Charge Assessment for Nitrate-Based Salt as a Phase Change Material for a Medium-Temperature Latent Storage Tank
The present study assesses the heat characteristic of the nitrate-salt mixture as a phase change material (PCM) for a medium-temperature latent storage system (LSS). Two binary and ternary mixtures are evaluated, which demonstrate different thermal behaviour. The highest melting and latent heat capa...
Saved in:
Published in | Latvian Journal of Physics and Technical Sciences Vol. 61; no. 1; pp. 52 - 61 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Riga
Sciendo
01.02.2024
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The present study assesses the heat characteristic of the nitrate-salt mixture as a phase change material (PCM) for a medium-temperature latent storage system (LSS). Two binary and ternary mixtures are evaluated, which demonstrate different thermal behaviour. The highest melting and latent heat capacity is obtained by KNO
(0.4)/NaNO
(0.6) at 223.8 °C and 161.5 J/g. However, it has a higher supercooling degree with a partial phase transition between 217.6 °C and 251.5 °C, making it unfeasible for a medium-temperature LSS tank. The ternary mixture (TM) with NaNO
(0.4)/KNO
(0.53)/NaNO
(0.7) demonstrates a stable phase transition with minimum partial phase transition (22.1 °C) and suitable heat of fusion (98.1 J/g). Further evaluation through static thermal profiling demonstrates that the TM has a notable performance during solid-sensible charge with a charge level indicator (CLI) around 45.3 %–49.1 %. The TM can be charged up to 85.7 % until the end stage of the phase transition. It promotes a better storage capacity with suitable performance since the system can be charged effectively at a suitable temperature range (< 160 °C) for various applications. The micrograph observation indicates some dispersed particles and local agglomeration, which makes phase stabilization as an advantageous method to promote a stable phase change process. The TM can be considered a suitable PCM for a medium-temperature LSS tank that allows for a better solar thermal renewable system operation. |
---|---|
AbstractList | The present study assesses the heat characteristic of the nitrate-salt mixture as a phase change material (PCM) for a medium-temperature latent storage system (LSS). Two binary and ternary mixtures are evaluated, which demonstrate different thermal behaviour. The highest melting and latent heat capacity is obtained by KNO3(0.4)/NaNO3(0.6) at 223.8 °C and 161.5 J/g. However, it has a higher supercooling degree with a partial phase transition between 217.6 °C and 251.5 °C, making it unfeasible for a medium-temperature LSS tank. The ternary mixture (TM) with NaNO2(0.4)/KNO2(0.53)/NaNO3(0.7) demonstrates a stable phase transition with minimum partial phase transition (22.1 °C) and suitable heat of fusion (98.1 J/g). Further evaluation through static thermal profiling demonstrates that the TM has a notable performance during solid-sensible charge with a charge level indicator (CLI) around 45.3 %–49.1 %. The TM can be charged up to 85.7 % until the end stage of the phase transition. It promotes a better storage capacity with suitable performance since the system can be charged effectively at a suitable temperature range (< 160 °C) for various applications. The micrograph observation indicates some dispersed particles and local agglomeration, which makes phase stabilization as an advantageous method to promote a stable phase change process. The TM can be considered a suitable PCM for a medium-temperature LSS tank that allows for a better solar thermal renewable system operation. The present study assesses the heat characteristic of the nitrate-salt mixture as a phase change material (PCM) for a medium-temperature latent storage system (LSS). Two binary and ternary mixtures are evaluated, which demonstrate different thermal behaviour. The highest melting and latent heat capacity is obtained by KNO (0.4)/NaNO (0.6) at 223.8 °C and 161.5 J/g. However, it has a higher supercooling degree with a partial phase transition between 217.6 °C and 251.5 °C, making it unfeasible for a medium-temperature LSS tank. The ternary mixture (TM) with NaNO (0.4)/KNO (0.53)/NaNO (0.7) demonstrates a stable phase transition with minimum partial phase transition (22.1 °C) and suitable heat of fusion (98.1 J/g). Further evaluation through static thermal profiling demonstrates that the TM has a notable performance during solid-sensible charge with a charge level indicator (CLI) around 45.3 %–49.1 %. The TM can be charged up to 85.7 % until the end stage of the phase transition. It promotes a better storage capacity with suitable performance since the system can be charged effectively at a suitable temperature range (< 160 °C) for various applications. The micrograph observation indicates some dispersed particles and local agglomeration, which makes phase stabilization as an advantageous method to promote a stable phase change process. The TM can be considered a suitable PCM for a medium-temperature LSS tank that allows for a better solar thermal renewable system operation. Abstract The present study assesses the heat characteristic of the nitrate-salt mixture as a phase change material (PCM) for a medium-temperature latent storage system (LSS). Two binary and ternary mixtures are evaluated, which demonstrate different thermal behaviour. The highest melting and latent heat capacity is obtained by KNO 3 (0.4)/NaNO 3 (0.6) at 223.8 °C and 161.5 J/g. However, it has a higher supercooling degree with a partial phase transition between 217.6 °C and 251.5 °C, making it unfeasible for a medium-temperature LSS tank. The ternary mixture (TM) with NaNO 2 (0.4)/KNO 2 (0.53)/NaNO 3 (0.7) demonstrates a stable phase transition with minimum partial phase transition (22.1 °C) and suitable heat of fusion (98.1 J/g). Further evaluation through static thermal profiling demonstrates that the TM has a notable performance during solid-sensible charge with a charge level indicator (CLI) around 45.3 %–49.1 %. The TM can be charged up to 85.7 % until the end stage of the phase transition. It promotes a better storage capacity with suitable performance since the system can be charged effectively at a suitable temperature range (< 160 °C) for various applications. The micrograph observation indicates some dispersed particles and local agglomeration, which makes phase stabilization as an advantageous method to promote a stable phase change process. The TM can be considered a suitable PCM for a medium-temperature LSS tank that allows for a better solar thermal renewable system operation. |
Author | Ismail Widodo, Y. I. Rahman, R. A. |
Author_xml | – sequence: 1 surname: Ismail fullname: Ismail organization: Department of Mechanical Engineering, Faculty of Engineering, Universitas Pancasila, Srengseng Sawah. Jagakarsa 12640, DKI Jakarta, Indonesia – sequence: 2 givenname: Y. I. surname: Widodo fullname: Widodo, Y. I. organization: Department of Mechanical Engineering, Faculty of Engineering, Universitas Pancasila, Srengseng Sawah. Jagakarsa 12640, DKI Jakarta, Indonesia – sequence: 3 givenname: R. A. surname: Rahman fullname: Rahman, R. A. email: reza.a@univpancasila.ac.id organization: Department of Mechanical Engineering, Faculty of Engineering, Universitas Pancasila, Srengseng Sawah. Jagakarsa 12640, DKI Jakarta, Indonesia |
BookMark | eNptkF1LwzAUhoNMcM7deh3wujM9adMWr-bwC-YHbF6HtD3Zql1bkxTZvzd1gl54lcPhfd5wnlMyatoGCTkP2QyiJL2sO2cDYBAFjDFxRMYAcRykaSZGf-YTMrW2yhkXIuSMszHpFltlNkjn1qK1O2wc1a2hT5UzymFwrSyWdKVqR5Wlir5s_YJ6pvHMo0-YStXfhKKPWFb9LljjrkMP9wbp0id848q1RnlgrZr3M3KsVW1x-vNOyOvtzXpxHyyf7x4W82VQ8DByQVkkURJhplWW51rHwAsOeQGo84TxCCDTEIvUr_I0j0tIEtBKFGmcRUwjK_mEXBx6O9N-9GidfGt70_gvJWTgC0Akwqdmh1RhWmsNatmZaqfMXoZMDmLlIFYOYuUg1gNXB-DTO0FT4sb0ez_8tv8PijD0N3wB6gGB6Q |
Cites_doi | 10.5829/ije.2019.32.07a.13 10.1016/j.renene.2019.05.050 10.2478/lpts-2023-0018 10.3390/en13061425 10.1016/j.applthermaleng.2019.114706 10.2478/lpts-2022-0045 10.1016/j.rser.2015.03.067 10.1080/01457632.2022.2034085 10.1016/j.est.2022.105266 10.3390/en14041197 10.20508/ijrer.v11i2.11862.g8181 10.1016/j.csite.2023.103034 10.1016/j.apenergy.2019.113893 10.1016/j.solmat.2020.110644 10.1038/s41598-021-02705-1 10.1016/j.rineng.2023.101210 10.5829/ije.2020.33.10a.03 10.1016/j.apenergy.2020.114572 10.1016/j.jclepro.2019.118888 10.1016/j.ceramint.2021.06.040 10.1016/j.est.2022.104188 10.2478/lpts-2023-0008 10.1016/j.applthermaleng.2019.114404 10.1007/s10973-015-4715-9 10.1016/j.solener.2019.07.064 10.1016/j.heliyon.2023.e14144 10.1016/j.est.2021.102427 10.1016/j.ijthermalsci.2020.106446 10.1016/j.est.2020.102128 10.1016/j.nexus.2023.100196 10.18280/ijht.400615 10.3390/mi14051072 10.1016/j.rser.2019.109539 10.5098/hmt.15.10 10.1016/j.est.2018.11.007 10.3390/ma14237223 10.1038/s41598-018-26537-8 10.1016/j.renene.2022.02.020 10.1016/j.est.2021.102235 |
ContentType | Journal Article |
Copyright | 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BYOGL CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PIMPY PQEST PQQKQ PQUKI |
DOI | 10.2478/lpts-2024-0006 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection East Europe, Central Europe Database ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection (Proquest) (PQ_SDU_P3) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition East Europe, Central Europe Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea Solid State and Superconductivity Abstracts ProQuest One Academic Advanced Technologies Database with Aerospace |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2255-8896 2199-6156 |
EndPage | 61 |
ExternalDocumentID | 10_2478_lpts_2024_0006 10_2478_lpts_2024_000661152 |
GroupedDBID | 9WM ABFKT AHGSO ALMA_UNASSIGNED_HOLDINGS QD8 AAYXX CITATION SLJYH 0R~ 29L 2WC 3V. 4.4 5GY 5VS 7U5 8FD 8FE 8FG ABUWG ACGFS ADBBV ADBLJ AFKRA ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ BYOGL CCPQU CS3 DU5 DWQXO E0C E3Z GROUPED_DOAJ H8D HCIFZ HZ~ KQ8 L7M O9- OK1 P62 PIMPY PQEST PQQKQ PQUKI PROAC RIG RNS SA. TR2 |
ID | FETCH-LOGICAL-c314t-dc7474e9fa9bbff523c32bc2efb7034229f25682bcb8b5d2772fa6c85940fe0d3 |
IEDL.DBID | 8FG |
ISSN | 2255-8896 0868-8257 |
IngestDate | Sat Nov 16 13:46:12 EST 2024 Fri Aug 23 03:09:51 EDT 2024 Sun Feb 11 02:15:59 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-dc7474e9fa9bbff523c32bc2efb7034229f25682bcb8b5d2772fa6c85940fe0d3 |
OpenAccessLink | https://www.proquest.com/docview/2924222676?pq-origsite=%requestingapplication% |
PQID | 2924222676 |
PQPubID | 2026606 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2924222676 crossref_primary_10_2478_lpts_2024_0006 walterdegruyter_journals_10_2478_lpts_2024_000661152 |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Riga |
PublicationPlace_xml | – name: Riga |
PublicationTitle | Latvian Journal of Physics and Technical Sciences |
PublicationYear | 2024 |
Publisher | Sciendo De Gruyter Poland |
Publisher_xml | – name: Sciendo – name: De Gruyter Poland |
References | 2024042619301123724_j_lpts-2024-0006_ref_030 2024042619301123724_j_lpts-2024-0006_ref_031 2024042619301123724_j_lpts-2024-0006_ref_010 2024042619301123724_j_lpts-2024-0006_ref_032 2024042619301123724_j_lpts-2024-0006_ref_011 2024042619301123724_j_lpts-2024-0006_ref_033 2024042619301123724_j_lpts-2024-0006_ref_016 2024042619301123724_j_lpts-2024-0006_ref_038 2024042619301123724_j_lpts-2024-0006_ref_017 2024042619301123724_j_lpts-2024-0006_ref_039 2024042619301123724_j_lpts-2024-0006_ref_018 2024042619301123724_j_lpts-2024-0006_ref_019 2024042619301123724_j_lpts-2024-0006_ref_012 2024042619301123724_j_lpts-2024-0006_ref_034 2024042619301123724_j_lpts-2024-0006_ref_013 2024042619301123724_j_lpts-2024-0006_ref_035 2024042619301123724_j_lpts-2024-0006_ref_014 2024042619301123724_j_lpts-2024-0006_ref_036 2024042619301123724_j_lpts-2024-0006_ref_015 2024042619301123724_j_lpts-2024-0006_ref_037 2024042619301123724_j_lpts-2024-0006_ref_009 2024042619301123724_j_lpts-2024-0006_ref_041 2024042619301123724_j_lpts-2024-0006_ref_020 2024042619301123724_j_lpts-2024-0006_ref_021 2024042619301123724_j_lpts-2024-0006_ref_022 2024042619301123724_j_lpts-2024-0006_ref_040 2024042619301123724_j_lpts-2024-0006_ref_005 2024042619301123724_j_lpts-2024-0006_ref_027 2024042619301123724_j_lpts-2024-0006_ref_006 2024042619301123724_j_lpts-2024-0006_ref_028 2024042619301123724_j_lpts-2024-0006_ref_007 2024042619301123724_j_lpts-2024-0006_ref_029 2024042619301123724_j_lpts-2024-0006_ref_008 2024042619301123724_j_lpts-2024-0006_ref_001 2024042619301123724_j_lpts-2024-0006_ref_023 2024042619301123724_j_lpts-2024-0006_ref_002 2024042619301123724_j_lpts-2024-0006_ref_024 2024042619301123724_j_lpts-2024-0006_ref_003 2024042619301123724_j_lpts-2024-0006_ref_025 2024042619301123724_j_lpts-2024-0006_ref_004 2024042619301123724_j_lpts-2024-0006_ref_026 |
References_xml | – ident: 2024042619301123724_j_lpts-2024-0006_ref_010 doi: 10.5829/ije.2019.32.07a.13 – ident: 2024042619301123724_j_lpts-2024-0006_ref_006 doi: 10.1016/j.renene.2019.05.050 – ident: 2024042619301123724_j_lpts-2024-0006_ref_007 doi: 10.2478/lpts-2023-0018 – ident: 2024042619301123724_j_lpts-2024-0006_ref_037 doi: 10.3390/en13061425 – ident: 2024042619301123724_j_lpts-2024-0006_ref_041 doi: 10.1016/j.applthermaleng.2019.114706 – ident: 2024042619301123724_j_lpts-2024-0006_ref_004 doi: 10.2478/lpts-2022-0045 – ident: 2024042619301123724_j_lpts-2024-0006_ref_005 doi: 10.1016/j.rser.2015.03.067 – ident: 2024042619301123724_j_lpts-2024-0006_ref_030 doi: 10.1080/01457632.2022.2034085 – ident: 2024042619301123724_j_lpts-2024-0006_ref_008 – ident: 2024042619301123724_j_lpts-2024-0006_ref_017 doi: 10.1016/j.est.2022.105266 – ident: 2024042619301123724_j_lpts-2024-0006_ref_024 doi: 10.3390/en14041197 – ident: 2024042619301123724_j_lpts-2024-0006_ref_001 doi: 10.20508/ijrer.v11i2.11862.g8181 – ident: 2024042619301123724_j_lpts-2024-0006_ref_012 doi: 10.1016/j.csite.2023.103034 – ident: 2024042619301123724_j_lpts-2024-0006_ref_025 doi: 10.1016/j.apenergy.2019.113893 – ident: 2024042619301123724_j_lpts-2024-0006_ref_033 doi: 10.1016/j.solmat.2020.110644 – ident: 2024042619301123724_j_lpts-2024-0006_ref_034 doi: 10.1038/s41598-021-02705-1 – ident: 2024042619301123724_j_lpts-2024-0006_ref_014 doi: 10.1016/j.rineng.2023.101210 – ident: 2024042619301123724_j_lpts-2024-0006_ref_022 doi: 10.5829/ije.2020.33.10a.03 – ident: 2024042619301123724_j_lpts-2024-0006_ref_013 doi: 10.1016/j.apenergy.2020.114572 – ident: 2024042619301123724_j_lpts-2024-0006_ref_015 doi: 10.1016/j.jclepro.2019.118888 – ident: 2024042619301123724_j_lpts-2024-0006_ref_026 doi: 10.1016/j.ceramint.2021.06.040 – ident: 2024042619301123724_j_lpts-2024-0006_ref_028 doi: 10.1016/j.est.2022.104188 – ident: 2024042619301123724_j_lpts-2024-0006_ref_011 doi: 10.2478/lpts-2023-0008 – ident: 2024042619301123724_j_lpts-2024-0006_ref_029 doi: 10.1016/j.applthermaleng.2019.114404 – ident: 2024042619301123724_j_lpts-2024-0006_ref_035 doi: 10.1007/s10973-015-4715-9 – ident: 2024042619301123724_j_lpts-2024-0006_ref_032 doi: 10.1016/j.solener.2019.07.064 – ident: 2024042619301123724_j_lpts-2024-0006_ref_003 doi: 10.1016/j.heliyon.2023.e14144 – ident: 2024042619301123724_j_lpts-2024-0006_ref_031 doi: 10.1016/j.est.2021.102427 – ident: 2024042619301123724_j_lpts-2024-0006_ref_039 doi: 10.1016/j.ijthermalsci.2020.106446 – ident: 2024042619301123724_j_lpts-2024-0006_ref_040 doi: 10.1016/j.est.2020.102128 – ident: 2024042619301123724_j_lpts-2024-0006_ref_020 doi: 10.1016/j.nexus.2023.100196 – ident: 2024042619301123724_j_lpts-2024-0006_ref_018 doi: 10.18280/ijht.400615 – ident: 2024042619301123724_j_lpts-2024-0006_ref_019 doi: 10.3390/mi14051072 – ident: 2024042619301123724_j_lpts-2024-0006_ref_036 doi: 10.1016/j.rser.2019.109539 – ident: 2024042619301123724_j_lpts-2024-0006_ref_038 doi: 10.5098/hmt.15.10 – ident: 2024042619301123724_j_lpts-2024-0006_ref_016 doi: 10.1016/j.est.2018.11.007 – ident: 2024042619301123724_j_lpts-2024-0006_ref_009 – ident: 2024042619301123724_j_lpts-2024-0006_ref_023 doi: 10.3390/ma14237223 – ident: 2024042619301123724_j_lpts-2024-0006_ref_027 doi: 10.1038/s41598-018-26537-8 – ident: 2024042619301123724_j_lpts-2024-0006_ref_002 doi: 10.1016/j.renene.2022.02.020 – ident: 2024042619301123724_j_lpts-2024-0006_ref_021 doi: 10.1016/j.est.2021.102235 |
SSID | ssib036613030 ssj0061344 |
Score | 2.3116024 |
Snippet | The present study assesses the heat characteristic of the nitrate-salt mixture as a phase change material (PCM) for a medium-temperature latent storage system... Abstract The present study assesses the heat characteristic of the nitrate-salt mixture as a phase change material (PCM) for a medium-temperature latent... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Publisher |
StartPage | 52 |
SubjectTerms | Charge Heat Heat of fusion Latent heat Level indicators Melting Mixtures molten salt nitrate based Phase change materials Phase transitions Photomicrographs Sodium nitrates Sodium nitrite Solar heating solar thermal Storage capacity Storage tanks Supercooling Thermodynamic properties |
Title | Charge Assessment for Nitrate-Based Salt as a Phase Change Material for a Medium-Temperature Latent Storage Tank |
URI | http://www.degruyter.com/doi/10.2478/lpts-2024-0006 https://www.proquest.com/docview/2924222676 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4ULnogPiOKpgcTTw1L2d1uTwZUJESIEYjcNn2iURFlifHfO92Hrxgvu0m3201mujPf12lnEDrmTEdMBZZoLTnxWUCJYMBahaAsUpQbSt3h5P4g7I793iSY5Atui3xbZWETU0Otn5VbI69TIArgy0IWns5fiKsa5aKreQmNVVRuUMYc-Yo6l4UlBk-VFnMF1B4RYEIsS9pIfRbVH-fJAmYI9d2x6vCnU_pCmpW3NGatzfR1-Z4UMdLU9XQ2UCXHjLiVKXkTrZjZFlr_lklwG81d2HxqcOsz0SYGNIoH92nyWdIGX6XxED6DxQILfH0HDTg7WYD7IkmnYfqGwC50s3wiIwOAOku4jK-gB4w4BH4O5gePxOxhB407F6OzLsmLKRDVbPgJ0QqIg2-4FVxKa4F_qiaVihormUsDSLkF9BNBk4xkoEGa1IpQRQH3PWs83dxFpdnzzOwhLAMYijHPeoIBm7ScceFZ4TGhPAV4q4pOCmnG8yxnRgxcw8k9dnKPndxd1Dusoloh7Dj_d-Dpp6aryP-lgK9efw8YAsCl-_-PeoDWMsW7PSk1VEpel-YQkEUij9LpA1d-2z9C5dZ5-6oH9_bF4PrmA1yJ0Uk |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33756,43612,43817,76493,76494 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aD-qh-MT6zEHwFLqm2c3mJCrWqm0RrNDbkmcVtVa7Rfz3TvbRqojXbHYWJrMz35dJZhA6FNzEXIeOGKMEYTykRHJgrVJSHmsqLKX-cnKnG7Xu2XU_7BcbbuPiWGXpEzNHbV613yOvUyAKEMsiHp2M3ojvGuWzq0ULjXm0wBoQq_1N8eZl6YkhUmXNXAG1xwSYEM-LNlLG4_rzKB2DhVDmr1VHP4PSDGlWP7KctbGD98lnWuZIs9DTXEHVAjPi03yRV9GcHa6h5W-VBNfRyKfNBxafTgttYkCjuPuYFZ8lZxCrDL6Dz2A5xhLfPsAAzm8W4I5MMzPM3pDYp24mL6RnAVDnBZdxG2aAxDvg5-B-cE8OnzbQffOid94iRTMFohvHLCVGA3FgVjgplHIO-KduUKWpdYr7MoBUOEA_MQypWIWGAup2MtJxKFjgbGAam6gyfB3aLYRVCKI4D1wgObBJJ7iQgZMBlzrQgLdq6KjUZjLKa2YkwDW83hOv98Tr3We9oxraLZWdFP8OPJ2udA2xXwswm_W3wAgALt3-X-oBWmz1Ou2kfdW92UFLuRH48ym7qJK-T-weoIxU7Wem9AU_J9AT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oJMYL0agRRd2DiaeGut12u0d8ICogCZBwa_aJRkUCJcZ_72xbJBpOXvcxh9npzvfl25kidM6ZjpkKrae15B5lIfEEA9YqBGGxItwQ4oqTO92oNaQPo3BUEEVXC5Pd-zpTK-tTbbOnypTF9bdpOocTJdSVQUebqMwiymkJlRutu_7TMoKCyMHhwM-7M67Z-Dv7rCBl5TMTp7UZzxZf6VIMzXJMcwdVCnCIG_lp7qINM9lDU6eIjw1u_PTQxAA0cfcl6yvrXUEa0rgPhrGYY4F7zzCA86IB3BFpFmHZDoGdKrN49wYGsHLeSxm3YQVY7AP1hpsFD8TkdR8Nm7eD65ZX_CfBU8ElTT2tgBNQw63gUloL1FIFRCpirGSuwx_hFoBNDEMylqEmAKitiFQccupb4-vgAJUmHxNziLAMwRRjvvUFA6JoOePCt8JnQvkKoFQVXSz9l0zzdhgJ0Ajn6cR5OnGedoJ2VEW1pXuT4rOAWWB7AEgiBtP0j8tXq9YbjAC7kqP_bTtDW72bZtK-7z4eo-08GtyLlBoqpbOFOQFckcrTIpi-Aavwyx4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge+Assessment+for+Nitrate-Based+Salt+as+a+Phase+Change+Material+for+a+Medium-Temperature+Latent+Storage+Tank&rft.jtitle=Latvian+Journal+of+Physics+and+Technical+Sciences&rft.au=Ismail&rft.au=Widodo%2C+Y.+I.&rft.au=Rahman%2C+R.+A.&rft.date=2024-02-01&rft.pub=Sciendo&rft.eissn=2255-8896&rft.volume=61&rft.issue=1&rft.spage=52&rft.epage=61&rft_id=info:doi/10.2478%2Flpts-2024-0006&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_lpts_2024_000661152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2255-8896&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2255-8896&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2255-8896&client=summon |