496&rft.volume=10&rft.issue=24+p.12977-12983&rft.spage=12977&rft.epage=12983&rft_id=info:doi/10.1039%2Fd1ta10945f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |