The entropy-controlled strategy in self-assembling systems

Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 52; no. 19; pp. 686 - 6837
Main Authors Zhang, Xuanyu, Dai, Xiaobin, Gao, Lijuan, Xu, Duo, Wan, Haixiao, Wang, Yuming, Yan, Li-Tang
Format Journal Article
LanguageEnglish
Published London Royal Society of Chemistry 02.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems. The entropy-controlled strategy of self-assembly offers a conceptually new way to tune the ordering transitions in the development of designer systems and materials with controllable structures and optimal properties.
AbstractList Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems.Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems.
Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems.
Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems. The entropy-controlled strategy of self-assembly offers a conceptually new way to tune the ordering transitions in the development of designer systems and materials with controllable structures and optimal properties.
Author Dai, Xiaobin
Wan, Haixiao
Wang, Yuming
Yan, Li-Tang
Zhang, Xuanyu
Xu, Duo
Gao, Lijuan
AuthorAffiliation Department of Chemical Engineering
Tsinghua University
State Key Laboratory of Chemical Engineering
AuthorAffiliation_xml – sequence: 0
  name: Tsinghua University
– sequence: 0
  name: State Key Laboratory of Chemical Engineering
– sequence: 0
  name: Department of Chemical Engineering
Author_xml – sequence: 1
  givenname: Xuanyu
  surname: Zhang
  fullname: Zhang, Xuanyu
– sequence: 2
  givenname: Xiaobin
  surname: Dai
  fullname: Dai, Xiaobin
– sequence: 3
  givenname: Lijuan
  surname: Gao
  fullname: Gao, Lijuan
– sequence: 4
  givenname: Duo
  surname: Xu
  fullname: Xu, Duo
– sequence: 5
  givenname: Haixiao
  surname: Wan
  fullname: Wan, Haixiao
– sequence: 6
  givenname: Yuming
  surname: Wang
  fullname: Wang, Yuming
– sequence: 7
  givenname: Li-Tang
  surname: Yan
  fullname: Yan, Li-Tang
BookMark eNpt0c9LwzAUB_AgE9ymF-9CwYsI1aT5tXqTqVMYeHCeS5a-zo60nXnZof-9mROFIQTyDp_vI3wzIoO2a4GQc0ZvGOX5bcktUsqFXh2RIROKpkILMSBDyqlKKWXZCRkhruPEtMqG5G7xAQm0wXebPrXdbnAOygSDNwFWfVK3CYKrUoMIzdLV7SrBHgM0eEqOK-MQzn7uMXl_elxMn9P56-xlej9PLWcipKVlFoy1plxqI6jUYESulJK8Unkl2TI3lc00i8DaiGUpS2MzI1VMTaTmY3K137vx3ecWMBRNjRacMy10WyyyiZqoeGQW6eUBXXdb38bXRaVpTrWiIqrrvbK-Q_RQFRtfN8b3BaPFrsbigU_fvmucRUwPsK2DCfWuKlO7_yMX-4hH-7v672f4FzMQgXQ
CitedBy_id crossref_primary_10_1038_s41578_025_00782_6
crossref_primary_10_1002_cplu_202400536
crossref_primary_10_1038_s41467_024_44765_7
crossref_primary_10_3390_polym16060820
crossref_primary_10_1021_acs_chemrev_4c00299
crossref_primary_10_1021_acs_jpclett_4c01026
crossref_primary_10_1021_acs_macromol_4c02331
crossref_primary_10_1016_j_cclet_2024_109733
crossref_primary_10_1142_S1793048024300019
crossref_primary_10_1021_acs_jpcc_4c06799
crossref_primary_10_1002_anie_202403900
crossref_primary_10_1021_acsami_4c08523
crossref_primary_10_1021_acsenergylett_4c00621
crossref_primary_10_1002_adma_202418952
crossref_primary_10_1002_smll_202310838
crossref_primary_10_3390_pr12010119
crossref_primary_10_1039_D4NR03286A
crossref_primary_10_1002_adfm_202314134
crossref_primary_10_1088_1361_6633_ad3e11
crossref_primary_10_1016_j_eurpolymj_2024_112973
crossref_primary_10_3390_polym16213085
crossref_primary_10_1002_cplu_202300638
crossref_primary_10_1021_acsnano_4c09675
crossref_primary_10_1016_j_colcom_2025_100829
crossref_primary_10_1021_acsmacrolett_3c00756
crossref_primary_10_26599_NR_2025_94907158
crossref_primary_10_1039_D4NR04032E
crossref_primary_10_1002_ange_202403900
crossref_primary_10_1021_acs_jpcc_3c07492
crossref_primary_10_1021_acsnano_4c11647
crossref_primary_10_3390_ijms252312614
crossref_primary_10_1039_D4PY00517A
crossref_primary_10_1002_adfm_202315177
Cites_doi 10.1038/332822a0
10.1021/jacs.7b11324
10.1038/nature18013
10.1002/adma.200702786
10.1038/nmat2534
10.1021/ar040113d
10.1103/PhysRevLett.32.438
10.1038/nature05959
10.1002/smll.201603155
10.1038/s41467-018-04644-4
10.1038/nnano.2017.182
10.1038/nature08239
10.1021/nn204012y
10.1039/C7CS00246G
10.1038/nmat2286
10.1103/PhysRevLett.129.047801
10.1016/S1369-7021(10)70106-1
10.1021/ma4001385
10.1021/ja108285u
10.1038/srep07021
10.1103/PhysRevLett.118.108002
10.1016/j.mser.2004.12.003
10.1021/nl500449x
10.1360/SSC-2022-0186
10.1002/adts.201800160
10.1021/jacs.5b04531
10.1021/ma4009884
10.1103/PhysRevLett.98.108303
10.1021/acs.macromol.7b01518
10.1038/nmat4178
10.1103/PhysRevLett.96.028701
10.1039/C2CS35375J
10.1039/C6CS00738D
10.1038/nmat3496
10.1063/1.1740347
10.1038/nature09713
10.1038/s41565-018-0250-8
10.1063/5.0085965
10.1038/nmat2354
10.1021/acsnano.8b04753
10.1073/pnas.2116414119
10.1002/(SICI)1521-4095(200005)12:9<640::AID-ADMA640>3.0.CO;2-J
10.1002/anie.201600218
10.1038/ncomms1968
10.1021/ja312628g
10.1021/ma801722m
10.1103/RevModPhys.88.045006
10.1073/pnas.1524875113
10.1103/PhysRevLett.124.248002
10.1021/acsnano.6b07563
10.1038/ncomms7234
10.1021/acs.nanolett.1c03127
10.1038/nnano.2012.83
10.1126/science.1253751
10.1103/PhysRevLett.115.158303
10.1021/ja900347t
10.1021/cr030063a
10.1002/andp.19013090310
10.1142/10823
10.1038/nature07596
10.1038/nmat4072
10.1126/science.1074868
10.1103/PhysRevLett.120.048003
10.1126/science.1244827
10.1016/j.cocis.2017.05.008
10.1126/science.1197451
10.1038/nature04414
10.1021/nn901739v
10.1142/8333
10.1103/PhysRevLett.96.138306
10.1021/nl403149u
10.1126/science.1233775
10.1038/nmat2891
10.1103/PhysRev.96.250
10.1038/nature11564
10.1038/382607a0
10.1103/PhysRevLett.97.265501
10.1002/adma.200701526
10.1021/acsnano.5b04181
10.1126/science.1100090
10.1126/science.1210493
10.1021/cr300089t
10.1038/nnano.2014.315
10.1073/pnas.1822092116
10.1073/pnas.1720139115
10.1016/j.chempr.2020.02.009
10.1038/nature02087
10.1038/nature09188
10.1038/nmat2959
10.1038/nature03109
10.1126/science.1189457
10.1016/S0001-8686(96)00304-1
10.1038/nmat3573
10.1126/science.1220869
10.1039/C2SM27031E
10.1021/acs.chemrev.6b00196
10.1021/acsnano.9b04274
10.1038/nmat1447
10.1126/science.aao1377
10.1103/PhysRevLett.99.118301
10.1038/nnano.2015.96
10.1073/pnas.1921617117
10.1021/ja01379a006
10.1126/science.1060585
10.1126/science.1099988
10.1093/acprof:oso/9780199652952.001.0001
10.1038/nature08906
10.1002/j.1538-7305.1948.tb01338.x
10.1021/nl5029396
10.1002/adma.200502651
10.1021/la302226w
10.1021/acs.langmuir.8b01378
10.1103/PhysRevLett.85.3652
10.1038/24808
10.1002/adma.200500502
10.1007/s00253-015-6985-3
10.1021/ja01355a027
10.1103/PhysRevLett.102.198102
10.1021/ma500664u
10.1021/acs.jpclett.6b00724
10.1073/pnas.1000406107
10.1515/9780691212920
10.1103/PhysRevLett.99.268301
10.1146/annurev-conmatphys-061020-053046
10.1073/pnas.1009592107
10.1038/nmat2202
10.1038/nnano.2013.158
10.1021/jz4003789
10.1073/pnas.1406122111
10.1103/PhysRevLett.92.245507
10.1021/acsnano.8b01842
10.1063/1.2819091
10.1021/ma101229r
10.1021/jacs.1c08332
10.1038/nnano.2017.28
10.1038/nature06931
10.1103/PhysRevLett.114.238001
10.1126/sciadv.aaw4783
10.1021/jacs.0c09343
10.1126/science.aam7212
10.1073/pnas.082065899
10.1021/ja070779d
10.1038/nmat4109
10.1038/nmat4142
10.1021/acs.nanolett.0c02635
10.1126/science.1130557
10.1126/sciadv.aay2748
10.1126/science.1070821
10.1007/978-3-540-74252-4
10.1016/S0378-4371(98)00501-9
10.1021/acs.macromol.7b00012
10.1088/978-0-7503-3451-8
10.1103/PhysRevLett.99.055501
10.1039/b706609k
10.1021/acs.macromol.5b01290
10.1080/00207166808803030
10.1063/1.1743957
10.1021/ja0564261
10.1038/nmat3429
10.1038/nnano.2014.260
10.1038/nature01702
10.1103/PhysRevLett.98.225505
10.1038/nmat1949
10.1038/nmat1582
10.1021/ma500161j
10.1021/ma061210k
10.1002/1521-4095(200103)13:6<421::AID-ADMA421>3.0.CO;2-#
10.1103/PhysRev.96.191
10.1103/PhysRevLett.103.208302
10.1039/C5NR06134B
10.1038/35016528
10.1038/nmat2404
10.1073/pnas.0802049105
10.1038/415617a
10.1007/s10118-023-2968-5
10.1126/science.aac6103
10.1016/S0021-9258(19)81546-6
10.1038/s41567-020-1003-9
10.1002/9781119113171
10.1021/acs.nanolett.2c04939
10.1073/pnas.1609983113
10.1103/RevModPhys.86.995
10.1126/sciadv.aaw0514
10.1021/acs.macromol.8b01025
10.1038/ncomms4068
10.1039/b601916c
10.1038/nnano.2016.116
10.1016/j.cocis.2011.01.003
10.1038/nmat2614
10.1038/ncomms11175
10.1103/PhysRevLett.68.3801
10.1073/pnas.1613828114
10.1038/s41467-018-07332-5
10.1126/science.1081160
10.1038/nrd2614
10.1021/acs.accounts.7b00165
10.1126/science.1122225
10.1039/C5SM02038G
10.1021/ar300145c
10.1038/nature09620
10.1126/science.abb4536
10.1093/oso/9780198520597.001.0001
10.1038/43646
10.1016/0001-8686(87)85003-0
10.1038/s41563-021-01014-2
10.1021/acs.jpclett.9b03253
10.1021/bi980537d
10.1039/C4SM01646G
10.1103/PhysRevLett.124.198102
10.1002/anie.201507237
10.1039/C8SM02089B
10.1021/nl3013659
10.1103/PhysRevLett.107.125501
10.1126/science.1070865
10.1146/annurev.matsci.31.1.323
10.1021/nl0493500
10.1038/nmat3406
10.1103/PhysRevLett.124.218003
10.1038/nmat4184
10.1002/adma.200700765
10.1002/adma.201000356
10.1016/S0378-4371(02)01032-4
10.1103/PhysRevLett.116.118301
10.1103/PhysRevLett.115.025702
10.1007/978-94-007-1223-2
10.1038/416811a
10.1073/pnas.1418159111
10.1039/C9SC03103K
10.1103/PhysRevLett.122.198002
10.1103/PhysRevLett.122.128005
10.1038/nmat2496
10.1021/nn4037738
10.1021/acs.accounts.8b00001
10.3390/e21020186
10.1038/natrevmats.2015.11
10.1038/nmat1954
10.1038/nature08641
10.1038/35018034
10.1111/j.1749-6632.1949.tb27296.x
10.1103/RevModPhys.64.645
10.1073/pnas.1014942108
10.1103/PhysRevLett.100.148303
10.1073/pnas.1116820109
10.1038/nmat3728
10.1002/ange.200805158
10.1103/PhysRevLett.97.068301
10.1038/nmat2206
10.1039/D2NH00156J
10.1021/ja0609147
10.1083/jcb.200609066
10.1016/j.progpolymsci.2012.05.001
10.1021/ar200226d
10.1016/j.fmre.2021.06.014
10.1002/adma.200500167
10.1103/PhysRevLett.101.148301
10.1039/C7CS00245A
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d3cs00347g
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 6837
ExternalDocumentID 10_1039_D3CS00347G
d3cs00347g
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
4.4
53G
5GY
6J9
705
70~
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
~02
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c314t-dc1ceaccadb7a4057ea4966653f69f51b9afc271cadccdc15d5dac2a56eac8573
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 14:26:39 EDT 2025
Mon Jun 30 05:40:24 EDT 2025
Thu Apr 24 22:57:41 EDT 2025
Tue Jul 01 04:28:20 EDT 2025
Tue Dec 17 20:58:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-dc1ceaccadb7a4057ea4966653f69f51b9afc271cadccdc15d5dac2a56eac8573
Notes Xiaobin Dai is currently a fifth year PHD student at the Department of Chemical Engineering at Tsinghua University, working under Professor Li-Tang Yan. His research interests include diffusion and transport processes of nano-objects in macromolecular networks, self-assembly in polymer nanocomposites, and theoretical and computational biophysics.
Lijuan Gao received her BS in chemical engineering from Tsinghua University in 2020 and is currently a PhD student under the guidance of Prof. Li-Tang Yan at Tsinghua University in China. Her research focuses on the simulation and theoretical study of the self-assembly of colloidal particles under confinement.
Haixiao Wan received her BS degree in materials science and engineering from Zhengzhou University in 2016, and her PhD degree in materials science and engineering from Beijing University of Chemical Technology in 2021. She is currently working as a postdoc under the guidance of Prof. Li-Tang Yan at Tsinghua University. Her main research interests are focused on simulations and theoretical studies of polymer nanocomposites and nanoparticle cellular interactions.
Prof. Li-Tang Yan obtained his PhD in polymer physics and chemistry from Tsinghua University in 2007. Then he went to Bayreuth University in Germany with a Humboldt Research Fellowship. In 2010, he joined Prof. Anna Balazs' group at the University of Pittsburgh in USA as a postdoctoral research fellow. He returned to Tsinghua University as a faculty in the Department of Chemical Engineering in May 2011. In 2020, he obtained the "NSFC Award" for outstanding young scholar. His research interests focus on computational and theoretical aspects of soft matter systems, including nanoparticle cellular interactions and nano-engineer materials that are self-assembling and self-regulating.
Xuanyu Zhang received her BS in chemical engineering from Tianjin University in 2019 and is currently a fourth year PhD student under the guidance of Prof. Li-Tang Yan at Tsinghua University in China. Her research focuses on rod-like particle diffusion in macromolecular networks and nanoparticle diffusion in DNA dynamical networks.
Yuming Wang received his BS degree in Chemical Engineering from Tsinghua University in 2021 and is currently a PhD student under the guidance of Prof. Li-Tang Yan at Tsinghua University in China. His research focuses on the crystallization of hard spheres.
Duo Xu received her BS and PhD degrees from the College of Chemistry, Jilin University in 2015 and 2021. From 2014 to 2015, she studied at the University of California, Los Angles, as an exchange student for a year. She is currently working as a postdoc under the guidance of Prof. Li-Tang Yan at Tsinghua University. Her research interests are focused on simulations and theoretical studies of polymer and biomacromolecule systems in non-equilibrium states.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6090-3039
PQID 2870907604
PQPubID 2047503
PageCount 32
ParticipantIDs crossref_primary_10_1039_D3CS00347G
rsc_primary_d3cs00347g
proquest_miscellaneous_2868668652
crossref_citationtrail_10_1039_D3CS00347G
proquest_journals_2870907604
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-02
PublicationDateYYYYMMDD 2023-10-02
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Chemical Society reviews
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Asakura (D3CS00347G/cit173/1) 1958; 33
Kim (D3CS00347G/cit220/1) 2017; 356
Zhao (D3CS00347G/cit143/1) 2011; 108
Kang (D3CS00347G/cit164/1) 2015; 137
Syamala (D3CS00347G/cit237/1) 2019; 10
Dong (D3CS00347G/cit129/1) 2010; 466
Burda (D3CS00347G/cit156/1) 2005; 105
Chen (D3CS00347G/cit229/1) 2017; 50
Ragazzon (D3CS00347G/cit265/1) 2015; 10
Zhou (D3CS00347G/cit82/1) 2017; 118
Shevchenko (D3CS00347G/cit157/1) 2006; 439
Ben-Naim (D3CS00347G/cit36/1) 2012
Frenkel (D3CS00347G/cit37/1) 2002; 313
Tymczenko (D3CS00347G/cit152/1) 2008; 20
Sacanna (D3CS00347G/cit149/1) 2011; 16
Balazs (D3CS00347G/cit210/1) 2006; 314
Geng (D3CS00347G/cit29/1) 2019; 5
Ball (D3CS00347G/cit57/1) 2014; 13
Macfarlane (D3CS00347G/cit11/1) 2011; 334
Damasceno (D3CS00347G/cit116/1) 2012; 337
Weng (D3CS00347G/cit257/1) 2020; 142
Walker (D3CS00347G/cit13/1) 2013; 8
Bazant (D3CS00347G/cit245/1) 2013; 46
Foy (D3CS00347G/cit274/1) 2017; 12
Yan (D3CS00347G/cit4/1) 2013; 38
Stradner (D3CS00347G/cit162/1) 2004; 432
Kadler (D3CS00347G/cit238/1) 1988; 263
Kumar (D3CS00347G/cit188/1) 2013; 46
Clausius (D3CS00347G/cit35/1)
Wendt (D3CS00347G/cit176/1) 2019; 5
Kao (D3CS00347G/cit213/1) 2013; 42
Torquato (D3CS00347G/cit111/1) 2009; 460
Zhang (D3CS00347G/cit215/1) 2006; 96
Xu (D3CS00347G/cit79/1) 2023; 23
Kuna (D3CS00347G/cit206/1) 2009; 8
Yang (D3CS00347G/cit39/1) 2018; 34
Szleifer (D3CS00347G/cit27/1) 2013; 12
Bommineni (D3CS00347G/cit128/1) 2019; 122
Nie (D3CS00347G/cit202/1) 2007; 6
Bartlett (D3CS00347G/cit83/1) 1992; 68
Pauling (D3CS00347G/cit109/1) 1929; 51
Zhu (D3CS00347G/cit94/1) 2021; 21
Kraft (D3CS00347G/cit142/1) 2012; 109
Zhao (D3CS00347G/cit146/1) 2009; 103
Asakura (D3CS00347G/cit67/1) 1954; 22
Chatterjee (D3CS00347G/cit196/1) 2007; 19
Wang (D3CS00347G/cit100/1) 2018; 9
Meng (D3CS00347G/cit104/1) 2014; 343
Irvine (D3CS00347G/cit107/1) 2010; 468
Chen (D3CS00347G/cit117/1) 2012; 28
Pickett (D3CS00347G/cit95/1) 2000; 85
de Nijs (D3CS00347G/cit98/1) 2015; 14
Liu (D3CS00347G/cit191/1) 2010; 329
Zhu (D3CS00347G/cit88/1) 2018; 12
Kolmogorov (D3CS00347G/cit255/1) 1968; 2
Cademartiri (D3CS00347G/cit21/1) 2015; 14
Zhao (D3CS00347G/cit144/1) 2008; 101
Liu (D3CS00347G/cit204/1) 2021; 143
Galisteo-López (D3CS00347G/cit154/1) 2011; 23
Wang (D3CS00347G/cit18/1) 2012; 45
Fasolka (D3CS00347G/cit91/1) 2001; 31
Bockstaller (D3CS00347G/cit189/1) 2005; 17
Sneyd (D3CS00347G/cit259/1) 2001
Guo (D3CS00347G/cit125/1) 2013; 4
Hu (D3CS00347G/cit175/1) 2018; 120
Chen (D3CS00347G/cit77/1) 2020; 124
Feng (D3CS00347G/cit218/1) 2015; 14
Alder (D3CS00347G/cit49/1) 1957; 27
Kirkwood (D3CS00347G/cit48/1) 1951
Akcora (D3CS00347G/cit201/1) 2009; 8
Walther (D3CS00347G/cit52/1) 2013; 113
Haji-Akbari (D3CS00347G/cit110/1) 2009; 462
Lee (D3CS00347G/cit222/1) 2006; 39
Mackay (D3CS00347G/cit221/1) 2006; 311
Verma (D3CS00347G/cit208/1) 2008; 7
Friedhoff (D3CS00347G/cit239/1) 1998; 37
Broedersz (D3CS00347G/cit86/1) 2014; 86
Romano (D3CS00347G/cit23/1) 2012; 3
Wang (D3CS00347G/cit58/1) 2017; 50
Yu (D3CS00347G/cit113/1) 2006; 97
Gao (D3CS00347G/cit193/1) 2012; 7
Xu (D3CS00347G/cit258/1) 2023; 41
Grzybowski (D3CS00347G/cit253/1) 2000; 405
Andrieux (D3CS00347G/cit252/1) 2008; 105
Li (D3CS00347G/cit271/1) 2015; 10
Cardinaux (D3CS00347G/cit163/1) 2007; 99
Agarwal (D3CS00347G/cit183/1) 2011; 10
Xu (D3CS00347G/cit241/1) 2023; 23
Glotzer (D3CS00347G/cit12/1) 2007; 6
Ong (D3CS00347G/cit205/1) 2017; 50
Qu (D3CS00347G/cit256/1) 2023; 53
Besenius (D3CS00347G/cit235/1) 2010; 107
Frenkel (D3CS00347G/cit16/1) 2002; 296
Chen (D3CS00347G/cit76/1) 2011; 331
Mayoral (D3CS00347G/cit236/1) 2013; 135
Wang (D3CS00347G/cit81/1) 2021; 17
Whitesides (D3CS00347G/cit8/1) 2002; 99
Ma (D3CS00347G/cit123/1) 2015; 54
Segalman (D3CS00347G/cit93/1) 2005; 48
Boekhoven (D3CS00347G/cit272/1) 2015; 349
Nguyen (D3CS00347G/cit276/1) 2016; 113
Bansal (D3CS00347G/cit192/1) 2005; 4
Tanford (D3CS00347G/cit70/1) 1973
Cersonsky (D3CS00347G/cit114/1) 2018; 115
Jayaraman (D3CS00347G/cit194/1) 2008; 41
de Gennes (D3CS00347G/cit68/1) 1987; 27
Zhang (D3CS00347G/cit78/1) 2017; 114
Escobedo (D3CS00347G/cit41/1) 2014; 10
van der Vaart (D3CS00347G/cit126/1) 2015; 114
Verlinde (D3CS00347G/cit65/1) 2011; 29
Ragazzon (D3CS00347G/cit261/1) 2018; 13
Bausch (D3CS00347G/cit105/1) 2003; 299
Georgi (D3CS00347G/cit63/1) 1974; 32
Sanz (D3CS00347G/cit249/1) 2007; 99
Ball (D3CS00347G/cit3/1) 1999
Mann (D3CS00347G/cit248/1) 2009; 8
Cheng (D3CS00347G/cit266/1) 2015; 10
Li (D3CS00347G/cit227/1) 2013; 46
Grzybowski (D3CS00347G/cit262/1) 2016; 11
Dai (D3CS00347G/cit225/1) 2019; 10
van Anders (D3CS00347G/cit26/1) 2014; 111
Fava (D3CS00347G/cit190/1) 2008; 20
Wang (D3CS00347G/cit15/1) 2012; 491
Harper (D3CS00347G/cit180/1) 2019; 116
Hung (D3CS00347G/cit207/1) 2011; 133
Hopkins (D3CS00347G/cit112/1) 2011; 107
Zhang (D3CS00347G/cit14/1) 2004; 4
Planck (D3CS00347G/cit45/1) 1901; 309
Anderson (D3CS00347G/cit168/1) 2002; 416
Zhu (D3CS00347G/cit203/1) 2021; 1
Zhao (D3CS00347G/cit145/1) 2007; 99
Clausius (D3CS00347G/cit43/1) 1864
Yang (D3CS00347G/cit64/1) 1954; 96
Li (D3CS00347G/cit139/1) 2016; 100
Mao (D3CS00347G/cit74/1) 2013; 12
LaCour (D3CS00347G/cit134/1) 2019; 13
Fortini (D3CS00347G/cit137/1) 2016; 116
Huang (D3CS00347G/cit87/1) 2016; 8
Miyazaki (D3CS00347G/cit171/1) 2022; 156
van Rossum (D3CS00347G/cit270/1) 2017; 46
Kiely (D3CS00347G/cit132/1) 2000; 12
Koumura (D3CS00347G/cit264/1) 1999; 401
Levandovsky (D3CS00347G/cit251/1) 2009; 102
Huang (D3CS00347G/cit80/1) 2019; 122
Jin (D3CS00347G/cit96/1) 2020; 124
Dong (D3CS00347G/cit226/1) 2014; 47
Chen (D3CS00347G/cit140/1) 2016; 10
Pauling (D3CS00347G/cit179/1) 1931; 53
Baker (D3CS00347G/cit232/1) 2015; 6
Curk (D3CS00347G/cit187/1) 2014; 14
Dai (D3CS00347G/cit33/1) 2019; 21
Hou (D3CS00347G/cit122/1) 2018; 140
Huang (D3CS00347G/cit124/1) 2016; 7
Bechinger (D3CS00347G/cit170/1) 2016; 88
Chen (D3CS00347G/cit17/1) 2005; 38
Hou (D3CS00347G/cit34/1) 2022; 7
Vo (D3CS00347G/cit181/1) 2022; 119
Schilling (D3CS00347G/cit166/1) 2007; 98
Ikegami (D3CS00347G/cit273/1) 2016; 55
Boltzmann (D3CS00347G/cit44/1) 1896
Klein (D3CS00347G/cit275/1) 1954; 96
Benkoski (D3CS00347G/cit199/1) 2007; 129
Böker (D3CS00347G/cit211/1) 2007; 3
Doi (D3CS00347G/cit62/1) 2013
Shevchenko (D3CS00347G/cit138/1) 2006; 439
Huang (D3CS00347G/cit212/1) 2017; 12
Liu (D3CS00347G/cit185/1) 2014; 14
Khlobystov (D3CS00347G/cit153/1) 2004; 92
Fernández-Rico (D3CS00347G/cit119/1) 2020; 369
Kim (D3CS00347G/cit223/1) 2005; 17
Gupta (D3CS00347G/cit214/1) 2006; 5
Frederick (D3CS00347G/cit60/1) 2007; 448
Cheng (D3CS00347G/cit90/1) 2006; 18
Bommineni (D3CS00347G/cit135/1) 2020; 124
John (D3CS00347G/cit184/1) 2008; 128
Timonen (D3CS00347G/cit254/1) 2013; 341
Davis (D3CS00347G/cit216/1) 2008; 7
Gibbs (D3CS00347G/cit73/1) 2010; 2
Wojtecki (D3CS00347G/cit6/1) 2011; 10
Sacanna (D3CS00347G/cit172/1) 2010; 464
Lebon (D3CS00347G/cit243/1) 2008
de Gennes (D3CS00347G/cit51/1) 1992; 64
Manoharan (D3CS00347G/cit28/1) 2015; 349
Shi (D3CS00347G/cit101/1) 2013; 9
Xu (D3CS00347G/cit141/1) 2019; 2
Rabani (D3CS00347G/cit250/1) 2003; 426
Shin (D3CS00347G/cit103/1) 2004; 306
Cao (D3CS00347G/cit217/1) 2013; 7
Kim (D3CS00347G/cit240/1) 2019; 5
Rubinstein (D3CS00347G/cit59/1) 2003
Glotzer (D3CS00347G/cit2/1) 2004; 306
Shannon (D3CS00347G/cit46/1) 1948; 27
Eggeling (D3CS00347G/cit7/1) 2009; 457
Albert (D3CS00347G/cit92/1) 2010; 13
Cho (D3CS00347G/cit209/1) 2012; 11
Bergman (D3CS00347G/cit160/1) 2018; 9
Kim (D3CS00347G/cit108/1) 2014; 5
Glansdorff (D3CS00347G/cit244/1) 1971
Irvine (D3CS00347G/cit115/1) 2012; 11
Knoben (D3CS00347G/cit161/1) 2006; 97
Likos (D3CS00347G/cit148/1) 2006; 2
Yamchi (D3CS00347G/cit97/1) 2015; 115
Frenkel (D3CS00347G/cit40/1) 1999; 263
Wilson (D3CS00347G/cit267/1) 2016; 534
Damasceno (D3CS00347G/cit55/1) 2012; 6
Kuhn (D3CS00347G/cit69/1) 1934; 68
Rovigatti (D3CS00347G/cit31/1) 2022; 129
Ramshaw (D3CS00347G/cit72/1) 2018
Kang (D3CS00347G/cit224/1) 2008; 100
Pokrovskii (D3CS00347G/cit242/1) 2020
Jenkins (D3CS00347G/cit165/1) 1996; 68
Kang (D3CS00347G/cit174/1) 2016; 12
Barry (D3CS00347G/cit178/1) 2010; 107
Kassem (D3CS00347G/cit263/1) 2017; 46
Chen (D3CS00347G/cit54/1) 2011; 469
Gudiksen (D3CS00347G/cit155/1) 2002; 415
Thompson (D3CS00347G/cit219/1) 2001; 292
Wang (D3CS00347G/cit30/1) 2018; 9
Nikolic (D3CS00347G/cit200/1) 2009; 121
Tagliazucchi (D3CS00347G/cit277/1) 2014; 111
Kao (D3CS00347G/cit5/1) 2013; 42
Mirkin (D3CS00347G/cit10/1) 1996; 382
Shevchenko (D3CS00347G/cit130/1) 2006; 128
Lu (D3CS00347G/cit158/1) 2008; 453
Cheng (D3CS00347G/cit260/1) 2020; 6
Stuart (D3CS00347G/cit186/1) 2010; 9
Merindol (D3CS00347G/cit269/1) 2017; 46
Zhu (D3CS00347G/cit25/1) 2018; 51
Cates (D3CS00347G/cit75/1) 2013; 12
Lacava (D3CS00347G/cit99/1) 2012; 12
Ruiz-Franco (D3CS00347G/cit159/1) 2021; 12
van Anders (D3CS00347G/cit56/1) 2015; 9
Kiely (D3CS00347G/cit127/1) 1998; 396
Huang (D3CS00347G/cit121/1) 2018; 12
Yu (D3CS00347G/cit102/1) 2006; 96
Damasceno (D3CS00347G/cit182/1) 2015; 115
Whitesides (D3CS00347G/cit1/1) 2002; 295
Zosel (D3CS00347G/cit169/1) 2020; 117
Boles (D3CS00347G/cit147/1) 2016; 116
Yan (D3CS00347G/cit53/1) 2010; 4
Engel (D3CS00347G/cit177/1) 2007; 98
Dinsmore (D3CS00347G/cit151/1) 2002; 298
Engel (D3CS00347G/cit133/1) 2007; 98
Yan (D3CS00347G/cit89/1) 2016
Frenkel (D3CS00347G/cit24/1) 2015; 14
Onsager (D3CS00347G/cit47/1) 1949; 51
Erbas-Cakmak (D3CS00347G/cit268/1) 2017; 358
Rovigatti (D3CS00347G/cit150/1) 2019; 15
Dai (D3CS00347G/cit71/1) 2021; 52
Mayer (D3CS00347G/cit136/1) 2008; 7
Oh (D3CS00347G/cit197/1) 2009; 8
Li (D3CS00347G/cit50/1) 2016; 1
Edrington (D3CS00347G/cit231/1) 2001; 13
Petukhov (D3CS00347G/cit38/1) 2017; 30
Lekkerkerker (D3CS00347G/cit66/1) 2011
Korth (D3CS00347G/cit198/1) 2006; 128
Hariharan (D3CS00347G/cit234/1) 2009; 131
Scala (D3CS00347G/cit61/1) 2000; 406
Xu (D3CS00347G/cit85/1) 2017; 13
Teich (D3CS00347G/cit106/1) 2016; 113
Marenduzzo (D3CS00347G/cit9/1) 2006; 175
Dijkstra (D3CS00347G/cit42/1) 2014; 156
Redl (D3CS00347G/cit131/1) 2003; 423
Guo (D3CS00347G/cit22/1) 2014; 4
Dey (D3CS00347G/cit233/1) 2018; 51
Martiniani (D3CS00347G/cit247/1) 2019; 9
Zhu (D3CS00347G/cit32/1) 2020; 20
Frenkel (D3CS00347G/cit118/1) 1988; 332
Mayer (D3CS00347G/cit167/1) 2008; 7
Nair (D3CS00347G/cit195/1) 2010; 43
Ye (D3CS00347G/cit84/1) 2013; 13
Bechinger (D3CS00347G/cit246/1) 2016; 88
Lu (D3CS00347G/cit228/1) 2014; 47
Min (D3CS00347G/cit20/1) 2008
References_xml – issn: 1864
  publication-title: Abhandlungen Über Die Mechanische Wärmetheorie
  doi: Clausius
– issn: 1951
  publication-title: Phase Transformations in Solids
  doi: Kirkwood
– issn: 2018
  publication-title: The statistical foundations of entropy
  doi: Ramshaw
– issn: 2001
  publication-title: Self-organization in biological systems
  doi: Sneyd Theraula Bonabeau Deneubourg Franks
– issn: 2012
  publication-title: Entropy and the second law: interpretation and misss-interpretationsss
  doi: Ben-Naim
– issn: 1973
  publication-title: The hydrophobic effect: formation of micelles and biological membranes
  doi: Tanford
– issn: 2016
  publication-title: Self-Assembling Systems: Theory and Simulation
  doi: Yan
– issn: 1971
  publication-title: Thermodynamic theory of structure, stability and fluctuations
  doi: Glansdorff Prigogine
– issn: 1896
  publication-title: Vorlesungen über Gastheorie
  doi: Boltzmann
– issn: 2013
  publication-title: Soft Matter Physics
  doi: Doi
– issn: 2008
  publication-title: Understanding non-equilibrium thermodynamics
  doi: Lebon Jou Casas-Vázquez
– issn: 2020
  publication-title: Thermodynamics of Complex Systems: Principles and Applications
  doi: Pokrovskii
– issn: 1999
  publication-title: The self-made tapestry: pattern formation in nature
  doi: Ball
– doi: Clausius
– issn: 2011
  publication-title: Colloids and the Depletion Interaction
  doi: Lekkerkerker Tuinier
– issn: 2003
  publication-title: Polymer Physics
  doi: Rubinstein Colby
– volume: 332
  start-page: 822
  year: 1988
  ident: D3CS00347G/cit118/1
  publication-title: Nature
  doi: 10.1038/332822a0
– volume: 140
  start-page: 1805
  year: 2018
  ident: D3CS00347G/cit122/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11324
– volume: 534
  start-page: 235
  year: 2016
  ident: D3CS00347G/cit267/1
  publication-title: Nature
  doi: 10.1038/nature18013
– volume: 20
  start-page: 4318
  year: 2008
  ident: D3CS00347G/cit190/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200702786
– volume: 8
  start-page: 837
  year: 2009
  ident: D3CS00347G/cit206/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2534
– volume: 38
  start-page: 494
  year: 2005
  ident: D3CS00347G/cit17/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar040113d
– volume: 32
  start-page: 438
  year: 1974
  ident: D3CS00347G/cit63/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.32.438
– volume: 448
  start-page: 325
  year: 2007
  ident: D3CS00347G/cit60/1
  publication-title: Nature
  doi: 10.1038/nature05959
– volume: 13
  start-page: 1603155
  year: 2017
  ident: D3CS00347G/cit85/1
  publication-title: Small
  doi: 10.1002/smll.201603155
– volume: 9
  start-page: 2228
  year: 2018
  ident: D3CS00347G/cit100/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04644-4
– volume: 12
  start-page: 1060
  year: 2017
  ident: D3CS00347G/cit212/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.182
– volume: 460
  start-page: 876
  year: 2009
  ident: D3CS00347G/cit111/1
  publication-title: Nature
  doi: 10.1038/nature08239
– volume: 6
  start-page: 609
  year: 2012
  ident: D3CS00347G/cit55/1
  publication-title: ACS Nano
  doi: 10.1021/nn204012y
– volume: 46
  start-page: 5519
  year: 2017
  ident: D3CS00347G/cit270/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00246G
– volume: 7
  start-page: 780
  year: 2008
  ident: D3CS00347G/cit167/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2286
– volume: 129
  start-page: 047801
  year: 2022
  ident: D3CS00347G/cit31/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.047801
– volume: 13
  start-page: 24
  year: 2010
  ident: D3CS00347G/cit92/1
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(10)70106-1
– volume: 46
  start-page: 3199
  year: 2013
  ident: D3CS00347G/cit188/1
  publication-title: Macromolecules
  doi: 10.1021/ma4001385
– volume: 133
  start-page: 1438
  year: 2011
  ident: D3CS00347G/cit207/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja108285u
– volume: 4
  start-page: 7021
  year: 2014
  ident: D3CS00347G/cit22/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep07021
– volume: 118
  start-page: 108002
  year: 2017
  ident: D3CS00347G/cit82/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.108002
– volume: 48
  start-page: 191
  year: 2005
  ident: D3CS00347G/cit93/1
  publication-title: Mater. Sci. Eng., R
  doi: 10.1016/j.mser.2004.12.003
– volume: 14
  start-page: 2617
  year: 2014
  ident: D3CS00347G/cit187/1
  publication-title: Nano Lett.
  doi: 10.1021/nl500449x
– volume: 53
  start-page: 145
  year: 2023
  ident: D3CS00347G/cit256/1
  publication-title: Sci. Sin. Chim.
  doi: 10.1360/SSC-2022-0186
– volume-title: The hydrophobic effect: formation of micelles and biological membranes
  year: 1973
  ident: D3CS00347G/cit70/1
– volume: 2
  start-page: 1800160
  year: 2019
  ident: D3CS00347G/cit141/1
  publication-title: Adv. Theory Simul.
  doi: 10.1002/adts.201800160
– volume: 137
  start-page: 10970
  year: 2015
  ident: D3CS00347G/cit164/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04531
– volume: 46
  start-page: 7465
  year: 2013
  ident: D3CS00347G/cit227/1
  publication-title: Macromolecules
  doi: 10.1021/ma4009884
– volume: 98
  start-page: 108303
  year: 2007
  ident: D3CS00347G/cit166/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.108303
– volume-title: Abhandlungen Über Die Mechanische Wärmetheorie
  year: 1864
  ident: D3CS00347G/cit43/1
– volume: 29
  start-page: 1
  year: 2011
  ident: D3CS00347G/cit65/1
  publication-title: J. High Energy Phys.
– volume: 50
  start-page: 9073
  year: 2017
  ident: D3CS00347G/cit58/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b01518
– volume: 14
  start-page: 9
  year: 2015
  ident: D3CS00347G/cit24/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4178
– volume: 96
  start-page: 028701
  year: 2006
  ident: D3CS00347G/cit215/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.028701
– volume: 42
  start-page: 2654
  year: 2013
  ident: D3CS00347G/cit5/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35375J
– volume: 46
  start-page: 5588
  year: 2017
  ident: D3CS00347G/cit269/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00738D
– volume: 12
  start-page: 217
  year: 2013
  ident: D3CS00347G/cit74/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3496
– volume: 22
  start-page: 1255
  year: 1954
  ident: D3CS00347G/cit67/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1740347
– volume: 469
  start-page: 381
  year: 2011
  ident: D3CS00347G/cit54/1
  publication-title: Nature
  doi: 10.1038/nature09713
– volume: 13
  start-page: 882
  year: 2018
  ident: D3CS00347G/cit261/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0250-8
– volume: 156
  start-page: 080401
  year: 2022
  ident: D3CS00347G/cit171/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0085965
– volume: 8
  start-page: 139
  year: 2009
  ident: D3CS00347G/cit197/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2354
– volume: 12
  start-page: 9467
  year: 2018
  ident: D3CS00347G/cit88/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b04753
– volume: 119
  start-page: e2116414119
  year: 2022
  ident: D3CS00347G/cit181/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2116414119
– volume: 12
  start-page: 640
  year: 2000
  ident: D3CS00347G/cit132/1
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(200005)12:9<640::AID-ADMA640>3.0.CO;2-J
– volume: 55
  start-page: 8239
  year: 2016
  ident: D3CS00347G/cit273/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201600218
– volume: 3
  start-page: 975
  year: 2012
  ident: D3CS00347G/cit23/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1968
– volume: 135
  start-page: 2148
  year: 2013
  ident: D3CS00347G/cit236/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312628g
– volume: 41
  start-page: 9430
  year: 2008
  ident: D3CS00347G/cit194/1
  publication-title: Macromolecules
  doi: 10.1021/ma801722m
– volume: 88
  start-page: 045006
  year: 2016
  ident: D3CS00347G/cit246/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.88.045006
– volume: 113
  start-page: 669
  year: 2016
  ident: D3CS00347G/cit106/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1524875113
– volume: 124
  start-page: 248002
  year: 2020
  ident: D3CS00347G/cit96/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.248002
– volume: 10
  start-page: 11541
  year: 2016
  ident: D3CS00347G/cit140/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07563
– volume: 6
  start-page: 6234
  year: 2015
  ident: D3CS00347G/cit232/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7234
– volume: 21
  start-page: 8439
  year: 2021
  ident: D3CS00347G/cit94/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c03127
– volume: 7
  start-page: 780
  year: 2008
  ident: D3CS00347G/cit136/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2286
– volume: 7
  start-page: 433
  year: 2012
  ident: D3CS00347G/cit193/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.83
– volume: 349
  start-page: 1253751
  year: 2015
  ident: D3CS00347G/cit28/1
  publication-title: Science
  doi: 10.1126/science.1253751
– volume: 115
  start-page: 158303
  year: 2015
  ident: D3CS00347G/cit182/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.158303
– volume: 131
  start-page: 5920
  year: 2009
  ident: D3CS00347G/cit234/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja900347t
– volume: 105
  start-page: 1025
  year: 2005
  ident: D3CS00347G/cit156/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr030063a
– volume: 309
  start-page: 553
  year: 1901
  ident: D3CS00347G/cit45/1
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19013090310
– volume-title: The statistical foundations of entropy
  year: 2018
  ident: D3CS00347G/cit72/1
  doi: 10.1142/10823
– volume: 457
  start-page: 1159
  year: 2009
  ident: D3CS00347G/cit7/1
  publication-title: Nature
  doi: 10.1038/nature07596
– volume: 14
  start-page: 56
  year: 2015
  ident: D3CS00347G/cit98/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4072
– volume: 298
  start-page: 1006
  year: 2002
  ident: D3CS00347G/cit151/1
  publication-title: Science
  doi: 10.1126/science.1074868
– volume: 120
  start-page: 048003
  year: 2018
  ident: D3CS00347G/cit175/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.048003
– volume: 343
  start-page: 634
  year: 2014
  ident: D3CS00347G/cit104/1
  publication-title: Science
  doi: 10.1126/science.1244827
– volume: 30
  start-page: 54
  year: 2017
  ident: D3CS00347G/cit38/1
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2017.05.008
– volume: 331
  start-page: 199
  year: 2011
  ident: D3CS00347G/cit76/1
  publication-title: Science
  doi: 10.1126/science.1197451
– volume: 439
  start-page: 55
  year: 2006
  ident: D3CS00347G/cit138/1
  publication-title: Nature
  doi: 10.1038/nature04414
– volume-title: The self-made tapestry: pattern formation in nature
  year: 1999
  ident: D3CS00347G/cit3/1
– volume: 4
  start-page: 913
  year: 2010
  ident: D3CS00347G/cit53/1
  publication-title: ACS Nano
  doi: 10.1021/nn901739v
– volume-title: Entropy and the second law: interpretation and misss-interpretationsss
  year: 2012
  ident: D3CS00347G/cit36/1
  doi: 10.1142/8333
– volume: 96
  start-page: 138306
  year: 2006
  ident: D3CS00347G/cit102/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.138306
– volume: 13
  start-page: 4980
  year: 2013
  ident: D3CS00347G/cit84/1
  publication-title: Nano Lett.
  doi: 10.1021/nl403149u
– volume: 341
  start-page: 253
  year: 2013
  ident: D3CS00347G/cit254/1
  publication-title: Science
  doi: 10.1126/science.1233775
– volume: 10
  start-page: 14
  year: 2011
  ident: D3CS00347G/cit6/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2891
– volume: 96
  start-page: 250
  year: 1954
  ident: D3CS00347G/cit275/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.96.250
– volume: 491
  start-page: 51
  year: 2012
  ident: D3CS00347G/cit15/1
  publication-title: Nature
  doi: 10.1038/nature11564
– volume: 382
  start-page: 607
  year: 1996
  ident: D3CS00347G/cit10/1
  publication-title: Nature
  doi: 10.1038/382607a0
– volume: 97
  start-page: 265501
  year: 2006
  ident: D3CS00347G/cit113/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.265501
– volume: 20
  start-page: 2315
  year: 2008
  ident: D3CS00347G/cit152/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200701526
– volume: 9
  start-page: 9542
  year: 2015
  ident: D3CS00347G/cit56/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04181
– volume: 306
  start-page: 76
  year: 2004
  ident: D3CS00347G/cit103/1
  publication-title: Science
  doi: 10.1126/science.1100090
– volume: 334
  start-page: 204
  year: 2011
  ident: D3CS00347G/cit11/1
  publication-title: Science
  doi: 10.1126/science.1210493
– volume: 113
  start-page: 5194
  year: 2013
  ident: D3CS00347G/cit52/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr300089t
– volume: 10
  start-page: 161
  year: 2015
  ident: D3CS00347G/cit271/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.315
– volume: 116
  start-page: 16703
  year: 2019
  ident: D3CS00347G/cit180/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1822092116
– volume: 115
  start-page: 1439
  year: 2018
  ident: D3CS00347G/cit114/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1720139115
– volume: 6
  start-page: 1160
  year: 2020
  ident: D3CS00347G/cit260/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.02.009
– volume: 426
  start-page: 271
  year: 2003
  ident: D3CS00347G/cit250/1
  publication-title: Nature
  doi: 10.1038/nature02087
– volume: 466
  start-page: 474
  year: 2010
  ident: D3CS00347G/cit129/1
  publication-title: Nature
  doi: 10.1038/nature09188
– volume: 10
  start-page: 230
  year: 2011
  ident: D3CS00347G/cit183/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2959
– volume: 432
  start-page: 492
  year: 2004
  ident: D3CS00347G/cit162/1
  publication-title: Nature
  doi: 10.1038/nature03109
– volume: 329
  start-page: 197
  year: 2010
  ident: D3CS00347G/cit191/1
  publication-title: Science
  doi: 10.1126/science.1189457
– volume: 68
  start-page: 57
  year: 1996
  ident: D3CS00347G/cit165/1
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(96)00304-1
– volume: 12
  start-page: 179
  year: 2013
  ident: D3CS00347G/cit75/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3573
– volume: 337
  start-page: 453
  year: 2012
  ident: D3CS00347G/cit116/1
  publication-title: Science
  doi: 10.1126/science.1220869
– volume: 9
  start-page: 1398
  year: 2013
  ident: D3CS00347G/cit101/1
  publication-title: Soft Matter
  doi: 10.1039/C2SM27031E
– volume: 116
  start-page: 11220
  year: 2016
  ident: D3CS00347G/cit147/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00196
– volume: 13
  start-page: 13829
  year: 2019
  ident: D3CS00347G/cit134/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04274
– volume: 4
  start-page: 693
  year: 2005
  ident: D3CS00347G/cit192/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1447
– volume: 358
  start-page: 340
  year: 2017
  ident: D3CS00347G/cit268/1
  publication-title: Science
  doi: 10.1126/science.aao1377
– volume: 99
  start-page: 118301
  year: 2007
  ident: D3CS00347G/cit163/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.118301
– volume: 10
  start-page: 547
  year: 2015
  ident: D3CS00347G/cit266/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.96
– volume: 117
  start-page: 13480
  year: 2020
  ident: D3CS00347G/cit169/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1921617117
– volume: 51
  start-page: 1010
  year: 1929
  ident: D3CS00347G/cit109/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01379a006
– volume: 292
  start-page: 2469
  year: 2001
  ident: D3CS00347G/cit219/1
  publication-title: Science
  doi: 10.1126/science.1060585
– volume: 306
  start-page: 419
  year: 2004
  ident: D3CS00347G/cit2/1
  publication-title: Science
  doi: 10.1126/science.1099988
– volume-title: Soft Matter Physics
  year: 2013
  ident: D3CS00347G/cit62/1
  doi: 10.1093/acprof:oso/9780199652952.001.0001
– volume: 464
  start-page: 575
  year: 2010
  ident: D3CS00347G/cit172/1
  publication-title: Nature
  doi: 10.1038/nature08906
– volume: 27
  start-page: 379
  year: 1948
  ident: D3CS00347G/cit46/1
  publication-title: Bell Syst. Tech. J
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 14
  start-page: 6910
  year: 2014
  ident: D3CS00347G/cit185/1
  publication-title: Nano Lett.
  doi: 10.1021/nl5029396
– volume: 18
  start-page: 2505
  year: 2006
  ident: D3CS00347G/cit90/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200502651
– volume: 28
  start-page: 13555
  year: 2012
  ident: D3CS00347G/cit117/1
  publication-title: Langmuir
  doi: 10.1021/la302226w
– volume: 34
  start-page: 9477
  year: 2018
  ident: D3CS00347G/cit39/1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b01378
– volume: 85
  start-page: 3652
  year: 2000
  ident: D3CS00347G/cit95/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.3652
– volume: 396
  start-page: 444
  year: 1998
  ident: D3CS00347G/cit127/1
  publication-title: Nature
  doi: 10.1038/24808
– volume: 17
  start-page: 2618
  year: 2005
  ident: D3CS00347G/cit223/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200500502
– volume: 100
  start-page: 215
  year: 2016
  ident: D3CS00347G/cit139/1
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-015-6985-3
– volume: 53
  start-page: 1367
  year: 1931
  ident: D3CS00347G/cit179/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01355a027
– volume: 102
  start-page: 198102
  year: 2009
  ident: D3CS00347G/cit251/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.198102
– volume: 47
  start-page: 4676
  year: 2014
  ident: D3CS00347G/cit228/1
  publication-title: Macromolecules
  doi: 10.1021/ma500664u
– volume: 7
  start-page: 1966
  year: 2016
  ident: D3CS00347G/cit124/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00724
– volume-title: Phase Transformations in Solids
  year: 1951
  ident: D3CS00347G/cit48/1
– volume: 107
  start-page: 10348
  year: 2010
  ident: D3CS00347G/cit178/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1000406107
– volume-title: Self-organization in biological systems
  year: 2001
  ident: D3CS00347G/cit259/1
  doi: 10.1515/9780691212920
– volume-title: Thermodynamic theory of structure, stability and fluctuations
  year: 1971
  ident: D3CS00347G/cit244/1
– volume: 99
  start-page: 268301
  year: 2007
  ident: D3CS00347G/cit145/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.268301
– volume: 12
  start-page: 51
  year: 2021
  ident: D3CS00347G/cit159/1
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-061020-053046
– volume: 107
  start-page: 17888
  year: 2010
  ident: D3CS00347G/cit235/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1009592107
– volume: 7
  start-page: 588
  year: 2008
  ident: D3CS00347G/cit208/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2202
– volume: 8
  start-page: 676
  year: 2013
  ident: D3CS00347G/cit13/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.158
– volume: 4
  start-page: 1221
  year: 2013
  ident: D3CS00347G/cit125/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz4003789
– volume: 111
  start-page: 9751
  year: 2014
  ident: D3CS00347G/cit277/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1406122111
– volume: 42
  start-page: 2654
  year: 2013
  ident: D3CS00347G/cit213/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35375J
– volume: 92
  start-page: 245507
  year: 2004
  ident: D3CS00347G/cit153/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.245507
– volume: 12
  start-page: 6725
  year: 2018
  ident: D3CS00347G/cit121/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01842
– volume: 128
  start-page: 044909
  year: 2008
  ident: D3CS00347G/cit184/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2819091
– volume: 43
  start-page: 8251
  year: 2010
  ident: D3CS00347G/cit195/1
  publication-title: Macromolecules
  doi: 10.1021/ma101229r
– volume: 143
  start-page: 17250
  year: 2021
  ident: D3CS00347G/cit204/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c08332
– volume: 12
  start-page: 540
  year: 2017
  ident: D3CS00347G/cit274/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.28
– volume: 453
  start-page: 499
  year: 2008
  ident: D3CS00347G/cit158/1
  publication-title: Nature
  doi: 10.1038/nature06931
– volume: 114
  start-page: 238001
  year: 2015
  ident: D3CS00347G/cit126/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.238001
– volume: 5
  start-page: eaaw4783
  year: 2019
  ident: D3CS00347G/cit240/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw4783
– volume: 142
  start-page: 21344
  year: 2020
  ident: D3CS00347G/cit257/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09343
– volume: 356
  start-page: 520
  year: 2017
  ident: D3CS00347G/cit220/1
  publication-title: Science
  doi: 10.1126/science.aam7212
– volume: 99
  start-page: 4769
  year: 2002
  ident: D3CS00347G/cit8/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.082065899
– volume: 129
  start-page: 6291
  year: 2007
  ident: D3CS00347G/cit199/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja070779d
– volume: 14
  start-page: 61
  year: 2015
  ident: D3CS00347G/cit218/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4109
– volume: 13
  start-page: 1083
  year: 2014
  ident: D3CS00347G/cit57/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4142
– volume: 20
  start-page: 5616
  year: 2020
  ident: D3CS00347G/cit32/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c02635
– volume: 314
  start-page: 1107
  year: 2006
  ident: D3CS00347G/cit210/1
  publication-title: Science
  doi: 10.1126/science.1130557
– volume: 2
  start-page: 382
  year: 2010
  ident: D3CS00347G/cit73/1
  publication-title: Trans. Conn. Acad. Arts Sci.
– volume: 5
  start-page: eaay2748
  year: 2019
  ident: D3CS00347G/cit176/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay2748
– volume: 295
  start-page: 2418
  year: 2002
  ident: D3CS00347G/cit1/1
  publication-title: Science
  doi: 10.1126/science.1070821
– volume-title: Understanding non-equilibrium thermodynamics
  year: 2008
  ident: D3CS00347G/cit243/1
  doi: 10.1007/978-3-540-74252-4
– volume: 263
  start-page: 26
  year: 1999
  ident: D3CS00347G/cit40/1
  publication-title: Phys. A
  doi: 10.1016/S0378-4371(98)00501-9
– volume: 68
  start-page: 2
  year: 1934
  ident: D3CS00347G/cit69/1
  publication-title: Colloid Polym. Sci.
– volume: 50
  start-page: 2078
  year: 2017
  ident: D3CS00347G/cit229/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b00012
– volume-title: Thermodynamics of Complex Systems: Principles and Applications
  year: 2020
  ident: D3CS00347G/cit242/1
  doi: 10.1088/978-0-7503-3451-8
– volume: 99
  start-page: 055501
  year: 2007
  ident: D3CS00347G/cit249/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.055501
– volume: 3
  start-page: 1231
  year: 2007
  ident: D3CS00347G/cit211/1
  publication-title: Soft Matter
  doi: 10.1039/b706609k
– volume: 48
  start-page: 5385
  year: 2015
  ident: D3CS00347G/cit230/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b01290
– volume: 52
  start-page: 1076
  year: 2021
  ident: D3CS00347G/cit71/1
  publication-title: Acta Polym. Sin.
– volume: 2
  start-page: 157
  year: 1968
  ident: D3CS00347G/cit255/1
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207166808803030
– volume: 27
  start-page: 1208
  year: 1957
  ident: D3CS00347G/cit49/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1743957
– volume: 128
  start-page: 3620
  year: 2006
  ident: D3CS00347G/cit130/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0564261
– volume: 11
  start-page: 948
  year: 2012
  ident: D3CS00347G/cit115/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3429
– volume: 10
  start-page: 70
  year: 2015
  ident: D3CS00347G/cit265/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.260
– volume: 423
  start-page: 968
  year: 2003
  ident: D3CS00347G/cit131/1
  publication-title: Nature
  doi: 10.1038/nature01702
– volume: 98
  start-page: 225505
  year: 2007
  ident: D3CS00347G/cit133/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.225505
– volume: 6
  start-page: 557
  year: 2007
  ident: D3CS00347G/cit12/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1949
– volume: 5
  start-page: 229
  year: 2006
  ident: D3CS00347G/cit214/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1582
– volume: 47
  start-page: 4369
  year: 2014
  ident: D3CS00347G/cit226/1
  publication-title: Macromolecules
  doi: 10.1021/ma500161j
– volume: 39
  start-page: 7392
  year: 2006
  ident: D3CS00347G/cit222/1
  publication-title: Macromolecules
  doi: 10.1021/ma061210k
– volume: 13
  start-page: 421
  year: 2001
  ident: D3CS00347G/cit231/1
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200103)13:6<421::AID-ADMA421>3.0.CO;2-#
– ident: D3CS00347G/cit35/1
– volume: 96
  start-page: 191
  year: 1954
  ident: D3CS00347G/cit64/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.96.191
– volume: 103
  start-page: 208302
  year: 2009
  ident: D3CS00347G/cit146/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.208302
– volume: 8
  start-page: 1024
  year: 2016
  ident: D3CS00347G/cit87/1
  publication-title: Nanoscale
  doi: 10.1039/C5NR06134B
– volume: 405
  start-page: 1033
  year: 2000
  ident: D3CS00347G/cit253/1
  publication-title: Nature
  doi: 10.1038/35016528
– volume: 8
  start-page: 354
  year: 2009
  ident: D3CS00347G/cit201/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2404
– volume: 105
  start-page: 9516
  year: 2008
  ident: D3CS00347G/cit252/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0802049105
– volume: 415
  start-page: 617
  year: 2002
  ident: D3CS00347G/cit155/1
  publication-title: Nature
  doi: 10.1038/415617a
– volume: 88
  start-page: 045006
  year: 2016
  ident: D3CS00347G/cit170/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.88.045006
– volume: 41
  start-page: 1361
  year: 2023
  ident: D3CS00347G/cit258/1
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-023-2968-5
– volume: 349
  start-page: 1075
  year: 2015
  ident: D3CS00347G/cit272/1
  publication-title: Science
  doi: 10.1126/science.aac6103
– volume: 263
  start-page: 10517
  year: 1988
  ident: D3CS00347G/cit238/1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)81546-6
– volume: 33
  start-page: 183
  year: 1958
  ident: D3CS00347G/cit173/1
  publication-title: J. Polym. Res.
– volume: 9
  start-page: 011031
  year: 2019
  ident: D3CS00347G/cit247/1
  publication-title: Phys. Rev. X
– volume: 17
  start-page: 128
  year: 2021
  ident: D3CS00347G/cit81/1
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-1003-9
– volume: 156
  start-page: 35
  year: 2014
  ident: D3CS00347G/cit42/1
  publication-title: Adv. Chem. Phys.
– volume-title: Self-Assembling Systems: Theory and Simulation
  year: 2016
  ident: D3CS00347G/cit89/1
  doi: 10.1002/9781119113171
– volume: 23
  start-page: 1109
  year: 2023
  ident: D3CS00347G/cit241/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c04939
– volume: 113
  start-page: 14231
  year: 2016
  ident: D3CS00347G/cit276/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1609983113
– volume: 86
  start-page: 995
  year: 2014
  ident: D3CS00347G/cit86/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.995
– volume: 5
  start-page: eaaw0514
  year: 2019
  ident: D3CS00347G/cit29/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw0514
– volume: 23
  start-page: 1109
  year: 2023
  ident: D3CS00347G/cit79/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c04939
– volume: 51
  start-page: 5182
  year: 2018
  ident: D3CS00347G/cit233/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b01025
– volume: 5
  start-page: 3068
  year: 2014
  ident: D3CS00347G/cit108/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4068
– volume: 2
  start-page: 478
  year: 2006
  ident: D3CS00347G/cit148/1
  publication-title: Soft Matter
  doi: 10.1039/b601916c
– volume: 11
  start-page: 585
  year: 2016
  ident: D3CS00347G/cit262/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.116
– volume: 16
  start-page: 96
  year: 2011
  ident: D3CS00347G/cit149/1
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2011.01.003
– volume: 9
  start-page: 101
  year: 2010
  ident: D3CS00347G/cit186/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2614
– volume: 7
  start-page: 11175
  year: 2016
  ident: D3CS00347G/cit120/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11175
– volume: 68
  start-page: 3801
  year: 1992
  ident: D3CS00347G/cit83/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.3801
– volume: 114
  start-page: 2462
  year: 2017
  ident: D3CS00347G/cit78/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1613828114
– volume: 9
  start-page: 5039
  year: 2018
  ident: D3CS00347G/cit160/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07332-5
– volume-title: Vorlesungen über Gastheorie
  year: 1896
  ident: D3CS00347G/cit44/1
– volume: 299
  start-page: 1716
  year: 2003
  ident: D3CS00347G/cit105/1
  publication-title: Science
  doi: 10.1126/science.1081160
– volume: 7
  start-page: 771
  year: 2008
  ident: D3CS00347G/cit216/1
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd2614
– volume: 50
  start-page: 1911
  year: 2017
  ident: D3CS00347G/cit205/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00165
– volume: 311
  start-page: 1740
  year: 2006
  ident: D3CS00347G/cit221/1
  publication-title: Science
  doi: 10.1126/science.1122225
– volume: 12
  start-page: 386
  year: 2016
  ident: D3CS00347G/cit174/1
  publication-title: Soft Matter
  doi: 10.1039/C5SM02038G
– volume: 46
  start-page: 1144
  year: 2013
  ident: D3CS00347G/cit245/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300145c
– volume: 9
  start-page: 2228
  year: 2018
  ident: D3CS00347G/cit30/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04644-4
– volume: 439
  start-page: 55
  year: 2006
  ident: D3CS00347G/cit157/1
  publication-title: Nature
  doi: 10.1038/nature04414
– volume: 468
  start-page: 947
  year: 2010
  ident: D3CS00347G/cit107/1
  publication-title: Nature
  doi: 10.1038/nature09620
– volume: 369
  start-page: 950
  year: 2020
  ident: D3CS00347G/cit119/1
  publication-title: Science
  doi: 10.1126/science.abb4536
– volume-title: Polymer Physics
  year: 2003
  ident: D3CS00347G/cit59/1
  doi: 10.1093/oso/9780198520597.001.0001
– volume: 401
  start-page: 152
  year: 1999
  ident: D3CS00347G/cit264/1
  publication-title: Nature
  doi: 10.1038/43646
– volume: 27
  start-page: 189
  year: 1987
  ident: D3CS00347G/cit68/1
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/0001-8686(87)85003-0
– volume: 20
  start-page: 762
  year: 2021
  ident: D3CS00347G/cit19/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01014-2
– volume: 10
  start-page: 7970
  year: 2019
  ident: D3CS00347G/cit225/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03253
– volume: 37
  start-page: 10223
  year: 1998
  ident: D3CS00347G/cit239/1
  publication-title: Biochemistry
  doi: 10.1021/bi980537d
– volume: 10
  start-page: 8388
  year: 2014
  ident: D3CS00347G/cit41/1
  publication-title: Soft Matter
  doi: 10.1039/C4SM01646G
– volume: 124
  start-page: 198102
  year: 2020
  ident: D3CS00347G/cit77/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.198102
– volume: 54
  start-page: 15699
  year: 2015
  ident: D3CS00347G/cit123/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201507237
– volume: 15
  start-page: 1108
  year: 2019
  ident: D3CS00347G/cit150/1
  publication-title: Soft Matter
  doi: 10.1039/C8SM02089B
– volume: 12
  start-page: 3279
  year: 2012
  ident: D3CS00347G/cit99/1
  publication-title: Nano Lett.
  doi: 10.1021/nl3013659
– volume: 107
  start-page: 125501
  year: 2011
  ident: D3CS00347G/cit112/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.125501
– volume: 296
  start-page: 65
  year: 2002
  ident: D3CS00347G/cit16/1
  publication-title: Science
  doi: 10.1126/science.1070865
– volume: 31
  start-page: 323
  year: 2001
  ident: D3CS00347G/cit91/1
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev.matsci.31.1.323
– volume: 4
  start-page: 1407
  year: 2004
  ident: D3CS00347G/cit14/1
  publication-title: Nano Lett.
  doi: 10.1021/nl0493500
– volume: 11
  start-page: 978
  year: 2012
  ident: D3CS00347G/cit209/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3406
– volume: 124
  start-page: 218003
  year: 2020
  ident: D3CS00347G/cit135/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.218003
– volume: 14
  start-page: 2
  year: 2015
  ident: D3CS00347G/cit21/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4184
– volume: 19
  start-page: 3850
  year: 2007
  ident: D3CS00347G/cit196/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700765
– volume: 23
  start-page: 30
  year: 2011
  ident: D3CS00347G/cit154/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000356
– volume: 313
  start-page: 1
  year: 2002
  ident: D3CS00347G/cit37/1
  publication-title: Physica A
  doi: 10.1016/S0378-4371(02)01032-4
– volume: 116
  start-page: 118301
  year: 2016
  ident: D3CS00347G/cit137/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.118301
– volume: 115
  start-page: 025702
  year: 2015
  ident: D3CS00347G/cit97/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.025702
– volume-title: Colloids and the Depletion Interaction
  year: 2011
  ident: D3CS00347G/cit66/1
  doi: 10.1007/978-94-007-1223-2
– volume: 416
  start-page: 811
  year: 2002
  ident: D3CS00347G/cit168/1
  publication-title: Nature
  doi: 10.1038/416811a
– volume: 111
  start-page: 4812
  year: 2014
  ident: D3CS00347G/cit26/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1418159111
– volume: 10
  start-page: 9358
  year: 2019
  ident: D3CS00347G/cit237/1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC03103K
– volume: 122
  start-page: 198002
  year: 2019
  ident: D3CS00347G/cit80/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.198002
– volume: 122
  start-page: 128005
  year: 2019
  ident: D3CS00347G/cit128/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.128005
– volume: 8
  start-page: 781
  year: 2009
  ident: D3CS00347G/cit248/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2496
– volume: 7
  start-page: 9920
  year: 2013
  ident: D3CS00347G/cit217/1
  publication-title: ACS Nano
  doi: 10.1021/nn4037738
– volume: 51
  start-page: 900
  year: 2018
  ident: D3CS00347G/cit25/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00001
– volume: 21
  start-page: 186
  year: 2019
  ident: D3CS00347G/cit33/1
  publication-title: Entropy
  doi: 10.3390/e21020186
– volume: 1
  start-page: 15011
  year: 2016
  ident: D3CS00347G/cit50/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2015.11
– volume: 6
  start-page: 609
  year: 2007
  ident: D3CS00347G/cit202/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1954
– volume: 462
  start-page: 773
  year: 2009
  ident: D3CS00347G/cit110/1
  publication-title: Nature
  doi: 10.1038/nature08641
– volume: 406
  start-page: 166
  year: 2000
  ident: D3CS00347G/cit61/1
  publication-title: Nature
  doi: 10.1038/35018034
– volume: 51
  start-page: 627
  year: 1949
  ident: D3CS00347G/cit47/1
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1949.tb27296.x
– volume: 64
  start-page: 645
  year: 1992
  ident: D3CS00347G/cit51/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.64.645
– volume: 108
  start-page: 2684
  year: 2011
  ident: D3CS00347G/cit143/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1014942108
– volume: 100
  start-page: 148303
  year: 2008
  ident: D3CS00347G/cit224/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.148303
– volume: 109
  start-page: 10787
  year: 2012
  ident: D3CS00347G/cit142/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1116820109
– volume: 98
  start-page: 225505
  year: 2007
  ident: D3CS00347G/cit177/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.225505
– volume: 12
  start-page: 693
  year: 2013
  ident: D3CS00347G/cit27/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3728
– volume: 121
  start-page: 2790
  year: 2009
  ident: D3CS00347G/cit200/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.200805158
– volume: 97
  start-page: 068301
  year: 2006
  ident: D3CS00347G/cit161/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.068301
– volume: 7
  start-page: 527
  year: 2008
  ident: D3CS00347G/cit20/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2206
– volume: 7
  start-page: 1016
  year: 2022
  ident: D3CS00347G/cit34/1
  publication-title: Nanoscale Horiz.
  doi: 10.1039/D2NH00156J
– volume: 128
  start-page: 6562
  year: 2006
  ident: D3CS00347G/cit198/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0609147
– volume: 175
  start-page: 681
  year: 2006
  ident: D3CS00347G/cit9/1
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200609066
– volume: 38
  start-page: 369
  year: 2013
  ident: D3CS00347G/cit4/1
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2012.05.001
– volume: 45
  start-page: 608
  year: 2012
  ident: D3CS00347G/cit18/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200226d
– volume: 1
  start-page: 641
  year: 2021
  ident: D3CS00347G/cit203/1
  publication-title: Fundam. Res.
  doi: 10.1016/j.fmre.2021.06.014
– volume: 17
  start-page: 1331
  year: 2005
  ident: D3CS00347G/cit189/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200500167
– volume: 101
  start-page: 148301
  year: 2008
  ident: D3CS00347G/cit144/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.148301
– volume: 46
  start-page: 2592
  year: 2017
  ident: D3CS00347G/cit263/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00245A
SSID ssj0011762
Score 2.5612533
SecondaryResourceType review_article
Snippet Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 686
SubjectTerms Entropy
Self-assembly
Title The entropy-controlled strategy in self-assembling systems
URI https://www.proquest.com/docview/2870907604
https://www.proquest.com/docview/2868668652
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbYdoAL4tdE2UBBcOGQkcR24nCbSsdAZRxIpdwix3amoZJMS3MYfz3Pjp0E2sNAqqLKfU4if-7ze_Z730PobUKpoEQIP0oE8QlXwmcVOK6MkFKQOGDKkFV_vYjPV-RLTnNX3t1ml2zKE_FrZ17J_6AKbYCrzpL9B2SHm0IDfAd84QoIw_XOGOvd2eb61rcx52swINuecdZk9LVqXflgIKufpUk8bycM5Y6gwHEGuAhOy1C6taecd6A5unFv2wQC5Fdcp5ANcTy86V39H9047_LOqLaume4xRH202mTbEdRp4JOkZ2o8UTvarC6l0XTOpBPNGDPDLLCtsgOsGU8lFq3mykkux4XJHcZffCvOVstlkS3ybA8dROAQgEY7OF1kn5fDiVGYmOKxw1s5Klqcvh_v_afxMXoUezeu3IsxK7JH6KH1B7zTHtzH6J6qn6D7c1eG7yn6ACB72yB7DmTvqvb-AtmzID9Dq7NFNj_3bcELX-CQbHwpQgELoeCyTLi2pBUn4I7GFFdxWtGwTHkloiQEASFAmEoquYg4jaEXowk-RPt1U6vnyAM_OAW5iMlAklJSFkmmMCxPAS6hQzRD79xIFMKyweuiJOvCRCXgtPiI59_NqH2aoTeD7HXPgbJT6tgNaGH_I22hj9FTffhLZuj18DOMoD6W4rVqOi0Tsxg--qUOAYjhGSNuL-7Q-Qg9GKfuMdrf3HTqJRiMm_KVnSu_AaZybaQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+entropy-controlled+strategy+in+self-assembling+systems&rft.jtitle=Chemical+Society+reviews&rft.au=Zhang%2C+Xuanyu&rft.au=Dai%2C+Xiaobin&rft.au=Gao%2C+Lijuan&rft.au=Xu%2C+Duo&rft.date=2023-10-02&rft.issn=1460-4744&rft.eissn=1460-4744&rft.volume=52&rft.issue=19&rft.spage=6806&rft_id=info:doi/10.1039%2Fd3cs00347g&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon