Prevalence of IgG and Neutralizing Antibodies against Staphylococcus aureus Alpha-Toxin in Healthy Human Subjects and Diverse Patient Populations

Staphylococcus aureus causes an array of serious infections resulting in high morbidity and mortality worldwide. This study evaluated naturally occurring serum anti-alpha-toxin (anti-AT) antibody levels in human subjects from various age groups, individuals with S. aureus dialysis and surgical-site...

Full description

Saved in:
Bibliographic Details
Published inInfection and immunity Vol. 86; no. 3
Main Authors Wu, Yuling, Liu, Xu, Akhgar, Ahmad, Li, Jia J., Mok, Hoyin, Sellman, Bret R., Yu, Li, Roskos, Lorin K., Esser, Mark T., Ruzin, Alexey
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Staphylococcus aureus causes an array of serious infections resulting in high morbidity and mortality worldwide. This study evaluated naturally occurring serum anti-alpha-toxin (anti-AT) antibody levels in human subjects from various age groups, individuals with S. aureus dialysis and surgical-site infections, and S. aureus -colonized versus noncolonized subjects. Anti-AT immunoglobulin G (IgG) and neutralizing antibody (NAb) levels in infants (aged ≤1 year) were significantly lower than those in other populations. In comparison to adolescent, adult, and elderly populations, young children (aged 2 to 10 years) had equivalent anti-AT IgG levels but significantly lower anti-AT NAb levels. Therefore, the development of anti-AT NAbs appears to occur later than that of AT-specific IgG, suggesting a maturation of the immune response to AT. Anti-AT IgG levels were slightly higher in S. aureus -colonized subjects than in noncolonized subjects. The methicillin susceptibility status of colonizing isolates had no effect on anti-AT antibody levels in S. aureus -colonized subjects. The highest anti-AT IgG and NAb levels were observed in dialysis patients with acute S. aureus infection. Anti-AT IgG and NAb levels were well correlated in subjects aged >10 years, regardless of colonization or infection status. These data demonstrate that AT elicits a robust IgG humoral response in infants and young children that becomes stable prior to adolescence, matures into higher levels of NAbs in healthy adolescents, and becomes elevated during S. aureus infection. These findings may assist in identifying subjects and patient populations that could benefit from vaccination or immunoprophylaxis with anti-AT monoclonal antibodies.
AbstractList Staphylococcus aureus causes an array of serious infections resulting in high morbidity and mortality worldwide. This study evaluated naturally occurring serum anti-alpha-toxin (anti-AT) antibody levels in human subjects from various age groups, individuals with S. aureus dialysis and surgical-site infections, and S. aureus -colonized versus noncolonized subjects. Anti-AT immunoglobulin G (IgG) and neutralizing antibody (NAb) levels in infants (aged ≤1 year) were significantly lower than those in other populations. In comparison to adolescent, adult, and elderly populations, young children (aged 2 to 10 years) had equivalent anti-AT IgG levels but significantly lower anti-AT NAb levels. Therefore, the development of anti-AT NAbs appears to occur later than that of AT-specific IgG, suggesting a maturation of the immune response to AT. Anti-AT IgG levels were slightly higher in S. aureus -colonized subjects than in noncolonized subjects. The methicillin susceptibility status of colonizing isolates had no effect on anti-AT antibody levels in S. aureus -colonized subjects. The highest anti-AT IgG and NAb levels were observed in dialysis patients with acute S. aureus infection. Anti-AT IgG and NAb levels were well correlated in subjects aged >10 years, regardless of colonization or infection status. These data demonstrate that AT elicits a robust IgG humoral response in infants and young children that becomes stable prior to adolescence, matures into higher levels of NAbs in healthy adolescents, and becomes elevated during S. aureus infection. These findings may assist in identifying subjects and patient populations that could benefit from vaccination or immunoprophylaxis with anti-AT monoclonal antibodies.
Staphylococcus aureus causes an array of serious infections resulting in high morbidity and mortality worldwide. This study evaluated naturally occurring serum anti-alpha-toxin (anti-AT) antibody levels in human subjects from various age groups, individuals with S. aureus dialysis and surgical-site infections, and S. aureus-colonized versus noncolonized subjects. Anti-AT immunoglobulin G (IgG) and neutralizing antibody (NAb) levels in infants (aged ≤1 year) were significantly lower than those in other populations. In comparison to adolescent, adult, and elderly populations, young children (aged 2 to 10 years) had equivalent anti-AT IgG levels but significantly lower anti-AT NAb levels. Therefore, the development of anti-AT NAbs appears to occur later than that of AT-specific IgG, suggesting a maturation of the immune response to AT. Anti-AT IgG levels were slightly higher in S. aureus-colonized subjects than in noncolonized subjects. The methicillin susceptibility status of colonizing isolates had no effect on anti-AT antibody levels in S. aureus-colonized subjects. The highest anti-AT IgG and NAb levels were observed in dialysis patients with acute S. aureus infection. Anti-AT IgG and NAb levels were well correlated in subjects aged >10 years, regardless of colonization or infection status. These data demonstrate that AT elicits a robust IgG humoral response in infants and young children that becomes stable prior to adolescence, matures into higher levels of NAbs in healthy adolescents, and becomes elevated during S. aureus infection. These findings may assist in identifying subjects and patient populations that could benefit from vaccination or immunoprophylaxis with anti-AT monoclonal antibodies.Staphylococcus aureus causes an array of serious infections resulting in high morbidity and mortality worldwide. This study evaluated naturally occurring serum anti-alpha-toxin (anti-AT) antibody levels in human subjects from various age groups, individuals with S. aureus dialysis and surgical-site infections, and S. aureus-colonized versus noncolonized subjects. Anti-AT immunoglobulin G (IgG) and neutralizing antibody (NAb) levels in infants (aged ≤1 year) were significantly lower than those in other populations. In comparison to adolescent, adult, and elderly populations, young children (aged 2 to 10 years) had equivalent anti-AT IgG levels but significantly lower anti-AT NAb levels. Therefore, the development of anti-AT NAbs appears to occur later than that of AT-specific IgG, suggesting a maturation of the immune response to AT. Anti-AT IgG levels were slightly higher in S. aureus-colonized subjects than in noncolonized subjects. The methicillin susceptibility status of colonizing isolates had no effect on anti-AT antibody levels in S. aureus-colonized subjects. The highest anti-AT IgG and NAb levels were observed in dialysis patients with acute S. aureus infection. Anti-AT IgG and NAb levels were well correlated in subjects aged >10 years, regardless of colonization or infection status. These data demonstrate that AT elicits a robust IgG humoral response in infants and young children that becomes stable prior to adolescence, matures into higher levels of NAbs in healthy adolescents, and becomes elevated during S. aureus infection. These findings may assist in identifying subjects and patient populations that could benefit from vaccination or immunoprophylaxis with anti-AT monoclonal antibodies.
causes an array of serious infections resulting in high morbidity and mortality worldwide. This study evaluated naturally occurring serum anti-alpha-toxin (anti-AT) antibody levels in human subjects from various age groups, individuals with dialysis and surgical-site infections, and -colonized versus noncolonized subjects. Anti-AT immunoglobulin G (IgG) and neutralizing antibody (NAb) levels in infants (aged ≤1 year) were significantly lower than those in other populations. In comparison to adolescent, adult, and elderly populations, young children (aged 2 to 10 years) had equivalent anti-AT IgG levels but significantly lower anti-AT NAb levels. Therefore, the development of anti-AT NAbs appears to occur later than that of AT-specific IgG, suggesting a maturation of the immune response to AT. Anti-AT IgG levels were slightly higher in -colonized subjects than in noncolonized subjects. The methicillin susceptibility status of colonizing isolates had no effect on anti-AT antibody levels in -colonized subjects. The highest anti-AT IgG and NAb levels were observed in dialysis patients with acute infection. Anti-AT IgG and NAb levels were well correlated in subjects aged >10 years, regardless of colonization or infection status. These data demonstrate that AT elicits a robust IgG humoral response in infants and young children that becomes stable prior to adolescence, matures into higher levels of NAbs in healthy adolescents, and becomes elevated during infection. These findings may assist in identifying subjects and patient populations that could benefit from vaccination or immunoprophylaxis with anti-AT monoclonal antibodies.
Author Liu, Xu
Esser, Mark T.
Mok, Hoyin
Li, Jia J.
Ruzin, Alexey
Yu, Li
Akhgar, Ahmad
Roskos, Lorin K.
Wu, Yuling
Sellman, Bret R.
Author_xml – sequence: 1
  givenname: Yuling
  surname: Wu
  fullname: Wu, Yuling
  organization: Clinical Pharmacology and Drug Metabolism/Pharmacokinetics, MedImmune, Gaithersburg, Maryland, USA
– sequence: 2
  givenname: Xu
  surname: Liu
  fullname: Liu, Xu
  organization: Clinical Pharmacology and Drug Metabolism/Pharmacokinetics, MedImmune, Gaithersburg, Maryland, USA
– sequence: 3
  givenname: Ahmad
  surname: Akhgar
  fullname: Akhgar, Ahmad
  organization: Clinical Pharmacology and Drug Metabolism/Pharmacokinetics, MedImmune, Gaithersburg, Maryland, USA
– sequence: 4
  givenname: Jia J.
  surname: Li
  fullname: Li, Jia J.
  organization: Clinical Pharmacology and Drug Metabolism/Pharmacokinetics, MedImmune, Gaithersburg, Maryland, USA
– sequence: 5
  givenname: Hoyin
  surname: Mok
  fullname: Mok, Hoyin
  organization: Clinical Pharmacology and Drug Metabolism/Pharmacokinetics, MedImmune, Mountain View, California, USA
– sequence: 6
  givenname: Bret R.
  surname: Sellman
  fullname: Sellman, Bret R.
  organization: Infectious Disease Research, MedImmune, Gaithersburg, Maryland, USA
– sequence: 7
  givenname: Li
  surname: Yu
  fullname: Yu, Li
  organization: Statistical Sciences, MedImmune, Gaithersburg, Maryland, USA
– sequence: 8
  givenname: Lorin K.
  surname: Roskos
  fullname: Roskos, Lorin K.
  organization: Clinical Pharmacology and Drug Metabolism/Pharmacokinetics, MedImmune, Gaithersburg, Maryland, USA
– sequence: 9
  givenname: Mark T.
  surname: Esser
  fullname: Esser, Mark T.
  organization: Infectious Disease/Vaccines Translational Medicine, MedImmune, Gaithersburg, Maryland, USA
– sequence: 10
  givenname: Alexey
  surname: Ruzin
  fullname: Ruzin, Alexey
  organization: Infectious Disease/Vaccines Translational Medicine, MedImmune, Gaithersburg, Maryland, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29263109$$D View this record in MEDLINE/PubMed
BookMark eNptkUtvEzEUhS1URNPAjjXykgVT7HnZ3iBFBZpIFURqWVsez3XiyrGHsSci_Rf9x5i0RYCQLF0_vnuO7XOGTnzwgNBrSs4pLfn71WJ1TkjLaEHZMzSjRPCiacryBM0IoaIQTctO0VmMt3lZ1zV_gU5LUbZVJmfofj3CXjnwGnAweLW5xMr3-AtMaVTO3lm_wQufbBd6CxGrjbI-Jnyd1LA9uKCD1lPenkbIZeGGrSpuwg_rcR5LUC5tD3g57ZTH11N3CzrFo_5Hu4cxAl6rZMEnvA7D5PI8-PgSPTfKRXj1WOfo2-dPNxfL4urr5epicVXoitapAKJ0wwlnCjTnfWuYEIpXLQcqCBBjeE0qwUzfC2hLTjk3nTGiIz3tCAFdzdGHB91h6nbQ63yN_GI5jHanxoMMysq_T7zdyk3Yy4aXRGTxOXr7KDCG7xPEJHc2anBOeQhTlFQwUQvGyiajb_70-m3ylEMGygdAjyHGEYzUNh3_I1tbJymRv8KWOWx5DFtSlpve_dP0pPtf_CfB6q5Z
CitedBy_id crossref_primary_10_1007_s11914_019_00548_4
crossref_primary_10_3389_fimmu_2021_624310
crossref_primary_10_3390_toxins12060408
crossref_primary_10_1016_j_xcrm_2023_101360
crossref_primary_10_1084_jem_20240002
crossref_primary_10_1126_science_abm6380
crossref_primary_10_1093_infdis_jiab219
crossref_primary_10_1093_infdis_jiab326
crossref_primary_10_3390_antibiotics13050410
crossref_primary_10_3346_jkms_2023_38_e129
crossref_primary_10_3389_fimmu_2021_633672
crossref_primary_10_3389_fimmu_2020_620339
crossref_primary_10_1128_spectrum_02399_23
crossref_primary_10_3390_microorganisms6010025
crossref_primary_10_1016_j_chembiol_2022_04_003
crossref_primary_10_1038_s41467_024_52714_7
crossref_primary_10_3390_microorganisms8121936
crossref_primary_10_4049_immunohorizons_2000024
crossref_primary_10_1097_QCO_0000000000000539
Cites_doi 10.1016/j.jinf.2008.01.009
10.1093/infdis/jis192
10.1084/jem.20072208
10.1016/j.meegid.2013.03.020
10.1093/infdis/jit840
10.1093/infdis/jir441
10.1074/jbc.M114.601328
10.1093/cid/ciw333
10.1093/cid/cit123
10.1016/j.cmi.2017.02.035
10.1007/s10096-010-0919-x
10.1128/iai.65.11.4652-4660.1997
10.1164/rccm.201406-1012OC
10.1128/CMR.10.3.505
10.1126/scitranslmed.aad9922
10.1128/AAC.00357-16
10.1086/520200
10.1128/AAC.01020-16
10.1086/515644
10.1128/CVI.05589-11
10.1093/infdis/jiw441
10.3201/eid1312.070629
10.1016/j.tips.2015.11.008
10.1038/nm1207-1405
10.1164/ajrccm.165.7.2105078
10.4161/hv.34414
10.1128/iai.61.12.4972-4979.1993
10.1128/IAI.01313-06
10.1086/656043
10.1016/S1473-3099(05)70295-4
10.1093/infdis/jis462
10.1128/JCM.02023-14
10.1128/mr.55.4.733-751.1991
10.1128/mBio.02272-14
10.1128/iai.57.8.2489-2494.1989
10.1371/journal.pone.0010040
10.1093/cid/ciw245
10.1128/CMR.00134-14
10.1073/pnas.1001815107
10.1128/iai.64.5.1839-1841.1996
ContentType Journal Article
Copyright Copyright © 2018 American Society for Microbiology.
Copyright © 2018 American Society for Microbiology. 2018 American Society for Microbiology
Copyright_xml – notice: Copyright © 2018 American Society for Microbiology.
– notice: Copyright © 2018 American Society for Microbiology. 2018 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1128/IAI.00671-17
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Prevalence of Anti-AT Antibodies in Human Subjects
EISSN 1098-5522
ExternalDocumentID PMC5820940
29263109
10_1128_IAI_00671_17
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
18M
29I
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
85S
AAGFI
AAYXX
ABOCM
ACGFO
ADBBV
ADXHL
AENEX
AGCDD
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
D0S
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
H~9
IH2
J5H
KQ8
L7B
MVM
NEJ
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
SJN
TR2
TWZ
UPT
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
Y6R
ZGI
ZXP
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c314t-e0ac58087aec88d6f799a8368e190e0ff840397fdd9e628188fbff9b0d1b00ec3
ISSN 0019-9567
1098-5522
IngestDate Thu Aug 21 18:32:26 EDT 2025
Fri Jul 11 08:00:54 EDT 2025
Mon Jul 21 05:48:19 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Tue Jul 01 02:09:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords alpha-toxin
human subjects
serum antibodies
Staphylococcus aureus
Language English
License Copyright © 2018 American Society for Microbiology.
All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-e0ac58087aec88d6f799a8368e190e0ff840397fdd9e628188fbff9b0d1b00ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Wu Y, Liu X, Akhgar A, Li JJ, Mok H, Sellman BR, Yu L, Roskos LK, Esser MT, Ruzin A. 2018. Prevalence of IgG and neutralizing antibodies against Staphylococcus aureus alpha-toxin in healthy human subjects and diverse patient populations. Infect Immun 86:e00671-17. https://doi.org/10.1128/IAI.00671-17.
OpenAccessLink https://iai.asm.org/content/iai/86/3/e00671-17.full.pdf
PMID 29263109
PQID 1979497725
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5820940
proquest_miscellaneous_1979497725
pubmed_primary_29263109
crossref_citationtrail_10_1128_IAI_00671_17
crossref_primary_10_1128_IAI_00671_17
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Infection and immunity
PublicationTitleAlternate Infect Immun
PublicationYear 2018
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
National Institute for Biological Standards and Controls (e_1_3_2_44_2) 2010
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
16310147 - Lancet Infect Dis. 2005 Dec;5(12):751-62
9353046 - Infect Immun. 1997 Nov;65(11):4652-60
8613399 - Infect Immun. 1996 May;64(5):1839-41
23446627 - Clin Infect Dis. 2013 Jun;56(11):1554-61
25392350 - J Clin Microbiol. 2015 Jan;53(1):227-36
23619097 - Infect Genet Evol. 2014 Jan;21:531-41
9697723 - J Infect Dis. 1998 Aug;178(2):431-40
27795368 - Antimicrob Agents Chemother. 2016 Dec 27;61(1):null
25303310 - Am J Respir Crit Care Med. 2014 Nov 15;190(10):1139-48
9227864 - Clin Microbiol Rev. 1997 Jul;10(3):505-20
18268041 - J Exp Med. 2008 Feb 18;205(2):287-94
20383551 - Eur J Clin Microbiol Infect Dis. 2010 Jun;29(6):715-25
27651418 - J Infect Dis. 2016 Dec 1;214(11):1638-1646
28274770 - Clin Microbiol Infect. 2017 Apr;23 (4):219-221
22474035 - J Infect Dis. 2012 Aug 1;206(3):352-6
26016486 - Clin Microbiol Rev. 2015 Jul;28(3):603-61
8225571 - Infect Immun. 1993 Dec;61(12):4972-9
25210036 - J Biol Chem. 2014 Oct 24;289(43):29874-80
22807524 - J Infect Dis. 2012 Sep 15;206(6):915-23
27324766 - Antimicrob Agents Chemother. 2016 Aug 22;60(9):5312-21
26719219 - Trends Pharmacol Sci. 2016 Mar;37(3):231-241
24376272 - J Infect Dis. 2014 Jun 1;209(11):1773-80
18064027 - Nat Med. 2007 Dec;13(12):1405-6
21849291 - J Infect Dis. 2011 Sep 15;204(6):937-41
11934711 - Am J Respir Crit Care Med. 2002 Apr 1;165(7):867-903
25691592 - MBio. 2015 Feb 17;6(1):e02272-14
17101657 - Infect Immun. 2007 Feb;75(2):1040-4
26962155 - Sci Transl Med. 2016 Mar 9;8(329):329ra31
18314197 - J Infect. 2008 Apr;56(4):249-56
20386721 - PLoS One. 2010 Apr 06;5(4):e10040
18258033 - Emerg Infect Dis. 2007 Dec;13(12):1840-6
22237895 - Clin Vaccine Immunol. 2012 Mar;19(3):377-85
27208045 - Clin Infect Dis. 2016 Sep 1;63(5):657-62
10476727 - Clin Infect Dis. 1999 Aug;29(2):281-8
20624979 - Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13473-8
2744856 - Infect Immun. 1989 Aug;57(8):2489-94
20726702 - J Infect Dis. 2010 Oct 1;202(7):1050-8
27481953 - Clin Infect Dis. 2016 Aug 15;63 Suppl 2:S46-51
25483694 - Hum Vaccin Immunother. 2015;11(3):632-41
1779933 - Microbiol Rev. 1991 Dec;55(4):733-51
References_xml – ident: e_1_3_2_28_2
  doi: 10.1016/j.jinf.2008.01.009
– ident: e_1_3_2_19_2
  doi: 10.1093/infdis/jis192
– ident: e_1_3_2_23_2
  doi: 10.1084/jem.20072208
– ident: e_1_3_2_2_2
  doi: 10.1016/j.meegid.2013.03.020
– ident: e_1_3_2_43_2
– volume-title: NIBSC code: STA, vol 5.0, p 1–4
  year: 2010
  ident: e_1_3_2_44_2
– ident: e_1_3_2_20_2
  doi: 10.1093/infdis/jit840
– ident: e_1_3_2_18_2
  doi: 10.1093/infdis/jir441
– ident: e_1_3_2_30_2
  doi: 10.1074/jbc.M114.601328
– ident: e_1_3_2_9_2
  doi: 10.1093/cid/ciw333
– ident: e_1_3_2_29_2
  doi: 10.1093/cid/cit123
– ident: e_1_3_2_33_2
  doi: 10.1016/j.cmi.2017.02.035
– ident: e_1_3_2_42_2
– ident: e_1_3_2_27_2
  doi: 10.1007/s10096-010-0919-x
– ident: e_1_3_2_15_2
  doi: 10.1128/iai.65.11.4652-4660.1997
– ident: e_1_3_2_41_2
  doi: 10.1164/rccm.201406-1012OC
– ident: e_1_3_2_4_2
  doi: 10.1128/CMR.10.3.505
– ident: e_1_3_2_13_2
  doi: 10.1126/scitranslmed.aad9922
– ident: e_1_3_2_21_2
  doi: 10.1128/AAC.00357-16
– ident: e_1_3_2_35_2
  doi: 10.1086/520200
– ident: e_1_3_2_31_2
  doi: 10.1128/AAC.01020-16
– ident: e_1_3_2_34_2
  doi: 10.1086/515644
– ident: e_1_3_2_25_2
  doi: 10.1128/CVI.05589-11
– ident: e_1_3_2_38_2
  doi: 10.1093/infdis/jiw441
– ident: e_1_3_2_7_2
  doi: 10.3201/eid1312.070629
– ident: e_1_3_2_8_2
  doi: 10.1016/j.tips.2015.11.008
– ident: e_1_3_2_17_2
  doi: 10.1038/nm1207-1405
– ident: e_1_3_2_5_2
  doi: 10.1164/ajrccm.165.7.2105078
– ident: e_1_3_2_36_2
  doi: 10.4161/hv.34414
– ident: e_1_3_2_11_2
  doi: 10.1128/iai.61.12.4972-4979.1993
– ident: e_1_3_2_16_2
  doi: 10.1128/IAI.01313-06
– ident: e_1_3_2_24_2
  doi: 10.1086/656043
– ident: e_1_3_2_3_2
  doi: 10.1016/S1473-3099(05)70295-4
– ident: e_1_3_2_26_2
  doi: 10.1093/infdis/jis462
– ident: e_1_3_2_37_2
  doi: 10.1128/JCM.02023-14
– ident: e_1_3_2_10_2
  doi: 10.1128/mr.55.4.733-751.1991
– ident: e_1_3_2_40_2
  doi: 10.1128/mBio.02272-14
– ident: e_1_3_2_14_2
  doi: 10.1128/iai.57.8.2489-2494.1989
– ident: e_1_3_2_39_2
  doi: 10.1371/journal.pone.0010040
– ident: e_1_3_2_32_2
  doi: 10.1093/cid/ciw245
– ident: e_1_3_2_6_2
  doi: 10.1128/CMR.00134-14
– ident: e_1_3_2_12_2
  doi: 10.1073/pnas.1001815107
– ident: e_1_3_2_22_2
  doi: 10.1128/iai.64.5.1839-1841.1996
– reference: 2744856 - Infect Immun. 1989 Aug;57(8):2489-94
– reference: 18258033 - Emerg Infect Dis. 2007 Dec;13(12):1840-6
– reference: 25210036 - J Biol Chem. 2014 Oct 24;289(43):29874-80
– reference: 17101657 - Infect Immun. 2007 Feb;75(2):1040-4
– reference: 18064027 - Nat Med. 2007 Dec;13(12):1405-6
– reference: 20726702 - J Infect Dis. 2010 Oct 1;202(7):1050-8
– reference: 25483694 - Hum Vaccin Immunother. 2015;11(3):632-41
– reference: 10476727 - Clin Infect Dis. 1999 Aug;29(2):281-8
– reference: 22474035 - J Infect Dis. 2012 Aug 1;206(3):352-6
– reference: 27481953 - Clin Infect Dis. 2016 Aug 15;63 Suppl 2:S46-51
– reference: 20386721 - PLoS One. 2010 Apr 06;5(4):e10040
– reference: 26016486 - Clin Microbiol Rev. 2015 Jul;28(3):603-61
– reference: 27208045 - Clin Infect Dis. 2016 Sep 1;63(5):657-62
– reference: 24376272 - J Infect Dis. 2014 Jun 1;209(11):1773-80
– reference: 9697723 - J Infect Dis. 1998 Aug;178(2):431-40
– reference: 1779933 - Microbiol Rev. 1991 Dec;55(4):733-51
– reference: 25392350 - J Clin Microbiol. 2015 Jan;53(1):227-36
– reference: 18314197 - J Infect. 2008 Apr;56(4):249-56
– reference: 9353046 - Infect Immun. 1997 Nov;65(11):4652-60
– reference: 9227864 - Clin Microbiol Rev. 1997 Jul;10(3):505-20
– reference: 22237895 - Clin Vaccine Immunol. 2012 Mar;19(3):377-85
– reference: 18268041 - J Exp Med. 2008 Feb 18;205(2):287-94
– reference: 26719219 - Trends Pharmacol Sci. 2016 Mar;37(3):231-241
– reference: 20383551 - Eur J Clin Microbiol Infect Dis. 2010 Jun;29(6):715-25
– reference: 21849291 - J Infect Dis. 2011 Sep 15;204(6):937-41
– reference: 11934711 - Am J Respir Crit Care Med. 2002 Apr 1;165(7):867-903
– reference: 23619097 - Infect Genet Evol. 2014 Jan;21:531-41
– reference: 8613399 - Infect Immun. 1996 May;64(5):1839-41
– reference: 20624979 - Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13473-8
– reference: 26962155 - Sci Transl Med. 2016 Mar 9;8(329):329ra31
– reference: 23446627 - Clin Infect Dis. 2013 Jun;56(11):1554-61
– reference: 28274770 - Clin Microbiol Infect. 2017 Apr;23 (4):219-221
– reference: 16310147 - Lancet Infect Dis. 2005 Dec;5(12):751-62
– reference: 22807524 - J Infect Dis. 2012 Sep 15;206(6):915-23
– reference: 27795368 - Antimicrob Agents Chemother. 2016 Dec 27;61(1):null
– reference: 27324766 - Antimicrob Agents Chemother. 2016 Aug 22;60(9):5312-21
– reference: 27651418 - J Infect Dis. 2016 Dec 1;214(11):1638-1646
– reference: 8225571 - Infect Immun. 1993 Dec;61(12):4972-9
– reference: 25691592 - MBio. 2015 Feb 17;6(1):e02272-14
– reference: 25303310 - Am J Respir Crit Care Med. 2014 Nov 15;190(10):1139-48
SSID ssj0014448
Score 2.3530016
Snippet Staphylococcus aureus causes an array of serious infections resulting in high morbidity and mortality worldwide. This study evaluated naturally occurring serum...
causes an array of serious infections resulting in high morbidity and mortality worldwide. This study evaluated naturally occurring serum anti-alpha-toxin...
Staphylococcus aureus causes an array of serious infections resulting in high morbidity and mortality worldwide. This study evaluated naturally occurring serum...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Adolescent
Adult
Aged
Antibodies, Bacterial - blood
Antibodies, Neutralizing - blood
Bacterial Toxins - immunology
Child
Child, Preschool
Enzyme-Linked Immunosorbent Assay
Female
Healthy Volunteers
Hemolysin Proteins - immunology
Humans
Immunoglobulin G - blood
Infant
Male
Microbial Immunity and Vaccines
Middle Aged
Prospective Studies
Staphylococcal Infections - blood
Staphylococcal Infections - immunology
Staphylococcal Infections - microbiology
Staphylococcus aureus - genetics
Staphylococcus aureus - immunology
Staphylococcus aureus - physiology
Young Adult
Title Prevalence of IgG and Neutralizing Antibodies against Staphylococcus aureus Alpha-Toxin in Healthy Human Subjects and Diverse Patient Populations
URI https://www.ncbi.nlm.nih.gov/pubmed/29263109
https://www.proquest.com/docview/1979497725
https://pubmed.ncbi.nlm.nih.gov/PMC5820940
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEIgXBANGuclI8FRlxGku9mPFbR3axEMn9S1yHLsNl2TaEmnbb-CFf8zxJZduQxpIVVq5ThrlfD03f-cYoTcqgegm84UXKBl4YZRxj6oo9rhu3h4psOpSpwYODuO9o3B_GS1Ho18D1lJTZ7vi4tq6kv-RKoyBXHWV7D9ItrsoDMBnkC8cQcJwvJGMdf8lbqqGTEXI6rNZCjiUjUlfXJiMR1kXWaWpghO-4gU4g9q_hGcLRqwSooHh5kTC20wX3XqL6qww3EdbnnTukvygXr4Z2ochLhsqh9Td_XUx5eRrtwfY6dDVnTual2U7F6YOpe4T-I1R_poHv-pIQYUZXDYdCr-vV5YAPlv_5Hk_z2Cv4JP93WHWgtCettVqYsI8iM2ssZVW-ereplEUbGhn1yi76IP3q0o_0IUM89lck_QS4pGkN27tgv4lm9cxEU0MFNAUzk7N2SlJbqHbAQQdej-MD_Mv3ZpUGIbOrts7b8soAvpu-NubDs6VqOUy-XbgzSweoPsuDMEzi6mHaCTLbXTHbkx6vo3uHjjKxSP0uwcZrhQGkGGQJx6CDPcgww5keBNk2IIMD0CG4eVAhg3IcAsyc30HMuxAhgcge4yOPn1cvN_z3D4enpiSsPakz0VEfZpwKSjNY5Uwxuk0phK8UekrRUMf3GKV50zGujsZVZlSLPNzAkZBiukTtFVWpXyKMI9zyVgo8pjJUAqesWnsEwExfS5jxskYTdqHnwrX5F7vtfIjvU7QY_S2m31sm7v8Zd7rVo4paF-9pMZLWTWnKWFgzyCECqIx2rFy7a4UsCDWfXfHKNmQeDdBd3bf_KYs1qbDewR-OQv9Zze8v-foXv8fe4G26pNGvgRfuc5eGQj_AUVzw4I
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prevalence+of+IgG+and+Neutralizing+Antibodies+against+Staphylococcus+aureus+Alpha-Toxin+in+Healthy+Human+Subjects+and+Diverse+Patient+Populations&rft.jtitle=Infection+and+immunity&rft.au=Wu%2C+Yuling&rft.au=Liu%2C+Xu&rft.au=Akhgar%2C+Ahmad&rft.au=Li%2C+Jia+J.&rft.date=2018-03-01&rft.issn=0019-9567&rft.eissn=1098-5522&rft.volume=86&rft.issue=3&rft_id=info:doi/10.1128%2FIAI.00671-17&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_IAI_00671_17
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-9567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-9567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-9567&client=summon