Towards more sustainable and trustworthy reporting in machine learning
With machine learning (ML) becoming a popular tool across all domains, practitioners are in dire need of comprehensive reporting on the state-of-the-art. Benchmarks and open databases provide helpful insights for many tasks, however suffer from several phenomena: Firstly, they overly focus on predic...
Saved in:
Published in | Data mining and knowledge discovery Vol. 38; no. 4; pp. 1909 - 1928 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With machine learning (ML) becoming a popular tool across all domains, practitioners are in dire need of comprehensive reporting on the state-of-the-art. Benchmarks and open databases provide helpful insights for many tasks, however suffer from several phenomena: Firstly, they overly focus on prediction quality, which is problematic considering the demand for more sustainability in ML. Depending on the use case at hand, interested users might also face tight resource constraints and thus should be allowed to interact with reporting frameworks, in order to prioritize certain reported characteristics. Furthermore, as some practitioners might not yet be well-skilled in ML, it is important to convey information on a more abstract, comprehensible level. Usability and extendability are key for moving with the state-of-the-art and in order to be trustworthy, frameworks should explicitly address reproducibility. In this work, we analyze established reporting systems under consideration of the aforementioned issues. Afterwards, we propose STREP, our novel framework that aims at overcoming these shortcomings and paves the way towards more sustainable and trustworthy reporting. We use STREP’s (publicly available) implementation to investigate various existing report databases. Our experimental results unveil the need for making reporting more resource-aware and demonstrate our framework’s capabilities of overcoming current reporting limitations. With our work, we want to initiate a paradigm shift in reporting and help with making ML advances more considerate of sustainability and trustworthiness. |
---|---|
AbstractList | Abstract With machine learning (ML) becoming a popular tool across all domains, practitioners are in dire need of comprehensive reporting on the state-of-the-art. Benchmarks and open databases provide helpful insights for many tasks, however suffer from several phenomena: Firstly, they overly focus on prediction quality, which is problematic considering the demand for more sustainability in ML. Depending on the use case at hand, interested users might also face tight resource constraints and thus should be allowed to interact with reporting frameworks, in order to prioritize certain reported characteristics. Furthermore, as some practitioners might not yet be well-skilled in ML, it is important to convey information on a more abstract, comprehensible level. Usability and extendability are key for moving with the state-of-the-art and in order to be trustworthy, frameworks should explicitly address reproducibility. In this work, we analyze established reporting systems under consideration of the aforementioned issues. Afterwards, we propose STREP, our novel framework that aims at overcoming these shortcomings and paves the way towards more sustainable and trustworthy reporting. We use STREP’s (publicly available) implementation to investigate various existing report databases. Our experimental results unveil the need for making reporting more resource-aware and demonstrate our framework’s capabilities of overcoming current reporting limitations. With our work, we want to initiate a paradigm shift in reporting and help with making ML advances more considerate of sustainability and trustworthiness. With machine learning (ML) becoming a popular tool across all domains, practitioners are in dire need of comprehensive reporting on the state-of-the-art. Benchmarks and open databases provide helpful insights for many tasks, however suffer from several phenomena: Firstly, they overly focus on prediction quality, which is problematic considering the demand for more sustainability in ML. Depending on the use case at hand, interested users might also face tight resource constraints and thus should be allowed to interact with reporting frameworks, in order to prioritize certain reported characteristics. Furthermore, as some practitioners might not yet be well-skilled in ML, it is important to convey information on a more abstract, comprehensible level. Usability and extendability are key for moving with the state-of-the-art and in order to be trustworthy, frameworks should explicitly address reproducibility. In this work, we analyze established reporting systems under consideration of the aforementioned issues. Afterwards, we propose STREP, our novel framework that aims at overcoming these shortcomings and paves the way towards more sustainable and trustworthy reporting. We use STREP’s (publicly available) implementation to investigate various existing report databases. Our experimental results unveil the need for making reporting more resource-aware and demonstrate our framework’s capabilities of overcoming current reporting limitations. With our work, we want to initiate a paradigm shift in reporting and help with making ML advances more considerate of sustainability and trustworthiness. |
Author | Liebig, Thomas Morik, Katharina Fischer, Raphael |
Author_xml | – sequence: 1 givenname: Raphael surname: Fischer fullname: Fischer, Raphael email: raphael.fischer@tu-dortmund.de organization: Lamarr Institute for Machine Learning and Artificial Intelligence, TU Dortmund University – sequence: 2 givenname: Thomas surname: Liebig fullname: Liebig, Thomas organization: Lamarr Institute for Machine Learning and Artificial Intelligence, TU Dortmund University – sequence: 3 givenname: Katharina surname: Morik fullname: Morik, Katharina organization: Lamarr Institute for Machine Learning and Artificial Intelligence, TU Dortmund University |
BookMark | eNp9kEFLAzEUhINUsK3-AU8Bz9H3ks0mPUqxKhS8VPAWstlsu6XN1mRL6b83uoI3T28Y5psHMyGj0AVPyC3CPQKoh4RQombACwYIHJi4IGOUSjAly49R1kIXTGqEKzJJaQsAkgsYk8WqO9lYJ7rvoqfpmHrbBlvtPLWhpn3MxqmL_eZMoz9k0YY1bQPdW7dpg6c7b2PI3jW5bOwu-ZvfOyXvi6fV_IUt355f549L5gQWPavBCscrKWdaOwfeOY5V4VwzwwqVVKBLpSSvtdW191Zh4bEoeVMp3ahCSTEld0PvIXafR596s-2OMeSXRmQYi5kAzCk-pFzsUoq-MYfY7m08GwTzvZcZ9jJ5L_OzlxEZEgOUcjisffyr_of6Apj-b7o |
Cites_doi | 10.1007/s42484-023-00099-z 10.1145/3381831 10.1109/ACCESS.2019.2923736 10.1145/2641190.2641198 10.1007/s43681-021-00043-6 10.1147/JRD.2019.2942288 10.1007/s13347-022-00510-w 10.1016/j.ipm.2023.103477 10.1109/SaTML54575.2023.00038 10.1145/3474381 10.5281/zenodo.6053272 10.1145/3442188.3445922 10.1126/science.abi7176 10.1109/ESEM56168.2023.10304801 10.1007/978-3-030-69128-8_2 10.1109/DSAA60987.2023.10302632 10.1007/978-1-4842-8844-3_4 10.1007/978-3-030-30371-6 10.1145/3449205 10.1145/3287560.3287596 10.1145/1150402.1150531 10.1109/APSEC.2017.41 10.3389/frai.2022.975029 10.1017/dap.2023.30 10.1609/aaai.v34i09.7123 10.21203/rs.3.rs-3793927 10.1007/978-3-030-67667-4_29 10.1515/9783110785944 10.1016/j.jclepro.2022.134120 10.1126/science.359.6377.725 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10618-024-01020-3 |
DatabaseName | SpringerOpen CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 1928 |
ExternalDocumentID | 10_1007_s10618_024_01020_3 |
GrantInformation_xml | – fundername: Federal Ministry of Education and Research of Germany and the state of North Rhine-Westphalia grantid: Lamarr Institute for Machine Learning and Artificial Intelligence – fundername: Technische Universität Dortmund (1006) |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AIMYW AITGF AJBLW AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAYXX CITATION H13 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c314t-d0a3c2b55988cc0ecc21b4ccf91b17570867752d8a8deea714e1462fb78f74753 |
IEDL.DBID | U2A |
ISSN | 1384-5810 |
IngestDate | Thu Oct 10 22:35:34 EDT 2024 Thu Sep 12 20:47:34 EDT 2024 Wed Jul 31 05:23:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Resource-awareness Benchmarking Trustworthiness Reporting Sustainability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-d0a3c2b55988cc0ecc21b4ccf91b17570867752d8a8deea714e1462fb78f74753 |
OpenAccessLink | http://link.springer.com/10.1007/s10618-024-01020-3 |
PQID | 3086149301 |
PQPubID | 43030 |
PageCount | 20 |
ParticipantIDs | proquest_journals_3086149301 crossref_primary_10_1007_s10618_024_01020_3 springer_journals_10_1007_s10618_024_01020_3 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | CR39 CR38 CR37 Kang, Kang, Jang (CR29) 2023; 60 CR35 CR34 CR33 CR32 CR31 CR30 CR2 CR4 CR6 CR5 CR8 CR7 CR9 Schwartz, Dodge, Smith, Etzioni (CR41) 2020; 63 CR48 CR46 Baum, Mantel, Schmidt, Speith (CR3) 2022; 35 CR45 CR44 CR43 CR42 CR40 Zaharia, Chen, Davidson, Ghodsi, Hong (CR50) 2018; 41 CR18 CR17 CR16 CR15 CR14 CR13 CR12 CR11 Fischer, Jakobs, Mücke, Morik (CR19) 2022 Cui (CR10) 2019; 7 CR28 CR27 CR26 CR25 CR24 Mücke, Heese, Müller, Wolter, Piatkowski (CR36) 2023; 5 CR23 Arnold, Bellamy, Hind, Houde, Mehta, Mojsilović, Nair, Ramamurthy, Olteanu, Piorkowski (CR1) 2019; 63 CR22 CR21 CR20 Vanschoren, Van Rijn, Bischl, Torgo (CR47) 2014; 15 Wynsberghe (CR49) 2021; 1 1020_CR40 1020_CR42 R Schwartz (1020_CR41) 2020; 63 1020_CR48 W Cui (1020_CR10) 2019; 7 1020_CR43 1020_CR44 S Mücke (1020_CR36) 2023; 5 1020_CR45 1020_CR46 cr-split#-1020_CR16.1 cr-split#-1020_CR16.2 M Arnold (1020_CR1) 2019; 63 1020_CR18 1020_CR14 1020_CR15 1020_CR17 1020_CR11 1020_CR12 1020_CR13 1020_CR20 D Kang (1020_CR29) 2023; 60 J Vanschoren (1020_CR47) 2014; 15 R Fischer (1020_CR19) 2022 1020_CR25 1020_CR26 1020_CR27 1020_CR28 1020_CR21 1020_CR22 1020_CR23 A Wynsberghe (1020_CR49) 2021; 1 1020_CR24 1020_CR8 1020_CR7 1020_CR6 1020_CR30 1020_CR5 1020_CR31 1020_CR4 1020_CR2 K Baum (1020_CR3) 2022; 35 1020_CR9 1020_CR37 1020_CR38 1020_CR39 M Zaharia (1020_CR50) 2018; 41 1020_CR32 1020_CR33 1020_CR34 1020_CR35 |
References_xml | – ident: CR45 – ident: CR22 – ident: CR4 – ident: CR39 – ident: CR16 – ident: CR12 – ident: CR35 – ident: CR8 – ident: CR25 – ident: CR42 – ident: CR21 – ident: CR46 – ident: CR15 – volume: 5 start-page: 11 issue: 1 year: 2023 ident: CR36 article-title: Feature selection on quantum computers publication-title: Quantum Mach Intell doi: 10.1007/s42484-023-00099-z contributor: fullname: Piatkowski – ident: CR11 – ident: CR9 – ident: CR32 – ident: CR5 – ident: CR26 – volume: 63 start-page: 54 issue: 12 year: 2020 end-page: 63 ident: CR41 article-title: Green AI publication-title: Commun ACM doi: 10.1145/3381831 contributor: fullname: Etzioni – ident: CR18 – ident: CR43 – ident: CR14 – ident: CR2 – ident: CR37 – ident: CR30 – ident: CR33 – ident: CR6 – volume: 7 start-page: 81555 year: 2019 end-page: 81573 ident: CR10 article-title: Visual analytics: a comprehensive overview publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923736 contributor: fullname: Cui – volume: 15 start-page: 49 issue: 2 year: 2014 end-page: 60 ident: CR47 article-title: Openml: networked science in machine learning publication-title: ACM SIGKDD Explor Newslett doi: 10.1145/2641190.2641198 contributor: fullname: Torgo – ident: CR40 – ident: CR27 – start-page: 39 year: 2022 end-page: 54 ident: CR19 article-title: A unified framework for assessing energy efficiency of machine learning publication-title: Machine learning and principles and practice of knowledge discovery in databases contributor: fullname: Morik – ident: CR23 – ident: CR44 – ident: CR48 – ident: CR38 – volume: 1 start-page: 213 issue: 3 year: 2021 end-page: 218 ident: CR49 article-title: Sustainable AI: AI for sustainability and the sustainability of AI publication-title: AI Ethics doi: 10.1007/s43681-021-00043-6 contributor: fullname: Wynsberghe – ident: CR17 – ident: CR31 – ident: CR13 – volume: 63 start-page: 6 issue: 4/5 year: 2019 end-page: 1 ident: CR1 article-title: Factsheets: Increasing trust in ai services through supplier’s declarations of conformity publication-title: IBM J Res Dev doi: 10.1147/JRD.2019.2942288 contributor: fullname: Piorkowski – ident: CR34 – volume: 41 start-page: 39 issue: 4 year: 2018 end-page: 45 ident: CR50 article-title: Accelerating the machine learning lifecycle with MLflow publication-title: IEEE Data Eng Bull contributor: fullname: Hong – volume: 35 start-page: 12 issue: 1 year: 2022 ident: CR3 article-title: From responsibility to reason-giving explainable artificial intelligence publication-title: Philos Technol doi: 10.1007/s13347-022-00510-w contributor: fullname: Speith – ident: CR7 – ident: CR28 – volume: 60 start-page: 103477 issue: 6 year: 2023 ident: CR29 article-title: Papers with code or without code? Impact of GitHub repository usability on the diffusion of machine learning research publication-title: Inf Process Manag doi: 10.1016/j.ipm.2023.103477 contributor: fullname: Jang – ident: CR24 – ident: CR20 – ident: 1020_CR38 – ident: 1020_CR4 doi: 10.1109/SaTML54575.2023.00038 – volume: 15 start-page: 49 issue: 2 year: 2014 ident: 1020_CR47 publication-title: ACM SIGKDD Explor Newslett doi: 10.1145/2641190.2641198 contributor: fullname: J Vanschoren – ident: 1020_CR48 – ident: 1020_CR25 – ident: 1020_CR40 doi: 10.1145/3474381 – ident: 1020_CR46 doi: 10.5281/zenodo.6053272 – ident: #cr-split#-1020_CR16.2 – ident: 1020_CR21 – volume: 7 start-page: 81555 year: 2019 ident: 1020_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923736 contributor: fullname: W Cui – volume: 63 start-page: 6 issue: 4/5 year: 2019 ident: 1020_CR1 publication-title: IBM J Res Dev doi: 10.1147/JRD.2019.2942288 contributor: fullname: M Arnold – ident: 1020_CR5 doi: 10.1145/3442188.3445922 – ident: 1020_CR2 doi: 10.1126/science.abi7176 – volume: 35 start-page: 12 issue: 1 year: 2022 ident: 1020_CR3 publication-title: Philos Technol doi: 10.1007/s13347-022-00510-w contributor: fullname: K Baum – ident: 1020_CR31 – ident: 1020_CR12 – volume: 5 start-page: 11 issue: 1 year: 2023 ident: 1020_CR36 publication-title: Quantum Mach Intell doi: 10.1007/s42484-023-00099-z contributor: fullname: S Mücke – ident: 1020_CR7 doi: 10.1109/ESEM56168.2023.10304801 – ident: 1020_CR18 – ident: 1020_CR43 – ident: 1020_CR8 doi: 10.1007/978-3-030-69128-8_2 – ident: 1020_CR20 doi: 10.1109/DSAA60987.2023.10302632 – volume: 41 start-page: 39 issue: 4 year: 2018 ident: 1020_CR50 publication-title: IEEE Data Eng Bull contributor: fullname: M Zaharia – volume: 63 start-page: 54 issue: 12 year: 2020 ident: 1020_CR41 publication-title: Commun ACM doi: 10.1145/3381831 contributor: fullname: R Schwartz – ident: 1020_CR28 doi: 10.1007/978-1-4842-8844-3_4 – ident: 1020_CR14 doi: 10.1007/978-3-030-30371-6 – ident: 1020_CR39 doi: 10.1145/3449205 – start-page: 39 volume-title: Machine learning and principles and practice of knowledge discovery in databases year: 2022 ident: 1020_CR19 contributor: fullname: R Fischer – ident: 1020_CR11 – ident: 1020_CR34 doi: 10.1145/3287560.3287596 – ident: 1020_CR15 – ident: 1020_CR33 doi: 10.1145/1150402.1150531 – ident: 1020_CR17 – ident: 1020_CR42 – ident: 1020_CR45 doi: 10.1109/APSEC.2017.41 – ident: 1020_CR23 – ident: 1020_CR35 doi: 10.3389/frai.2022.975029 – ident: 1020_CR37 – ident: 1020_CR24 doi: 10.1017/dap.2023.30 – ident: 1020_CR44 doi: 10.1609/aaai.v34i09.7123 – ident: 1020_CR22 doi: 10.21203/rs.3.rs-3793927 – ident: 1020_CR6 doi: 10.1007/978-3-030-67667-4_29 – volume: 60 start-page: 103477 issue: 6 year: 2023 ident: 1020_CR29 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2023.103477 contributor: fullname: D Kang – ident: 1020_CR32 doi: 10.1515/9783110785944 – ident: 1020_CR9 – ident: #cr-split#-1020_CR16.1 – ident: 1020_CR27 – ident: 1020_CR30 doi: 10.1016/j.jclepro.2022.134120 – ident: 1020_CR26 doi: 10.1126/science.359.6377.725 – ident: 1020_CR13 – volume: 1 start-page: 213 issue: 3 year: 2021 ident: 1020_CR49 publication-title: AI Ethics doi: 10.1007/s43681-021-00043-6 contributor: fullname: A Wynsberghe |
SSID | ssj0005230 |
Score | 2.4501464 |
Snippet | With machine learning (ML) becoming a popular tool across all domains, practitioners are in dire need of comprehensive reporting on the state-of-the-art.... Abstract With machine learning (ML) becoming a popular tool across all domains, practitioners are in dire need of comprehensive reporting on the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1909 |
SubjectTerms | Artificial Intelligence Chemistry and Earth Sciences Computer Science Data Mining and Knowledge Discovery Information Storage and Retrieval Machine learning Physics Statistics for Engineering Sustainability Trustworthiness |
Title | Towards more sustainable and trustworthy reporting in machine learning |
URI | https://link.springer.com/article/10.1007/s10618-024-01020-3 https://www.proquest.com/docview/3086149301 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RVkgsfBQQhVJ5YANLcewk7lhVLRUIplYqU2Q7F8RAqJQu_HtsJ1EKgoE5kRO9s-_OuvfuAG4EVyiFimkcqzEVyDOqfQfaHAWPhdZB7rTDT8_xYiUe1tG61XF7sntTkfSOekfrFjNJbUihrg2adR4d6NnkQTge1yqc7PA6eCUNloJGkgW1Uub3Nb5HozbF_FEV9cFmfgyHdZZIJpVZT2APiz4cNRMYSH0g-7DvCZymPIX50vNfS-KIs6RsZVFEFRnxygrPBvwkVZXAfpa8FeTdcymR1MMjXs9gNZ8tpwtaz0ighjOxpVmguAm1a7MujQmsQUKmhTH5mGmbGSSB61cXhZlUMkNUCRNofWOY60Tm9iYR8XPoFh8FXgBhHMcCMQmN5AKl0ZmRCec8E4ppTOQAbhus0k3VCiNtmx47ZFOLbOqRTfkAhg2caX0sypTb37FXMutUBnDXQNw-_nu1y_-9fgUHobeyo9UOoWtRxmubPGz1CHqT-5fH2Qg603g68lvnC5cpvPQ |
link.rule.ids | 315,783,787,27938,27939,41095,41134,41537,42164,42203,42606,51590,52125,52248 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BEYKFjwKiUMADG1iKP5K4I6qoCrSdWqmbZTsOYiBFShf-PbaTKFDBwJzIid7546x77x3ALWfKCq4SnCRqgLllGdbBgTa3nCVc6yj32uHpLBkv-PMyXtY2OV4Ls1G_9xK3hAjsThLs3c_cnrENO5zSKBRmk-E3OgerFMGC41iQqBbI_D7Gz0OozSw3iqHhjBkdwUGdHKKHKprHsGWLLhw2jRdQvQ67sBt4m6Y8gdE80F5L5PmyqGzVUEgVGQqCikAC_ERVccB9Fr0V6D1QKC2qe0a8nsJi9DgfjnHdGgEbRvgaZ5Fihmrvri6MiVwcKNHcmHxAtEsI0sjb1MU0E0pk1qqUcOu2RJrrVOTuAhGzM-gUq8KeAyLMDri1KTWCcSuMzoxIGWMZV0TbVPTgrsFKflQOGLL1OvbISoesDMhK1oN-A6esV0MpmfsddxNze0kP7huI28d_j3bxv9dvYG88n07k5Gn2cgn7NETcM2v70HGI2yuXP6z1dZg4X7nKubQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT8IwFH5RiMaLKGpEUXvwpoV17bZyJCqiKPEACZ6WtuuMMU4S8KC_3q7bMiR6MJ63NN17b6-ved_3PYBTRoXmTPjY90UHM00jLK0CbawZ9ZmUTpxyh--Hfn_MbifeZIHFb9HuRUsy4zSkKk3JvD2N4vYC8c0nHJvzBaeaaCaTrEKVEVMuVKDavX4cXC3APGjGFOYMe5w4OXHm51W-H05lxbnUJLVnT68Goth1Bjl5ab3PZUt9Lgk6_ueztmAzL0xRN4ukbVjRSR1qxdAHlOeAOqxZzKia7UBvZCG3M5RiddGsZGIhkUTIkjksAPEDZY0Jsyv0nKBXC9_UKJ9X8bQL497V6KKP87EMWFHC5jhyBFWuTJXduVKOiQGXSKZU3CHSFCOBk0rkeW7EBY-0FgFh2qRjN5YBj83lxaN7UEneEr0PiFDdYVoHruKUaa5kpHhAKY2YIFIHvAFnhT_Caaa-EZY6y6mxQmOs0BorpA1oFi4L8z9xFlKzHXMLNHmsAeeFB8rHv6928LfXT2D94bIX3t0MB4ew4VofpqDeJlSMwfWRKV3m8jiPzi8YwuOm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+more+sustainable+and+trustworthy+reporting+in+machine+learning&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Fischer%2C+Raphael&rft.au=Liebig%2C+Thomas&rft.au=Morik%2C+Katharina&rft.date=2024-07-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=38&rft.issue=4&rft.spage=1909&rft.epage=1928&rft_id=info:doi/10.1007%2Fs10618-024-01020-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_024_01020_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |