The entropy-controlled strategy in self-assembling systems
Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for...
Saved in:
Published in | Chemical Society reviews Vol. 52; no. 19; pp. 686 - 6837 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Royal Society of Chemistry
02.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems.
The entropy-controlled strategy of self-assembly offers a conceptually new way to tune the ordering transitions in the development of designer systems and materials with controllable structures and optimal properties. |
---|---|
AbstractList | Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems.Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems. Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems. Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems. The entropy-controlled strategy of self-assembly offers a conceptually new way to tune the ordering transitions in the development of designer systems and materials with controllable structures and optimal properties. |
Author | Dai, Xiaobin Wan, Haixiao Wang, Yuming Yan, Li-Tang Zhang, Xuanyu Xu, Duo Gao, Lijuan |
AuthorAffiliation | Department of Chemical Engineering Tsinghua University State Key Laboratory of Chemical Engineering |
AuthorAffiliation_xml | – sequence: 0 name: Tsinghua University – sequence: 0 name: State Key Laboratory of Chemical Engineering – sequence: 0 name: Department of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Xuanyu surname: Zhang fullname: Zhang, Xuanyu – sequence: 2 givenname: Xiaobin surname: Dai fullname: Dai, Xiaobin – sequence: 3 givenname: Lijuan surname: Gao fullname: Gao, Lijuan – sequence: 4 givenname: Duo surname: Xu fullname: Xu, Duo – sequence: 5 givenname: Haixiao surname: Wan fullname: Wan, Haixiao – sequence: 6 givenname: Yuming surname: Wang fullname: Wang, Yuming – sequence: 7 givenname: Li-Tang surname: Yan fullname: Yan, Li-Tang |
BookMark | eNpt0c9LwzAUB_AgE9ymF-9CwYsI1aT5tXqTqVMYeHCeS5a-zo60nXnZof-9mROFIQTyDp_vI3wzIoO2a4GQc0ZvGOX5bcktUsqFXh2RIROKpkILMSBDyqlKKWXZCRkhruPEtMqG5G7xAQm0wXebPrXdbnAOygSDNwFWfVK3CYKrUoMIzdLV7SrBHgM0eEqOK-MQzn7uMXl_elxMn9P56-xlej9PLWcipKVlFoy1plxqI6jUYESulJK8Unkl2TI3lc00i8DaiGUpS2MzI1VMTaTmY3K137vx3ecWMBRNjRacMy10WyyyiZqoeGQW6eUBXXdb38bXRaVpTrWiIqrrvbK-Q_RQFRtfN8b3BaPFrsbigU_fvmucRUwPsK2DCfWuKlO7_yMX-4hH-7v672f4FzMQgXQ |
CitedBy_id | crossref_primary_10_1038_s41578_025_00782_6 crossref_primary_10_1002_cplu_202400536 crossref_primary_10_1038_s41467_024_44765_7 crossref_primary_10_3390_polym16060820 crossref_primary_10_1021_acs_chemrev_4c00299 crossref_primary_10_1021_acs_jpclett_4c01026 crossref_primary_10_1021_acs_macromol_4c02331 crossref_primary_10_1016_j_cclet_2024_109733 crossref_primary_10_1142_S1793048024300019 crossref_primary_10_1021_acs_jpcc_4c06799 crossref_primary_10_1002_anie_202403900 crossref_primary_10_1021_acsami_4c08523 crossref_primary_10_1021_acsenergylett_4c00621 crossref_primary_10_1002_adma_202418952 crossref_primary_10_1002_smll_202310838 crossref_primary_10_3390_pr12010119 crossref_primary_10_1039_D4NR03286A crossref_primary_10_1002_adfm_202314134 crossref_primary_10_1088_1361_6633_ad3e11 crossref_primary_10_1016_j_eurpolymj_2024_112973 crossref_primary_10_3390_polym16213085 crossref_primary_10_1002_cplu_202300638 crossref_primary_10_1021_acsnano_4c09675 crossref_primary_10_1016_j_colcom_2025_100829 crossref_primary_10_1021_acsmacrolett_3c00756 crossref_primary_10_26599_NR_2025_94907158 crossref_primary_10_1039_D4NR04032E crossref_primary_10_1002_ange_202403900 crossref_primary_10_1021_acs_jpcc_3c07492 crossref_primary_10_1021_acsnano_4c11647 crossref_primary_10_3390_ijms252312614 crossref_primary_10_1039_D4PY00517A crossref_primary_10_1002_adfm_202315177 |
Cites_doi | 10.1038/332822a0 10.1021/jacs.7b11324 10.1038/nature18013 10.1002/adma.200702786 10.1038/nmat2534 10.1021/ar040113d 10.1103/PhysRevLett.32.438 10.1038/nature05959 10.1002/smll.201603155 10.1038/s41467-018-04644-4 10.1038/nnano.2017.182 10.1038/nature08239 10.1021/nn204012y 10.1039/C7CS00246G 10.1038/nmat2286 10.1103/PhysRevLett.129.047801 10.1016/S1369-7021(10)70106-1 10.1021/ma4001385 10.1021/ja108285u 10.1038/srep07021 10.1103/PhysRevLett.118.108002 10.1016/j.mser.2004.12.003 10.1021/nl500449x 10.1360/SSC-2022-0186 10.1002/adts.201800160 10.1021/jacs.5b04531 10.1021/ma4009884 10.1103/PhysRevLett.98.108303 10.1021/acs.macromol.7b01518 10.1038/nmat4178 10.1103/PhysRevLett.96.028701 10.1039/C2CS35375J 10.1039/C6CS00738D 10.1038/nmat3496 10.1063/1.1740347 10.1038/nature09713 10.1038/s41565-018-0250-8 10.1063/5.0085965 10.1038/nmat2354 10.1021/acsnano.8b04753 10.1073/pnas.2116414119 10.1002/(SICI)1521-4095(200005)12:9<640::AID-ADMA640>3.0.CO;2-J 10.1002/anie.201600218 10.1038/ncomms1968 10.1021/ja312628g 10.1021/ma801722m 10.1103/RevModPhys.88.045006 10.1073/pnas.1524875113 10.1103/PhysRevLett.124.248002 10.1021/acsnano.6b07563 10.1038/ncomms7234 10.1021/acs.nanolett.1c03127 10.1038/nnano.2012.83 10.1126/science.1253751 10.1103/PhysRevLett.115.158303 10.1021/ja900347t 10.1021/cr030063a 10.1002/andp.19013090310 10.1142/10823 10.1038/nature07596 10.1038/nmat4072 10.1126/science.1074868 10.1103/PhysRevLett.120.048003 10.1126/science.1244827 10.1016/j.cocis.2017.05.008 10.1126/science.1197451 10.1038/nature04414 10.1021/nn901739v 10.1142/8333 10.1103/PhysRevLett.96.138306 10.1021/nl403149u 10.1126/science.1233775 10.1038/nmat2891 10.1103/PhysRev.96.250 10.1038/nature11564 10.1038/382607a0 10.1103/PhysRevLett.97.265501 10.1002/adma.200701526 10.1021/acsnano.5b04181 10.1126/science.1100090 10.1126/science.1210493 10.1021/cr300089t 10.1038/nnano.2014.315 10.1073/pnas.1822092116 10.1073/pnas.1720139115 10.1016/j.chempr.2020.02.009 10.1038/nature02087 10.1038/nature09188 10.1038/nmat2959 10.1038/nature03109 10.1126/science.1189457 10.1016/S0001-8686(96)00304-1 10.1038/nmat3573 10.1126/science.1220869 10.1039/C2SM27031E 10.1021/acs.chemrev.6b00196 10.1021/acsnano.9b04274 10.1038/nmat1447 10.1126/science.aao1377 10.1103/PhysRevLett.99.118301 10.1038/nnano.2015.96 10.1073/pnas.1921617117 10.1021/ja01379a006 10.1126/science.1060585 10.1126/science.1099988 10.1093/acprof:oso/9780199652952.001.0001 10.1038/nature08906 10.1002/j.1538-7305.1948.tb01338.x 10.1021/nl5029396 10.1002/adma.200502651 10.1021/la302226w 10.1021/acs.langmuir.8b01378 10.1103/PhysRevLett.85.3652 10.1038/24808 10.1002/adma.200500502 10.1007/s00253-015-6985-3 10.1021/ja01355a027 10.1103/PhysRevLett.102.198102 10.1021/ma500664u 10.1021/acs.jpclett.6b00724 10.1073/pnas.1000406107 10.1515/9780691212920 10.1103/PhysRevLett.99.268301 10.1146/annurev-conmatphys-061020-053046 10.1073/pnas.1009592107 10.1038/nmat2202 10.1038/nnano.2013.158 10.1021/jz4003789 10.1073/pnas.1406122111 10.1103/PhysRevLett.92.245507 10.1021/acsnano.8b01842 10.1063/1.2819091 10.1021/ma101229r 10.1021/jacs.1c08332 10.1038/nnano.2017.28 10.1038/nature06931 10.1103/PhysRevLett.114.238001 10.1126/sciadv.aaw4783 10.1021/jacs.0c09343 10.1126/science.aam7212 10.1073/pnas.082065899 10.1021/ja070779d 10.1038/nmat4109 10.1038/nmat4142 10.1021/acs.nanolett.0c02635 10.1126/science.1130557 10.1126/sciadv.aay2748 10.1126/science.1070821 10.1007/978-3-540-74252-4 10.1016/S0378-4371(98)00501-9 10.1021/acs.macromol.7b00012 10.1088/978-0-7503-3451-8 10.1103/PhysRevLett.99.055501 10.1039/b706609k 10.1021/acs.macromol.5b01290 10.1080/00207166808803030 10.1063/1.1743957 10.1021/ja0564261 10.1038/nmat3429 10.1038/nnano.2014.260 10.1038/nature01702 10.1103/PhysRevLett.98.225505 10.1038/nmat1949 10.1038/nmat1582 10.1021/ma500161j 10.1021/ma061210k 10.1002/1521-4095(200103)13:6<421::AID-ADMA421>3.0.CO;2-# 10.1103/PhysRev.96.191 10.1103/PhysRevLett.103.208302 10.1039/C5NR06134B 10.1038/35016528 10.1038/nmat2404 10.1073/pnas.0802049105 10.1038/415617a 10.1007/s10118-023-2968-5 10.1126/science.aac6103 10.1016/S0021-9258(19)81546-6 10.1038/s41567-020-1003-9 10.1002/9781119113171 10.1021/acs.nanolett.2c04939 10.1073/pnas.1609983113 10.1103/RevModPhys.86.995 10.1126/sciadv.aaw0514 10.1021/acs.macromol.8b01025 10.1038/ncomms4068 10.1039/b601916c 10.1038/nnano.2016.116 10.1016/j.cocis.2011.01.003 10.1038/nmat2614 10.1038/ncomms11175 10.1103/PhysRevLett.68.3801 10.1073/pnas.1613828114 10.1038/s41467-018-07332-5 10.1126/science.1081160 10.1038/nrd2614 10.1021/acs.accounts.7b00165 10.1126/science.1122225 10.1039/C5SM02038G 10.1021/ar300145c 10.1038/nature09620 10.1126/science.abb4536 10.1093/oso/9780198520597.001.0001 10.1038/43646 10.1016/0001-8686(87)85003-0 10.1038/s41563-021-01014-2 10.1021/acs.jpclett.9b03253 10.1021/bi980537d 10.1039/C4SM01646G 10.1103/PhysRevLett.124.198102 10.1002/anie.201507237 10.1039/C8SM02089B 10.1021/nl3013659 10.1103/PhysRevLett.107.125501 10.1126/science.1070865 10.1146/annurev.matsci.31.1.323 10.1021/nl0493500 10.1038/nmat3406 10.1103/PhysRevLett.124.218003 10.1038/nmat4184 10.1002/adma.200700765 10.1002/adma.201000356 10.1016/S0378-4371(02)01032-4 10.1103/PhysRevLett.116.118301 10.1103/PhysRevLett.115.025702 10.1007/978-94-007-1223-2 10.1038/416811a 10.1073/pnas.1418159111 10.1039/C9SC03103K 10.1103/PhysRevLett.122.198002 10.1103/PhysRevLett.122.128005 10.1038/nmat2496 10.1021/nn4037738 10.1021/acs.accounts.8b00001 10.3390/e21020186 10.1038/natrevmats.2015.11 10.1038/nmat1954 10.1038/nature08641 10.1038/35018034 10.1111/j.1749-6632.1949.tb27296.x 10.1103/RevModPhys.64.645 10.1073/pnas.1014942108 10.1103/PhysRevLett.100.148303 10.1073/pnas.1116820109 10.1038/nmat3728 10.1002/ange.200805158 10.1103/PhysRevLett.97.068301 10.1038/nmat2206 10.1039/D2NH00156J 10.1021/ja0609147 10.1083/jcb.200609066 10.1016/j.progpolymsci.2012.05.001 10.1021/ar200226d 10.1016/j.fmre.2021.06.014 10.1002/adma.200500167 10.1103/PhysRevLett.101.148301 10.1039/C7CS00245A |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d3cs00347g |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 6837 |
ExternalDocumentID | 10_1039_D3CS00347G d3cs00347g |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 4.4 53G 5GY 6J9 705 70~ 7~J 85S AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 ~02 AAYXX AFRZK AKMSF ALUYA CITATION R56 7SP 7SR 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c314t-dc1ceaccadb7a4057ea4966653f69f51b9afc271cadccdc15d5dac2a56eac8573 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 14:26:39 EDT 2025 Mon Jun 30 05:40:24 EDT 2025 Thu Apr 24 22:57:41 EDT 2025 Tue Jul 01 04:28:20 EDT 2025 Tue Dec 17 20:58:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-dc1ceaccadb7a4057ea4966653f69f51b9afc271cadccdc15d5dac2a56eac8573 |
Notes | Xiaobin Dai is currently a fifth year PHD student at the Department of Chemical Engineering at Tsinghua University, working under Professor Li-Tang Yan. His research interests include diffusion and transport processes of nano-objects in macromolecular networks, self-assembly in polymer nanocomposites, and theoretical and computational biophysics. Lijuan Gao received her BS in chemical engineering from Tsinghua University in 2020 and is currently a PhD student under the guidance of Prof. Li-Tang Yan at Tsinghua University in China. Her research focuses on the simulation and theoretical study of the self-assembly of colloidal particles under confinement. Haixiao Wan received her BS degree in materials science and engineering from Zhengzhou University in 2016, and her PhD degree in materials science and engineering from Beijing University of Chemical Technology in 2021. She is currently working as a postdoc under the guidance of Prof. Li-Tang Yan at Tsinghua University. Her main research interests are focused on simulations and theoretical studies of polymer nanocomposites and nanoparticle cellular interactions. Prof. Li-Tang Yan obtained his PhD in polymer physics and chemistry from Tsinghua University in 2007. Then he went to Bayreuth University in Germany with a Humboldt Research Fellowship. In 2010, he joined Prof. Anna Balazs' group at the University of Pittsburgh in USA as a postdoctoral research fellow. He returned to Tsinghua University as a faculty in the Department of Chemical Engineering in May 2011. In 2020, he obtained the "NSFC Award" for outstanding young scholar. His research interests focus on computational and theoretical aspects of soft matter systems, including nanoparticle cellular interactions and nano-engineer materials that are self-assembling and self-regulating. Xuanyu Zhang received her BS in chemical engineering from Tianjin University in 2019 and is currently a fourth year PhD student under the guidance of Prof. Li-Tang Yan at Tsinghua University in China. Her research focuses on rod-like particle diffusion in macromolecular networks and nanoparticle diffusion in DNA dynamical networks. Yuming Wang received his BS degree in Chemical Engineering from Tsinghua University in 2021 and is currently a PhD student under the guidance of Prof. Li-Tang Yan at Tsinghua University in China. His research focuses on the crystallization of hard spheres. Duo Xu received her BS and PhD degrees from the College of Chemistry, Jilin University in 2015 and 2021. From 2014 to 2015, she studied at the University of California, Los Angles, as an exchange student for a year. She is currently working as a postdoc under the guidance of Prof. Li-Tang Yan at Tsinghua University. Her research interests are focused on simulations and theoretical studies of polymer and biomacromolecule systems in non-equilibrium states. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6090-3039 |
PQID | 2870907604 |
PQPubID | 2047503 |
PageCount | 32 |
ParticipantIDs | crossref_primary_10_1039_D3CS00347G rsc_primary_d3cs00347g proquest_miscellaneous_2868668652 crossref_citationtrail_10_1039_D3CS00347G proquest_journals_2870907604 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-02 |
PublicationDateYYYYMMDD | 2023-10-02 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Chemical Society reviews |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Asakura (D3CS00347G/cit173/1) 1958; 33 Kim (D3CS00347G/cit220/1) 2017; 356 Zhao (D3CS00347G/cit143/1) 2011; 108 Kang (D3CS00347G/cit164/1) 2015; 137 Syamala (D3CS00347G/cit237/1) 2019; 10 Dong (D3CS00347G/cit129/1) 2010; 466 Burda (D3CS00347G/cit156/1) 2005; 105 Chen (D3CS00347G/cit229/1) 2017; 50 Ragazzon (D3CS00347G/cit265/1) 2015; 10 Zhou (D3CS00347G/cit82/1) 2017; 118 Shevchenko (D3CS00347G/cit157/1) 2006; 439 Ben-Naim (D3CS00347G/cit36/1) 2012 Frenkel (D3CS00347G/cit37/1) 2002; 313 Tymczenko (D3CS00347G/cit152/1) 2008; 20 Sacanna (D3CS00347G/cit149/1) 2011; 16 Balazs (D3CS00347G/cit210/1) 2006; 314 Geng (D3CS00347G/cit29/1) 2019; 5 Ball (D3CS00347G/cit57/1) 2014; 13 Macfarlane (D3CS00347G/cit11/1) 2011; 334 Damasceno (D3CS00347G/cit116/1) 2012; 337 Weng (D3CS00347G/cit257/1) 2020; 142 Walker (D3CS00347G/cit13/1) 2013; 8 Bazant (D3CS00347G/cit245/1) 2013; 46 Foy (D3CS00347G/cit274/1) 2017; 12 Yan (D3CS00347G/cit4/1) 2013; 38 Stradner (D3CS00347G/cit162/1) 2004; 432 Kadler (D3CS00347G/cit238/1) 1988; 263 Kumar (D3CS00347G/cit188/1) 2013; 46 Clausius (D3CS00347G/cit35/1) Wendt (D3CS00347G/cit176/1) 2019; 5 Kao (D3CS00347G/cit213/1) 2013; 42 Torquato (D3CS00347G/cit111/1) 2009; 460 Zhang (D3CS00347G/cit215/1) 2006; 96 Xu (D3CS00347G/cit79/1) 2023; 23 Kuna (D3CS00347G/cit206/1) 2009; 8 Yang (D3CS00347G/cit39/1) 2018; 34 Szleifer (D3CS00347G/cit27/1) 2013; 12 Bommineni (D3CS00347G/cit128/1) 2019; 122 Nie (D3CS00347G/cit202/1) 2007; 6 Bartlett (D3CS00347G/cit83/1) 1992; 68 Pauling (D3CS00347G/cit109/1) 1929; 51 Zhu (D3CS00347G/cit94/1) 2021; 21 Kraft (D3CS00347G/cit142/1) 2012; 109 Zhao (D3CS00347G/cit146/1) 2009; 103 Asakura (D3CS00347G/cit67/1) 1954; 22 Chatterjee (D3CS00347G/cit196/1) 2007; 19 Wang (D3CS00347G/cit100/1) 2018; 9 Meng (D3CS00347G/cit104/1) 2014; 343 Irvine (D3CS00347G/cit107/1) 2010; 468 Chen (D3CS00347G/cit117/1) 2012; 28 Pickett (D3CS00347G/cit95/1) 2000; 85 de Nijs (D3CS00347G/cit98/1) 2015; 14 Liu (D3CS00347G/cit191/1) 2010; 329 Zhu (D3CS00347G/cit88/1) 2018; 12 Kolmogorov (D3CS00347G/cit255/1) 1968; 2 Cademartiri (D3CS00347G/cit21/1) 2015; 14 Zhao (D3CS00347G/cit144/1) 2008; 101 Liu (D3CS00347G/cit204/1) 2021; 143 Galisteo-López (D3CS00347G/cit154/1) 2011; 23 Wang (D3CS00347G/cit18/1) 2012; 45 Fasolka (D3CS00347G/cit91/1) 2001; 31 Bockstaller (D3CS00347G/cit189/1) 2005; 17 Sneyd (D3CS00347G/cit259/1) 2001 Guo (D3CS00347G/cit125/1) 2013; 4 Hu (D3CS00347G/cit175/1) 2018; 120 Chen (D3CS00347G/cit77/1) 2020; 124 Feng (D3CS00347G/cit218/1) 2015; 14 Alder (D3CS00347G/cit49/1) 1957; 27 Kirkwood (D3CS00347G/cit48/1) 1951 Akcora (D3CS00347G/cit201/1) 2009; 8 Walther (D3CS00347G/cit52/1) 2013; 113 Haji-Akbari (D3CS00347G/cit110/1) 2009; 462 Lee (D3CS00347G/cit222/1) 2006; 39 Mackay (D3CS00347G/cit221/1) 2006; 311 Verma (D3CS00347G/cit208/1) 2008; 7 Friedhoff (D3CS00347G/cit239/1) 1998; 37 Broedersz (D3CS00347G/cit86/1) 2014; 86 Romano (D3CS00347G/cit23/1) 2012; 3 Wang (D3CS00347G/cit58/1) 2017; 50 Yu (D3CS00347G/cit113/1) 2006; 97 Gao (D3CS00347G/cit193/1) 2012; 7 Xu (D3CS00347G/cit258/1) 2023; 41 Grzybowski (D3CS00347G/cit253/1) 2000; 405 Andrieux (D3CS00347G/cit252/1) 2008; 105 Li (D3CS00347G/cit271/1) 2015; 10 Cardinaux (D3CS00347G/cit163/1) 2007; 99 Agarwal (D3CS00347G/cit183/1) 2011; 10 Xu (D3CS00347G/cit241/1) 2023; 23 Glotzer (D3CS00347G/cit12/1) 2007; 6 Ong (D3CS00347G/cit205/1) 2017; 50 Qu (D3CS00347G/cit256/1) 2023; 53 Besenius (D3CS00347G/cit235/1) 2010; 107 Frenkel (D3CS00347G/cit16/1) 2002; 296 Chen (D3CS00347G/cit76/1) 2011; 331 Mayoral (D3CS00347G/cit236/1) 2013; 135 Wang (D3CS00347G/cit81/1) 2021; 17 Whitesides (D3CS00347G/cit8/1) 2002; 99 Ma (D3CS00347G/cit123/1) 2015; 54 Segalman (D3CS00347G/cit93/1) 2005; 48 Boekhoven (D3CS00347G/cit272/1) 2015; 349 Nguyen (D3CS00347G/cit276/1) 2016; 113 Bansal (D3CS00347G/cit192/1) 2005; 4 Tanford (D3CS00347G/cit70/1) 1973 Cersonsky (D3CS00347G/cit114/1) 2018; 115 Jayaraman (D3CS00347G/cit194/1) 2008; 41 de Gennes (D3CS00347G/cit68/1) 1987; 27 Zhang (D3CS00347G/cit78/1) 2017; 114 Escobedo (D3CS00347G/cit41/1) 2014; 10 van der Vaart (D3CS00347G/cit126/1) 2015; 114 Verlinde (D3CS00347G/cit65/1) 2011; 29 Ragazzon (D3CS00347G/cit261/1) 2018; 13 Bausch (D3CS00347G/cit105/1) 2003; 299 Georgi (D3CS00347G/cit63/1) 1974; 32 Sanz (D3CS00347G/cit249/1) 2007; 99 Ball (D3CS00347G/cit3/1) 1999 Mann (D3CS00347G/cit248/1) 2009; 8 Cheng (D3CS00347G/cit266/1) 2015; 10 Li (D3CS00347G/cit227/1) 2013; 46 Grzybowski (D3CS00347G/cit262/1) 2016; 11 Dai (D3CS00347G/cit225/1) 2019; 10 van Anders (D3CS00347G/cit26/1) 2014; 111 Fava (D3CS00347G/cit190/1) 2008; 20 Wang (D3CS00347G/cit15/1) 2012; 491 Harper (D3CS00347G/cit180/1) 2019; 116 Hung (D3CS00347G/cit207/1) 2011; 133 Hopkins (D3CS00347G/cit112/1) 2011; 107 Zhang (D3CS00347G/cit14/1) 2004; 4 Planck (D3CS00347G/cit45/1) 1901; 309 Anderson (D3CS00347G/cit168/1) 2002; 416 Zhu (D3CS00347G/cit203/1) 2021; 1 Zhao (D3CS00347G/cit145/1) 2007; 99 Clausius (D3CS00347G/cit43/1) 1864 Yang (D3CS00347G/cit64/1) 1954; 96 Li (D3CS00347G/cit139/1) 2016; 100 Mao (D3CS00347G/cit74/1) 2013; 12 LaCour (D3CS00347G/cit134/1) 2019; 13 Fortini (D3CS00347G/cit137/1) 2016; 116 Huang (D3CS00347G/cit87/1) 2016; 8 Miyazaki (D3CS00347G/cit171/1) 2022; 156 van Rossum (D3CS00347G/cit270/1) 2017; 46 Kiely (D3CS00347G/cit132/1) 2000; 12 Koumura (D3CS00347G/cit264/1) 1999; 401 Levandovsky (D3CS00347G/cit251/1) 2009; 102 Huang (D3CS00347G/cit80/1) 2019; 122 Jin (D3CS00347G/cit96/1) 2020; 124 Dong (D3CS00347G/cit226/1) 2014; 47 Chen (D3CS00347G/cit140/1) 2016; 10 Pauling (D3CS00347G/cit179/1) 1931; 53 Baker (D3CS00347G/cit232/1) 2015; 6 Curk (D3CS00347G/cit187/1) 2014; 14 Dai (D3CS00347G/cit33/1) 2019; 21 Hou (D3CS00347G/cit122/1) 2018; 140 Huang (D3CS00347G/cit124/1) 2016; 7 Bechinger (D3CS00347G/cit170/1) 2016; 88 Chen (D3CS00347G/cit17/1) 2005; 38 Hou (D3CS00347G/cit34/1) 2022; 7 Vo (D3CS00347G/cit181/1) 2022; 119 Schilling (D3CS00347G/cit166/1) 2007; 98 Ikegami (D3CS00347G/cit273/1) 2016; 55 Boltzmann (D3CS00347G/cit44/1) 1896 Klein (D3CS00347G/cit275/1) 1954; 96 Benkoski (D3CS00347G/cit199/1) 2007; 129 Böker (D3CS00347G/cit211/1) 2007; 3 Doi (D3CS00347G/cit62/1) 2013 Shevchenko (D3CS00347G/cit138/1) 2006; 439 Huang (D3CS00347G/cit212/1) 2017; 12 Liu (D3CS00347G/cit185/1) 2014; 14 Khlobystov (D3CS00347G/cit153/1) 2004; 92 Fernández-Rico (D3CS00347G/cit119/1) 2020; 369 Kim (D3CS00347G/cit223/1) 2005; 17 Gupta (D3CS00347G/cit214/1) 2006; 5 Frederick (D3CS00347G/cit60/1) 2007; 448 Cheng (D3CS00347G/cit90/1) 2006; 18 Bommineni (D3CS00347G/cit135/1) 2020; 124 John (D3CS00347G/cit184/1) 2008; 128 Timonen (D3CS00347G/cit254/1) 2013; 341 Davis (D3CS00347G/cit216/1) 2008; 7 Gibbs (D3CS00347G/cit73/1) 2010; 2 Wojtecki (D3CS00347G/cit6/1) 2011; 10 Sacanna (D3CS00347G/cit172/1) 2010; 464 Lebon (D3CS00347G/cit243/1) 2008 de Gennes (D3CS00347G/cit51/1) 1992; 64 Manoharan (D3CS00347G/cit28/1) 2015; 349 Shi (D3CS00347G/cit101/1) 2013; 9 Xu (D3CS00347G/cit141/1) 2019; 2 Rabani (D3CS00347G/cit250/1) 2003; 426 Shin (D3CS00347G/cit103/1) 2004; 306 Cao (D3CS00347G/cit217/1) 2013; 7 Kim (D3CS00347G/cit240/1) 2019; 5 Rubinstein (D3CS00347G/cit59/1) 2003 Glotzer (D3CS00347G/cit2/1) 2004; 306 Shannon (D3CS00347G/cit46/1) 1948; 27 Eggeling (D3CS00347G/cit7/1) 2009; 457 Albert (D3CS00347G/cit92/1) 2010; 13 Cho (D3CS00347G/cit209/1) 2012; 11 Bergman (D3CS00347G/cit160/1) 2018; 9 Kim (D3CS00347G/cit108/1) 2014; 5 Glansdorff (D3CS00347G/cit244/1) 1971 Irvine (D3CS00347G/cit115/1) 2012; 11 Knoben (D3CS00347G/cit161/1) 2006; 97 Likos (D3CS00347G/cit148/1) 2006; 2 Yamchi (D3CS00347G/cit97/1) 2015; 115 Frenkel (D3CS00347G/cit40/1) 1999; 263 Wilson (D3CS00347G/cit267/1) 2016; 534 Damasceno (D3CS00347G/cit55/1) 2012; 6 Kuhn (D3CS00347G/cit69/1) 1934; 68 Rovigatti (D3CS00347G/cit31/1) 2022; 129 Ramshaw (D3CS00347G/cit72/1) 2018 Kang (D3CS00347G/cit224/1) 2008; 100 Pokrovskii (D3CS00347G/cit242/1) 2020 Jenkins (D3CS00347G/cit165/1) 1996; 68 Kang (D3CS00347G/cit174/1) 2016; 12 Barry (D3CS00347G/cit178/1) 2010; 107 Kassem (D3CS00347G/cit263/1) 2017; 46 Chen (D3CS00347G/cit54/1) 2011; 469 Gudiksen (D3CS00347G/cit155/1) 2002; 415 Thompson (D3CS00347G/cit219/1) 2001; 292 Wang (D3CS00347G/cit30/1) 2018; 9 Nikolic (D3CS00347G/cit200/1) 2009; 121 Tagliazucchi (D3CS00347G/cit277/1) 2014; 111 Kao (D3CS00347G/cit5/1) 2013; 42 Mirkin (D3CS00347G/cit10/1) 1996; 382 Shevchenko (D3CS00347G/cit130/1) 2006; 128 Lu (D3CS00347G/cit158/1) 2008; 453 Cheng (D3CS00347G/cit260/1) 2020; 6 Stuart (D3CS00347G/cit186/1) 2010; 9 Merindol (D3CS00347G/cit269/1) 2017; 46 Zhu (D3CS00347G/cit25/1) 2018; 51 Cates (D3CS00347G/cit75/1) 2013; 12 Lacava (D3CS00347G/cit99/1) 2012; 12 Ruiz-Franco (D3CS00347G/cit159/1) 2021; 12 van Anders (D3CS00347G/cit56/1) 2015; 9 Kiely (D3CS00347G/cit127/1) 1998; 396 Huang (D3CS00347G/cit121/1) 2018; 12 Yu (D3CS00347G/cit102/1) 2006; 96 Damasceno (D3CS00347G/cit182/1) 2015; 115 Whitesides (D3CS00347G/cit1/1) 2002; 295 Zosel (D3CS00347G/cit169/1) 2020; 117 Boles (D3CS00347G/cit147/1) 2016; 116 Yan (D3CS00347G/cit53/1) 2010; 4 Engel (D3CS00347G/cit177/1) 2007; 98 Dinsmore (D3CS00347G/cit151/1) 2002; 298 Engel (D3CS00347G/cit133/1) 2007; 98 Yan (D3CS00347G/cit89/1) 2016 Frenkel (D3CS00347G/cit24/1) 2015; 14 Onsager (D3CS00347G/cit47/1) 1949; 51 Erbas-Cakmak (D3CS00347G/cit268/1) 2017; 358 Rovigatti (D3CS00347G/cit150/1) 2019; 15 Dai (D3CS00347G/cit71/1) 2021; 52 Mayer (D3CS00347G/cit136/1) 2008; 7 Oh (D3CS00347G/cit197/1) 2009; 8 Li (D3CS00347G/cit50/1) 2016; 1 Edrington (D3CS00347G/cit231/1) 2001; 13 Petukhov (D3CS00347G/cit38/1) 2017; 30 Lekkerkerker (D3CS00347G/cit66/1) 2011 Korth (D3CS00347G/cit198/1) 2006; 128 Hariharan (D3CS00347G/cit234/1) 2009; 131 Scala (D3CS00347G/cit61/1) 2000; 406 Xu (D3CS00347G/cit85/1) 2017; 13 Teich (D3CS00347G/cit106/1) 2016; 113 Marenduzzo (D3CS00347G/cit9/1) 2006; 175 Dijkstra (D3CS00347G/cit42/1) 2014; 156 Redl (D3CS00347G/cit131/1) 2003; 423 Guo (D3CS00347G/cit22/1) 2014; 4 Dey (D3CS00347G/cit233/1) 2018; 51 Martiniani (D3CS00347G/cit247/1) 2019; 9 Zhu (D3CS00347G/cit32/1) 2020; 20 Frenkel (D3CS00347G/cit118/1) 1988; 332 Mayer (D3CS00347G/cit167/1) 2008; 7 Nair (D3CS00347G/cit195/1) 2010; 43 Ye (D3CS00347G/cit84/1) 2013; 13 Bechinger (D3CS00347G/cit246/1) 2016; 88 Lu (D3CS00347G/cit228/1) 2014; 47 Min (D3CS00347G/cit20/1) 2008 |
References_xml | – issn: 1864 publication-title: Abhandlungen Über Die Mechanische Wärmetheorie doi: Clausius – issn: 1951 publication-title: Phase Transformations in Solids doi: Kirkwood – issn: 2018 publication-title: The statistical foundations of entropy doi: Ramshaw – issn: 2001 publication-title: Self-organization in biological systems doi: Sneyd Theraula Bonabeau Deneubourg Franks – issn: 2012 publication-title: Entropy and the second law: interpretation and misss-interpretationsss doi: Ben-Naim – issn: 1973 publication-title: The hydrophobic effect: formation of micelles and biological membranes doi: Tanford – issn: 2016 publication-title: Self-Assembling Systems: Theory and Simulation doi: Yan – issn: 1971 publication-title: Thermodynamic theory of structure, stability and fluctuations doi: Glansdorff Prigogine – issn: 1896 publication-title: Vorlesungen über Gastheorie doi: Boltzmann – issn: 2013 publication-title: Soft Matter Physics doi: Doi – issn: 2008 publication-title: Understanding non-equilibrium thermodynamics doi: Lebon Jou Casas-Vázquez – issn: 2020 publication-title: Thermodynamics of Complex Systems: Principles and Applications doi: Pokrovskii – issn: 1999 publication-title: The self-made tapestry: pattern formation in nature doi: Ball – doi: Clausius – issn: 2011 publication-title: Colloids and the Depletion Interaction doi: Lekkerkerker Tuinier – issn: 2003 publication-title: Polymer Physics doi: Rubinstein Colby – volume: 332 start-page: 822 year: 1988 ident: D3CS00347G/cit118/1 publication-title: Nature doi: 10.1038/332822a0 – volume: 140 start-page: 1805 year: 2018 ident: D3CS00347G/cit122/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11324 – volume: 534 start-page: 235 year: 2016 ident: D3CS00347G/cit267/1 publication-title: Nature doi: 10.1038/nature18013 – volume: 20 start-page: 4318 year: 2008 ident: D3CS00347G/cit190/1 publication-title: Adv. Mater. doi: 10.1002/adma.200702786 – volume: 8 start-page: 837 year: 2009 ident: D3CS00347G/cit206/1 publication-title: Nat. Mater. doi: 10.1038/nmat2534 – volume: 38 start-page: 494 year: 2005 ident: D3CS00347G/cit17/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar040113d – volume: 32 start-page: 438 year: 1974 ident: D3CS00347G/cit63/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.32.438 – volume: 448 start-page: 325 year: 2007 ident: D3CS00347G/cit60/1 publication-title: Nature doi: 10.1038/nature05959 – volume: 13 start-page: 1603155 year: 2017 ident: D3CS00347G/cit85/1 publication-title: Small doi: 10.1002/smll.201603155 – volume: 9 start-page: 2228 year: 2018 ident: D3CS00347G/cit100/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04644-4 – volume: 12 start-page: 1060 year: 2017 ident: D3CS00347G/cit212/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.182 – volume: 460 start-page: 876 year: 2009 ident: D3CS00347G/cit111/1 publication-title: Nature doi: 10.1038/nature08239 – volume: 6 start-page: 609 year: 2012 ident: D3CS00347G/cit55/1 publication-title: ACS Nano doi: 10.1021/nn204012y – volume: 46 start-page: 5519 year: 2017 ident: D3CS00347G/cit270/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00246G – volume: 7 start-page: 780 year: 2008 ident: D3CS00347G/cit167/1 publication-title: Nat. Mater. doi: 10.1038/nmat2286 – volume: 129 start-page: 047801 year: 2022 ident: D3CS00347G/cit31/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.047801 – volume: 13 start-page: 24 year: 2010 ident: D3CS00347G/cit92/1 publication-title: Mater. Today doi: 10.1016/S1369-7021(10)70106-1 – volume: 46 start-page: 3199 year: 2013 ident: D3CS00347G/cit188/1 publication-title: Macromolecules doi: 10.1021/ma4001385 – volume: 133 start-page: 1438 year: 2011 ident: D3CS00347G/cit207/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja108285u – volume: 4 start-page: 7021 year: 2014 ident: D3CS00347G/cit22/1 publication-title: Sci. Rep. doi: 10.1038/srep07021 – volume: 118 start-page: 108002 year: 2017 ident: D3CS00347G/cit82/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.108002 – volume: 48 start-page: 191 year: 2005 ident: D3CS00347G/cit93/1 publication-title: Mater. Sci. Eng., R doi: 10.1016/j.mser.2004.12.003 – volume: 14 start-page: 2617 year: 2014 ident: D3CS00347G/cit187/1 publication-title: Nano Lett. doi: 10.1021/nl500449x – volume: 53 start-page: 145 year: 2023 ident: D3CS00347G/cit256/1 publication-title: Sci. Sin. Chim. doi: 10.1360/SSC-2022-0186 – volume-title: The hydrophobic effect: formation of micelles and biological membranes year: 1973 ident: D3CS00347G/cit70/1 – volume: 2 start-page: 1800160 year: 2019 ident: D3CS00347G/cit141/1 publication-title: Adv. Theory Simul. doi: 10.1002/adts.201800160 – volume: 137 start-page: 10970 year: 2015 ident: D3CS00347G/cit164/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04531 – volume: 46 start-page: 7465 year: 2013 ident: D3CS00347G/cit227/1 publication-title: Macromolecules doi: 10.1021/ma4009884 – volume: 98 start-page: 108303 year: 2007 ident: D3CS00347G/cit166/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.108303 – volume-title: Abhandlungen Über Die Mechanische Wärmetheorie year: 1864 ident: D3CS00347G/cit43/1 – volume: 29 start-page: 1 year: 2011 ident: D3CS00347G/cit65/1 publication-title: J. High Energy Phys. – volume: 50 start-page: 9073 year: 2017 ident: D3CS00347G/cit58/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.7b01518 – volume: 14 start-page: 9 year: 2015 ident: D3CS00347G/cit24/1 publication-title: Nat. Mater. doi: 10.1038/nmat4178 – volume: 96 start-page: 028701 year: 2006 ident: D3CS00347G/cit215/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.028701 – volume: 42 start-page: 2654 year: 2013 ident: D3CS00347G/cit5/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35375J – volume: 46 start-page: 5588 year: 2017 ident: D3CS00347G/cit269/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00738D – volume: 12 start-page: 217 year: 2013 ident: D3CS00347G/cit74/1 publication-title: Nat. Mater. doi: 10.1038/nmat3496 – volume: 22 start-page: 1255 year: 1954 ident: D3CS00347G/cit67/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1740347 – volume: 469 start-page: 381 year: 2011 ident: D3CS00347G/cit54/1 publication-title: Nature doi: 10.1038/nature09713 – volume: 13 start-page: 882 year: 2018 ident: D3CS00347G/cit261/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0250-8 – volume: 156 start-page: 080401 year: 2022 ident: D3CS00347G/cit171/1 publication-title: J. Chem. Phys. doi: 10.1063/5.0085965 – volume: 8 start-page: 139 year: 2009 ident: D3CS00347G/cit197/1 publication-title: Nat. Mater. doi: 10.1038/nmat2354 – volume: 12 start-page: 9467 year: 2018 ident: D3CS00347G/cit88/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b04753 – volume: 119 start-page: e2116414119 year: 2022 ident: D3CS00347G/cit181/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2116414119 – volume: 12 start-page: 640 year: 2000 ident: D3CS00347G/cit132/1 publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(200005)12:9<640::AID-ADMA640>3.0.CO;2-J – volume: 55 start-page: 8239 year: 2016 ident: D3CS00347G/cit273/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201600218 – volume: 3 start-page: 975 year: 2012 ident: D3CS00347G/cit23/1 publication-title: Nat. Commun. doi: 10.1038/ncomms1968 – volume: 135 start-page: 2148 year: 2013 ident: D3CS00347G/cit236/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312628g – volume: 41 start-page: 9430 year: 2008 ident: D3CS00347G/cit194/1 publication-title: Macromolecules doi: 10.1021/ma801722m – volume: 88 start-page: 045006 year: 2016 ident: D3CS00347G/cit246/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.88.045006 – volume: 113 start-page: 669 year: 2016 ident: D3CS00347G/cit106/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1524875113 – volume: 124 start-page: 248002 year: 2020 ident: D3CS00347G/cit96/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.248002 – volume: 10 start-page: 11541 year: 2016 ident: D3CS00347G/cit140/1 publication-title: ACS Nano doi: 10.1021/acsnano.6b07563 – volume: 6 start-page: 6234 year: 2015 ident: D3CS00347G/cit232/1 publication-title: Nat. Commun. doi: 10.1038/ncomms7234 – volume: 21 start-page: 8439 year: 2021 ident: D3CS00347G/cit94/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c03127 – volume: 7 start-page: 780 year: 2008 ident: D3CS00347G/cit136/1 publication-title: Nat. Mater. doi: 10.1038/nmat2286 – volume: 7 start-page: 433 year: 2012 ident: D3CS00347G/cit193/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.83 – volume: 349 start-page: 1253751 year: 2015 ident: D3CS00347G/cit28/1 publication-title: Science doi: 10.1126/science.1253751 – volume: 115 start-page: 158303 year: 2015 ident: D3CS00347G/cit182/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.158303 – volume: 131 start-page: 5920 year: 2009 ident: D3CS00347G/cit234/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja900347t – volume: 105 start-page: 1025 year: 2005 ident: D3CS00347G/cit156/1 publication-title: Chem. Rev. doi: 10.1021/cr030063a – volume: 309 start-page: 553 year: 1901 ident: D3CS00347G/cit45/1 publication-title: Ann. Phys. doi: 10.1002/andp.19013090310 – volume-title: The statistical foundations of entropy year: 2018 ident: D3CS00347G/cit72/1 doi: 10.1142/10823 – volume: 457 start-page: 1159 year: 2009 ident: D3CS00347G/cit7/1 publication-title: Nature doi: 10.1038/nature07596 – volume: 14 start-page: 56 year: 2015 ident: D3CS00347G/cit98/1 publication-title: Nat. Mater. doi: 10.1038/nmat4072 – volume: 298 start-page: 1006 year: 2002 ident: D3CS00347G/cit151/1 publication-title: Science doi: 10.1126/science.1074868 – volume: 120 start-page: 048003 year: 2018 ident: D3CS00347G/cit175/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.048003 – volume: 343 start-page: 634 year: 2014 ident: D3CS00347G/cit104/1 publication-title: Science doi: 10.1126/science.1244827 – volume: 30 start-page: 54 year: 2017 ident: D3CS00347G/cit38/1 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2017.05.008 – volume: 331 start-page: 199 year: 2011 ident: D3CS00347G/cit76/1 publication-title: Science doi: 10.1126/science.1197451 – volume: 439 start-page: 55 year: 2006 ident: D3CS00347G/cit138/1 publication-title: Nature doi: 10.1038/nature04414 – volume-title: The self-made tapestry: pattern formation in nature year: 1999 ident: D3CS00347G/cit3/1 – volume: 4 start-page: 913 year: 2010 ident: D3CS00347G/cit53/1 publication-title: ACS Nano doi: 10.1021/nn901739v – volume-title: Entropy and the second law: interpretation and misss-interpretationsss year: 2012 ident: D3CS00347G/cit36/1 doi: 10.1142/8333 – volume: 96 start-page: 138306 year: 2006 ident: D3CS00347G/cit102/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.138306 – volume: 13 start-page: 4980 year: 2013 ident: D3CS00347G/cit84/1 publication-title: Nano Lett. doi: 10.1021/nl403149u – volume: 341 start-page: 253 year: 2013 ident: D3CS00347G/cit254/1 publication-title: Science doi: 10.1126/science.1233775 – volume: 10 start-page: 14 year: 2011 ident: D3CS00347G/cit6/1 publication-title: Nat. Mater. doi: 10.1038/nmat2891 – volume: 96 start-page: 250 year: 1954 ident: D3CS00347G/cit275/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.96.250 – volume: 491 start-page: 51 year: 2012 ident: D3CS00347G/cit15/1 publication-title: Nature doi: 10.1038/nature11564 – volume: 382 start-page: 607 year: 1996 ident: D3CS00347G/cit10/1 publication-title: Nature doi: 10.1038/382607a0 – volume: 97 start-page: 265501 year: 2006 ident: D3CS00347G/cit113/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.265501 – volume: 20 start-page: 2315 year: 2008 ident: D3CS00347G/cit152/1 publication-title: Adv. Mater. doi: 10.1002/adma.200701526 – volume: 9 start-page: 9542 year: 2015 ident: D3CS00347G/cit56/1 publication-title: ACS Nano doi: 10.1021/acsnano.5b04181 – volume: 306 start-page: 76 year: 2004 ident: D3CS00347G/cit103/1 publication-title: Science doi: 10.1126/science.1100090 – volume: 334 start-page: 204 year: 2011 ident: D3CS00347G/cit11/1 publication-title: Science doi: 10.1126/science.1210493 – volume: 113 start-page: 5194 year: 2013 ident: D3CS00347G/cit52/1 publication-title: Chem. Rev. doi: 10.1021/cr300089t – volume: 10 start-page: 161 year: 2015 ident: D3CS00347G/cit271/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.315 – volume: 116 start-page: 16703 year: 2019 ident: D3CS00347G/cit180/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1822092116 – volume: 115 start-page: 1439 year: 2018 ident: D3CS00347G/cit114/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1720139115 – volume: 6 start-page: 1160 year: 2020 ident: D3CS00347G/cit260/1 publication-title: Chem doi: 10.1016/j.chempr.2020.02.009 – volume: 426 start-page: 271 year: 2003 ident: D3CS00347G/cit250/1 publication-title: Nature doi: 10.1038/nature02087 – volume: 466 start-page: 474 year: 2010 ident: D3CS00347G/cit129/1 publication-title: Nature doi: 10.1038/nature09188 – volume: 10 start-page: 230 year: 2011 ident: D3CS00347G/cit183/1 publication-title: Nat. Mater. doi: 10.1038/nmat2959 – volume: 432 start-page: 492 year: 2004 ident: D3CS00347G/cit162/1 publication-title: Nature doi: 10.1038/nature03109 – volume: 329 start-page: 197 year: 2010 ident: D3CS00347G/cit191/1 publication-title: Science doi: 10.1126/science.1189457 – volume: 68 start-page: 57 year: 1996 ident: D3CS00347G/cit165/1 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(96)00304-1 – volume: 12 start-page: 179 year: 2013 ident: D3CS00347G/cit75/1 publication-title: Nat. Mater. doi: 10.1038/nmat3573 – volume: 337 start-page: 453 year: 2012 ident: D3CS00347G/cit116/1 publication-title: Science doi: 10.1126/science.1220869 – volume: 9 start-page: 1398 year: 2013 ident: D3CS00347G/cit101/1 publication-title: Soft Matter doi: 10.1039/C2SM27031E – volume: 116 start-page: 11220 year: 2016 ident: D3CS00347G/cit147/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00196 – volume: 13 start-page: 13829 year: 2019 ident: D3CS00347G/cit134/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b04274 – volume: 4 start-page: 693 year: 2005 ident: D3CS00347G/cit192/1 publication-title: Nat. Mater. doi: 10.1038/nmat1447 – volume: 358 start-page: 340 year: 2017 ident: D3CS00347G/cit268/1 publication-title: Science doi: 10.1126/science.aao1377 – volume: 99 start-page: 118301 year: 2007 ident: D3CS00347G/cit163/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.118301 – volume: 10 start-page: 547 year: 2015 ident: D3CS00347G/cit266/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.96 – volume: 117 start-page: 13480 year: 2020 ident: D3CS00347G/cit169/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1921617117 – volume: 51 start-page: 1010 year: 1929 ident: D3CS00347G/cit109/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01379a006 – volume: 292 start-page: 2469 year: 2001 ident: D3CS00347G/cit219/1 publication-title: Science doi: 10.1126/science.1060585 – volume: 306 start-page: 419 year: 2004 ident: D3CS00347G/cit2/1 publication-title: Science doi: 10.1126/science.1099988 – volume-title: Soft Matter Physics year: 2013 ident: D3CS00347G/cit62/1 doi: 10.1093/acprof:oso/9780199652952.001.0001 – volume: 464 start-page: 575 year: 2010 ident: D3CS00347G/cit172/1 publication-title: Nature doi: 10.1038/nature08906 – volume: 27 start-page: 379 year: 1948 ident: D3CS00347G/cit46/1 publication-title: Bell Syst. Tech. J doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 14 start-page: 6910 year: 2014 ident: D3CS00347G/cit185/1 publication-title: Nano Lett. doi: 10.1021/nl5029396 – volume: 18 start-page: 2505 year: 2006 ident: D3CS00347G/cit90/1 publication-title: Adv. Mater. doi: 10.1002/adma.200502651 – volume: 28 start-page: 13555 year: 2012 ident: D3CS00347G/cit117/1 publication-title: Langmuir doi: 10.1021/la302226w – volume: 34 start-page: 9477 year: 2018 ident: D3CS00347G/cit39/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01378 – volume: 85 start-page: 3652 year: 2000 ident: D3CS00347G/cit95/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.3652 – volume: 396 start-page: 444 year: 1998 ident: D3CS00347G/cit127/1 publication-title: Nature doi: 10.1038/24808 – volume: 17 start-page: 2618 year: 2005 ident: D3CS00347G/cit223/1 publication-title: Adv. Mater. doi: 10.1002/adma.200500502 – volume: 100 start-page: 215 year: 2016 ident: D3CS00347G/cit139/1 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-015-6985-3 – volume: 53 start-page: 1367 year: 1931 ident: D3CS00347G/cit179/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01355a027 – volume: 102 start-page: 198102 year: 2009 ident: D3CS00347G/cit251/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.198102 – volume: 47 start-page: 4676 year: 2014 ident: D3CS00347G/cit228/1 publication-title: Macromolecules doi: 10.1021/ma500664u – volume: 7 start-page: 1966 year: 2016 ident: D3CS00347G/cit124/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00724 – volume-title: Phase Transformations in Solids year: 1951 ident: D3CS00347G/cit48/1 – volume: 107 start-page: 10348 year: 2010 ident: D3CS00347G/cit178/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1000406107 – volume-title: Self-organization in biological systems year: 2001 ident: D3CS00347G/cit259/1 doi: 10.1515/9780691212920 – volume-title: Thermodynamic theory of structure, stability and fluctuations year: 1971 ident: D3CS00347G/cit244/1 – volume: 99 start-page: 268301 year: 2007 ident: D3CS00347G/cit145/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.268301 – volume: 12 start-page: 51 year: 2021 ident: D3CS00347G/cit159/1 publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-061020-053046 – volume: 107 start-page: 17888 year: 2010 ident: D3CS00347G/cit235/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1009592107 – volume: 7 start-page: 588 year: 2008 ident: D3CS00347G/cit208/1 publication-title: Nat. Mater. doi: 10.1038/nmat2202 – volume: 8 start-page: 676 year: 2013 ident: D3CS00347G/cit13/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.158 – volume: 4 start-page: 1221 year: 2013 ident: D3CS00347G/cit125/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz4003789 – volume: 111 start-page: 9751 year: 2014 ident: D3CS00347G/cit277/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1406122111 – volume: 42 start-page: 2654 year: 2013 ident: D3CS00347G/cit213/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35375J – volume: 92 start-page: 245507 year: 2004 ident: D3CS00347G/cit153/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.245507 – volume: 12 start-page: 6725 year: 2018 ident: D3CS00347G/cit121/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b01842 – volume: 128 start-page: 044909 year: 2008 ident: D3CS00347G/cit184/1 publication-title: J. Chem. Phys. doi: 10.1063/1.2819091 – volume: 43 start-page: 8251 year: 2010 ident: D3CS00347G/cit195/1 publication-title: Macromolecules doi: 10.1021/ma101229r – volume: 143 start-page: 17250 year: 2021 ident: D3CS00347G/cit204/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c08332 – volume: 12 start-page: 540 year: 2017 ident: D3CS00347G/cit274/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.28 – volume: 453 start-page: 499 year: 2008 ident: D3CS00347G/cit158/1 publication-title: Nature doi: 10.1038/nature06931 – volume: 114 start-page: 238001 year: 2015 ident: D3CS00347G/cit126/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.238001 – volume: 5 start-page: eaaw4783 year: 2019 ident: D3CS00347G/cit240/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw4783 – volume: 142 start-page: 21344 year: 2020 ident: D3CS00347G/cit257/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09343 – volume: 356 start-page: 520 year: 2017 ident: D3CS00347G/cit220/1 publication-title: Science doi: 10.1126/science.aam7212 – volume: 99 start-page: 4769 year: 2002 ident: D3CS00347G/cit8/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.082065899 – volume: 129 start-page: 6291 year: 2007 ident: D3CS00347G/cit199/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja070779d – volume: 14 start-page: 61 year: 2015 ident: D3CS00347G/cit218/1 publication-title: Nat. Mater. doi: 10.1038/nmat4109 – volume: 13 start-page: 1083 year: 2014 ident: D3CS00347G/cit57/1 publication-title: Nat. Mater. doi: 10.1038/nmat4142 – volume: 20 start-page: 5616 year: 2020 ident: D3CS00347G/cit32/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02635 – volume: 314 start-page: 1107 year: 2006 ident: D3CS00347G/cit210/1 publication-title: Science doi: 10.1126/science.1130557 – volume: 2 start-page: 382 year: 2010 ident: D3CS00347G/cit73/1 publication-title: Trans. Conn. Acad. Arts Sci. – volume: 5 start-page: eaay2748 year: 2019 ident: D3CS00347G/cit176/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay2748 – volume: 295 start-page: 2418 year: 2002 ident: D3CS00347G/cit1/1 publication-title: Science doi: 10.1126/science.1070821 – volume-title: Understanding non-equilibrium thermodynamics year: 2008 ident: D3CS00347G/cit243/1 doi: 10.1007/978-3-540-74252-4 – volume: 263 start-page: 26 year: 1999 ident: D3CS00347G/cit40/1 publication-title: Phys. A doi: 10.1016/S0378-4371(98)00501-9 – volume: 68 start-page: 2 year: 1934 ident: D3CS00347G/cit69/1 publication-title: Colloid Polym. Sci. – volume: 50 start-page: 2078 year: 2017 ident: D3CS00347G/cit229/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.7b00012 – volume-title: Thermodynamics of Complex Systems: Principles and Applications year: 2020 ident: D3CS00347G/cit242/1 doi: 10.1088/978-0-7503-3451-8 – volume: 99 start-page: 055501 year: 2007 ident: D3CS00347G/cit249/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.055501 – volume: 3 start-page: 1231 year: 2007 ident: D3CS00347G/cit211/1 publication-title: Soft Matter doi: 10.1039/b706609k – volume: 48 start-page: 5385 year: 2015 ident: D3CS00347G/cit230/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.5b01290 – volume: 52 start-page: 1076 year: 2021 ident: D3CS00347G/cit71/1 publication-title: Acta Polym. Sin. – volume: 2 start-page: 157 year: 1968 ident: D3CS00347G/cit255/1 publication-title: Int. J. Comput. Math. doi: 10.1080/00207166808803030 – volume: 27 start-page: 1208 year: 1957 ident: D3CS00347G/cit49/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1743957 – volume: 128 start-page: 3620 year: 2006 ident: D3CS00347G/cit130/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0564261 – volume: 11 start-page: 948 year: 2012 ident: D3CS00347G/cit115/1 publication-title: Nat. Mater. doi: 10.1038/nmat3429 – volume: 10 start-page: 70 year: 2015 ident: D3CS00347G/cit265/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.260 – volume: 423 start-page: 968 year: 2003 ident: D3CS00347G/cit131/1 publication-title: Nature doi: 10.1038/nature01702 – volume: 98 start-page: 225505 year: 2007 ident: D3CS00347G/cit133/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.225505 – volume: 6 start-page: 557 year: 2007 ident: D3CS00347G/cit12/1 publication-title: Nat. Mater. doi: 10.1038/nmat1949 – volume: 5 start-page: 229 year: 2006 ident: D3CS00347G/cit214/1 publication-title: Nat. Mater. doi: 10.1038/nmat1582 – volume: 47 start-page: 4369 year: 2014 ident: D3CS00347G/cit226/1 publication-title: Macromolecules doi: 10.1021/ma500161j – volume: 39 start-page: 7392 year: 2006 ident: D3CS00347G/cit222/1 publication-title: Macromolecules doi: 10.1021/ma061210k – volume: 13 start-page: 421 year: 2001 ident: D3CS00347G/cit231/1 publication-title: Adv. Mater. doi: 10.1002/1521-4095(200103)13:6<421::AID-ADMA421>3.0.CO;2-# – ident: D3CS00347G/cit35/1 – volume: 96 start-page: 191 year: 1954 ident: D3CS00347G/cit64/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.96.191 – volume: 103 start-page: 208302 year: 2009 ident: D3CS00347G/cit146/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.208302 – volume: 8 start-page: 1024 year: 2016 ident: D3CS00347G/cit87/1 publication-title: Nanoscale doi: 10.1039/C5NR06134B – volume: 405 start-page: 1033 year: 2000 ident: D3CS00347G/cit253/1 publication-title: Nature doi: 10.1038/35016528 – volume: 8 start-page: 354 year: 2009 ident: D3CS00347G/cit201/1 publication-title: Nat. Mater. doi: 10.1038/nmat2404 – volume: 105 start-page: 9516 year: 2008 ident: D3CS00347G/cit252/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0802049105 – volume: 415 start-page: 617 year: 2002 ident: D3CS00347G/cit155/1 publication-title: Nature doi: 10.1038/415617a – volume: 88 start-page: 045006 year: 2016 ident: D3CS00347G/cit170/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.88.045006 – volume: 41 start-page: 1361 year: 2023 ident: D3CS00347G/cit258/1 publication-title: Chin. J. Polym. Sci. doi: 10.1007/s10118-023-2968-5 – volume: 349 start-page: 1075 year: 2015 ident: D3CS00347G/cit272/1 publication-title: Science doi: 10.1126/science.aac6103 – volume: 263 start-page: 10517 year: 1988 ident: D3CS00347G/cit238/1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)81546-6 – volume: 33 start-page: 183 year: 1958 ident: D3CS00347G/cit173/1 publication-title: J. Polym. Res. – volume: 9 start-page: 011031 year: 2019 ident: D3CS00347G/cit247/1 publication-title: Phys. Rev. X – volume: 17 start-page: 128 year: 2021 ident: D3CS00347G/cit81/1 publication-title: Nat. Phys. doi: 10.1038/s41567-020-1003-9 – volume: 156 start-page: 35 year: 2014 ident: D3CS00347G/cit42/1 publication-title: Adv. Chem. Phys. – volume-title: Self-Assembling Systems: Theory and Simulation year: 2016 ident: D3CS00347G/cit89/1 doi: 10.1002/9781119113171 – volume: 23 start-page: 1109 year: 2023 ident: D3CS00347G/cit241/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c04939 – volume: 113 start-page: 14231 year: 2016 ident: D3CS00347G/cit276/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1609983113 – volume: 86 start-page: 995 year: 2014 ident: D3CS00347G/cit86/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.86.995 – volume: 5 start-page: eaaw0514 year: 2019 ident: D3CS00347G/cit29/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw0514 – volume: 23 start-page: 1109 year: 2023 ident: D3CS00347G/cit79/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c04939 – volume: 51 start-page: 5182 year: 2018 ident: D3CS00347G/cit233/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.8b01025 – volume: 5 start-page: 3068 year: 2014 ident: D3CS00347G/cit108/1 publication-title: Nat. Commun. doi: 10.1038/ncomms4068 – volume: 2 start-page: 478 year: 2006 ident: D3CS00347G/cit148/1 publication-title: Soft Matter doi: 10.1039/b601916c – volume: 11 start-page: 585 year: 2016 ident: D3CS00347G/cit262/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.116 – volume: 16 start-page: 96 year: 2011 ident: D3CS00347G/cit149/1 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2011.01.003 – volume: 9 start-page: 101 year: 2010 ident: D3CS00347G/cit186/1 publication-title: Nat. Mater. doi: 10.1038/nmat2614 – volume: 7 start-page: 11175 year: 2016 ident: D3CS00347G/cit120/1 publication-title: Nat. Commun. doi: 10.1038/ncomms11175 – volume: 68 start-page: 3801 year: 1992 ident: D3CS00347G/cit83/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.3801 – volume: 114 start-page: 2462 year: 2017 ident: D3CS00347G/cit78/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1613828114 – volume: 9 start-page: 5039 year: 2018 ident: D3CS00347G/cit160/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07332-5 – volume-title: Vorlesungen über Gastheorie year: 1896 ident: D3CS00347G/cit44/1 – volume: 299 start-page: 1716 year: 2003 ident: D3CS00347G/cit105/1 publication-title: Science doi: 10.1126/science.1081160 – volume: 7 start-page: 771 year: 2008 ident: D3CS00347G/cit216/1 publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd2614 – volume: 50 start-page: 1911 year: 2017 ident: D3CS00347G/cit205/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00165 – volume: 311 start-page: 1740 year: 2006 ident: D3CS00347G/cit221/1 publication-title: Science doi: 10.1126/science.1122225 – volume: 12 start-page: 386 year: 2016 ident: D3CS00347G/cit174/1 publication-title: Soft Matter doi: 10.1039/C5SM02038G – volume: 46 start-page: 1144 year: 2013 ident: D3CS00347G/cit245/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar300145c – volume: 9 start-page: 2228 year: 2018 ident: D3CS00347G/cit30/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04644-4 – volume: 439 start-page: 55 year: 2006 ident: D3CS00347G/cit157/1 publication-title: Nature doi: 10.1038/nature04414 – volume: 468 start-page: 947 year: 2010 ident: D3CS00347G/cit107/1 publication-title: Nature doi: 10.1038/nature09620 – volume: 369 start-page: 950 year: 2020 ident: D3CS00347G/cit119/1 publication-title: Science doi: 10.1126/science.abb4536 – volume-title: Polymer Physics year: 2003 ident: D3CS00347G/cit59/1 doi: 10.1093/oso/9780198520597.001.0001 – volume: 401 start-page: 152 year: 1999 ident: D3CS00347G/cit264/1 publication-title: Nature doi: 10.1038/43646 – volume: 27 start-page: 189 year: 1987 ident: D3CS00347G/cit68/1 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/0001-8686(87)85003-0 – volume: 20 start-page: 762 year: 2021 ident: D3CS00347G/cit19/1 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01014-2 – volume: 10 start-page: 7970 year: 2019 ident: D3CS00347G/cit225/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03253 – volume: 37 start-page: 10223 year: 1998 ident: D3CS00347G/cit239/1 publication-title: Biochemistry doi: 10.1021/bi980537d – volume: 10 start-page: 8388 year: 2014 ident: D3CS00347G/cit41/1 publication-title: Soft Matter doi: 10.1039/C4SM01646G – volume: 124 start-page: 198102 year: 2020 ident: D3CS00347G/cit77/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.198102 – volume: 54 start-page: 15699 year: 2015 ident: D3CS00347G/cit123/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201507237 – volume: 15 start-page: 1108 year: 2019 ident: D3CS00347G/cit150/1 publication-title: Soft Matter doi: 10.1039/C8SM02089B – volume: 12 start-page: 3279 year: 2012 ident: D3CS00347G/cit99/1 publication-title: Nano Lett. doi: 10.1021/nl3013659 – volume: 107 start-page: 125501 year: 2011 ident: D3CS00347G/cit112/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.125501 – volume: 296 start-page: 65 year: 2002 ident: D3CS00347G/cit16/1 publication-title: Science doi: 10.1126/science.1070865 – volume: 31 start-page: 323 year: 2001 ident: D3CS00347G/cit91/1 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev.matsci.31.1.323 – volume: 4 start-page: 1407 year: 2004 ident: D3CS00347G/cit14/1 publication-title: Nano Lett. doi: 10.1021/nl0493500 – volume: 11 start-page: 978 year: 2012 ident: D3CS00347G/cit209/1 publication-title: Nat. Mater. doi: 10.1038/nmat3406 – volume: 124 start-page: 218003 year: 2020 ident: D3CS00347G/cit135/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.218003 – volume: 14 start-page: 2 year: 2015 ident: D3CS00347G/cit21/1 publication-title: Nat. Mater. doi: 10.1038/nmat4184 – volume: 19 start-page: 3850 year: 2007 ident: D3CS00347G/cit196/1 publication-title: Adv. Mater. doi: 10.1002/adma.200700765 – volume: 23 start-page: 30 year: 2011 ident: D3CS00347G/cit154/1 publication-title: Adv. Mater. doi: 10.1002/adma.201000356 – volume: 313 start-page: 1 year: 2002 ident: D3CS00347G/cit37/1 publication-title: Physica A doi: 10.1016/S0378-4371(02)01032-4 – volume: 116 start-page: 118301 year: 2016 ident: D3CS00347G/cit137/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.118301 – volume: 115 start-page: 025702 year: 2015 ident: D3CS00347G/cit97/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.025702 – volume-title: Colloids and the Depletion Interaction year: 2011 ident: D3CS00347G/cit66/1 doi: 10.1007/978-94-007-1223-2 – volume: 416 start-page: 811 year: 2002 ident: D3CS00347G/cit168/1 publication-title: Nature doi: 10.1038/416811a – volume: 111 start-page: 4812 year: 2014 ident: D3CS00347G/cit26/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1418159111 – volume: 10 start-page: 9358 year: 2019 ident: D3CS00347G/cit237/1 publication-title: Chem. Sci. doi: 10.1039/C9SC03103K – volume: 122 start-page: 198002 year: 2019 ident: D3CS00347G/cit80/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.198002 – volume: 122 start-page: 128005 year: 2019 ident: D3CS00347G/cit128/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.128005 – volume: 8 start-page: 781 year: 2009 ident: D3CS00347G/cit248/1 publication-title: Nat. Mater. doi: 10.1038/nmat2496 – volume: 7 start-page: 9920 year: 2013 ident: D3CS00347G/cit217/1 publication-title: ACS Nano doi: 10.1021/nn4037738 – volume: 51 start-page: 900 year: 2018 ident: D3CS00347G/cit25/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00001 – volume: 21 start-page: 186 year: 2019 ident: D3CS00347G/cit33/1 publication-title: Entropy doi: 10.3390/e21020186 – volume: 1 start-page: 15011 year: 2016 ident: D3CS00347G/cit50/1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2015.11 – volume: 6 start-page: 609 year: 2007 ident: D3CS00347G/cit202/1 publication-title: Nat. Mater. doi: 10.1038/nmat1954 – volume: 462 start-page: 773 year: 2009 ident: D3CS00347G/cit110/1 publication-title: Nature doi: 10.1038/nature08641 – volume: 406 start-page: 166 year: 2000 ident: D3CS00347G/cit61/1 publication-title: Nature doi: 10.1038/35018034 – volume: 51 start-page: 627 year: 1949 ident: D3CS00347G/cit47/1 publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.1949.tb27296.x – volume: 64 start-page: 645 year: 1992 ident: D3CS00347G/cit51/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.64.645 – volume: 108 start-page: 2684 year: 2011 ident: D3CS00347G/cit143/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1014942108 – volume: 100 start-page: 148303 year: 2008 ident: D3CS00347G/cit224/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.148303 – volume: 109 start-page: 10787 year: 2012 ident: D3CS00347G/cit142/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1116820109 – volume: 98 start-page: 225505 year: 2007 ident: D3CS00347G/cit177/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.225505 – volume: 12 start-page: 693 year: 2013 ident: D3CS00347G/cit27/1 publication-title: Nat. Mater. doi: 10.1038/nmat3728 – volume: 121 start-page: 2790 year: 2009 ident: D3CS00347G/cit200/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.200805158 – volume: 97 start-page: 068301 year: 2006 ident: D3CS00347G/cit161/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.068301 – volume: 7 start-page: 527 year: 2008 ident: D3CS00347G/cit20/1 publication-title: Nat. Mater. doi: 10.1038/nmat2206 – volume: 7 start-page: 1016 year: 2022 ident: D3CS00347G/cit34/1 publication-title: Nanoscale Horiz. doi: 10.1039/D2NH00156J – volume: 128 start-page: 6562 year: 2006 ident: D3CS00347G/cit198/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0609147 – volume: 175 start-page: 681 year: 2006 ident: D3CS00347G/cit9/1 publication-title: J. Cell Biol. doi: 10.1083/jcb.200609066 – volume: 38 start-page: 369 year: 2013 ident: D3CS00347G/cit4/1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2012.05.001 – volume: 45 start-page: 608 year: 2012 ident: D3CS00347G/cit18/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar200226d – volume: 1 start-page: 641 year: 2021 ident: D3CS00347G/cit203/1 publication-title: Fundam. Res. doi: 10.1016/j.fmre.2021.06.014 – volume: 17 start-page: 1331 year: 2005 ident: D3CS00347G/cit189/1 publication-title: Adv. Mater. doi: 10.1002/adma.200500167 – volume: 101 start-page: 148301 year: 2008 ident: D3CS00347G/cit144/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.148301 – volume: 46 start-page: 2592 year: 2017 ident: D3CS00347G/cit263/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00245A |
SSID | ssj0011762 |
Score | 2.5612533 |
SecondaryResourceType | review_article |
Snippet | Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 686 |
SubjectTerms | Entropy Self-assembly |
Title | The entropy-controlled strategy in self-assembling systems |
URI | https://www.proquest.com/docview/2870907604 https://www.proquest.com/docview/2868668652 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbYdoAL4tdE2UBBcOGQkcR24nCbSsdAZRxIpdwix3amoZJMS3MYfz3Pjp0E2sNAqqLKfU4if-7ze_Z730PobUKpoEQIP0oE8QlXwmcVOK6MkFKQOGDKkFV_vYjPV-RLTnNX3t1ml2zKE_FrZ17J_6AKbYCrzpL9B2SHm0IDfAd84QoIw_XOGOvd2eb61rcx52swINuecdZk9LVqXflgIKufpUk8bycM5Y6gwHEGuAhOy1C6taecd6A5unFv2wQC5Fdcp5ANcTy86V39H9047_LOqLaume4xRH202mTbEdRp4JOkZ2o8UTvarC6l0XTOpBPNGDPDLLCtsgOsGU8lFq3mykkux4XJHcZffCvOVstlkS3ybA8dROAQgEY7OF1kn5fDiVGYmOKxw1s5Klqcvh_v_afxMXoUezeu3IsxK7JH6KH1B7zTHtzH6J6qn6D7c1eG7yn6ACB72yB7DmTvqvb-AtmzID9Dq7NFNj_3bcELX-CQbHwpQgELoeCyTLi2pBUn4I7GFFdxWtGwTHkloiQEASFAmEoquYg4jaEXowk-RPt1U6vnyAM_OAW5iMlAklJSFkmmMCxPAS6hQzRD79xIFMKyweuiJOvCRCXgtPiI59_NqH2aoTeD7HXPgbJT6tgNaGH_I22hj9FTffhLZuj18DOMoD6W4rVqOi0Tsxg--qUOAYjhGSNuL-7Q-Qg9GKfuMdrf3HTqJRiMm_KVnSu_AaZybaQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+entropy-controlled+strategy+in+self-assembling+systems&rft.jtitle=Chemical+Society+reviews&rft.au=Zhang%2C+Xuanyu&rft.au=Dai%2C+Xiaobin&rft.au=Gao%2C+Lijuan&rft.au=Xu%2C+Duo&rft.date=2023-10-02&rft.issn=1460-4744&rft.eissn=1460-4744&rft.volume=52&rft.issue=19&rft.spage=6806&rft_id=info:doi/10.1039%2Fd3cs00347g&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |