Tuning intramolecular charge transfer and spin-orbit coupling of AIE-active type-I photosensitizers for photodynamic therapy

Development of photosensitizers (PSs) featuring type-I reactive oxygen species (ROS) with aggregation-induced emission (AIE) properties is a judicious approach to overcome the deficit of conventional photodynamic therapy (PDT). However, it remains a challenge to design AIE-active type-I ROS PSs usin...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. B, Materials for biology and medicine Vol. 1; no. 32; pp. 6228 - 6236
Main Authors Singh, Ravinder, Chen, Deng-Gao, Wang, Chun-Hsiang, Wu, Chi-Chi, Hsu, Chao-Hsien, Wu, Chi-Hua, Lai, Tai-Ying, Chou, Pi-Tai, Chen, Chao-Tsen
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 17.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Development of photosensitizers (PSs) featuring type-I reactive oxygen species (ROS) with aggregation-induced emission (AIE) properties is a judicious approach to overcome the deficit of conventional photodynamic therapy (PDT). However, it remains a challenge to design AIE-active type-I ROS PSs using a simple theranostic scaffold paired with a delicate balance between intramolecular charge transfer (ICT) and large spin-orbit coupling (SOC) features to facilitate intersystem crossing (ISC) and hence to intensify triplet excitons for type-I ROS generation as well as to improve optical properties for the desired biomedical applications. In this work, a rationally designed series of PSs based on C-6-substituted tetraphenylethylene-fused benzothiazole-coumarin scaffolds, named TPE- n CUMs , were synthesized via a fused-ring-electron-acceptor (FREA) strategy, endowed with AIE properties in aqueous solution and thus self-monitoring type-I ROS generation under white-light irradiation to study the effects of diverse ICT and SOC potentials on their photochemical and optical properties. Both experimental and theoretical results revealed that the concomitantly increasing strengths of both ICT and SOC features promote type-I ROS generation by TPE- n CUMs . The key role of the SOC-promoting carbonyl group towards the ROS generation ability of TPE- n CUMs was then examined. Among TPE- n CUMs , gem -2OMe-TPE-2CUM displayed highly efficient type-I ROS generation. Importantly, gem -OMe-TPE-1CUM acts as a fluorescent indicator in HeLa cells ( in vitro ), revealing its excellent diffusion capability in both lysosomal and mitochondrial organelles with low dark toxicity, high cytotoxicity under white-light and remarkable PDT efficiency. Our study has thus elucidated a rationally designed strategy at the molecular level to fine-tune ICT and SOC features for the advance of AIE-active type-I ROS PSs, opening a new avenue for cancer treatment and image-guided therapy. Judicious strategy to envision fine-tuning of intramolecular charge transfer (ICT) and spin-orbit coupling (SOC) features for the advances of AIE-active Type-I photosensitizers (PSs) for image-guided photodynamic therapy (PDT).
AbstractList Development of photosensitizers (PSs) featuring type-I reactive oxygen species (ROS) with aggregation-induced emission (AIE) properties is a judicious approach to overcome the deficit of conventional photodynamic therapy (PDT). However, it remains a challenge to design AIE-active type-I ROS PSs using a simple theranostic scaffold paired with a delicate balance between intramolecular charge transfer (ICT) and large spin–orbit coupling (SOC) features to facilitate intersystem crossing (ISC) and hence to intensify triplet excitons for type-I ROS generation as well as to improve optical properties for the desired biomedical applications. In this work, a rationally designed series of PSs based on C-6-substituted tetraphenylethylene-fused benzothiazole-coumarin scaffolds, named TPE-nCUMs, were synthesized via a fused-ring-electron-acceptor (FREA) strategy, endowed with AIE properties in aqueous solution and thus self-monitoring type-I ROS generation under white-light irradiation to study the effects of diverse ICT and SOC potentials on their photochemical and optical properties. Both experimental and theoretical results revealed that the concomitantly increasing strengths of both ICT and SOC features promote type-I ROS generation by TPE-nCUMs. The key role of the SOC-promoting carbonyl group towards the ROS generation ability of TPE-nCUMs was then examined. Among TPE-nCUMs, gem-2OMe-TPE-2CUM displayed highly efficient type-I ROS generation. Importantly, gem-OMe-TPE-1CUM acts as a fluorescent indicator in HeLa cells (in vitro), revealing its excellent diffusion capability in both lysosomal and mitochondrial organelles with low dark toxicity, high cytotoxicity under white-light and remarkable PDT efficiency. Our study has thus elucidated a rationally designed strategy at the molecular level to fine-tune ICT and SOC features for the advance of AIE-active type-I ROS PSs, opening a new avenue for cancer treatment and image-guided therapy.
Development of photosensitizers (PSs) featuring type-I reactive oxygen species (ROS) with aggregation-induced emission (AIE) properties is a judicious approach to overcome the deficit of conventional photodynamic therapy (PDT). However, it remains a challenge to design AIE-active type-I ROS PSs using a simple theranostic scaffold paired with a delicate balance between intramolecular charge transfer (ICT) and large spin–orbit coupling (SOC) features to facilitate intersystem crossing (ISC) and hence to intensify triplet excitons for type-I ROS generation as well as to improve optical properties for the desired biomedical applications. In this work, a rationally designed series of PSs based on C-6-substituted tetraphenylethylene-fused benzothiazole-coumarin scaffolds, named TPE-nCUMs, were synthesized via a fused-ring-electron-acceptor (FREA) strategy, endowed with AIE properties in aqueous solution and thus self-monitoring type-I ROS generation under white-light irradiation to study the effects of diverse ICT and SOC potentials on their photochemical and optical properties. Both experimental and theoretical results revealed that the concomitantly increasing strengths of both ICT and SOC features promote type-I ROS generation by TPE-nCUMs. The key role of the SOC-promoting carbonyl group towards the ROS generation ability of TPE-nCUMs was then examined. Among TPE-nCUMs, gem-2OMe-TPE-2CUM displayed highly efficient type-I ROS generation. Importantly, gem-OMe-TPE-1CUM acts as a fluorescent indicator in HeLa cells ( in vitro ), revealing its excellent diffusion capability in both lysosomal and mitochondrial organelles with low dark toxicity, high cytotoxicity under white-light and remarkable PDT efficiency. Our study has thus elucidated a rationally designed strategy at the molecular level to fine-tune ICT and SOC features for the advance of AIE-active type-I ROS PSs, opening a new avenue for cancer treatment and image-guided therapy.
Development of photosensitizers (PSs) featuring type-I reactive oxygen species (ROS) with aggregation-induced emission (AIE) properties is a judicious approach to overcome the deficit of conventional photodynamic therapy (PDT). However, it remains a challenge to design AIE-active type-I ROS PSs using a simple theranostic scaffold paired with a delicate balance between intramolecular charge transfer (ICT) and large spin-orbit coupling (SOC) features to facilitate intersystem crossing (ISC) and hence to intensify triplet excitons for type-I ROS generation as well as to improve optical properties for the desired biomedical applications. In this work, a rationally designed series of PSs based on C-6-substituted tetraphenylethylene-fused benzothiazole-coumarin scaffolds, named TPE- n CUMs , were synthesized via a fused-ring-electron-acceptor (FREA) strategy, endowed with AIE properties in aqueous solution and thus self-monitoring type-I ROS generation under white-light irradiation to study the effects of diverse ICT and SOC potentials on their photochemical and optical properties. Both experimental and theoretical results revealed that the concomitantly increasing strengths of both ICT and SOC features promote type-I ROS generation by TPE- n CUMs . The key role of the SOC-promoting carbonyl group towards the ROS generation ability of TPE- n CUMs was then examined. Among TPE- n CUMs , gem -2OMe-TPE-2CUM displayed highly efficient type-I ROS generation. Importantly, gem -OMe-TPE-1CUM acts as a fluorescent indicator in HeLa cells ( in vitro ), revealing its excellent diffusion capability in both lysosomal and mitochondrial organelles with low dark toxicity, high cytotoxicity under white-light and remarkable PDT efficiency. Our study has thus elucidated a rationally designed strategy at the molecular level to fine-tune ICT and SOC features for the advance of AIE-active type-I ROS PSs, opening a new avenue for cancer treatment and image-guided therapy. Judicious strategy to envision fine-tuning of intramolecular charge transfer (ICT) and spin-orbit coupling (SOC) features for the advances of AIE-active Type-I photosensitizers (PSs) for image-guided photodynamic therapy (PDT).
Author Wu, Chi-Chi
Hsu, Chao-Hsien
Wu, Chi-Hua
Lai, Tai-Ying
Wang, Chun-Hsiang
Chen, Chao-Tsen
Chou, Pi-Tai
Singh, Ravinder
Chen, Deng-Gao
AuthorAffiliation Department of Chemistry
National Taiwan University
AuthorAffiliation_xml – name: National Taiwan University
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Ravinder
  surname: Singh
  fullname: Singh, Ravinder
– sequence: 2
  givenname: Deng-Gao
  surname: Chen
  fullname: Chen, Deng-Gao
– sequence: 3
  givenname: Chun-Hsiang
  surname: Wang
  fullname: Wang, Chun-Hsiang
– sequence: 4
  givenname: Chi-Chi
  surname: Wu
  fullname: Wu, Chi-Chi
– sequence: 5
  givenname: Chao-Hsien
  surname: Hsu
  fullname: Hsu, Chao-Hsien
– sequence: 6
  givenname: Chi-Hua
  surname: Wu
  fullname: Wu, Chi-Hua
– sequence: 7
  givenname: Tai-Ying
  surname: Lai
  fullname: Lai, Tai-Ying
– sequence: 8
  givenname: Pi-Tai
  surname: Chou
  fullname: Chou, Pi-Tai
– sequence: 9
  givenname: Chao-Tsen
  surname: Chen
  fullname: Chen, Chao-Tsen
BookMark eNpdkc1LAzEQxYMoqNWLdyHgRYTVfDXpHrV-FQpeKnhbstlZG9kma5IVKv7xRisKzmWGx2-GN7x9tO28A4SOKDmnhJcXDUs1oYwJs4X2GBmTQo3pZPt3Jk-76DDGF5JrQuWEiz30sRicdc_YuhT0yndghk4HbJY6PAPOmostBKxdg2NvXeFDbRM2fui7rzXf4svZTaFNsm8ZX_dQzHC_9MlHcNEm-w4h4taHjdisnV5Zg9MSgu7XB2in1V2Ew58-Qo-3N4vpfTF_uJtNL-eF4VSkomVENyUQBTLbrgmXylBJIH_KNRWK19SUWWFjxlphqK4ZSNZoQYVoyknLR-h0c7cP_nWAmKqVjQa6TjvwQ6yYLJVUTCme0ZN_6IsfgsvuKqYI51IKqTJ1tqFM8DEGaKs-2JUO64qS6iuL6potrr6zmGb4eAOHaH65v6z4J_u8iJg
CitedBy_id crossref_primary_10_1107_S205698902300347X
crossref_primary_10_1039_D4SC01180E
crossref_primary_10_1039_D3NH00584D
crossref_primary_10_1039_D2BM01838A
crossref_primary_10_1107_S2056989023002979
crossref_primary_10_1002_sstr_202200329
crossref_primary_10_1002_adfm_202303240
Cites_doi 10.1002/chem.201000111
10.1002/adfm.202002057
10.1111/php.12716
10.1039/C6CS00271D
10.1021/acsnano.1c01577
10.1039/D0SC00785D
10.1039/b904665h
10.1021/acsnano.8b03138
10.1039/cs9952400019
10.1021/jacs.8b08658
10.2217/nnm.14.161
10.1021/acs.jpcb.1c08133
10.1039/C3TC32373K
10.1021/cr900300p
10.1002/VIW.20200121
10.1002/cyto.a.23596
10.1021/nn503450t
10.1039/C9SC06441A
10.1002/smll.201201334
10.1021/jacs.6b05302
10.1002/advs.201900530
10.1038/nrc1367
10.1038/nrc1071
10.3389/fchem.2021.755419
10.1021/acsami.5b12768
10.1021/acs.jpcc.6b09015
10.1021/jacs.8b13804
10.1038/s41467-020-20067-6
10.1002/anie.202013301
10.1002/anie.201704458
10.3390/molecules26020268
10.1002/advs.202104079
10.1039/C7SC03765A
10.1002/adma.201801350
10.1021/acs.jmedchem.9b02014
10.1038/nrc.2017.17
10.1016/j.dyepig.2021.109651
10.1002/chem.202202097
10.1021/acs.jpclett.9b03363
10.1039/D1SC00045D
10.1002/chem.201503041
10.1021/acs.jpcc.8b12567
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1039/d2tb01224c
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7518
EndPage 6236
ExternalDocumentID 10_1039_D2TB01224C
d2tb01224c
GroupedDBID 0-7
0R
4.4
53G
705
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AENEX
AFOGI
AFRAH
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
D0L
EBS
ECGLT
EE0
EF-
GNO
H13
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
-JG
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AGEGJ
AHGCF
APEMP
CITATION
GGIMP
HZ~
RAOCF
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c314t-f20ad9e07e6816b0367c160e2243a1473b1c9c162522f4c1ab2e62da4144d98f3
ISSN 2050-750X
IngestDate Thu Jul 25 12:00:03 EDT 2024
Thu Oct 10 18:34:07 EDT 2024
Fri Aug 23 03:21:50 EDT 2024
Fri Aug 19 08:02:44 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-f20ad9e07e6816b0367c160e2243a1473b1c9c162522f4c1ab2e62da4144d98f3
Notes 1
For ESI and crystallographic data in CIF or other electronic format see DOI
13
and
C NMR and mass data. CCDC
H
Electronic supplementary information (ESI) available: Synthetic procedures and characterization; UV-vis and FL spectra; computational section; and
2175654
https://doi.org/10.1039/d2tb01224c
2175655
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6406-2209
0000-0002-0151-4586
0000-0002-7225-4873
0000-0002-8925-7747
PQID 2703366467
PQPubID 2047522
PageCount 9
ParticipantIDs proquest_miscellaneous_2697672773
proquest_journals_2703366467
rsc_primary_d2tb01224c
crossref_primary_10_1039_D2TB01224C
PublicationCentury 2000
PublicationDate 20220817
PublicationDateYYYYMMDD 2022-08-17
PublicationDate_xml – month: 8
  year: 2022
  text: 20220817
  day: 17
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. B, Materials for biology and medicine
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Jadhav (D2TB01224C/cit39/1) 2016; 120
Silva (D2TB01224C/cit16/1) 2010; 16
Zheng (D2TB01224C/cit23/1) 2020; 11
Liu (D2TB01224C/cit22/1) 2021; 12
Gu (D2TB01224C/cit40/1) 2012; 22
Gilson (D2TB01224C/cit14/1) 2017; 56
Gotwals (D2TB01224C/cit1/1) 2017; 17
Li (D2TB01224C/cit12/1) 2018; 93
Wang (D2TB01224C/cit26/1) 2021; 60
Wang (D2TB01224C/cit27/1) 2022; 28
Zheng (D2TB01224C/cit24/1) 2018; 12
Singh (D2TB01224C/cit35/1) 2021; 125
Chen (D2TB01224C/cit34/1) 2021; 15
Zhang (D2TB01224C/cit9/1) 2019; 6
Li (D2TB01224C/cit29/1) 2022; 3
Tian (D2TB01224C/cit33/1) 2021; 194
Wongrakpanich (D2TB01224C/cit44/1) 2014; 16
Li (D2TB01224C/cit17/1) 2018; 140
Wan (D2TB01224C/cit30/1) 2020; 30
Lucky (D2TB01224C/cit13/1) 2015; 9
Ni (D2TB01224C/cit28/1) 2021; 26
Zhou (D2TB01224C/cit3/1) 2016; 45
Nam (D2TB01224C/cit10/1) 2016; 138
Feng (D2TB01224C/cit37/1) 2014; 2
Peng (D2TB01224C/cit41/1) 2019; 123
Zhou (D2TB01224C/cit25/1) 2021; 9
Dai (D2TB01224C/cit21/1) 2020; 63
Xiao (D2TB01224C/cit32/1) 2022; 9
Lan (D2TB01224C/cit8/1) 2019; 141
Hong (D2TB01224C/cit19/1) 2009
Lv (D2TB01224C/cit11/1) 2018; 9
Gu (D2TB01224C/cit42/1) 2020; 11
Celli (D2TB01224C/cit18/1) 2010; 110
Brown (D2TB01224C/cit6/1) 2004; 4
Celli (D2TB01224C/cit4/1) 2010; 110
Lv (D2TB01224C/cit43/1) 2018; 9
Bonnett (D2TB01224C/cit15/1) 1995; 24
Zhou (D2TB01224C/cit7/1) 2016; 45
Singh (D2TB01224C/cit36/1) 2016; 8
Hu (D2TB01224C/cit20/1) 2018; 30
Zhuang (D2TB01224C/cit31/1) 2020; 11
Xue (D2TB01224C/cit38/1) 2016; 22
Chen (D2TB01224C/cit45/1) 2020; 11
Dolmans (D2TB01224C/cit2/1) 2003; 3
Baptista (D2TB01224C/cit5/1) 2017; 93
References_xml – volume: 16
  start-page: 9273
  year: 2010
  ident: D2TB01224C/cit16/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201000111
  contributor:
    fullname: Silva
– volume: 30
  start-page: 2002057
  year: 2020
  ident: D2TB01224C/cit30/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002057
  contributor:
    fullname: Wan
– volume: 93
  start-page: 912
  year: 2017
  ident: D2TB01224C/cit5/1
  publication-title: Photochem. Photobiol.
  doi: 10.1111/php.12716
  contributor:
    fullname: Baptista
– volume: 45
  start-page: 6597
  year: 2016
  ident: D2TB01224C/cit7/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00271D
  contributor:
    fullname: Zhou
– volume: 15
  start-page: 7735
  year: 2021
  ident: D2TB01224C/cit34/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c01577
  contributor:
    fullname: Chen
– volume: 11
  start-page: 3405
  year: 2020
  ident: D2TB01224C/cit31/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC00785D
  contributor:
    fullname: Zhuang
– start-page: 4332
  year: 2009
  ident: D2TB01224C/cit19/1
  publication-title: Chem. Commun.
  doi: 10.1039/b904665h
  contributor:
    fullname: Hong
– volume: 12
  start-page: 8145
  year: 2018
  ident: D2TB01224C/cit24/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03138
  contributor:
    fullname: Zheng
– volume: 24
  start-page: 19
  year: 1995
  ident: D2TB01224C/cit15/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/cs9952400019
  contributor:
    fullname: Bonnett
– volume: 140
  start-page: 14851
  year: 2018
  ident: D2TB01224C/cit17/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08658
  contributor:
    fullname: Li
– volume: 16
  start-page: 2531
  year: 2014
  ident: D2TB01224C/cit44/1
  publication-title: Nanomedicine
  doi: 10.2217/nnm.14.161
  contributor:
    fullname: Wongrakpanich
– volume: 45
  start-page: 6597
  year: 2016
  ident: D2TB01224C/cit3/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00271D
  contributor:
    fullname: Zhou
– volume: 125
  start-page: 11557
  year: 2021
  ident: D2TB01224C/cit35/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.1c08133
  contributor:
    fullname: Singh
– volume: 2
  start-page: 2353
  year: 2014
  ident: D2TB01224C/cit37/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C3TC32373K
  contributor:
    fullname: Feng
– volume: 110
  start-page: 2795
  year: 2010
  ident: D2TB01224C/cit4/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr900300p
  contributor:
    fullname: Celli
– volume: 3
  start-page: 20200121
  year: 2022
  ident: D2TB01224C/cit29/1
  publication-title: VIEW
  doi: 10.1002/VIW.20200121
  contributor:
    fullname: Li
– volume: 93
  start-page: 997
  year: 2018
  ident: D2TB01224C/cit12/1
  publication-title: Cytometry, Part A
  doi: 10.1002/cyto.a.23596
  contributor:
    fullname: Li
– volume: 9
  start-page: 191
  year: 2015
  ident: D2TB01224C/cit13/1
  publication-title: ACS Nano
  doi: 10.1021/nn503450t
  contributor:
    fullname: Lucky
– volume: 11
  start-page: 2494
  year: 2020
  ident: D2TB01224C/cit23/1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC06441A
  contributor:
    fullname: Zheng
– volume: 22
  start-page: 3406
  year: 2012
  ident: D2TB01224C/cit40/1
  publication-title: Small
  doi: 10.1002/smll.201201334
  contributor:
    fullname: Gu
– volume: 138
  start-page: 10968
  year: 2016
  ident: D2TB01224C/cit10/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05302
  contributor:
    fullname: Nam
– volume: 6
  start-page: 1900530
  year: 2019
  ident: D2TB01224C/cit9/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900530
  contributor:
    fullname: Zhang
– volume: 110
  start-page: 2795
  year: 2010
  ident: D2TB01224C/cit18/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr900300p
  contributor:
    fullname: Celli
– volume: 4
  start-page: 437
  year: 2004
  ident: D2TB01224C/cit6/1
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1367
  contributor:
    fullname: Brown
– volume: 3
  start-page: 380
  year: 2003
  ident: D2TB01224C/cit2/1
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1071
  contributor:
    fullname: Dolmans
– volume: 9
  start-page: 755419
  year: 2021
  ident: D2TB01224C/cit25/1
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2021.755419
  contributor:
    fullname: Zhou
– volume: 8
  start-page: 6751
  year: 2016
  ident: D2TB01224C/cit36/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12768
  contributor:
    fullname: Singh
– volume: 120
  start-page: 24030
  year: 2016
  ident: D2TB01224C/cit39/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b09015
  contributor:
    fullname: Jadhav
– volume: 141
  start-page: 4204
  year: 2019
  ident: D2TB01224C/cit8/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13804
  contributor:
    fullname: Lan
– volume: 11
  start-page: 6290
  year: 2020
  ident: D2TB01224C/cit45/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20067-6
  contributor:
    fullname: Chen
– volume: 60
  start-page: 4720
  year: 2021
  ident: D2TB01224C/cit26/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202013301
  contributor:
    fullname: Wang
– volume: 56
  start-page: 10717
  year: 2017
  ident: D2TB01224C/cit14/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201704458
  contributor:
    fullname: Gilson
– volume: 26
  start-page: 268
  year: 2021
  ident: D2TB01224C/cit28/1
  publication-title: Molecules
  doi: 10.3390/molecules26020268
  contributor:
    fullname: Ni
– volume: 9
  start-page: 2104079
  year: 2022
  ident: D2TB01224C/cit32/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202104079
  contributor:
    fullname: Xiao
– volume: 9
  start-page: 502
  year: 2018
  ident: D2TB01224C/cit11/1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC03765A
  contributor:
    fullname: Lv
– volume: 30
  start-page: 1801350
  year: 2018
  ident: D2TB01224C/cit20/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801350
  contributor:
    fullname: Hu
– volume: 63
  start-page: 1996
  year: 2020
  ident: D2TB01224C/cit21/1
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.9b02014
  contributor:
    fullname: Dai
– volume: 17
  start-page: 286
  year: 2017
  ident: D2TB01224C/cit1/1
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2017.17
  contributor:
    fullname: Gotwals
– volume: 194
  start-page: 109651
  year: 2021
  ident: D2TB01224C/cit33/1
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2021.109651
  contributor:
    fullname: Tian
– volume: 9
  start-page: 502
  year: 2018
  ident: D2TB01224C/cit43/1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC03765A
  contributor:
    fullname: Lv
– volume: 28
  start-page: e202200042
  year: 2022
  ident: D2TB01224C/cit27/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202202097
  contributor:
    fullname: Wang
– volume: 11
  start-page: 6191
  year: 2020
  ident: D2TB01224C/cit42/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03363
  contributor:
    fullname: Gu
– volume: 12
  start-page: 6488
  year: 2021
  ident: D2TB01224C/cit22/1
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC00045D
  contributor:
    fullname: Liu
– volume: 22
  start-page: 916
  year: 2016
  ident: D2TB01224C/cit38/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201503041
  contributor:
    fullname: Xue
– volume: 123
  start-page: 6197
  year: 2019
  ident: D2TB01224C/cit41/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b12567
  contributor:
    fullname: Peng
SSID ssj0000816834
Score 2.2946062
Snippet Development of photosensitizers (PSs) featuring type-I reactive oxygen species (ROS) with aggregation-induced emission (AIE) properties is a judicious approach...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 6228
SubjectTerms Aqueous solutions
Benzothiazole
Biocompatibility
Biomedical materials
Carbonyl compounds
Carbonyl groups
Carbonyls
Charge transfer
Coumarin
Cytotoxicity
Excitons
Fluorescent indicators
Irradiation
Light irradiation
Mitochondria
Optical properties
Organelles
Photochemicals
Photodynamic therapy
Radiation
Reactive oxygen species
Scaffolds
Spin-orbit interactions
Toxicity
White light
Title Tuning intramolecular charge transfer and spin-orbit coupling of AIE-active type-I photosensitizers for photodynamic therapy
URI https://www.proquest.com/docview/2703366467
https://search.proquest.com/docview/2697672773
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6l6QUOiL-KQEGL4Ga52F5nHR_bNCVBoUjgqLlZu_aaRAI7SmwOPSDegSeEJ2G8P7bbIgRcrGQd2Zudz7Mz429mEHopWMYJo-CpgqqzfZoyezTiKTxXDvhxYer7vE4UfntOpwv_zXK47PV-dFhLVcmPksvf5pX8j1RhDORaZ8n-g2Sbi8IAfAb5whEkDMe_k3GVq5SUcss-mz63lix-JOrmD2CSCsWR3G3WueE1kGLL16WVFNXmk-Y8H88mNpOaT8Zk7Zm1WRVlsavZ7eX6sk7yremIcjBVPeytslOP4KZ1C4awWgGYjm4pd2SdqOwgc0YyRTtFoK6_5_8As5NRn_fsS13VseERn4r8o_2aqSjvqk1mG6-q3J7WaaFSgV0wvS3LU2t7LBsYWxdVN9QBXnJdejZowKkCKobNKtkq-g-0StNzho4NVtBS7W_dMa3njdZ3OujWIValw6mn09WF_qoqtNzYaxxSl2pNvZLL15NJu6MaFsH5u_hsMZ_H0WQZ7aF9LwiHwz7aP55Es3kTCJSdTyT7oZm7KaNLwlft5a8aTq03tLc1rWqkSRTdRXe0tPGxAuY91BP5fXS7U-HyAfqqIIqvQhQriGIDUQzSxzVEf377LsGJDThxkeEWnFiBE18HJwYk4S44sQbnQ7Q4m0Tjqa1bftgJcf3SzjyHpaFwAkFhWTiYV0HiUkfAAhDm-gHhbhLCiAduQ-YnLuOeoF7KfNf303CUkQPUz4tcPEIY7FBwDkaZR0nih0OHg23tpE5GOSEUjPIBemHWM96oyi6xZGSQMD71ohO56uMBOjRLHesnfxd7sE0SSsHGGKDnzWmAYv2yjeWiqOA3FAx9cA4CMkAHIKLmHq1EH__52k_QrfYhOET9cluJp2ABl_yZxtAve9u5Ig
link.rule.ids 315,786,790,27955,27956
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+intramolecular+charge+transfer+and+spin%E2%80%93orbit+coupling+of+AIE-active+type-I+photosensitizers+for+photodynamic+therapy&rft.jtitle=Journal+of+materials+chemistry.+B%2C+Materials+for+biology+and+medicine&rft.au=Singh%2C+Ravinder&rft.au=Deng-Gao%2C+Chen&rft.au=Chun-Hsiang%2C+Wang&rft.au=Chi-Chi%2C+Wu&rft.date=2022-08-17&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-750X&rft.eissn=2050-7518&rft.volume=10&rft.issue=32&rft.spage=6228&rft.epage=6236&rft_id=info:doi/10.1039%2Fd2tb01224c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-750X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-750X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-750X&client=summon