Advanced ferroelectric oxide films and heterostructures for unconventional applications
Ferroelectrics, known for their reversible spontaneous electric polarization, have garnered significant interest in both fundamental physics and applications, such as non-volatile memories and sensors. To address the scattered nature of contemporary ferroelectric research, we write this review which...
Saved in:
Published in | Advances in physics: X Vol. 10; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
31.12.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ferroelectrics, known for their reversible spontaneous electric polarization, have garnered significant interest in both fundamental physics and applications, such as non-volatile memories and sensors. To address the scattered nature of contemporary ferroelectric research, we write this review which extensively outlines the developments and recent progress on the most studied ferroelectrics, including lead-based and lead-free ferroelectrics, low-dimensional HfO2-based ones, high-entropy relaxor ones, and multiferroics. The tuning methods for these ferroelectrics, including strain, doping, and constructing interfaces, are also systematically discussed. In addition, we also summarize the applications of ferroelectrics, including ferroelectric diodes and ferroelectric tunnel junctions, synaptic devices, domain-wall-based devices, and photoelectric devices, highlighting their significant potential for advanced electronic and optoelectronic devices. This review gives a comprehensive summary of ferroelectrics and offers insights into future research. |
---|---|
AbstractList | Ferroelectrics, known for their reversible spontaneous electric polarization, have garnered significant interest in both fundamental physics and applications, such as non-volatile memories and sensors. To address the scattered nature of contemporary ferroelectric research, we write this review which extensively outlines the developments and recent progress on the most studied ferroelectrics, including lead-based and lead-free ferroelectrics, low-dimensional HfO2-based ones, high-entropy relaxor ones, and multiferroics. The tuning methods for these ferroelectrics, including strain, doping, and constructing interfaces, are also systematically discussed. In addition, we also summarize the applications of ferroelectrics, including ferroelectric diodes and ferroelectric tunnel junctions, synaptic devices, domain-wall-based devices, and photoelectric devices, highlighting their significant potential for advanced electronic and optoelectronic devices. This review gives a comprehensive summary of ferroelectrics and offers insights into future research. |
Author | Ma, Cheng Jin, Kuijuan Huang, Sisi |
Author_xml | – sequence: 1 givenname: Sisi orcidid: 0009-0007-0303-6040 surname: Huang fullname: Huang, Sisi organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China, University of Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Cheng surname: Ma fullname: Ma, Cheng organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China, University of Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Kuijuan surname: Jin fullname: Jin, Kuijuan organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China, University of Chinese Academy of Sciences, Beijing, China |
BookMark | eNpNkN1KAzEQRoNUsNY-grAvsHWyyabZy1L8KRS8UbwM2WSiKdukJNuib2_XVvFqZr5hDsy5JqMQAxJyS2FGQcJdxeZcUN7MKqj4rOJMCikuyHjIy2Ex-tdfkWnOGwCgYn48ZmPytrAHHQzawmFKETs0ffKmiJ_eYuF8t82FDrb4wB5TzH3am36fMBcupmIfTAwHDL2PQXeF3u06b_Qw5Rty6XSXcXquE_L6cP-yfCrXz4-r5WJdGkZ5X1ouJW-bqjUoDa00tsIKYEaAsKbVDa3dHKBy1koDlANazq2r27aSgIicTcjqxLVRb9Qu-a1OXypqr36CmN6VTr03HarGOaobbMDpmiMaLYCiFJQBZ04jHln1iWWOn-aE7o9HQQ2y1a9sNchWZ9nsG2UAdrw |
Cites_doi | 10.1002/adfm.201103119 10.1080/14786444908561372 10.1007/978-3-540-34591-6 10.1038/s41565-020-0700-y 10.1038/nature14004 10.1103/PhysRevLett.100.047601 10.1039/d3mh00716b 10.1088/1361-6463/ac2868 10.1063/1.4947490 10.1088/1361-648X/ac4c61 10.1002/adfm.201002125 10.1038/s44306-024-00021-8 10.1038/s41578-022-00431-2 10.1002/adma.201904123 10.1038/nature16463 10.1038/s41467-021-27898-x 10.1002/adma.201801548 10.1038/nature01501 10.1038/s41563-018-0275-2 10.1063/1.4870957 10.1038/s41467-017-01733-8 10.1038/srep06980 10.1038/natrevmats.2016.46 10.1038/s41563-018-0034-4 10.1103/physrevb.96.115105 10.1063/1.5025607 10.1038/nature03028 10.1016/j.jmst.2022.05.012 10.1038/s41586-019-1255-7 10.1002/adma.201905764 10.1038/nmat3629 10.1038/s41586-023-06978-6 10.1063/5.0023871 10.1002/adma.201806236 10.1002/adma.201004317 10.1002/adma.202109889 10.1103/PhysRevLett.104.197201 10.1038/s41467-020-19519-w 10.1038/s41467-023-38055-x 10.1146/annurev.matsci.37.052506.084323 10.1126/science.1171200 10.1021/acsami.8b15576 10.1103/PhysRevB.81.140401 10.1038/nmat4899 10.1002/admi.201901604 10.1038/s41586-019-1445-3 10.1038/nature08128 10.1038/s41467-022-31763-w 10.1016/j.scriptamat.2020.05.005 10.1021/acsnano.3c01548 10.1007/s11433-019-9415-9 10.1038/s41467-020-20660-9 10.1038/ncomms12385 10.1038/s41467-023-36274-w 10.1002/adma.202207736 10.1002/adma.202003780 10.1126/science.aay7221 10.1002/adfm.201902702 10.1038/s41586-021-04323-3 10.1103/PhysRevB.90.064111 10.1039/d2mh01527g 10.1126/science.aaw8109 10.1126/science.aba0067 10.1002/adma.201605699 10.1149/2.002301jss 10.1103/PhysRevB.75.104103 10.1038/nmat4749 10.1103/PhysRevB.96.165206 10.1088/0953-8984/28/2/025501 10.1103/PhysRevLett.120.055501 10.1021/acsaelm.2c01690 10.1002/adma.201702069 10.1002/adma.202106845 10.1038/s41467-022-28303-x 10.1038/s41467-020-16465-5 10.1038/s41586-020-1939-z 10.1038/s41565-018-0204-1 10.1038/s41467-024-44927-7 10.1021/acsaelm.9b00488 10.1126/science.aaa6442 10.1103/PhysRev.17.475 10.1016/j.tsf.2020.137851 10.1007/BF03353733 10.1021/acsaelm.9b00197 10.1126/science.abb0631 10.1038/nature05023 10.1002/adfm.202203074 10.1021/acsami.6b15162 10.1038/s41467-021-26660-7 10.1063/1.4864100 10.1063/1.4916707 10.1002/aelm.201901408 10.1021/nl302049k 10.1007/s11837-018-3140-5 10.1063/1.3667205 10.1038/s41586-019-1845-4 10.1002/adma.201703543 10.1021/acsami.2c14291 10.1038/ncomms15768 10.1103/RevModPhys.95.025001 10.1109/MSPEC.2007.4337663 10.1039/d2nr04119g 10.1021/acsami.8b00791 10.1038/s42254-021-00383-6 10.1038/s41598-017-09339-2 10.1126/science.1218693 10.1016/j.isci.2019.05.043 10.1088/0953-8984/28/26/263001 10.1103/PhysRevB.93.174110 10.1088/0953-8984/16/13/006 10.1038/nature02773 10.1002/adma.202310704 10.1126/science.adi6620 10.1038/ncomms2990 10.1002/adma.201402527 10.1103/PhysRevLett.73.2107 10.1126/science.abj9979 10.1038/s41563-018-0196-0 10.1002/adma.202006089 10.1063/1.4813239 10.1038/s41586-021-03342-4 10.1038/s41563-024-01853-9 10.1021/acsami.1c21703 10.1038/s41586-022-04588-2 10.1007/s40766-021-00019-6 10.1002/smll.202107575 10.1103/PhysRevB.97.115103 10.1126/science.aax9753%JScience 10.1088/1674-4926/42/1/013103 10.1038/s41467-020-15159-2 10.1038/s41586-022-05503-5 10.1146/annurev.matsci.37.061206.113016 10.1016/j.nanoen.2021.106439 10.1002/admi.202101499 10.1038/s41467-022-30983-4 10.1038/nature03107 10.1038/nature09331 10.1038/nature02572 10.1063/5.0190146 10.1038/s41467-018-05640-4 10.1063/1.4929610 10.1038/nature06459 10.1038/s41467-023-39371-y 10.7567/JJAP.53.08LE02 10.1038/s41928-018-0118-9 10.1002/adma.201900379 10.1126/science.1098252 10.1007/s11433-013-5349-1 10.1063/1.4811439 10.1002/adma.202203469 10.1007/s11433-018-9245-4 10.1038/s41467-023-42993-x 10.1039/c7nr02121f 10.1021/am508511y 10.1002/adma.202108841 10.1364/JOSAB.22.000096 10.1103/PhysRevB.105.224101 10.1038/s41467-024-45755-5 10.1038/s41563-020-00897-x 10.1038/s41467-024-47580-2 10.1080/00018735400101173 10.1016/j.jmat.2020.08.005 10.1007/s10948-020-05764-z 10.1016/j.jmmm.2006.01.238 10.1103/PhysRevLett.110.137203 10.1021/acsami.9b13434 10.1021/acsami.6b13203 10.1103/PhysRevB.71.014113 10.1038/natrevmats.2016.87 10.1038/s41467-020-16912-3 10.1063/1.4979015 10.1038/ncomms15217 10.1016/j.device.2023.100004 10.1126/science.abi7687 10.1002/adma.201204839 10.1126/science.1103218 10.1038/s41467-022-29456-5 10.1002/advs.202307571 10.1063/1.3589814 10.1126/science.1168636 10.1063/1.4936306 10.1038/s41563-017-0001-5 10.1063/1.4979587 10.1126/sciadv.abq1232 10.1103/PhysRevB.95.184112 10.1126/science.aan2433 10.1038/nmat2373 10.1038/s41578-022-00484-3 10.1007/s40820-020-00420-6 10.1063/1.4812825 10.1038/s41586-019-1092-8 10.1103/PhysRevB.94.224107 10.1016/0022-460X(72)90684-0 10.1038/srep02618 10.1126/sciadv.1700919 10.1103/PhysRevLett.124.027601 10.1126/science.adl2931 10.1039/c9nr08800h 10.1038/nnano.2014.320 10.1126/science.1259869 10.1016/B978-0-08-010586-4.50034-1 10.1088/1361-6463/ad33f5 10.1038/s41586-020-2208-x 10.1038/s41467-022-30074-4 10.1002/adfm.202211906 10.1038/s41586-021-04338-w 10.1063/1.4747209 10.1016/j.cej.2024.150823 10.1038/s41586-018-0854-z 10.1021/acsami.8b15703 10.1038/s41586-018-0855-y 10.1063/1.3634052 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1080/23746149.2024.2438686 |
DatabaseName | CrossRef Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2374-6149 |
ExternalDocumentID | oai_doaj_org_article_9ff1a9e90fa54eeca601e8613043faee 10_1080_23746149_2024_2438686 |
GroupedDBID | 0YH 8G5 AAFWJ AAYXX ABDBF ABUWG ACGFS ACUHS ADBBV ADMLS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AZQEC BCNDV BENPR CCPQU CITATION DWQXO EBS GNUQQ GROUPED_DOAJ GUQSH H13 M2O M~E OK1 PHGZM PHGZT PIMPY PROAC TDBHL TFW PUEGO |
ID | FETCH-LOGICAL-c314t-d4884b92bce8c12aeb6d603c606dcba915f7002fdd8c0140ed44df5bb280eee43 |
IEDL.DBID | DOA |
ISSN | 2374-6149 |
IngestDate | Wed Aug 27 01:32:14 EDT 2025 Tue Jul 01 01:13:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-d4884b92bce8c12aeb6d603c606dcba915f7002fdd8c0140ed44df5bb280eee43 |
ORCID | 0009-0007-0303-6040 |
OpenAccessLink | https://doaj.org/article/9ff1a9e90fa54eeca601e8613043faee |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9ff1a9e90fa54eeca601e8613043faee crossref_primary_10_1080_23746149_2024_2438686 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-12-31 |
PublicationDateYYYYMMDD | 2025-12-31 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Advances in physics: X |
PublicationYear | 2025 |
Publisher | Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis Group |
References | e_1_3_3_77_1 e_1_3_3_162_1 e_1_3_3_207_1 e_1_3_3_39_1 e_1_3_3_16_1 e_1_3_3_92_1 e_1_3_3_159_1 e_1_3_3_136_1 e_1_3_3_174_1 e_1_3_3_31_1 e_1_3_3_54_1 e_1_3_3_113_1 e_1_3_3_197_1 e_1_3_3_88_1 e_1_3_3_150_1 e_1_3_3_173_1 e_1_3_3_211_1 e_1_3_3_109_1 e_1_3_3_27_1 e_1_3_3_80_1 e_1_3_3_147_1 e_1_3_3_185_1 e_1_3_3_5_1 e_1_3_3_42_1 e_1_3_3_65_1 e_1_3_3_101_1 e_1_3_3_124_1 e_1_3_3_30_1 e_1_3_3_76_1 e_1_3_3_161_1 e_1_3_3_184_1 e_1_3_3_206_1 e_1_3_3_99_1 Kiselev S. V. (e_1_3_3_118_1) 1963; 7 e_1_3_3_38_1 e_1_3_3_91_1 e_1_3_3_158_1 e_1_3_3_15_1 e_1_3_3_112_1 e_1_3_3_135_1 e_1_3_3_196_1 e_1_3_3_53_1 e_1_3_3_41_1 e_1_3_3_87_1 e_1_3_3_195_1 e_1_3_3_172_1 e_1_3_3_210_1 e_1_3_3_108_1 e_1_3_3_49_1 e_1_3_3_100_1 e_1_3_3_146_1 e_1_3_3_26_1 e_1_3_3_169_1 e_1_3_3_4_1 e_1_3_3_64_1 e_1_3_3_123_1 e_1_3_3_52_1 e_1_3_3_75_1 e_1_3_3_98_1 e_1_3_3_209_1 e_1_3_3_201_1 e_1_3_3_138_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_90_1 e_1_3_3_130_1 e_1_3_3_115_1 e_1_3_3_153_1 e_1_3_3_199_1 e_1_3_3_176_1 e_1_3_3_40_1 e_1_3_3_63_1 e_1_3_3_86_1 e_1_3_3_190_1 e_1_3_3_213_1 e_1_3_3_149_1 e_1_3_3_25_1 e_1_3_3_48_1 e_1_3_3_141_1 e_1_3_3_3_1 e_1_3_3_103_1 e_1_3_3_126_1 e_1_3_3_164_1 e_1_3_3_187_1 e_1_3_3_97_1 e_1_3_3_51_1 e_1_3_3_140_1 e_1_3_3_208_1 e_1_3_3_200_1 Ginzburg V. (e_1_3_3_8_1) 1945; 15 e_1_3_3_13_1 e_1_3_3_59_1 e_1_3_3_36_1 e_1_3_3_114_1 e_1_3_3_137_1 e_1_3_3_152_1 e_1_3_3_175_1 e_1_3_3_198_1 e_1_3_3_74_1 e_1_3_3_62_1 e_1_3_3_151_1 e_1_3_3_212_1 e_1_3_3_24_1 e_1_3_3_47_1 e_1_3_3_148_1 e_1_3_3_163_1 e_1_3_3_186_1 e_1_3_3_2_1 e_1_3_3_125_1 e_1_3_3_85_1 e_1_3_3_102_1 e_1_3_3_181_1 e_1_3_3_50_1 Ginzburg V. (e_1_3_3_9_1) 1949; 19 e_1_3_3_203_1 e_1_3_3_117_1 e_1_3_3_132_1 e_1_3_3_178_1 e_1_3_3_35_1 e_1_3_3_58_1 e_1_3_3_12_1 e_1_3_3_73_1 e_1_3_3_96_1 e_1_3_3_155_1 e_1_3_3_215_1 e_1_3_3_61_1 e_1_3_3_192_1 e_1_3_3_105_1 e_1_3_3_128_1 e_1_3_3_189_1 e_1_3_3_46_1 e_1_3_3_69_1 e_1_3_3_120_1 e_1_3_3_23_1 e_1_3_3_84_1 e_1_3_3_143_1 e_1_3_3_166_1 e_1_3_3_180_1 e_1_3_3_202_1 e_1_3_3_116_1 e_1_3_3_139_1 e_1_3_3_19_1 e_1_3_3_131_1 e_1_3_3_57_1 e_1_3_3_34_1 e_1_3_3_72_1 e_1_3_3_95_1 e_1_3_3_154_1 e_1_3_3_177_1 e_1_3_3_11_1 e_1_3_3_60_1 e_1_3_3_191_1 e_1_3_3_214_1 e_1_3_3_127_1 e_1_3_3_142_1 e_1_3_3_68_1 e_1_3_3_45_1 e_1_3_3_83_1 e_1_3_3_104_1 e_1_3_3_165_1 e_1_3_3_188_1 e_1_3_3_22_1 e_1_3_3_160_1 e_1_3_3_205_1 e_1_3_3_71_1 e_1_3_3_183_1 e_1_3_3_79_1 e_1_3_3_119_1 e_1_3_3_18_1 e_1_3_3_111_1 e_1_3_3_157_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_56_1 e_1_3_3_94_1 e_1_3_3_134_1 e_1_3_3_171_1 e_1_3_3_194_1 e_1_3_3_7_1 e_1_3_3_107_1 e_1_3_3_29_1 e_1_3_3_122_1 e_1_3_3_145_1 e_1_3_3_168_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_67_1 e_1_3_3_82_1 e_1_3_3_182_1 e_1_3_3_204_1 e_1_3_3_78_1 e_1_3_3_70_1 e_1_3_3_17_1 e_1_3_3_110_1 e_1_3_3_133_1 e_1_3_3_156_1 e_1_3_3_179_1 e_1_3_3_93_1 e_1_3_3_55_1 e_1_3_3_32_1 e_1_3_3_170_1 e_1_3_3_216_1 e_1_3_3_89_1 e_1_3_3_193_1 e_1_3_3_6_1 e_1_3_3_129_1 e_1_3_3_106_1 e_1_3_3_28_1 e_1_3_3_167_1 e_1_3_3_121_1 e_1_3_3_81_1 e_1_3_3_20_1 e_1_3_3_66_1 e_1_3_3_43_1 e_1_3_3_144_1 |
References_xml | – ident: e_1_3_3_88_1 doi: 10.1002/adfm.201103119 – ident: e_1_3_3_10_1 doi: 10.1080/14786444908561372 – ident: e_1_3_3_4_1 doi: 10.1007/978-3-540-34591-6 – ident: e_1_3_3_144_1 doi: 10.1038/s41565-020-0700-y – ident: e_1_3_3_128_1 doi: 10.1038/nature14004 – ident: e_1_3_3_129_1 doi: 10.1103/PhysRevLett.100.047601 – ident: e_1_3_3_165_1 doi: 10.1039/d3mh00716b – ident: e_1_3_3_200_1 doi: 10.1088/1361-6463/ac2868 – ident: e_1_3_3_103_1 doi: 10.1063/1.4947490 – ident: e_1_3_3_139_1 doi: 10.1088/1361-648X/ac4c61 – ident: e_1_3_3_120_1 doi: 10.1002/adfm.201002125 – ident: e_1_3_3_117_1 doi: 10.1038/s44306-024-00021-8 – ident: e_1_3_3_81_1 doi: 10.1038/s41578-022-00431-2 – ident: e_1_3_3_181_1 doi: 10.1002/adma.201904123 – ident: e_1_3_3_60_1 doi: 10.1038/nature16463 – ident: e_1_3_3_77_1 doi: 10.1038/s41467-021-27898-x – ident: e_1_3_3_199_1 doi: 10.1002/adma.201801548 – ident: e_1_3_3_73_1 doi: 10.1038/nature01501 – ident: e_1_3_3_116_1 doi: 10.1038/s41563-018-0275-2 – ident: e_1_3_3_121_1 doi: 10.1063/1.4870957 – ident: e_1_3_3_148_1 doi: 10.1038/s41467-017-01733-8 – ident: e_1_3_3_215_1 doi: 10.1038/srep06980 – ident: e_1_3_3_111_1 doi: 10.1038/natrevmats.2016.46 – ident: e_1_3_3_66_1 doi: 10.1038/s41563-018-0034-4 – ident: e_1_3_3_114_1 doi: 10.1103/physrevb.96.115105 – ident: e_1_3_3_113_1 doi: 10.1063/1.5025607 – ident: e_1_3_3_72_1 doi: 10.1038/nature03028 – ident: e_1_3_3_108_1 doi: 10.1016/j.jmst.2022.05.012 – ident: e_1_3_3_185_1 doi: 10.1038/s41586-019-1255-7 – ident: e_1_3_3_21_1 doi: 10.1002/adma.201905764 – ident: e_1_3_3_126_1 doi: 10.1038/nmat3629 – ident: e_1_3_3_42_1 doi: 10.1038/s41586-023-06978-6 – ident: e_1_3_3_61_1 doi: 10.1063/5.0023871 – ident: e_1_3_3_109_1 doi: 10.1002/adma.201806236 – ident: e_1_3_3_186_1 doi: 10.1002/adma.201004317 – ident: e_1_3_3_25_1 doi: 10.1002/adma.202109889 – ident: e_1_3_3_64_1 doi: 10.1103/PhysRevLett.104.197201 – ident: e_1_3_3_71_1 doi: 10.1038/s41467-020-19519-w – ident: e_1_3_3_26_1 doi: 10.1038/s41467-023-38055-x – ident: e_1_3_3_45_1 doi: 10.1146/annurev.matsci.37.052506.084323 – ident: e_1_3_3_189_1 doi: 10.1126/science.1171200 – ident: e_1_3_3_91_1 doi: 10.1021/acsami.8b15576 – ident: e_1_3_3_127_1 doi: 10.1103/PhysRevB.81.140401 – ident: e_1_3_3_48_1 doi: 10.1038/nmat4899 – ident: e_1_3_3_157_1 doi: 10.1002/admi.201901604 – ident: e_1_3_3_133_1 doi: 10.1038/s41586-019-1445-3 – ident: e_1_3_3_75_1 doi: 10.1038/nature08128 – ident: e_1_3_3_35_1 doi: 10.1038/s41467-022-31763-w – ident: e_1_3_3_78_1 doi: 10.1016/j.scriptamat.2020.05.005 – ident: e_1_3_3_178_1 doi: 10.1021/acsnano.3c01548 – ident: e_1_3_3_146_1 doi: 10.1007/s11433-019-9415-9 – ident: e_1_3_3_15_1 doi: 10.1038/s41467-020-20660-9 – ident: e_1_3_3_208_1 doi: 10.1038/ncomms12385 – ident: e_1_3_3_76_1 doi: 10.1038/s41467-023-36274-w – ident: e_1_3_3_94_1 doi: 10.1002/adma.202207736 – ident: e_1_3_3_152_1 doi: 10.1002/adma.202003780 – ident: e_1_3_3_24_1 doi: 10.1126/science.aay7221 – ident: e_1_3_3_203_1 doi: 10.1002/adfm.201902702 – ident: e_1_3_3_80_1 doi: 10.1038/s41586-021-04323-3 – ident: e_1_3_3_102_1 doi: 10.1103/PhysRevB.90.064111 – ident: e_1_3_3_175_1 doi: 10.1039/d2mh01527g – ident: e_1_3_3_105_1 doi: 10.1126/science.aaw8109 – ident: e_1_3_3_97_1 doi: 10.1126/science.aba0067 – ident: e_1_3_3_187_1 doi: 10.1002/adma.201605699 – ident: e_1_3_3_87_1 doi: 10.1149/2.002301jss – ident: e_1_3_3_179_1 doi: 10.1103/PhysRevB.75.104103 – ident: e_1_3_3_153_1 doi: 10.1038/nmat4749 – ident: e_1_3_3_161_1 doi: 10.1103/PhysRevB.96.165206 – ident: e_1_3_3_53_1 doi: 10.1088/0953-8984/28/2/025501 – ident: e_1_3_3_67_1 doi: 10.1103/PhysRevLett.120.055501 – volume: 15 start-page: 739 year: 1945 ident: e_1_3_3_8_1 article-title: On the dielectric properties of ferroelectric (seignetteelectric) crystals and barium titanate publication-title: Zh. eksp. teor. Fiz – ident: e_1_3_3_163_1 doi: 10.1021/acsaelm.2c01690 – ident: e_1_3_3_141_1 doi: 10.1002/adma.201702069 – ident: e_1_3_3_12_1 doi: 10.1002/adma.202106845 – ident: e_1_3_3_193_1 doi: 10.1038/s41467-022-28303-x – ident: e_1_3_3_39_1 doi: 10.1038/s41467-020-16465-5 – ident: e_1_3_3_176_1 doi: 10.1038/s41586-020-1939-z – ident: e_1_3_3_36_1 doi: 10.1038/s41565-018-0204-1 – ident: e_1_3_3_30_1 doi: 10.1038/s41467-024-44927-7 – ident: e_1_3_3_159_1 doi: 10.1021/acsaelm.9b00488 – ident: e_1_3_3_184_1 doi: 10.1126/science.aaa6442 – ident: e_1_3_3_5_1 doi: 10.1103/PhysRev.17.475 – ident: e_1_3_3_210_1 doi: 10.1016/j.tsf.2020.137851 – ident: e_1_3_3_28_1 doi: 10.1007/BF03353733 – ident: e_1_3_3_160_1 doi: 10.1021/acsaelm.9b00197 – ident: e_1_3_3_106_1 doi: 10.1126/science.abb0631 – ident: e_1_3_3_110_1 doi: 10.1038/nature05023 – ident: e_1_3_3_206_1 doi: 10.1002/adfm.202203074 – ident: e_1_3_3_150_1 doi: 10.1021/acsami.6b15162 – ident: e_1_3_3_171_1 doi: 10.1038/s41467-021-26660-7 – ident: e_1_3_3_190_1 doi: 10.1063/1.4864100 – ident: e_1_3_3_100_1 doi: 10.1063/1.4916707 – ident: e_1_3_3_197_1 doi: 10.1002/aelm.201901408 – ident: e_1_3_3_89_1 doi: 10.1021/nl302049k – ident: e_1_3_3_92_1 doi: 10.1007/s11837-018-3140-5 – ident: e_1_3_3_85_1 doi: 10.1063/1.3667205 – ident: e_1_3_3_70_1 doi: 10.1038/s41586-019-1845-4 – ident: e_1_3_3_55_1 doi: 10.1002/adma.201703543 – ident: e_1_3_3_63_1 doi: 10.1021/acsami.2c14291 – ident: e_1_3_3_50_1 doi: 10.1038/ncomms15768 – ident: e_1_3_3_14_1 doi: 10.1103/RevModPhys.95.025001 – ident: e_1_3_3_83_1 doi: 10.1109/MSPEC.2007.4337663 – ident: e_1_3_3_174_1 doi: 10.1039/d2nr04119g – ident: e_1_3_3_136_1 doi: 10.1021/acsami.8b00791 – ident: e_1_3_3_6_1 doi: 10.1038/s42254-021-00383-6 – ident: e_1_3_3_52_1 doi: 10.1038/s41598-017-09339-2 – ident: e_1_3_3_143_1 doi: 10.1126/science.1218693 – ident: e_1_3_3_194_1 doi: 10.1016/j.isci.2019.05.043 – ident: e_1_3_3_79_1 doi: 10.1088/0953-8984/28/26/263001 – ident: e_1_3_3_166_1 doi: 10.1103/PhysRevB.93.174110 – ident: e_1_3_3_147_1 doi: 10.1088/0953-8984/16/13/006 – ident: e_1_3_3_158_1 doi: 10.1038/nature02773 – ident: e_1_3_3_23_1 doi: 10.1002/adma.202310704 – ident: e_1_3_3_151_1 doi: 10.1126/science.adi6620 – ident: e_1_3_3_211_1 doi: 10.1038/ncomms2990 – ident: e_1_3_3_191_1 doi: 10.1002/adma.201402527 – ident: e_1_3_3_29_1 doi: 10.1103/PhysRevLett.73.2107 – ident: e_1_3_3_20_1 doi: 10.1126/science.abj9979 – ident: e_1_3_3_104_1 doi: 10.1038/s41563-018-0196-0 – ident: e_1_3_3_99_1 doi: 10.1002/adma.202006089 – ident: e_1_3_3_44_1 doi: 10.1063/1.4813239 – ident: e_1_3_3_59_1 doi: 10.1038/s41586-021-03342-4 – ident: e_1_3_3_95_1 doi: 10.1038/s41563-024-01853-9 – ident: e_1_3_3_172_1 doi: 10.1021/acsami.1c21703 – ident: e_1_3_3_154_1 doi: 10.1038/s41586-022-04588-2 – ident: e_1_3_3_27_1 doi: 10.1007/s40766-021-00019-6 – ident: e_1_3_3_98_1 doi: 10.1002/smll.202107575 – ident: e_1_3_3_167_1 doi: 10.1103/PhysRevB.97.115103 – ident: e_1_3_3_155_1 doi: 10.1126/science.aax9753%JScience – ident: e_1_3_3_196_1 doi: 10.1088/1674-4926/42/1/013103 – ident: e_1_3_3_82_1 doi: 10.1038/s41467-020-15159-2 – ident: e_1_3_3_34_1 doi: 10.1038/s41586-022-05503-5 – ident: e_1_3_3_138_1 doi: 10.1146/annurev.matsci.37.061206.113016 – ident: e_1_3_3_173_1 doi: 10.1016/j.nanoen.2021.106439 – ident: e_1_3_3_156_1 doi: 10.1002/admi.202101499 – ident: e_1_3_3_37_1 doi: 10.1038/s41467-022-30983-4 – ident: e_1_3_3_69_1 doi: 10.1038/nature03107 – ident: e_1_3_3_137_1 doi: 10.1038/nature09331 – ident: e_1_3_3_131_1 doi: 10.1038/nature02572 – ident: e_1_3_3_164_1 doi: 10.1063/5.0190146 – ident: e_1_3_3_40_1 doi: 10.1038/s41467-018-05640-4 – ident: e_1_3_3_169_1 doi: 10.1063/1.4929610 – ident: e_1_3_3_68_1 doi: 10.1038/nature06459 – ident: e_1_3_3_207_1 doi: 10.1038/s41467-023-39371-y – ident: e_1_3_3_90_1 doi: 10.7567/JJAP.53.08LE02 – ident: e_1_3_3_202_1 doi: 10.1038/s41928-018-0118-9 – ident: e_1_3_3_204_1 doi: 10.1002/adma.201900379 – ident: e_1_3_3_54_1 doi: 10.1126/science.1098252 – ident: e_1_3_3_51_1 doi: 10.1007/s11433-013-5349-1 – ident: e_1_3_3_183_1 doi: 10.1063/1.4811439 – ident: e_1_3_3_142_1 doi: 10.1002/adma.202203469 – ident: e_1_3_3_168_1 doi: 10.1007/s11433-018-9245-4 – ident: e_1_3_3_32_1 doi: 10.1038/s41467-023-42993-x – ident: e_1_3_3_101_1 doi: 10.1039/c7nr02121f – ident: e_1_3_3_182_1 doi: 10.1021/am508511y – ident: e_1_3_3_2_1 doi: 10.1002/adma.202108841 – ident: e_1_3_3_135_1 doi: 10.1364/JOSAB.22.000096 – ident: e_1_3_3_13_1 doi: 10.1103/PhysRevB.105.224101 – ident: e_1_3_3_49_1 doi: 10.1038/s41467-024-45755-5 – ident: e_1_3_3_93_1 doi: 10.1038/s41563-020-00897-x – ident: e_1_3_3_198_1 doi: 10.1038/s41467-024-47580-2 – ident: e_1_3_3_11_1 doi: 10.1080/00018735400101173 – ident: e_1_3_3_140_1 doi: 10.1016/j.jmat.2020.08.005 – ident: e_1_3_3_124_1 doi: 10.1007/s10948-020-05764-z – ident: e_1_3_3_125_1 doi: 10.1016/j.jmmm.2006.01.238 – ident: e_1_3_3_132_1 doi: 10.1103/PhysRevLett.110.137203 – ident: e_1_3_3_22_1 doi: 10.1021/acsami.9b13434 – ident: e_1_3_3_212_1 doi: 10.1021/acsami.6b13203 – ident: e_1_3_3_123_1 doi: 10.1103/PhysRevB.71.014113 – ident: e_1_3_3_3_1 doi: 10.1038/natrevmats.2016.87 – ident: e_1_3_3_145_1 doi: 10.1038/s41467-020-16912-3 – ident: e_1_3_3_46_1 doi: 10.1063/1.4979015 – ident: e_1_3_3_195_1 doi: 10.1038/ncomms15217 – ident: e_1_3_3_192_1 doi: 10.1016/j.device.2023.100004 – ident: e_1_3_3_17_1 doi: 10.1126/science.abi7687 – ident: e_1_3_3_188_1 doi: 10.1002/adma.201204839 – ident: e_1_3_3_74_1 doi: 10.1126/science.1103218 – ident: e_1_3_3_205_1 doi: 10.1038/s41467-022-29456-5 – ident: e_1_3_3_47_1 doi: 10.1002/advs.202307571 – volume: 19 start-page: 36 year: 1949 ident: e_1_3_3_9_1 article-title: Polarizasyon and piezoelectric effect in BaTiO3 near the ferroelectric transition point publication-title: Zh. Eksp. Teor. Fiz – ident: e_1_3_3_180_1 doi: 10.1063/1.3589814 – ident: e_1_3_3_177_1 doi: 10.1126/science.1168636 – ident: e_1_3_3_216_1 doi: 10.1063/1.4936306 – ident: e_1_3_3_201_1 doi: 10.1038/s41563-017-0001-5 – ident: e_1_3_3_213_1 doi: 10.1063/1.4979587 – ident: e_1_3_3_149_1 doi: 10.1126/sciadv.abq1232 – ident: e_1_3_3_130_1 doi: 10.1103/PhysRevB.95.184112 – ident: e_1_3_3_57_1 doi: 10.1126/science.aan2433 – ident: e_1_3_3_33_1 doi: 10.1038/nmat2373 – ident: e_1_3_3_41_1 doi: 10.1038/s41578-022-00484-3 – ident: e_1_3_3_122_1 doi: 10.1007/s40820-020-00420-6 – ident: e_1_3_3_214_1 doi: 10.1063/1.4812825 – ident: e_1_3_3_62_1 doi: 10.1038/s41586-019-1092-8 – ident: e_1_3_3_162_1 doi: 10.1103/PhysRevB.94.224107 – ident: e_1_3_3_65_1 doi: 10.1016/0022-460X(72)90684-0 – ident: e_1_3_3_115_1 doi: 10.1038/srep02618 – ident: e_1_3_3_38_1 doi: 10.1126/sciadv.1700919 – ident: e_1_3_3_134_1 doi: 10.1103/PhysRevLett.124.027601 – ident: e_1_3_3_16_1 doi: 10.1126/science.adl2931 – ident: e_1_3_3_119_1 doi: 10.1039/c9nr08800h – ident: e_1_3_3_209_1 doi: 10.1038/nnano.2014.320 – ident: e_1_3_3_58_1 doi: 10.1126/science.1259869 – ident: e_1_3_3_7_1 doi: 10.1016/B978-0-08-010586-4.50034-1 – ident: e_1_3_3_31_1 doi: 10.1088/1361-6463/ad33f5 – ident: e_1_3_3_96_1 doi: 10.1038/s41586-020-2208-x – ident: e_1_3_3_112_1 doi: 10.1038/s41467-022-30074-4 – ident: e_1_3_3_43_1 doi: 10.1002/adfm.202211906 – ident: e_1_3_3_56_1 doi: 10.1038/s41586-021-04338-w – ident: e_1_3_3_86_1 doi: 10.1063/1.4747209 – ident: e_1_3_3_107_1 doi: 10.1016/j.cej.2024.150823 – ident: e_1_3_3_19_1 doi: 10.1038/s41586-018-0854-z – ident: e_1_3_3_170_1 doi: 10.1021/acsami.8b15703 – ident: e_1_3_3_18_1 doi: 10.1038/s41586-018-0855-y – volume: 7 start-page: 742 year: 1963 ident: e_1_3_3_118_1 article-title: S. p. D. Detection of Magnetic Order in Ferroelectric BiFeO3 by Neutron Diffraction publication-title: Sov. Phys. Dokl – ident: e_1_3_3_84_1 doi: 10.1063/1.3634052 |
SSID | ssj0001670803 |
Score | 2.3131096 |
SecondaryResourceType | review_article |
Snippet | Ferroelectrics, known for their reversible spontaneous electric polarization, have garnered significant interest in both fundamental physics and applications,... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
SubjectTerms | Electric polarization ferroelectric devices ferroelectric films photoelectric applications |
Title | Advanced ferroelectric oxide films and heterostructures for unconventional applications |
URI | https://doaj.org/article/9ff1a9e90fa54eeca601e8613043faee |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF20IHgRP7F-lD14TZtsJpvkWMUSBD1ZrKewH7NY0ETaCv58Z5NUcvPiNSwhvMnmzcvOvGHsRinlvMs47TSwAViAQMtUBkpaRQTmjzp9c_Ljkyzm8LBIFr1RX74mrLUHboGb5M5FKsc8dCoBRKNIQWDms16InUL0X1_ivJ6Yav6uyJRSoXjbspOFExGnQFTke1MEjAXEmfT90z0y6nn2N-QyO2QHXVbIp-3THLEdrI7ZXlOdadYn7GXandRzh6tV3Y6uWRpefy8tcrd8_1hzVVn-5mtb6tYS9ot0NKeMlBNx9SrLef_E-pTNZ_fPd0XQTUQITBzBJrC03UDnQhvMTCQUamllGBtSIdZolUeJI3CFszYzXjohYW9dorXIQkSE-IwNqrrCc8ZBKiEdLdaJBshJOKUZgCH1EaK20gzZeAtN-dkaX5RR5ye6xbL0WJYdlkN26wH8Xex9q5sLFM2yi2b5VzQv_uMml2xf-Cm9jR3jFRsQ6nhNqcNGj9hu-FqMmnflBxKnwv4 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+ferroelectric+oxide+films+and+heterostructures+for+unconventional+applications&rft.jtitle=Advances+in+physics%3A+X&rft.au=Sisi+Huang&rft.au=Cheng+Ma&rft.au=Kuijuan+Jin&rft.date=2025-12-31&rft.pub=Taylor+%26+Francis+Group&rft.eissn=2374-6149&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1080%2F23746149.2024.2438686&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9ff1a9e90fa54eeca601e8613043faee |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-6149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-6149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-6149&client=summon |