Traveling waves for a lattice dynamical system arising in a diffusive endemic model

This paper is concerned with a lattice dynamical system modeling the evolution of susceptible and infective individuals at discrete niches. We prove the existence of traveling waves connecting the disease-free state to non-trivial leftover concentrations. We also characterize the minimal speed of tr...

Full description

Saved in:
Bibliographic Details
Published inNonlinearity Vol. 30; no. 6; pp. 2334 - 2359
Main Authors Chen, Yan-Yu, Guo, Jong-Shenq, Hamel, François
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper is concerned with a lattice dynamical system modeling the evolution of susceptible and infective individuals at discrete niches. We prove the existence of traveling waves connecting the disease-free state to non-trivial leftover concentrations. We also characterize the minimal speed of traveling waves and we prove the non-existence of waves with smaller speeds.
AbstractList This paper is concerned with a lattice dynamical system modeling the evolution of susceptible and infective individuals at discrete niches. We prove the existence of traveling waves connecting the disease-free state to non-trivial leftover concentrations. We also characterize the minimal speed of traveling waves and we prove the non-existence of waves with smaller speeds.
Author Guo, Jong-Shenq
Hamel, François
Chen, Yan-Yu
Author_xml – sequence: 1
  givenname: Yan-Yu
  surname: Chen
  fullname: Chen, Yan-Yu
  email: chenyanyu24@gmail.com
  organization: Tamkang University Department of Mathematics, Tamsui, New Taipei City, Taiwan
– sequence: 2
  givenname: Jong-Shenq
  surname: Guo
  fullname: Guo, Jong-Shenq
  email: jsguo@mail.tku.edu.tw
  organization: Tamkang University Department of Mathematics, Tamsui, New Taipei City, Taiwan
– sequence: 3
  givenname: François
  surname: Hamel
  fullname: Hamel, François
  email: francois.hamel@univ-amu.fr
  organization: Aix Marseille University , CNRS, Centrale Marseille, I2M, Marseille, France
BackLink https://hal.science/hal-01286472$$DView record in HAL
BookMark eNp9kEFLwzAUgINMcJvePeYqWJc0aZIex1AnDDw4z-EtSTWjS0fSTfbvbansIOjpPR7f9w7fBI1CExxCt5Q8UKLUjDJBM1FwPgMQGwIXaHw-jdCYlAXNpKTFFZqktCWEUpWzMXpbRzi62ocP_NUtCVdNxIBraFtvHLanADtvoMbplFq3wxB96mEfOsr6qjokf3TYBes6Du8a6-prdFlBndzNz5yi96fH9WKZrV6fXxbzVWYY5W1mlaOloFDmNucCmM03II1lCiSUpgBOmMkNtcDZprRWSWWlUFwyLgphlGFTdDf8_YRa76PfQTzpBrxezle6vxGaK8FlfqQdSwbWxCal6KqzQInuA-q-lu5r6SFgp4hfivEttL4JbQRf_yfeD6Jv9nrbHGLoKvyNfwNF_oVh
CODEN NONLE5
CitedBy_id crossref_primary_10_1142_S1793524523500675
crossref_primary_10_1016_j_cnsns_2023_107638
crossref_primary_10_1090_proc_15916
crossref_primary_10_1007_s12346_023_00903_y
crossref_primary_10_1016_j_nonrwa_2023_103968
crossref_primary_10_1007_s12346_024_00964_7
crossref_primary_10_1007_s12346_024_01116_7
crossref_primary_10_1080_00036811_2021_1951715
crossref_primary_10_3934_math_2024913
crossref_primary_10_1016_j_jde_2023_02_006
crossref_primary_10_1002_mma_9595
crossref_primary_10_1016_j_cnsns_2023_107431
crossref_primary_10_1002_mma_7765
crossref_primary_10_1007_s10884_023_10284_0
crossref_primary_10_1007_s10955_023_03229_w
crossref_primary_10_1017_prm_2020_31
crossref_primary_10_1016_j_nonrwa_2021_103325
crossref_primary_10_11650_tjm_201209
crossref_primary_10_11948_20220040
crossref_primary_10_1016_j_jde_2019_10_034
crossref_primary_10_1017_prm_2019_4
crossref_primary_10_3934_dcdss_2020340
crossref_primary_10_1016_j_cnsns_2020_105387
crossref_primary_10_1002_mma_9977
crossref_primary_10_3934_cpaa_2021106
crossref_primary_10_1016_j_amc_2019_124621
crossref_primary_10_1007_s11538_021_00948_7
crossref_primary_10_1063_1_5002009
crossref_primary_10_1111_sapm_12788
crossref_primary_10_1016_j_jde_2023_08_007
crossref_primary_10_1080_10236198_2019_1709181
crossref_primary_10_11948_20210010
crossref_primary_10_1016_j_cnsns_2023_107534
crossref_primary_10_3934_mbe_2021460
crossref_primary_10_1016_j_aml_2020_106855
crossref_primary_10_1016_j_jde_2022_03_026
crossref_primary_10_1016_j_nonrwa_2019_03_003
crossref_primary_10_1016_j_aml_2022_108515
crossref_primary_10_4236_jamp_2024_1210203
crossref_primary_10_1007_s00332_020_09656_3
crossref_primary_10_1016_j_jmaa_2017_10_016
crossref_primary_10_1142_S1793524522500796
crossref_primary_10_1016_j_jde_2019_02_012
crossref_primary_10_1017_S0956792524000846
crossref_primary_10_1007_s12346_022_00634_6
crossref_primary_10_1017_S0956792518000700
crossref_primary_10_1016_j_jmaa_2019_03_029
crossref_primary_10_1016_j_cnsns_2023_107163
crossref_primary_10_1007_s00033_024_02292_x
crossref_primary_10_1016_j_nonrwa_2025_104324
crossref_primary_10_1080_07362994_2022_2144375
Cites_doi 10.1007/s00205-005-0367-4
10.3934/dcdsb.2010.13.537
10.1007/s00208-003-0414-0
10.1007/BF01053165
10.1016/j.aml.2012.05.006
10.1088/0951-7715/11/5/014
10.1016/S0167-2789(99)00151-7
10.1137/0522066
10.1006/jdeq.1998.3478
10.1016/0362-546X(85)90035-5
10.1016/j.crma.2011.03.008
10.1090/S0002-9947-2015-06392-2
10.1051/mmnp/20138304
10.1017/S0956792500001868
10.1016/0022-0396(92)90142-A
10.1137/S0036144500371907
10.1007/s10884-012-9285-y
10.1016/j.jde.2005.05.004
10.3934/dcds.2012.32.101
10.1016/j.jde.2010.12.004
10.1090/S0002-9939-2010-10540-3
10.1088/0951-7715/22/12/002
10.1137/050627824
10.1007/s00205-007-0103-3
10.1016/j.jde.2012.01.009
10.1016/S0167-2789(97)82005-2
10.1016/j.na.2005.10.042
10.1137/S0036139996312703
10.1098/rspa.2009.0577
10.1006/jdeq.1993.1082
10.3934/dcds.2011.30.137
10.1016/j.jde.2014.12.006
10.1007/s00208-005-0729-0
10.1088/0951-7715/17/1/002
10.1051/mmnp:2006004
10.1137/0147038
10.3934/dcds.2015.35.5107
10.1088/0951-7715/24/11/002
10.1080/10236198.2012.739169
10.1016/0362-546X(95)00148-O
10.1006/jdeq.2001.4153
ContentType Journal Article
Copyright 2017 IOP Publishing Ltd & London Mathematical Society
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 IOP Publishing Ltd & London Mathematical Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1088/1361-6544/aa6b0a
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
DocumentTitleAlternate Traveling waves for a lattice dynamical system arising in a diffusive endemic model
EISSN 1361-6544
EndPage 2359
ExternalDocumentID oai_HAL_hal_01286472v1
10_1088_1361_6544_aa6b0a
nonaa6b0a
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
YQT
ZMT
AAYXX
ADEQX
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c314t-d8e1961a92d246a3d2ba7cd38a7a9c5a403c2c1da43b9dd878d7684734656c8c3
IEDL.DBID IOP
ISSN 0951-7715
IngestDate Fri May 09 12:25:27 EDT 2025
Tue Jul 01 02:43:37 EDT 2025
Thu Apr 24 22:55:52 EDT 2025
Wed Aug 21 03:32:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords traveling wave
endemic model
lattice dynamical system
upper-lower-solutions
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-d8e1961a92d246a3d2ba7cd38a7a9c5a403c2c1da43b9dd878d7684734656c8c3
Notes NON-101479.R2
London Mathematical Society
OpenAccessLink https://hal.science/hal-01286472
PageCount 26
ParticipantIDs hal_primary_oai_HAL_hal_01286472v1
crossref_citationtrail_10_1088_1361_6544_aa6b0a
crossref_primary_10_1088_1361_6544_aa6b0a
iop_journals_10_1088_1361_6544_aa6b0a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Nonlinearity
PublicationTitleAbbrev Non
PublicationTitleAlternate Nonlinearity
PublicationYear 2017
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
44
23
25
26
27
28
29
Guo J-S (24) 2008; 5
Berestycki H (4) 2009; 22
Hudson W (31) 1994; 1
30
10
32
11
33
12
34
35
Coutinho R (14) 2004; 17
36
15
37
16
38
17
39
19
Fu S-C (20) 2016; 17
1
2
Fang J (18) 2011; 24
3
Coutinho R (13) 1998; 11
5
6
7
8
9
40
41
42
21
43
References_xml – ident: 3
  doi: 10.1007/s00205-005-0367-4
– ident: 2
  doi: 10.3934/dcdsb.2010.13.537
– ident: 9
  doi: 10.1007/s00208-003-0414-0
– ident: 27
  doi: 10.1007/BF01053165
– ident: 1
  doi: 10.1016/j.aml.2012.05.006
– volume: 11
  start-page: 1407
  issn: 0951-7715
  year: 1998
  ident: 13
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/11/5/014
– volume: 1
  start-page: 23
  issn: 1074-133X
  year: 1994
  ident: 31
  publication-title: Commun. Appl. Nonlinear Anal.
– ident: 33
  doi: 10.1016/S0167-2789(99)00151-7
– ident: 42
  doi: 10.1137/0522066
– ident: 11
  doi: 10.1006/jdeq.1998.3478
– ident: 38
  doi: 10.1016/0362-546X(85)90035-5
– ident: 39
  doi: 10.1016/j.crma.2011.03.008
– volume: 17
  start-page: 1739
  issn: 1345-4773
  year: 2016
  ident: 20
  publication-title: J. Nonlinear Convex Anal.
– ident: 29
  doi: 10.1090/S0002-9947-2015-06392-2
– ident: 40
  doi: 10.1051/mmnp/20138304
– ident: 5
  doi: 10.1017/S0956792500001868
– ident: 43
  doi: 10.1016/0022-0396(92)90142-A
– ident: 28
  doi: 10.1137/S0036144500371907
– ident: 15
  doi: 10.1007/s10884-012-9285-y
– ident: 37
  doi: 10.1016/j.jde.2005.05.004
– ident: 23
  doi: 10.3934/dcds.2012.32.101
– ident: 25
  doi: 10.1016/j.jde.2010.12.004
– ident: 17
  doi: 10.1090/S0002-9939-2010-10540-3
– volume: 5
  start-page: 327
  issn: 0030-6126
  year: 2008
  ident: 24
  publication-title: Osaka J. Math.
– volume: 22
  start-page: 2813
  issn: 0951-7715
  year: 2009
  ident: 4
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/22/12/002
– ident: 7
  doi: 10.1137/050627824
– ident: 10
  doi: 10.1007/s00205-007-0103-3
– ident: 26
  doi: 10.1016/j.jde.2012.01.009
– ident: 12
  doi: 10.1016/S0167-2789(97)82005-2
– ident: 36
  doi: 10.1016/j.na.2005.10.042
– ident: 6
  doi: 10.1137/S0036139996312703
– ident: 16
  doi: 10.1098/rspa.2009.0577
– ident: 44
  doi: 10.1006/jdeq.1993.1082
– ident: 30
  doi: 10.3934/dcds.2011.30.137
– ident: 19
  doi: 10.1016/j.jde.2014.12.006
– ident: 22
  doi: 10.1007/s00208-005-0729-0
– volume: 17
  start-page: 23
  issn: 0951-7715
  year: 2004
  ident: 14
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/17/1/002
– ident: 21
  doi: 10.1051/mmnp:2006004
– ident: 32
  doi: 10.1137/0147038
– ident: 41
  doi: 10.3934/dcds.2015.35.5107
– volume: 24
  start-page: 3043
  issn: 0951-7715
  year: 2011
  ident: 18
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/24/11/002
– ident: 34
  doi: 10.1080/10236198.2012.739169
– ident: 35
  doi: 10.1016/0362-546X(95)00148-O
– ident: 8
  doi: 10.1006/jdeq.2001.4153
SSID ssj0011823
Score 2.3945482
Snippet This paper is concerned with a lattice dynamical system modeling the evolution of susceptible and infective individuals at discrete niches. We prove the...
SourceID hal
crossref
iop
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 2334
SubjectTerms Analysis of PDEs
endemic model
lattice dynamical system
Mathematics
traveling wave
upper-lower-solutions
Title Traveling waves for a lattice dynamical system arising in a diffusive endemic model
URI https://iopscience.iop.org/article/10.1088/1361-6544/aa6b0a
https://hal.science/hal-01286472
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IOjBt7i-CKIHD93dNtkkxZOIyyq-QAUPQsmji6Ks4nYV_PXOtLWsoiLe2jKdtpOk-chMvg9gS2uufSzjQHWdDAROwEHc1WEgZVOnLgqtNrSgf3IqO1fi6Lp1PQK71V6Yx6fy11_Hw4IouAhhWRCnGyGX6KslRMMYaZsIjsa5lpLkCw7PzqsUAgLnSkdeqbBV5ii_8_BpThq9pYrIUXz60ETTnoGbj1cs6kvu64PM1t3bF_bGf37DLEyXAJTtFaZzMJL25mFqiJYQz04qLtf-PEzkRaKuvwAXl6RVRPvX2Sse9BkCXmbYg8mogo75QtwenRf00Iz0Dcn4rodWpMQyoFp5RovuaMdyEZ5FuGofXO53glKUIXA8FFngdYqDNjRx5CMhDfeRNcp5ro0ysWsZ0eQucqE3gtvYe620p1yf4kTM5rTjSzDWe-yly8Akj7rOEimdbQojpE0tAhhEhEph_-7GNWh8NEviSsZyEs54SPLMudYJhTGhMCZFGGuwU93xVLB1_GK7iS1dmRHNdmfvOKFrNGkTrf5LWINtbMKkHNf9H52t_NFuFSYjwgX5Ms4ajGXPg3QdUU1mN_Le-w4Osu1P
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6xICo4AKUglkdrVe2hh-xuYsd2jghYLeUpFSRuqR-JQKBlxWZB4tczk4QIUIsq9eZEk5E9tjMjz_j7AL5pzbVPZBKo3MlAoAMOklyHgZQ9nbkotNrQgf7RsRyci58X8UXNc1rehbkd1b_-DjYroODKhHVBnO6GXKKuWIiuMdL2THfk8xbMxFxyAs_fPzlt0ggYPDdc8kqFcZ2n_JOWV36pdUlVkS3swQtn01-E38_drGpMrjuTwnbc4xsEx_8YxxIs1IEo267EP8JUNlyG-RfwhPh01GC6jpdhtiwWdeNP8OuMOIvoHjt7wMaYYeDLDLsxBVXSMV-R3KPyCiaaEc8hCV8NUYoYWSZUM8_o8B3lWEnGswLn_b2znUFQkzMEjoeiCLzOcPOGJol8JKThPrJGOc-1USZxsRE97iIXeiO4TbzXSnvK-SlOAG1OO74K08PbYbYGTPIod5bA6WxPGCFtZjGQwchQKVznedKG7vPUpK5GLicCjZu0zKBrnZIpUzJlWpmyDT-aL0YVasc7sl9xthsxgtsebB-m9I6cN8Hr34dt-I7TmNb7e_xXZev_KPcFPpzu9tPD_eODDZiLKFQoT3Y2Ybq4m2RbGOgU9nO5mJ8AHaLysw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traveling+waves+for+a+lattice+dynamical+system+arising+in+a+diffusive+endemic+model&rft.jtitle=Nonlinearity&rft.au=Chen%2C+Yan-Yu&rft.au=Guo%2C+Jong-Shenq&rft.au=Hamel%2C+Fran%C3%A7ois&rft.date=2017-06-01&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=30&rft.issue=6&rft.spage=2334&rft.epage=2359&rft_id=info:doi/10.1088%2F1361-6544%2Faa6b0a&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6544_aa6b0a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon