Advanced ferroelectric oxide films and heterostructures for unconventional applications

Ferroelectrics, known for their reversible spontaneous electric polarization, have garnered significant interest in both fundamental physics and applications, such as non-volatile memories and sensors. To address the scattered nature of contemporary ferroelectric research, we write this review which...

Full description

Saved in:
Bibliographic Details
Published inAdvances in physics: X Vol. 10; no. 1
Main Authors Huang, Sisi, Ma, Cheng, Jin, Kuijuan
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 31.12.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ferroelectrics, known for their reversible spontaneous electric polarization, have garnered significant interest in both fundamental physics and applications, such as non-volatile memories and sensors. To address the scattered nature of contemporary ferroelectric research, we write this review which extensively outlines the developments and recent progress on the most studied ferroelectrics, including lead-based and lead-free ferroelectrics, low-dimensional HfO2-based ones, high-entropy relaxor ones, and multiferroics. The tuning methods for these ferroelectrics, including strain, doping, and constructing interfaces, are also systematically discussed. In addition, we also summarize the applications of ferroelectrics, including ferroelectric diodes and ferroelectric tunnel junctions, synaptic devices, domain-wall-based devices, and photoelectric devices, highlighting their significant potential for advanced electronic and optoelectronic devices. This review gives a comprehensive summary of ferroelectrics and offers insights into future research.
AbstractList Ferroelectrics, known for their reversible spontaneous electric polarization, have garnered significant interest in both fundamental physics and applications, such as non-volatile memories and sensors. To address the scattered nature of contemporary ferroelectric research, we write this review which extensively outlines the developments and recent progress on the most studied ferroelectrics, including lead-based and lead-free ferroelectrics, low-dimensional HfO2-based ones, high-entropy relaxor ones, and multiferroics. The tuning methods for these ferroelectrics, including strain, doping, and constructing interfaces, are also systematically discussed. In addition, we also summarize the applications of ferroelectrics, including ferroelectric diodes and ferroelectric tunnel junctions, synaptic devices, domain-wall-based devices, and photoelectric devices, highlighting their significant potential for advanced electronic and optoelectronic devices. This review gives a comprehensive summary of ferroelectrics and offers insights into future research.
Author Ma, Cheng
Jin, Kuijuan
Huang, Sisi
Author_xml – sequence: 1
  givenname: Sisi
  orcidid: 0009-0007-0303-6040
  surname: Huang
  fullname: Huang, Sisi
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China, University of Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Cheng
  surname: Ma
  fullname: Ma, Cheng
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China, University of Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Kuijuan
  surname: Jin
  fullname: Jin, Kuijuan
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China, University of Chinese Academy of Sciences, Beijing, China
BookMark eNpNkN1KAzEQRoNUsNY-grAvsHWyyabZy1L8KRS8UbwM2WSiKdukJNuib2_XVvFqZr5hDsy5JqMQAxJyS2FGQcJdxeZcUN7MKqj4rOJMCikuyHjIy2Ex-tdfkWnOGwCgYn48ZmPytrAHHQzawmFKETs0ffKmiJ_eYuF8t82FDrb4wB5TzH3am36fMBcupmIfTAwHDL2PQXeF3u06b_Qw5Rty6XSXcXquE_L6cP-yfCrXz4-r5WJdGkZ5X1ouJW-bqjUoDa00tsIKYEaAsKbVDa3dHKBy1koDlANazq2r27aSgIicTcjqxLVRb9Qu-a1OXypqr36CmN6VTr03HarGOaobbMDpmiMaLYCiFJQBZ04jHln1iWWOn-aE7o9HQQ2y1a9sNchWZ9nsG2UAdrw
Cites_doi 10.1002/adfm.201103119
10.1080/14786444908561372
10.1007/978-3-540-34591-6
10.1038/s41565-020-0700-y
10.1038/nature14004
10.1103/PhysRevLett.100.047601
10.1039/d3mh00716b
10.1088/1361-6463/ac2868
10.1063/1.4947490
10.1088/1361-648X/ac4c61
10.1002/adfm.201002125
10.1038/s44306-024-00021-8
10.1038/s41578-022-00431-2
10.1002/adma.201904123
10.1038/nature16463
10.1038/s41467-021-27898-x
10.1002/adma.201801548
10.1038/nature01501
10.1038/s41563-018-0275-2
10.1063/1.4870957
10.1038/s41467-017-01733-8
10.1038/srep06980
10.1038/natrevmats.2016.46
10.1038/s41563-018-0034-4
10.1103/physrevb.96.115105
10.1063/1.5025607
10.1038/nature03028
10.1016/j.jmst.2022.05.012
10.1038/s41586-019-1255-7
10.1002/adma.201905764
10.1038/nmat3629
10.1038/s41586-023-06978-6
10.1063/5.0023871
10.1002/adma.201806236
10.1002/adma.201004317
10.1002/adma.202109889
10.1103/PhysRevLett.104.197201
10.1038/s41467-020-19519-w
10.1038/s41467-023-38055-x
10.1146/annurev.matsci.37.052506.084323
10.1126/science.1171200
10.1021/acsami.8b15576
10.1103/PhysRevB.81.140401
10.1038/nmat4899
10.1002/admi.201901604
10.1038/s41586-019-1445-3
10.1038/nature08128
10.1038/s41467-022-31763-w
10.1016/j.scriptamat.2020.05.005
10.1021/acsnano.3c01548
10.1007/s11433-019-9415-9
10.1038/s41467-020-20660-9
10.1038/ncomms12385
10.1038/s41467-023-36274-w
10.1002/adma.202207736
10.1002/adma.202003780
10.1126/science.aay7221
10.1002/adfm.201902702
10.1038/s41586-021-04323-3
10.1103/PhysRevB.90.064111
10.1039/d2mh01527g
10.1126/science.aaw8109
10.1126/science.aba0067
10.1002/adma.201605699
10.1149/2.002301jss
10.1103/PhysRevB.75.104103
10.1038/nmat4749
10.1103/PhysRevB.96.165206
10.1088/0953-8984/28/2/025501
10.1103/PhysRevLett.120.055501
10.1021/acsaelm.2c01690
10.1002/adma.201702069
10.1002/adma.202106845
10.1038/s41467-022-28303-x
10.1038/s41467-020-16465-5
10.1038/s41586-020-1939-z
10.1038/s41565-018-0204-1
10.1038/s41467-024-44927-7
10.1021/acsaelm.9b00488
10.1126/science.aaa6442
10.1103/PhysRev.17.475
10.1016/j.tsf.2020.137851
10.1007/BF03353733
10.1021/acsaelm.9b00197
10.1126/science.abb0631
10.1038/nature05023
10.1002/adfm.202203074
10.1021/acsami.6b15162
10.1038/s41467-021-26660-7
10.1063/1.4864100
10.1063/1.4916707
10.1002/aelm.201901408
10.1021/nl302049k
10.1007/s11837-018-3140-5
10.1063/1.3667205
10.1038/s41586-019-1845-4
10.1002/adma.201703543
10.1021/acsami.2c14291
10.1038/ncomms15768
10.1103/RevModPhys.95.025001
10.1109/MSPEC.2007.4337663
10.1039/d2nr04119g
10.1021/acsami.8b00791
10.1038/s42254-021-00383-6
10.1038/s41598-017-09339-2
10.1126/science.1218693
10.1016/j.isci.2019.05.043
10.1088/0953-8984/28/26/263001
10.1103/PhysRevB.93.174110
10.1088/0953-8984/16/13/006
10.1038/nature02773
10.1002/adma.202310704
10.1126/science.adi6620
10.1038/ncomms2990
10.1002/adma.201402527
10.1103/PhysRevLett.73.2107
10.1126/science.abj9979
10.1038/s41563-018-0196-0
10.1002/adma.202006089
10.1063/1.4813239
10.1038/s41586-021-03342-4
10.1038/s41563-024-01853-9
10.1021/acsami.1c21703
10.1038/s41586-022-04588-2
10.1007/s40766-021-00019-6
10.1002/smll.202107575
10.1103/PhysRevB.97.115103
10.1126/science.aax9753%JScience
10.1088/1674-4926/42/1/013103
10.1038/s41467-020-15159-2
10.1038/s41586-022-05503-5
10.1146/annurev.matsci.37.061206.113016
10.1016/j.nanoen.2021.106439
10.1002/admi.202101499
10.1038/s41467-022-30983-4
10.1038/nature03107
10.1038/nature09331
10.1038/nature02572
10.1063/5.0190146
10.1038/s41467-018-05640-4
10.1063/1.4929610
10.1038/nature06459
10.1038/s41467-023-39371-y
10.7567/JJAP.53.08LE02
10.1038/s41928-018-0118-9
10.1002/adma.201900379
10.1126/science.1098252
10.1007/s11433-013-5349-1
10.1063/1.4811439
10.1002/adma.202203469
10.1007/s11433-018-9245-4
10.1038/s41467-023-42993-x
10.1039/c7nr02121f
10.1021/am508511y
10.1002/adma.202108841
10.1364/JOSAB.22.000096
10.1103/PhysRevB.105.224101
10.1038/s41467-024-45755-5
10.1038/s41563-020-00897-x
10.1038/s41467-024-47580-2
10.1080/00018735400101173
10.1016/j.jmat.2020.08.005
10.1007/s10948-020-05764-z
10.1016/j.jmmm.2006.01.238
10.1103/PhysRevLett.110.137203
10.1021/acsami.9b13434
10.1021/acsami.6b13203
10.1103/PhysRevB.71.014113
10.1038/natrevmats.2016.87
10.1038/s41467-020-16912-3
10.1063/1.4979015
10.1038/ncomms15217
10.1016/j.device.2023.100004
10.1126/science.abi7687
10.1002/adma.201204839
10.1126/science.1103218
10.1038/s41467-022-29456-5
10.1002/advs.202307571
10.1063/1.3589814
10.1126/science.1168636
10.1063/1.4936306
10.1038/s41563-017-0001-5
10.1063/1.4979587
10.1126/sciadv.abq1232
10.1103/PhysRevB.95.184112
10.1126/science.aan2433
10.1038/nmat2373
10.1038/s41578-022-00484-3
10.1007/s40820-020-00420-6
10.1063/1.4812825
10.1038/s41586-019-1092-8
10.1103/PhysRevB.94.224107
10.1016/0022-460X(72)90684-0
10.1038/srep02618
10.1126/sciadv.1700919
10.1103/PhysRevLett.124.027601
10.1126/science.adl2931
10.1039/c9nr08800h
10.1038/nnano.2014.320
10.1126/science.1259869
10.1016/B978-0-08-010586-4.50034-1
10.1088/1361-6463/ad33f5
10.1038/s41586-020-2208-x
10.1038/s41467-022-30074-4
10.1002/adfm.202211906
10.1038/s41586-021-04338-w
10.1063/1.4747209
10.1016/j.cej.2024.150823
10.1038/s41586-018-0854-z
10.1021/acsami.8b15703
10.1038/s41586-018-0855-y
10.1063/1.3634052
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1080/23746149.2024.2438686
DatabaseName CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2374-6149
ExternalDocumentID oai_doaj_org_article_9ff1a9e90fa54eeca601e8613043faee
10_1080_23746149_2024_2438686
GroupedDBID 0YH
8G5
AAFWJ
AAYXX
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADMLS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BCNDV
BENPR
CCPQU
CITATION
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
GUQSH
H13
M2O
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
TDBHL
TFW
PUEGO
ID FETCH-LOGICAL-c314t-d4884b92bce8c12aeb6d603c606dcba915f7002fdd8c0140ed44df5bb280eee43
IEDL.DBID DOA
ISSN 2374-6149
IngestDate Wed Aug 27 01:32:14 EDT 2025
Tue Jul 01 01:13:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-d4884b92bce8c12aeb6d603c606dcba915f7002fdd8c0140ed44df5bb280eee43
ORCID 0009-0007-0303-6040
OpenAccessLink https://doaj.org/article/9ff1a9e90fa54eeca601e8613043faee
ParticipantIDs doaj_primary_oai_doaj_org_article_9ff1a9e90fa54eeca601e8613043faee
crossref_primary_10_1080_23746149_2024_2438686
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-12-31
PublicationDateYYYYMMDD 2025-12-31
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Advances in physics: X
PublicationYear 2025
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References e_1_3_3_77_1
e_1_3_3_162_1
e_1_3_3_207_1
e_1_3_3_39_1
e_1_3_3_16_1
e_1_3_3_92_1
e_1_3_3_159_1
e_1_3_3_136_1
e_1_3_3_174_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_113_1
e_1_3_3_197_1
e_1_3_3_88_1
e_1_3_3_150_1
e_1_3_3_173_1
e_1_3_3_211_1
e_1_3_3_109_1
e_1_3_3_27_1
e_1_3_3_80_1
e_1_3_3_147_1
e_1_3_3_185_1
e_1_3_3_5_1
e_1_3_3_42_1
e_1_3_3_65_1
e_1_3_3_101_1
e_1_3_3_124_1
e_1_3_3_30_1
e_1_3_3_76_1
e_1_3_3_161_1
e_1_3_3_184_1
e_1_3_3_206_1
e_1_3_3_99_1
Kiselev S. V. (e_1_3_3_118_1) 1963; 7
e_1_3_3_38_1
e_1_3_3_91_1
e_1_3_3_158_1
e_1_3_3_15_1
e_1_3_3_112_1
e_1_3_3_135_1
e_1_3_3_196_1
e_1_3_3_53_1
e_1_3_3_41_1
e_1_3_3_87_1
e_1_3_3_195_1
e_1_3_3_172_1
e_1_3_3_210_1
e_1_3_3_108_1
e_1_3_3_49_1
e_1_3_3_100_1
e_1_3_3_146_1
e_1_3_3_26_1
e_1_3_3_169_1
e_1_3_3_4_1
e_1_3_3_64_1
e_1_3_3_123_1
e_1_3_3_52_1
e_1_3_3_75_1
e_1_3_3_98_1
e_1_3_3_209_1
e_1_3_3_201_1
e_1_3_3_138_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_90_1
e_1_3_3_130_1
e_1_3_3_115_1
e_1_3_3_153_1
e_1_3_3_199_1
e_1_3_3_176_1
e_1_3_3_40_1
e_1_3_3_63_1
e_1_3_3_86_1
e_1_3_3_190_1
e_1_3_3_213_1
e_1_3_3_149_1
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_141_1
e_1_3_3_3_1
e_1_3_3_103_1
e_1_3_3_126_1
e_1_3_3_164_1
e_1_3_3_187_1
e_1_3_3_97_1
e_1_3_3_51_1
e_1_3_3_140_1
e_1_3_3_208_1
e_1_3_3_200_1
Ginzburg V. (e_1_3_3_8_1) 1945; 15
e_1_3_3_13_1
e_1_3_3_59_1
e_1_3_3_36_1
e_1_3_3_114_1
e_1_3_3_137_1
e_1_3_3_152_1
e_1_3_3_175_1
e_1_3_3_198_1
e_1_3_3_74_1
e_1_3_3_62_1
e_1_3_3_151_1
e_1_3_3_212_1
e_1_3_3_24_1
e_1_3_3_47_1
e_1_3_3_148_1
e_1_3_3_163_1
e_1_3_3_186_1
e_1_3_3_2_1
e_1_3_3_125_1
e_1_3_3_85_1
e_1_3_3_102_1
e_1_3_3_181_1
e_1_3_3_50_1
Ginzburg V. (e_1_3_3_9_1) 1949; 19
e_1_3_3_203_1
e_1_3_3_117_1
e_1_3_3_132_1
e_1_3_3_178_1
e_1_3_3_35_1
e_1_3_3_58_1
e_1_3_3_12_1
e_1_3_3_73_1
e_1_3_3_96_1
e_1_3_3_155_1
e_1_3_3_215_1
e_1_3_3_61_1
e_1_3_3_192_1
e_1_3_3_105_1
e_1_3_3_128_1
e_1_3_3_189_1
e_1_3_3_46_1
e_1_3_3_69_1
e_1_3_3_120_1
e_1_3_3_23_1
e_1_3_3_84_1
e_1_3_3_143_1
e_1_3_3_166_1
e_1_3_3_180_1
e_1_3_3_202_1
e_1_3_3_116_1
e_1_3_3_139_1
e_1_3_3_19_1
e_1_3_3_131_1
e_1_3_3_57_1
e_1_3_3_34_1
e_1_3_3_72_1
e_1_3_3_95_1
e_1_3_3_154_1
e_1_3_3_177_1
e_1_3_3_11_1
e_1_3_3_60_1
e_1_3_3_191_1
e_1_3_3_214_1
e_1_3_3_127_1
e_1_3_3_142_1
e_1_3_3_68_1
e_1_3_3_45_1
e_1_3_3_83_1
e_1_3_3_104_1
e_1_3_3_165_1
e_1_3_3_188_1
e_1_3_3_22_1
e_1_3_3_160_1
e_1_3_3_205_1
e_1_3_3_71_1
e_1_3_3_183_1
e_1_3_3_79_1
e_1_3_3_119_1
e_1_3_3_18_1
e_1_3_3_111_1
e_1_3_3_157_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_94_1
e_1_3_3_134_1
e_1_3_3_171_1
e_1_3_3_194_1
e_1_3_3_7_1
e_1_3_3_107_1
e_1_3_3_29_1
e_1_3_3_122_1
e_1_3_3_145_1
e_1_3_3_168_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_67_1
e_1_3_3_82_1
e_1_3_3_182_1
e_1_3_3_204_1
e_1_3_3_78_1
e_1_3_3_70_1
e_1_3_3_17_1
e_1_3_3_110_1
e_1_3_3_133_1
e_1_3_3_156_1
e_1_3_3_179_1
e_1_3_3_93_1
e_1_3_3_55_1
e_1_3_3_32_1
e_1_3_3_170_1
e_1_3_3_216_1
e_1_3_3_89_1
e_1_3_3_193_1
e_1_3_3_6_1
e_1_3_3_129_1
e_1_3_3_106_1
e_1_3_3_28_1
e_1_3_3_167_1
e_1_3_3_121_1
e_1_3_3_81_1
e_1_3_3_20_1
e_1_3_3_66_1
e_1_3_3_43_1
e_1_3_3_144_1
References_xml – ident: e_1_3_3_88_1
  doi: 10.1002/adfm.201103119
– ident: e_1_3_3_10_1
  doi: 10.1080/14786444908561372
– ident: e_1_3_3_4_1
  doi: 10.1007/978-3-540-34591-6
– ident: e_1_3_3_144_1
  doi: 10.1038/s41565-020-0700-y
– ident: e_1_3_3_128_1
  doi: 10.1038/nature14004
– ident: e_1_3_3_129_1
  doi: 10.1103/PhysRevLett.100.047601
– ident: e_1_3_3_165_1
  doi: 10.1039/d3mh00716b
– ident: e_1_3_3_200_1
  doi: 10.1088/1361-6463/ac2868
– ident: e_1_3_3_103_1
  doi: 10.1063/1.4947490
– ident: e_1_3_3_139_1
  doi: 10.1088/1361-648X/ac4c61
– ident: e_1_3_3_120_1
  doi: 10.1002/adfm.201002125
– ident: e_1_3_3_117_1
  doi: 10.1038/s44306-024-00021-8
– ident: e_1_3_3_81_1
  doi: 10.1038/s41578-022-00431-2
– ident: e_1_3_3_181_1
  doi: 10.1002/adma.201904123
– ident: e_1_3_3_60_1
  doi: 10.1038/nature16463
– ident: e_1_3_3_77_1
  doi: 10.1038/s41467-021-27898-x
– ident: e_1_3_3_199_1
  doi: 10.1002/adma.201801548
– ident: e_1_3_3_73_1
  doi: 10.1038/nature01501
– ident: e_1_3_3_116_1
  doi: 10.1038/s41563-018-0275-2
– ident: e_1_3_3_121_1
  doi: 10.1063/1.4870957
– ident: e_1_3_3_148_1
  doi: 10.1038/s41467-017-01733-8
– ident: e_1_3_3_215_1
  doi: 10.1038/srep06980
– ident: e_1_3_3_111_1
  doi: 10.1038/natrevmats.2016.46
– ident: e_1_3_3_66_1
  doi: 10.1038/s41563-018-0034-4
– ident: e_1_3_3_114_1
  doi: 10.1103/physrevb.96.115105
– ident: e_1_3_3_113_1
  doi: 10.1063/1.5025607
– ident: e_1_3_3_72_1
  doi: 10.1038/nature03028
– ident: e_1_3_3_108_1
  doi: 10.1016/j.jmst.2022.05.012
– ident: e_1_3_3_185_1
  doi: 10.1038/s41586-019-1255-7
– ident: e_1_3_3_21_1
  doi: 10.1002/adma.201905764
– ident: e_1_3_3_126_1
  doi: 10.1038/nmat3629
– ident: e_1_3_3_42_1
  doi: 10.1038/s41586-023-06978-6
– ident: e_1_3_3_61_1
  doi: 10.1063/5.0023871
– ident: e_1_3_3_109_1
  doi: 10.1002/adma.201806236
– ident: e_1_3_3_186_1
  doi: 10.1002/adma.201004317
– ident: e_1_3_3_25_1
  doi: 10.1002/adma.202109889
– ident: e_1_3_3_64_1
  doi: 10.1103/PhysRevLett.104.197201
– ident: e_1_3_3_71_1
  doi: 10.1038/s41467-020-19519-w
– ident: e_1_3_3_26_1
  doi: 10.1038/s41467-023-38055-x
– ident: e_1_3_3_45_1
  doi: 10.1146/annurev.matsci.37.052506.084323
– ident: e_1_3_3_189_1
  doi: 10.1126/science.1171200
– ident: e_1_3_3_91_1
  doi: 10.1021/acsami.8b15576
– ident: e_1_3_3_127_1
  doi: 10.1103/PhysRevB.81.140401
– ident: e_1_3_3_48_1
  doi: 10.1038/nmat4899
– ident: e_1_3_3_157_1
  doi: 10.1002/admi.201901604
– ident: e_1_3_3_133_1
  doi: 10.1038/s41586-019-1445-3
– ident: e_1_3_3_75_1
  doi: 10.1038/nature08128
– ident: e_1_3_3_35_1
  doi: 10.1038/s41467-022-31763-w
– ident: e_1_3_3_78_1
  doi: 10.1016/j.scriptamat.2020.05.005
– ident: e_1_3_3_178_1
  doi: 10.1021/acsnano.3c01548
– ident: e_1_3_3_146_1
  doi: 10.1007/s11433-019-9415-9
– ident: e_1_3_3_15_1
  doi: 10.1038/s41467-020-20660-9
– ident: e_1_3_3_208_1
  doi: 10.1038/ncomms12385
– ident: e_1_3_3_76_1
  doi: 10.1038/s41467-023-36274-w
– ident: e_1_3_3_94_1
  doi: 10.1002/adma.202207736
– ident: e_1_3_3_152_1
  doi: 10.1002/adma.202003780
– ident: e_1_3_3_24_1
  doi: 10.1126/science.aay7221
– ident: e_1_3_3_203_1
  doi: 10.1002/adfm.201902702
– ident: e_1_3_3_80_1
  doi: 10.1038/s41586-021-04323-3
– ident: e_1_3_3_102_1
  doi: 10.1103/PhysRevB.90.064111
– ident: e_1_3_3_175_1
  doi: 10.1039/d2mh01527g
– ident: e_1_3_3_105_1
  doi: 10.1126/science.aaw8109
– ident: e_1_3_3_97_1
  doi: 10.1126/science.aba0067
– ident: e_1_3_3_187_1
  doi: 10.1002/adma.201605699
– ident: e_1_3_3_87_1
  doi: 10.1149/2.002301jss
– ident: e_1_3_3_179_1
  doi: 10.1103/PhysRevB.75.104103
– ident: e_1_3_3_153_1
  doi: 10.1038/nmat4749
– ident: e_1_3_3_161_1
  doi: 10.1103/PhysRevB.96.165206
– ident: e_1_3_3_53_1
  doi: 10.1088/0953-8984/28/2/025501
– ident: e_1_3_3_67_1
  doi: 10.1103/PhysRevLett.120.055501
– volume: 15
  start-page: 739
  year: 1945
  ident: e_1_3_3_8_1
  article-title: On the dielectric properties of ferroelectric (seignetteelectric) crystals and barium titanate
  publication-title: Zh. eksp. teor. Fiz
– ident: e_1_3_3_163_1
  doi: 10.1021/acsaelm.2c01690
– ident: e_1_3_3_141_1
  doi: 10.1002/adma.201702069
– ident: e_1_3_3_12_1
  doi: 10.1002/adma.202106845
– ident: e_1_3_3_193_1
  doi: 10.1038/s41467-022-28303-x
– ident: e_1_3_3_39_1
  doi: 10.1038/s41467-020-16465-5
– ident: e_1_3_3_176_1
  doi: 10.1038/s41586-020-1939-z
– ident: e_1_3_3_36_1
  doi: 10.1038/s41565-018-0204-1
– ident: e_1_3_3_30_1
  doi: 10.1038/s41467-024-44927-7
– ident: e_1_3_3_159_1
  doi: 10.1021/acsaelm.9b00488
– ident: e_1_3_3_184_1
  doi: 10.1126/science.aaa6442
– ident: e_1_3_3_5_1
  doi: 10.1103/PhysRev.17.475
– ident: e_1_3_3_210_1
  doi: 10.1016/j.tsf.2020.137851
– ident: e_1_3_3_28_1
  doi: 10.1007/BF03353733
– ident: e_1_3_3_160_1
  doi: 10.1021/acsaelm.9b00197
– ident: e_1_3_3_106_1
  doi: 10.1126/science.abb0631
– ident: e_1_3_3_110_1
  doi: 10.1038/nature05023
– ident: e_1_3_3_206_1
  doi: 10.1002/adfm.202203074
– ident: e_1_3_3_150_1
  doi: 10.1021/acsami.6b15162
– ident: e_1_3_3_171_1
  doi: 10.1038/s41467-021-26660-7
– ident: e_1_3_3_190_1
  doi: 10.1063/1.4864100
– ident: e_1_3_3_100_1
  doi: 10.1063/1.4916707
– ident: e_1_3_3_197_1
  doi: 10.1002/aelm.201901408
– ident: e_1_3_3_89_1
  doi: 10.1021/nl302049k
– ident: e_1_3_3_92_1
  doi: 10.1007/s11837-018-3140-5
– ident: e_1_3_3_85_1
  doi: 10.1063/1.3667205
– ident: e_1_3_3_70_1
  doi: 10.1038/s41586-019-1845-4
– ident: e_1_3_3_55_1
  doi: 10.1002/adma.201703543
– ident: e_1_3_3_63_1
  doi: 10.1021/acsami.2c14291
– ident: e_1_3_3_50_1
  doi: 10.1038/ncomms15768
– ident: e_1_3_3_14_1
  doi: 10.1103/RevModPhys.95.025001
– ident: e_1_3_3_83_1
  doi: 10.1109/MSPEC.2007.4337663
– ident: e_1_3_3_174_1
  doi: 10.1039/d2nr04119g
– ident: e_1_3_3_136_1
  doi: 10.1021/acsami.8b00791
– ident: e_1_3_3_6_1
  doi: 10.1038/s42254-021-00383-6
– ident: e_1_3_3_52_1
  doi: 10.1038/s41598-017-09339-2
– ident: e_1_3_3_143_1
  doi: 10.1126/science.1218693
– ident: e_1_3_3_194_1
  doi: 10.1016/j.isci.2019.05.043
– ident: e_1_3_3_79_1
  doi: 10.1088/0953-8984/28/26/263001
– ident: e_1_3_3_166_1
  doi: 10.1103/PhysRevB.93.174110
– ident: e_1_3_3_147_1
  doi: 10.1088/0953-8984/16/13/006
– ident: e_1_3_3_158_1
  doi: 10.1038/nature02773
– ident: e_1_3_3_23_1
  doi: 10.1002/adma.202310704
– ident: e_1_3_3_151_1
  doi: 10.1126/science.adi6620
– ident: e_1_3_3_211_1
  doi: 10.1038/ncomms2990
– ident: e_1_3_3_191_1
  doi: 10.1002/adma.201402527
– ident: e_1_3_3_29_1
  doi: 10.1103/PhysRevLett.73.2107
– ident: e_1_3_3_20_1
  doi: 10.1126/science.abj9979
– ident: e_1_3_3_104_1
  doi: 10.1038/s41563-018-0196-0
– ident: e_1_3_3_99_1
  doi: 10.1002/adma.202006089
– ident: e_1_3_3_44_1
  doi: 10.1063/1.4813239
– ident: e_1_3_3_59_1
  doi: 10.1038/s41586-021-03342-4
– ident: e_1_3_3_95_1
  doi: 10.1038/s41563-024-01853-9
– ident: e_1_3_3_172_1
  doi: 10.1021/acsami.1c21703
– ident: e_1_3_3_154_1
  doi: 10.1038/s41586-022-04588-2
– ident: e_1_3_3_27_1
  doi: 10.1007/s40766-021-00019-6
– ident: e_1_3_3_98_1
  doi: 10.1002/smll.202107575
– ident: e_1_3_3_167_1
  doi: 10.1103/PhysRevB.97.115103
– ident: e_1_3_3_155_1
  doi: 10.1126/science.aax9753%JScience
– ident: e_1_3_3_196_1
  doi: 10.1088/1674-4926/42/1/013103
– ident: e_1_3_3_82_1
  doi: 10.1038/s41467-020-15159-2
– ident: e_1_3_3_34_1
  doi: 10.1038/s41586-022-05503-5
– ident: e_1_3_3_138_1
  doi: 10.1146/annurev.matsci.37.061206.113016
– ident: e_1_3_3_173_1
  doi: 10.1016/j.nanoen.2021.106439
– ident: e_1_3_3_156_1
  doi: 10.1002/admi.202101499
– ident: e_1_3_3_37_1
  doi: 10.1038/s41467-022-30983-4
– ident: e_1_3_3_69_1
  doi: 10.1038/nature03107
– ident: e_1_3_3_137_1
  doi: 10.1038/nature09331
– ident: e_1_3_3_131_1
  doi: 10.1038/nature02572
– ident: e_1_3_3_164_1
  doi: 10.1063/5.0190146
– ident: e_1_3_3_40_1
  doi: 10.1038/s41467-018-05640-4
– ident: e_1_3_3_169_1
  doi: 10.1063/1.4929610
– ident: e_1_3_3_68_1
  doi: 10.1038/nature06459
– ident: e_1_3_3_207_1
  doi: 10.1038/s41467-023-39371-y
– ident: e_1_3_3_90_1
  doi: 10.7567/JJAP.53.08LE02
– ident: e_1_3_3_202_1
  doi: 10.1038/s41928-018-0118-9
– ident: e_1_3_3_204_1
  doi: 10.1002/adma.201900379
– ident: e_1_3_3_54_1
  doi: 10.1126/science.1098252
– ident: e_1_3_3_51_1
  doi: 10.1007/s11433-013-5349-1
– ident: e_1_3_3_183_1
  doi: 10.1063/1.4811439
– ident: e_1_3_3_142_1
  doi: 10.1002/adma.202203469
– ident: e_1_3_3_168_1
  doi: 10.1007/s11433-018-9245-4
– ident: e_1_3_3_32_1
  doi: 10.1038/s41467-023-42993-x
– ident: e_1_3_3_101_1
  doi: 10.1039/c7nr02121f
– ident: e_1_3_3_182_1
  doi: 10.1021/am508511y
– ident: e_1_3_3_2_1
  doi: 10.1002/adma.202108841
– ident: e_1_3_3_135_1
  doi: 10.1364/JOSAB.22.000096
– ident: e_1_3_3_13_1
  doi: 10.1103/PhysRevB.105.224101
– ident: e_1_3_3_49_1
  doi: 10.1038/s41467-024-45755-5
– ident: e_1_3_3_93_1
  doi: 10.1038/s41563-020-00897-x
– ident: e_1_3_3_198_1
  doi: 10.1038/s41467-024-47580-2
– ident: e_1_3_3_11_1
  doi: 10.1080/00018735400101173
– ident: e_1_3_3_140_1
  doi: 10.1016/j.jmat.2020.08.005
– ident: e_1_3_3_124_1
  doi: 10.1007/s10948-020-05764-z
– ident: e_1_3_3_125_1
  doi: 10.1016/j.jmmm.2006.01.238
– ident: e_1_3_3_132_1
  doi: 10.1103/PhysRevLett.110.137203
– ident: e_1_3_3_22_1
  doi: 10.1021/acsami.9b13434
– ident: e_1_3_3_212_1
  doi: 10.1021/acsami.6b13203
– ident: e_1_3_3_123_1
  doi: 10.1103/PhysRevB.71.014113
– ident: e_1_3_3_3_1
  doi: 10.1038/natrevmats.2016.87
– ident: e_1_3_3_145_1
  doi: 10.1038/s41467-020-16912-3
– ident: e_1_3_3_46_1
  doi: 10.1063/1.4979015
– ident: e_1_3_3_195_1
  doi: 10.1038/ncomms15217
– ident: e_1_3_3_192_1
  doi: 10.1016/j.device.2023.100004
– ident: e_1_3_3_17_1
  doi: 10.1126/science.abi7687
– ident: e_1_3_3_188_1
  doi: 10.1002/adma.201204839
– ident: e_1_3_3_74_1
  doi: 10.1126/science.1103218
– ident: e_1_3_3_205_1
  doi: 10.1038/s41467-022-29456-5
– ident: e_1_3_3_47_1
  doi: 10.1002/advs.202307571
– volume: 19
  start-page: 36
  year: 1949
  ident: e_1_3_3_9_1
  article-title: Polarizasyon and piezoelectric effect in BaTiO3 near the ferroelectric transition point
  publication-title: Zh. Eksp. Teor. Fiz
– ident: e_1_3_3_180_1
  doi: 10.1063/1.3589814
– ident: e_1_3_3_177_1
  doi: 10.1126/science.1168636
– ident: e_1_3_3_216_1
  doi: 10.1063/1.4936306
– ident: e_1_3_3_201_1
  doi: 10.1038/s41563-017-0001-5
– ident: e_1_3_3_213_1
  doi: 10.1063/1.4979587
– ident: e_1_3_3_149_1
  doi: 10.1126/sciadv.abq1232
– ident: e_1_3_3_130_1
  doi: 10.1103/PhysRevB.95.184112
– ident: e_1_3_3_57_1
  doi: 10.1126/science.aan2433
– ident: e_1_3_3_33_1
  doi: 10.1038/nmat2373
– ident: e_1_3_3_41_1
  doi: 10.1038/s41578-022-00484-3
– ident: e_1_3_3_122_1
  doi: 10.1007/s40820-020-00420-6
– ident: e_1_3_3_214_1
  doi: 10.1063/1.4812825
– ident: e_1_3_3_62_1
  doi: 10.1038/s41586-019-1092-8
– ident: e_1_3_3_162_1
  doi: 10.1103/PhysRevB.94.224107
– ident: e_1_3_3_65_1
  doi: 10.1016/0022-460X(72)90684-0
– ident: e_1_3_3_115_1
  doi: 10.1038/srep02618
– ident: e_1_3_3_38_1
  doi: 10.1126/sciadv.1700919
– ident: e_1_3_3_134_1
  doi: 10.1103/PhysRevLett.124.027601
– ident: e_1_3_3_16_1
  doi: 10.1126/science.adl2931
– ident: e_1_3_3_119_1
  doi: 10.1039/c9nr08800h
– ident: e_1_3_3_209_1
  doi: 10.1038/nnano.2014.320
– ident: e_1_3_3_58_1
  doi: 10.1126/science.1259869
– ident: e_1_3_3_7_1
  doi: 10.1016/B978-0-08-010586-4.50034-1
– ident: e_1_3_3_31_1
  doi: 10.1088/1361-6463/ad33f5
– ident: e_1_3_3_96_1
  doi: 10.1038/s41586-020-2208-x
– ident: e_1_3_3_112_1
  doi: 10.1038/s41467-022-30074-4
– ident: e_1_3_3_43_1
  doi: 10.1002/adfm.202211906
– ident: e_1_3_3_56_1
  doi: 10.1038/s41586-021-04338-w
– ident: e_1_3_3_86_1
  doi: 10.1063/1.4747209
– ident: e_1_3_3_107_1
  doi: 10.1016/j.cej.2024.150823
– ident: e_1_3_3_19_1
  doi: 10.1038/s41586-018-0854-z
– ident: e_1_3_3_170_1
  doi: 10.1021/acsami.8b15703
– ident: e_1_3_3_18_1
  doi: 10.1038/s41586-018-0855-y
– volume: 7
  start-page: 742
  year: 1963
  ident: e_1_3_3_118_1
  article-title: S. p. D. Detection of Magnetic Order in Ferroelectric BiFeO3 by Neutron Diffraction
  publication-title: Sov. Phys. Dokl
– ident: e_1_3_3_84_1
  doi: 10.1063/1.3634052
SSID ssj0001670803
Score 2.3131096
SecondaryResourceType review_article
Snippet Ferroelectrics, known for their reversible spontaneous electric polarization, have garnered significant interest in both fundamental physics and applications,...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms Electric polarization
ferroelectric devices
ferroelectric films
photoelectric applications
Title Advanced ferroelectric oxide films and heterostructures for unconventional applications
URI https://doaj.org/article/9ff1a9e90fa54eeca601e8613043faee
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF20IHgRP7F-lD14TZtsJpvkWMUSBD1ZrKewH7NY0ETaCv58Z5NUcvPiNSwhvMnmzcvOvGHsRinlvMs47TSwAViAQMtUBkpaRQTmjzp9c_Ljkyzm8LBIFr1RX74mrLUHboGb5M5FKsc8dCoBRKNIQWDms16InUL0X1_ivJ6Yav6uyJRSoXjbspOFExGnQFTke1MEjAXEmfT90z0y6nn2N-QyO2QHXVbIp-3THLEdrI7ZXlOdadYn7GXandRzh6tV3Y6uWRpefy8tcrd8_1hzVVn-5mtb6tYS9ot0NKeMlBNx9SrLef_E-pTNZ_fPd0XQTUQITBzBJrC03UDnQhvMTCQUamllGBtSIdZolUeJI3CFszYzXjohYW9dorXIQkSE-IwNqrrCc8ZBKiEdLdaJBshJOKUZgCH1EaK20gzZeAtN-dkaX5RR5ye6xbL0WJYdlkN26wH8Xex9q5sLFM2yi2b5VzQv_uMml2xf-Cm9jR3jFRsQ6nhNqcNGj9hu-FqMmnflBxKnwv4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+ferroelectric+oxide+films+and+heterostructures+for+unconventional+applications&rft.jtitle=Advances+in+physics%3A+X&rft.au=Sisi+Huang&rft.au=Cheng+Ma&rft.au=Kuijuan+Jin&rft.date=2025-12-31&rft.pub=Taylor+%26+Francis+Group&rft.eissn=2374-6149&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1080%2F23746149.2024.2438686&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9ff1a9e90fa54eeca601e8613043faee
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-6149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-6149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-6149&client=summon