Charge Assessment for Nitrate-Based Salt as a Phase Change Material for a Medium-Temperature Latent Storage Tank

The present study assesses the heat characteristic of the nitrate-salt mixture as a phase change material (PCM) for a medium-temperature latent storage system (LSS). Two binary and ternary mixtures are evaluated, which demonstrate different thermal behaviour. The highest melting and latent heat capa...

Full description

Saved in:
Bibliographic Details
Published inLatvian Journal of Physics and Technical Sciences Vol. 61; no. 1; pp. 52 - 61
Main Authors Ismail, Widodo, Y. I., Rahman, R. A.
Format Journal Article
LanguageEnglish
Published Riga Sciendo 01.02.2024
De Gruyter Poland
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present study assesses the heat characteristic of the nitrate-salt mixture as a phase change material (PCM) for a medium-temperature latent storage system (LSS). Two binary and ternary mixtures are evaluated, which demonstrate different thermal behaviour. The highest melting and latent heat capacity is obtained by KNO (0.4)/NaNO (0.6) at 223.8 °C and 161.5 J/g. However, it has a higher supercooling degree with a partial phase transition between 217.6 °C and 251.5 °C, making it unfeasible for a medium-temperature LSS tank. The ternary mixture (TM) with NaNO (0.4)/KNO (0.53)/NaNO (0.7) demonstrates a stable phase transition with minimum partial phase transition (22.1 °C) and suitable heat of fusion (98.1 J/g). Further evaluation through static thermal profiling demonstrates that the TM has a notable performance during solid-sensible charge with a charge level indicator (CLI) around 45.3 %–49.1 %. The TM can be charged up to 85.7 % until the end stage of the phase transition. It promotes a better storage capacity with suitable performance since the system can be charged effectively at a suitable temperature range (< 160 °C) for various applications. The micrograph observation indicates some dispersed particles and local agglomeration, which makes phase stabilization as an advantageous method to promote a stable phase change process. The TM can be considered a suitable PCM for a medium-temperature LSS tank that allows for a better solar thermal renewable system operation.
AbstractList The present study assesses the heat characteristic of the nitrate-salt mixture as a phase change material (PCM) for a medium-temperature latent storage system (LSS). Two binary and ternary mixtures are evaluated, which demonstrate different thermal behaviour. The highest melting and latent heat capacity is obtained by KNO3(0.4)/NaNO3(0.6) at 223.8 °C and 161.5 J/g. However, it has a higher supercooling degree with a partial phase transition between 217.6 °C and 251.5 °C, making it unfeasible for a medium-temperature LSS tank. The ternary mixture (TM) with NaNO2(0.4)/KNO2(0.53)/NaNO3(0.7) demonstrates a stable phase transition with minimum partial phase transition (22.1 °C) and suitable heat of fusion (98.1 J/g). Further evaluation through static thermal profiling demonstrates that the TM has a notable performance during solid-sensible charge with a charge level indicator (CLI) around 45.3 %–49.1 %. The TM can be charged up to 85.7 % until the end stage of the phase transition. It promotes a better storage capacity with suitable performance since the system can be charged effectively at a suitable temperature range (< 160 °C) for various applications. The micrograph observation indicates some dispersed particles and local agglomeration, which makes phase stabilization as an advantageous method to promote a stable phase change process. The TM can be considered a suitable PCM for a medium-temperature LSS tank that allows for a better solar thermal renewable system operation.
The present study assesses the heat characteristic of the nitrate-salt mixture as a phase change material (PCM) for a medium-temperature latent storage system (LSS). Two binary and ternary mixtures are evaluated, which demonstrate different thermal behaviour. The highest melting and latent heat capacity is obtained by KNO (0.4)/NaNO (0.6) at 223.8 °C and 161.5 J/g. However, it has a higher supercooling degree with a partial phase transition between 217.6 °C and 251.5 °C, making it unfeasible for a medium-temperature LSS tank. The ternary mixture (TM) with NaNO (0.4)/KNO (0.53)/NaNO (0.7) demonstrates a stable phase transition with minimum partial phase transition (22.1 °C) and suitable heat of fusion (98.1 J/g). Further evaluation through static thermal profiling demonstrates that the TM has a notable performance during solid-sensible charge with a charge level indicator (CLI) around 45.3 %–49.1 %. The TM can be charged up to 85.7 % until the end stage of the phase transition. It promotes a better storage capacity with suitable performance since the system can be charged effectively at a suitable temperature range (< 160 °C) for various applications. The micrograph observation indicates some dispersed particles and local agglomeration, which makes phase stabilization as an advantageous method to promote a stable phase change process. The TM can be considered a suitable PCM for a medium-temperature LSS tank that allows for a better solar thermal renewable system operation.
Abstract The present study assesses the heat characteristic of the nitrate-salt mixture as a phase change material (PCM) for a medium-temperature latent storage system (LSS). Two binary and ternary mixtures are evaluated, which demonstrate different thermal behaviour. The highest melting and latent heat capacity is obtained by KNO 3 (0.4)/NaNO 3 (0.6) at 223.8 °C and 161.5 J/g. However, it has a higher supercooling degree with a partial phase transition between 217.6 °C and 251.5 °C, making it unfeasible for a medium-temperature LSS tank. The ternary mixture (TM) with NaNO 2 (0.4)/KNO 2 (0.53)/NaNO 3 (0.7) demonstrates a stable phase transition with minimum partial phase transition (22.1 °C) and suitable heat of fusion (98.1 J/g). Further evaluation through static thermal profiling demonstrates that the TM has a notable performance during solid-sensible charge with a charge level indicator (CLI) around 45.3 %–49.1 %. The TM can be charged up to 85.7 % until the end stage of the phase transition. It promotes a better storage capacity with suitable performance since the system can be charged effectively at a suitable temperature range (< 160 °C) for various applications. The micrograph observation indicates some dispersed particles and local agglomeration, which makes phase stabilization as an advantageous method to promote a stable phase change process. The TM can be considered a suitable PCM for a medium-temperature LSS tank that allows for a better solar thermal renewable system operation.
Author Ismail
Widodo, Y. I.
Rahman, R. A.
Author_xml – sequence: 1
  surname: Ismail
  fullname: Ismail
  organization: Department of Mechanical Engineering, Faculty of Engineering, Universitas Pancasila, Srengseng Sawah. Jagakarsa 12640, DKI Jakarta, Indonesia
– sequence: 2
  givenname: Y. I.
  surname: Widodo
  fullname: Widodo, Y. I.
  organization: Department of Mechanical Engineering, Faculty of Engineering, Universitas Pancasila, Srengseng Sawah. Jagakarsa 12640, DKI Jakarta, Indonesia
– sequence: 3
  givenname: R. A.
  surname: Rahman
  fullname: Rahman, R. A.
  email: reza.a@univpancasila.ac.id
  organization: Department of Mechanical Engineering, Faculty of Engineering, Universitas Pancasila, Srengseng Sawah. Jagakarsa 12640, DKI Jakarta, Indonesia
BookMark eNptkF1LwzAUhoNMcM7deh3wujM9adMWr-bwC-YHbF6HtD3Zql1bkxTZvzd1gl54lcPhfd5wnlMyatoGCTkP2QyiJL2sO2cDYBAFjDFxRMYAcRykaSZGf-YTMrW2yhkXIuSMszHpFltlNkjn1qK1O2wc1a2hT5UzymFwrSyWdKVqR5Wlir5s_YJ6pvHMo0-YStXfhKKPWFb9LljjrkMP9wbp0id848q1RnlgrZr3M3KsVW1x-vNOyOvtzXpxHyyf7x4W82VQ8DByQVkkURJhplWW51rHwAsOeQGo84TxCCDTEIvUr_I0j0tIEtBKFGmcRUwjK_mEXBx6O9N-9GidfGt70_gvJWTgC0Akwqdmh1RhWmsNatmZaqfMXoZMDmLlIFYOYuUg1gNXB-DTO0FT4sb0ez_8tv8PijD0N3wB6gGB6Q
Cites_doi 10.5829/ije.2019.32.07a.13
10.1016/j.renene.2019.05.050
10.2478/lpts-2023-0018
10.3390/en13061425
10.1016/j.applthermaleng.2019.114706
10.2478/lpts-2022-0045
10.1016/j.rser.2015.03.067
10.1080/01457632.2022.2034085
10.1016/j.est.2022.105266
10.3390/en14041197
10.20508/ijrer.v11i2.11862.g8181
10.1016/j.csite.2023.103034
10.1016/j.apenergy.2019.113893
10.1016/j.solmat.2020.110644
10.1038/s41598-021-02705-1
10.1016/j.rineng.2023.101210
10.5829/ije.2020.33.10a.03
10.1016/j.apenergy.2020.114572
10.1016/j.jclepro.2019.118888
10.1016/j.ceramint.2021.06.040
10.1016/j.est.2022.104188
10.2478/lpts-2023-0008
10.1016/j.applthermaleng.2019.114404
10.1007/s10973-015-4715-9
10.1016/j.solener.2019.07.064
10.1016/j.heliyon.2023.e14144
10.1016/j.est.2021.102427
10.1016/j.ijthermalsci.2020.106446
10.1016/j.est.2020.102128
10.1016/j.nexus.2023.100196
10.18280/ijht.400615
10.3390/mi14051072
10.1016/j.rser.2019.109539
10.5098/hmt.15.10
10.1016/j.est.2018.11.007
10.3390/ma14237223
10.1038/s41598-018-26537-8
10.1016/j.renene.2022.02.020
10.1016/j.est.2021.102235
ContentType Journal Article
Copyright 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BYOGL
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
DOI 10.2478/lpts-2024-0006
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
East Europe, Central Europe Database
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
East Europe, Central Europe Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
Solid State and Superconductivity Abstracts
ProQuest One Academic
Advanced Technologies Database with Aerospace
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2255-8896
2199-6156
EndPage 61
ExternalDocumentID 10_2478_lpts_2024_0006
10_2478_lpts_2024_000661152
GroupedDBID 9WM
ABFKT
AHGSO
ALMA_UNASSIGNED_HOLDINGS
QD8
AAYXX
CITATION
SLJYH
0R~
29L
2WC
3V.
4.4
5GY
5VS
7U5
8FD
8FE
8FG
ABUWG
ACGFS
ADBBV
ADBLJ
AFKRA
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
BYOGL
CCPQU
CS3
DU5
DWQXO
E0C
E3Z
GROUPED_DOAJ
H8D
HCIFZ
HZ~
KQ8
L7M
O9-
OK1
P62
PIMPY
PQEST
PQQKQ
PQUKI
PROAC
RIG
RNS
SA.
TR2
ID FETCH-LOGICAL-c314t-dc7474e9fa9bbff523c32bc2efb7034229f25682bcb8b5d2772fa6c85940fe0d3
IEDL.DBID 8FG
ISSN 2255-8896
0868-8257
IngestDate Sat Nov 16 13:46:12 EST 2024
Fri Aug 23 03:09:51 EDT 2024
Sun Feb 11 02:15:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-dc7474e9fa9bbff523c32bc2efb7034229f25682bcb8b5d2772fa6c85940fe0d3
OpenAccessLink https://www.proquest.com/docview/2924222676?pq-origsite=%requestingapplication%
PQID 2924222676
PQPubID 2026606
PageCount 10
ParticipantIDs proquest_journals_2924222676
crossref_primary_10_2478_lpts_2024_0006
walterdegruyter_journals_10_2478_lpts_2024_000661152
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Riga
PublicationPlace_xml – name: Riga
PublicationTitle Latvian Journal of Physics and Technical Sciences
PublicationYear 2024
Publisher Sciendo
De Gruyter Poland
Publisher_xml – name: Sciendo
– name: De Gruyter Poland
References 2024042619301123724_j_lpts-2024-0006_ref_030
2024042619301123724_j_lpts-2024-0006_ref_031
2024042619301123724_j_lpts-2024-0006_ref_010
2024042619301123724_j_lpts-2024-0006_ref_032
2024042619301123724_j_lpts-2024-0006_ref_011
2024042619301123724_j_lpts-2024-0006_ref_033
2024042619301123724_j_lpts-2024-0006_ref_016
2024042619301123724_j_lpts-2024-0006_ref_038
2024042619301123724_j_lpts-2024-0006_ref_017
2024042619301123724_j_lpts-2024-0006_ref_039
2024042619301123724_j_lpts-2024-0006_ref_018
2024042619301123724_j_lpts-2024-0006_ref_019
2024042619301123724_j_lpts-2024-0006_ref_012
2024042619301123724_j_lpts-2024-0006_ref_034
2024042619301123724_j_lpts-2024-0006_ref_013
2024042619301123724_j_lpts-2024-0006_ref_035
2024042619301123724_j_lpts-2024-0006_ref_014
2024042619301123724_j_lpts-2024-0006_ref_036
2024042619301123724_j_lpts-2024-0006_ref_015
2024042619301123724_j_lpts-2024-0006_ref_037
2024042619301123724_j_lpts-2024-0006_ref_009
2024042619301123724_j_lpts-2024-0006_ref_041
2024042619301123724_j_lpts-2024-0006_ref_020
2024042619301123724_j_lpts-2024-0006_ref_021
2024042619301123724_j_lpts-2024-0006_ref_022
2024042619301123724_j_lpts-2024-0006_ref_040
2024042619301123724_j_lpts-2024-0006_ref_005
2024042619301123724_j_lpts-2024-0006_ref_027
2024042619301123724_j_lpts-2024-0006_ref_006
2024042619301123724_j_lpts-2024-0006_ref_028
2024042619301123724_j_lpts-2024-0006_ref_007
2024042619301123724_j_lpts-2024-0006_ref_029
2024042619301123724_j_lpts-2024-0006_ref_008
2024042619301123724_j_lpts-2024-0006_ref_001
2024042619301123724_j_lpts-2024-0006_ref_023
2024042619301123724_j_lpts-2024-0006_ref_002
2024042619301123724_j_lpts-2024-0006_ref_024
2024042619301123724_j_lpts-2024-0006_ref_003
2024042619301123724_j_lpts-2024-0006_ref_025
2024042619301123724_j_lpts-2024-0006_ref_004
2024042619301123724_j_lpts-2024-0006_ref_026
References_xml – ident: 2024042619301123724_j_lpts-2024-0006_ref_010
  doi: 10.5829/ije.2019.32.07a.13
– ident: 2024042619301123724_j_lpts-2024-0006_ref_006
  doi: 10.1016/j.renene.2019.05.050
– ident: 2024042619301123724_j_lpts-2024-0006_ref_007
  doi: 10.2478/lpts-2023-0018
– ident: 2024042619301123724_j_lpts-2024-0006_ref_037
  doi: 10.3390/en13061425
– ident: 2024042619301123724_j_lpts-2024-0006_ref_041
  doi: 10.1016/j.applthermaleng.2019.114706
– ident: 2024042619301123724_j_lpts-2024-0006_ref_004
  doi: 10.2478/lpts-2022-0045
– ident: 2024042619301123724_j_lpts-2024-0006_ref_005
  doi: 10.1016/j.rser.2015.03.067
– ident: 2024042619301123724_j_lpts-2024-0006_ref_030
  doi: 10.1080/01457632.2022.2034085
– ident: 2024042619301123724_j_lpts-2024-0006_ref_008
– ident: 2024042619301123724_j_lpts-2024-0006_ref_017
  doi: 10.1016/j.est.2022.105266
– ident: 2024042619301123724_j_lpts-2024-0006_ref_024
  doi: 10.3390/en14041197
– ident: 2024042619301123724_j_lpts-2024-0006_ref_001
  doi: 10.20508/ijrer.v11i2.11862.g8181
– ident: 2024042619301123724_j_lpts-2024-0006_ref_012
  doi: 10.1016/j.csite.2023.103034
– ident: 2024042619301123724_j_lpts-2024-0006_ref_025
  doi: 10.1016/j.apenergy.2019.113893
– ident: 2024042619301123724_j_lpts-2024-0006_ref_033
  doi: 10.1016/j.solmat.2020.110644
– ident: 2024042619301123724_j_lpts-2024-0006_ref_034
  doi: 10.1038/s41598-021-02705-1
– ident: 2024042619301123724_j_lpts-2024-0006_ref_014
  doi: 10.1016/j.rineng.2023.101210
– ident: 2024042619301123724_j_lpts-2024-0006_ref_022
  doi: 10.5829/ije.2020.33.10a.03
– ident: 2024042619301123724_j_lpts-2024-0006_ref_013
  doi: 10.1016/j.apenergy.2020.114572
– ident: 2024042619301123724_j_lpts-2024-0006_ref_015
  doi: 10.1016/j.jclepro.2019.118888
– ident: 2024042619301123724_j_lpts-2024-0006_ref_026
  doi: 10.1016/j.ceramint.2021.06.040
– ident: 2024042619301123724_j_lpts-2024-0006_ref_028
  doi: 10.1016/j.est.2022.104188
– ident: 2024042619301123724_j_lpts-2024-0006_ref_011
  doi: 10.2478/lpts-2023-0008
– ident: 2024042619301123724_j_lpts-2024-0006_ref_029
  doi: 10.1016/j.applthermaleng.2019.114404
– ident: 2024042619301123724_j_lpts-2024-0006_ref_035
  doi: 10.1007/s10973-015-4715-9
– ident: 2024042619301123724_j_lpts-2024-0006_ref_032
  doi: 10.1016/j.solener.2019.07.064
– ident: 2024042619301123724_j_lpts-2024-0006_ref_003
  doi: 10.1016/j.heliyon.2023.e14144
– ident: 2024042619301123724_j_lpts-2024-0006_ref_031
  doi: 10.1016/j.est.2021.102427
– ident: 2024042619301123724_j_lpts-2024-0006_ref_039
  doi: 10.1016/j.ijthermalsci.2020.106446
– ident: 2024042619301123724_j_lpts-2024-0006_ref_040
  doi: 10.1016/j.est.2020.102128
– ident: 2024042619301123724_j_lpts-2024-0006_ref_020
  doi: 10.1016/j.nexus.2023.100196
– ident: 2024042619301123724_j_lpts-2024-0006_ref_018
  doi: 10.18280/ijht.400615
– ident: 2024042619301123724_j_lpts-2024-0006_ref_019
  doi: 10.3390/mi14051072
– ident: 2024042619301123724_j_lpts-2024-0006_ref_036
  doi: 10.1016/j.rser.2019.109539
– ident: 2024042619301123724_j_lpts-2024-0006_ref_038
  doi: 10.5098/hmt.15.10
– ident: 2024042619301123724_j_lpts-2024-0006_ref_016
  doi: 10.1016/j.est.2018.11.007
– ident: 2024042619301123724_j_lpts-2024-0006_ref_009
– ident: 2024042619301123724_j_lpts-2024-0006_ref_023
  doi: 10.3390/ma14237223
– ident: 2024042619301123724_j_lpts-2024-0006_ref_027
  doi: 10.1038/s41598-018-26537-8
– ident: 2024042619301123724_j_lpts-2024-0006_ref_002
  doi: 10.1016/j.renene.2022.02.020
– ident: 2024042619301123724_j_lpts-2024-0006_ref_021
  doi: 10.1016/j.est.2021.102235
SSID ssib036613030
ssj0061344
Score 2.3116024
Snippet The present study assesses the heat characteristic of the nitrate-salt mixture as a phase change material (PCM) for a medium-temperature latent storage system...
Abstract The present study assesses the heat characteristic of the nitrate-salt mixture as a phase change material (PCM) for a medium-temperature latent...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Publisher
StartPage 52
SubjectTerms Charge
Heat
Heat of fusion
Latent heat
Level indicators
Melting
Mixtures
molten salt
nitrate based
Phase change materials
Phase transitions
Photomicrographs
Sodium nitrates
Sodium nitrite
Solar heating
solar thermal
Storage capacity
Storage tanks
Supercooling
Thermodynamic properties
Title Charge Assessment for Nitrate-Based Salt as a Phase Change Material for a Medium-Temperature Latent Storage Tank
URI http://www.degruyter.com/doi/10.2478/lpts-2024-0006
https://www.proquest.com/docview/2924222676
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4ULnogPiOKpgcTTw1L2d1uTwZUJESIEYjcNn2iURFlifHfO92Hrxgvu0m3201mujPf12lnEDrmTEdMBZZoLTnxWUCJYMBahaAsUpQbSt3h5P4g7I793iSY5Atui3xbZWETU0Otn5VbI69TIArgy0IWns5fiKsa5aKreQmNVVRuUMYc-Yo6l4UlBk-VFnMF1B4RYEIsS9pIfRbVH-fJAmYI9d2x6vCnU_pCmpW3NGatzfR1-Z4UMdLU9XQ2UCXHjLiVKXkTrZjZFlr_lklwG81d2HxqcOsz0SYGNIoH92nyWdIGX6XxED6DxQILfH0HDTg7WYD7IkmnYfqGwC50s3wiIwOAOku4jK-gB4w4BH4O5gePxOxhB407F6OzLsmLKRDVbPgJ0QqIg2-4FVxKa4F_qiaVihormUsDSLkF9BNBk4xkoEGa1IpQRQH3PWs83dxFpdnzzOwhLAMYijHPeoIBm7ScceFZ4TGhPAV4q4pOCmnG8yxnRgxcw8k9dnKPndxd1Dusoloh7Dj_d-Dpp6aryP-lgK9efw8YAsCl-_-PeoDWMsW7PSk1VEpel-YQkEUij9LpA1d-2z9C5dZ5-6oH9_bF4PrmA1yJ0Uk
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33756,43612,43817,76493,76494
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aD-qh-MT6zEHwFLqm2c3mJCrWqm0RrNDbkmcVtVa7Rfz3TvbRqojXbHYWJrMz35dJZhA6FNzEXIeOGKMEYTykRHJgrVJSHmsqLKX-cnKnG7Xu2XU_7BcbbuPiWGXpEzNHbV613yOvUyAKEMsiHp2M3ojvGuWzq0ULjXm0wBoQq_1N8eZl6YkhUmXNXAG1xwSYEM-LNlLG4_rzKB2DhVDmr1VHP4PSDGlWP7KctbGD98lnWuZIs9DTXEHVAjPi03yRV9GcHa6h5W-VBNfRyKfNBxafTgttYkCjuPuYFZ8lZxCrDL6Dz2A5xhLfPsAAzm8W4I5MMzPM3pDYp24mL6RnAVDnBZdxG2aAxDvg5-B-cE8OnzbQffOid94iRTMFohvHLCVGA3FgVjgplHIO-KduUKWpdYr7MoBUOEA_MQypWIWGAup2MtJxKFjgbGAam6gyfB3aLYRVCKI4D1wgObBJJ7iQgZMBlzrQgLdq6KjUZjLKa2YkwDW83hOv98Tr3We9oxraLZWdFP8OPJ2udA2xXwswm_W3wAgALt3-X-oBWmz1Ou2kfdW92UFLuRH48ym7qJK-T-weoIxU7Wem9AU_J9AT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oJMYL0agRRd2DiaeGut12u0d8ICogCZBwa_aJRkUCJcZ_72xbJBpOXvcxh9npzvfl25kidM6ZjpkKrae15B5lIfEEA9YqBGGxItwQ4oqTO92oNaQPo3BUEEVXC5Pd-zpTK-tTbbOnypTF9bdpOocTJdSVQUebqMwiymkJlRutu_7TMoKCyMHhwM-7M67Z-Dv7rCBl5TMTp7UZzxZf6VIMzXJMcwdVCnCIG_lp7qINM9lDU6eIjw1u_PTQxAA0cfcl6yvrXUEa0rgPhrGYY4F7zzCA86IB3BFpFmHZDoGdKrN49wYGsHLeSxm3YQVY7AP1hpsFD8TkdR8Nm7eD65ZX_CfBU8ElTT2tgBNQw63gUloL1FIFRCpirGSuwx_hFoBNDEMylqEmAKitiFQccupb4-vgAJUmHxNziLAMwRRjvvUFA6JoOePCt8JnQvkKoFQVXSz9l0zzdhgJ0Ajn6cR5OnGedoJ2VEW1pXuT4rOAWWB7AEgiBtP0j8tXq9YbjAC7kqP_bTtDW72bZtK-7z4eo-08GtyLlBoqpbOFOQFckcrTIpi-Aavwyx4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge+Assessment+for+Nitrate-Based+Salt+as+a+Phase+Change+Material+for+a+Medium-Temperature+Latent+Storage+Tank&rft.jtitle=Latvian+Journal+of+Physics+and+Technical+Sciences&rft.au=Ismail&rft.au=Widodo%2C+Y.+I.&rft.au=Rahman%2C+R.+A.&rft.date=2024-02-01&rft.pub=Sciendo&rft.eissn=2255-8896&rft.volume=61&rft.issue=1&rft.spage=52&rft.epage=61&rft_id=info:doi/10.2478%2Flpts-2024-0006&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_lpts_2024_000661152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2255-8896&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2255-8896&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2255-8896&client=summon