Towards more sustainable and trustworthy reporting in machine learning

With machine learning (ML) becoming a popular tool across all domains, practitioners are in dire need of comprehensive reporting on the state-of-the-art. Benchmarks and open databases provide helpful insights for many tasks, however suffer from several phenomena: Firstly, they overly focus on predic...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 38; no. 4; pp. 1909 - 1928
Main Authors Fischer, Raphael, Liebig, Thomas, Morik, Katharina
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With machine learning (ML) becoming a popular tool across all domains, practitioners are in dire need of comprehensive reporting on the state-of-the-art. Benchmarks and open databases provide helpful insights for many tasks, however suffer from several phenomena: Firstly, they overly focus on prediction quality, which is problematic considering the demand for more sustainability in ML. Depending on the use case at hand, interested users might also face tight resource constraints and thus should be allowed to interact with reporting frameworks, in order to prioritize certain reported characteristics. Furthermore, as some practitioners might not yet be well-skilled in ML, it is important to convey information on a more abstract, comprehensible level. Usability and extendability are key for moving with the state-of-the-art and in order to be trustworthy, frameworks should explicitly address reproducibility. In this work, we analyze established reporting systems under consideration of the aforementioned issues. Afterwards, we propose STREP, our novel framework that aims at overcoming these shortcomings and paves the way towards more sustainable and trustworthy reporting. We use STREP’s (publicly available) implementation to investigate various existing report databases. Our experimental results unveil the need for making reporting more resource-aware and demonstrate our framework’s capabilities of overcoming current reporting limitations. With our work, we want to initiate a paradigm shift in reporting and help with making ML advances more considerate of sustainability and trustworthiness.
AbstractList Abstract With machine learning (ML) becoming a popular tool across all domains, practitioners are in dire need of comprehensive reporting on the state-of-the-art. Benchmarks and open databases provide helpful insights for many tasks, however suffer from several phenomena: Firstly, they overly focus on prediction quality, which is problematic considering the demand for more sustainability in ML. Depending on the use case at hand, interested users might also face tight resource constraints and thus should be allowed to interact with reporting frameworks, in order to prioritize certain reported characteristics. Furthermore, as some practitioners might not yet be well-skilled in ML, it is important to convey information on a more abstract, comprehensible level. Usability and extendability are key for moving with the state-of-the-art and in order to be trustworthy, frameworks should explicitly address reproducibility. In this work, we analyze established reporting systems under consideration of the aforementioned issues. Afterwards, we propose STREP, our novel framework that aims at overcoming these shortcomings and paves the way towards more sustainable and trustworthy reporting. We use STREP’s (publicly available) implementation to investigate various existing report databases. Our experimental results unveil the need for making reporting more resource-aware and demonstrate our framework’s capabilities of overcoming current reporting limitations. With our work, we want to initiate a paradigm shift in reporting and help with making ML advances more considerate of sustainability and trustworthiness.
With machine learning (ML) becoming a popular tool across all domains, practitioners are in dire need of comprehensive reporting on the state-of-the-art. Benchmarks and open databases provide helpful insights for many tasks, however suffer from several phenomena: Firstly, they overly focus on prediction quality, which is problematic considering the demand for more sustainability in ML. Depending on the use case at hand, interested users might also face tight resource constraints and thus should be allowed to interact with reporting frameworks, in order to prioritize certain reported characteristics. Furthermore, as some practitioners might not yet be well-skilled in ML, it is important to convey information on a more abstract, comprehensible level. Usability and extendability are key for moving with the state-of-the-art and in order to be trustworthy, frameworks should explicitly address reproducibility. In this work, we analyze established reporting systems under consideration of the aforementioned issues. Afterwards, we propose STREP, our novel framework that aims at overcoming these shortcomings and paves the way towards more sustainable and trustworthy reporting. We use STREP’s (publicly available) implementation to investigate various existing report databases. Our experimental results unveil the need for making reporting more resource-aware and demonstrate our framework’s capabilities of overcoming current reporting limitations. With our work, we want to initiate a paradigm shift in reporting and help with making ML advances more considerate of sustainability and trustworthiness.
Author Liebig, Thomas
Morik, Katharina
Fischer, Raphael
Author_xml – sequence: 1
  givenname: Raphael
  surname: Fischer
  fullname: Fischer, Raphael
  email: raphael.fischer@tu-dortmund.de
  organization: Lamarr Institute for Machine Learning and Artificial Intelligence, TU Dortmund University
– sequence: 2
  givenname: Thomas
  surname: Liebig
  fullname: Liebig, Thomas
  organization: Lamarr Institute for Machine Learning and Artificial Intelligence, TU Dortmund University
– sequence: 3
  givenname: Katharina
  surname: Morik
  fullname: Morik, Katharina
  organization: Lamarr Institute for Machine Learning and Artificial Intelligence, TU Dortmund University
BookMark eNp9kEFLAzEUhINUsK3-AU8Bz9H3ks0mPUqxKhS8VPAWstlsu6XN1mRL6b83uoI3T28Y5psHMyGj0AVPyC3CPQKoh4RQombACwYIHJi4IGOUSjAly49R1kIXTGqEKzJJaQsAkgsYk8WqO9lYJ7rvoqfpmHrbBlvtPLWhpn3MxqmL_eZMoz9k0YY1bQPdW7dpg6c7b2PI3jW5bOwu-ZvfOyXvi6fV_IUt355f549L5gQWPavBCscrKWdaOwfeOY5V4VwzwwqVVKBLpSSvtdW191Zh4bEoeVMp3ahCSTEld0PvIXafR596s-2OMeSXRmQYi5kAzCk-pFzsUoq-MYfY7m08GwTzvZcZ9jJ5L_OzlxEZEgOUcjisffyr_of6Apj-b7o
Cites_doi 10.1007/s42484-023-00099-z
10.1145/3381831
10.1109/ACCESS.2019.2923736
10.1145/2641190.2641198
10.1007/s43681-021-00043-6
10.1147/JRD.2019.2942288
10.1007/s13347-022-00510-w
10.1016/j.ipm.2023.103477
10.1109/SaTML54575.2023.00038
10.1145/3474381
10.5281/zenodo.6053272
10.1145/3442188.3445922
10.1126/science.abi7176
10.1109/ESEM56168.2023.10304801
10.1007/978-3-030-69128-8_2
10.1109/DSAA60987.2023.10302632
10.1007/978-1-4842-8844-3_4
10.1007/978-3-030-30371-6
10.1145/3449205
10.1145/3287560.3287596
10.1145/1150402.1150531
10.1109/APSEC.2017.41
10.3389/frai.2022.975029
10.1017/dap.2023.30
10.1609/aaai.v34i09.7123
10.21203/rs.3.rs-3793927
10.1007/978-3-030-67667-4_29
10.1515/9783110785944
10.1016/j.jclepro.2022.134120
10.1126/science.359.6377.725
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10618-024-01020-3
DatabaseName SpringerOpen
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 1928
ExternalDocumentID 10_1007_s10618_024_01020_3
GrantInformation_xml – fundername: Federal Ministry of Education and Research of Germany and the state of North Rhine-Westphalia
  grantid: Lamarr Institute for Machine Learning and Artificial Intelligence
– fundername: Technische Universität Dortmund (1006)
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAYXX
CITATION
H13
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c314t-d0a3c2b55988cc0ecc21b4ccf91b17570867752d8a8deea714e1462fb78f74753
IEDL.DBID U2A
ISSN 1384-5810
IngestDate Thu Oct 10 22:35:34 EDT 2024
Thu Sep 12 20:47:34 EDT 2024
Wed Jul 31 05:23:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Resource-awareness
Benchmarking
Trustworthiness
Reporting
Sustainability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-d0a3c2b55988cc0ecc21b4ccf91b17570867752d8a8deea714e1462fb78f74753
OpenAccessLink http://link.springer.com/10.1007/s10618-024-01020-3
PQID 3086149301
PQPubID 43030
PageCount 20
ParticipantIDs proquest_journals_3086149301
crossref_primary_10_1007_s10618_024_01020_3
springer_journals_10_1007_s10618_024_01020_3
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR39
CR38
CR37
Kang, Kang, Jang (CR29) 2023; 60
CR35
CR34
CR33
CR32
CR31
CR30
CR2
CR4
CR6
CR5
CR8
CR7
CR9
Schwartz, Dodge, Smith, Etzioni (CR41) 2020; 63
CR48
CR46
Baum, Mantel, Schmidt, Speith (CR3) 2022; 35
CR45
CR44
CR43
CR42
CR40
Zaharia, Chen, Davidson, Ghodsi, Hong (CR50) 2018; 41
CR18
CR17
CR16
CR15
CR14
CR13
CR12
CR11
Fischer, Jakobs, Mücke, Morik (CR19) 2022
Cui (CR10) 2019; 7
CR28
CR27
CR26
CR25
CR24
Mücke, Heese, Müller, Wolter, Piatkowski (CR36) 2023; 5
CR23
Arnold, Bellamy, Hind, Houde, Mehta, Mojsilović, Nair, Ramamurthy, Olteanu, Piorkowski (CR1) 2019; 63
CR22
CR21
CR20
Vanschoren, Van Rijn, Bischl, Torgo (CR47) 2014; 15
Wynsberghe (CR49) 2021; 1
1020_CR40
1020_CR42
R Schwartz (1020_CR41) 2020; 63
1020_CR48
W Cui (1020_CR10) 2019; 7
1020_CR43
1020_CR44
S Mücke (1020_CR36) 2023; 5
1020_CR45
1020_CR46
cr-split#-1020_CR16.1
cr-split#-1020_CR16.2
M Arnold (1020_CR1) 2019; 63
1020_CR18
1020_CR14
1020_CR15
1020_CR17
1020_CR11
1020_CR12
1020_CR13
1020_CR20
D Kang (1020_CR29) 2023; 60
J Vanschoren (1020_CR47) 2014; 15
R Fischer (1020_CR19) 2022
1020_CR25
1020_CR26
1020_CR27
1020_CR28
1020_CR21
1020_CR22
1020_CR23
A Wynsberghe (1020_CR49) 2021; 1
1020_CR24
1020_CR8
1020_CR7
1020_CR6
1020_CR30
1020_CR5
1020_CR31
1020_CR4
1020_CR2
K Baum (1020_CR3) 2022; 35
1020_CR9
1020_CR37
1020_CR38
1020_CR39
M Zaharia (1020_CR50) 2018; 41
1020_CR32
1020_CR33
1020_CR34
1020_CR35
References_xml – ident: CR45
– ident: CR22
– ident: CR4
– ident: CR39
– ident: CR16
– ident: CR12
– ident: CR35
– ident: CR8
– ident: CR25
– ident: CR42
– ident: CR21
– ident: CR46
– ident: CR15
– volume: 5
  start-page: 11
  issue: 1
  year: 2023
  ident: CR36
  article-title: Feature selection on quantum computers
  publication-title: Quantum Mach Intell
  doi: 10.1007/s42484-023-00099-z
  contributor:
    fullname: Piatkowski
– ident: CR11
– ident: CR9
– ident: CR32
– ident: CR5
– ident: CR26
– volume: 63
  start-page: 54
  issue: 12
  year: 2020
  end-page: 63
  ident: CR41
  article-title: Green AI
  publication-title: Commun ACM
  doi: 10.1145/3381831
  contributor:
    fullname: Etzioni
– ident: CR18
– ident: CR43
– ident: CR14
– ident: CR2
– ident: CR37
– ident: CR30
– ident: CR33
– ident: CR6
– volume: 7
  start-page: 81555
  year: 2019
  end-page: 81573
  ident: CR10
  article-title: Visual analytics: a comprehensive overview
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923736
  contributor:
    fullname: Cui
– volume: 15
  start-page: 49
  issue: 2
  year: 2014
  end-page: 60
  ident: CR47
  article-title: Openml: networked science in machine learning
  publication-title: ACM SIGKDD Explor Newslett
  doi: 10.1145/2641190.2641198
  contributor:
    fullname: Torgo
– ident: CR40
– ident: CR27
– start-page: 39
  year: 2022
  end-page: 54
  ident: CR19
  article-title: A unified framework for assessing energy efficiency of machine learning
  publication-title: Machine learning and principles and practice of knowledge discovery in databases
  contributor:
    fullname: Morik
– ident: CR23
– ident: CR44
– ident: CR48
– ident: CR38
– volume: 1
  start-page: 213
  issue: 3
  year: 2021
  end-page: 218
  ident: CR49
  article-title: Sustainable AI: AI for sustainability and the sustainability of AI
  publication-title: AI Ethics
  doi: 10.1007/s43681-021-00043-6
  contributor:
    fullname: Wynsberghe
– ident: CR17
– ident: CR31
– ident: CR13
– volume: 63
  start-page: 6
  issue: 4/5
  year: 2019
  end-page: 1
  ident: CR1
  article-title: Factsheets: Increasing trust in ai services through supplier’s declarations of conformity
  publication-title: IBM J Res Dev
  doi: 10.1147/JRD.2019.2942288
  contributor:
    fullname: Piorkowski
– ident: CR34
– volume: 41
  start-page: 39
  issue: 4
  year: 2018
  end-page: 45
  ident: CR50
  article-title: Accelerating the machine learning lifecycle with MLflow
  publication-title: IEEE Data Eng Bull
  contributor:
    fullname: Hong
– volume: 35
  start-page: 12
  issue: 1
  year: 2022
  ident: CR3
  article-title: From responsibility to reason-giving explainable artificial intelligence
  publication-title: Philos Technol
  doi: 10.1007/s13347-022-00510-w
  contributor:
    fullname: Speith
– ident: CR7
– ident: CR28
– volume: 60
  start-page: 103477
  issue: 6
  year: 2023
  ident: CR29
  article-title: Papers with code or without code? Impact of GitHub repository usability on the diffusion of machine learning research
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2023.103477
  contributor:
    fullname: Jang
– ident: CR24
– ident: CR20
– ident: 1020_CR38
– ident: 1020_CR4
  doi: 10.1109/SaTML54575.2023.00038
– volume: 15
  start-page: 49
  issue: 2
  year: 2014
  ident: 1020_CR47
  publication-title: ACM SIGKDD Explor Newslett
  doi: 10.1145/2641190.2641198
  contributor:
    fullname: J Vanschoren
– ident: 1020_CR48
– ident: 1020_CR25
– ident: 1020_CR40
  doi: 10.1145/3474381
– ident: 1020_CR46
  doi: 10.5281/zenodo.6053272
– ident: #cr-split#-1020_CR16.2
– ident: 1020_CR21
– volume: 7
  start-page: 81555
  year: 2019
  ident: 1020_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923736
  contributor:
    fullname: W Cui
– volume: 63
  start-page: 6
  issue: 4/5
  year: 2019
  ident: 1020_CR1
  publication-title: IBM J Res Dev
  doi: 10.1147/JRD.2019.2942288
  contributor:
    fullname: M Arnold
– ident: 1020_CR5
  doi: 10.1145/3442188.3445922
– ident: 1020_CR2
  doi: 10.1126/science.abi7176
– volume: 35
  start-page: 12
  issue: 1
  year: 2022
  ident: 1020_CR3
  publication-title: Philos Technol
  doi: 10.1007/s13347-022-00510-w
  contributor:
    fullname: K Baum
– ident: 1020_CR31
– ident: 1020_CR12
– volume: 5
  start-page: 11
  issue: 1
  year: 2023
  ident: 1020_CR36
  publication-title: Quantum Mach Intell
  doi: 10.1007/s42484-023-00099-z
  contributor:
    fullname: S Mücke
– ident: 1020_CR7
  doi: 10.1109/ESEM56168.2023.10304801
– ident: 1020_CR18
– ident: 1020_CR43
– ident: 1020_CR8
  doi: 10.1007/978-3-030-69128-8_2
– ident: 1020_CR20
  doi: 10.1109/DSAA60987.2023.10302632
– volume: 41
  start-page: 39
  issue: 4
  year: 2018
  ident: 1020_CR50
  publication-title: IEEE Data Eng Bull
  contributor:
    fullname: M Zaharia
– volume: 63
  start-page: 54
  issue: 12
  year: 2020
  ident: 1020_CR41
  publication-title: Commun ACM
  doi: 10.1145/3381831
  contributor:
    fullname: R Schwartz
– ident: 1020_CR28
  doi: 10.1007/978-1-4842-8844-3_4
– ident: 1020_CR14
  doi: 10.1007/978-3-030-30371-6
– ident: 1020_CR39
  doi: 10.1145/3449205
– start-page: 39
  volume-title: Machine learning and principles and practice of knowledge discovery in databases
  year: 2022
  ident: 1020_CR19
  contributor:
    fullname: R Fischer
– ident: 1020_CR11
– ident: 1020_CR34
  doi: 10.1145/3287560.3287596
– ident: 1020_CR15
– ident: 1020_CR33
  doi: 10.1145/1150402.1150531
– ident: 1020_CR17
– ident: 1020_CR42
– ident: 1020_CR45
  doi: 10.1109/APSEC.2017.41
– ident: 1020_CR23
– ident: 1020_CR35
  doi: 10.3389/frai.2022.975029
– ident: 1020_CR37
– ident: 1020_CR24
  doi: 10.1017/dap.2023.30
– ident: 1020_CR44
  doi: 10.1609/aaai.v34i09.7123
– ident: 1020_CR22
  doi: 10.21203/rs.3.rs-3793927
– ident: 1020_CR6
  doi: 10.1007/978-3-030-67667-4_29
– volume: 60
  start-page: 103477
  issue: 6
  year: 2023
  ident: 1020_CR29
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2023.103477
  contributor:
    fullname: D Kang
– ident: 1020_CR32
  doi: 10.1515/9783110785944
– ident: 1020_CR9
– ident: #cr-split#-1020_CR16.1
– ident: 1020_CR27
– ident: 1020_CR30
  doi: 10.1016/j.jclepro.2022.134120
– ident: 1020_CR26
  doi: 10.1126/science.359.6377.725
– ident: 1020_CR13
– volume: 1
  start-page: 213
  issue: 3
  year: 2021
  ident: 1020_CR49
  publication-title: AI Ethics
  doi: 10.1007/s43681-021-00043-6
  contributor:
    fullname: A Wynsberghe
SSID ssj0005230
Score 2.4501464
Snippet With machine learning (ML) becoming a popular tool across all domains, practitioners are in dire need of comprehensive reporting on the state-of-the-art....
Abstract With machine learning (ML) becoming a popular tool across all domains, practitioners are in dire need of comprehensive reporting on the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1909
SubjectTerms Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Information Storage and Retrieval
Machine learning
Physics
Statistics for Engineering
Sustainability
Trustworthiness
Title Towards more sustainable and trustworthy reporting in machine learning
URI https://link.springer.com/article/10.1007/s10618-024-01020-3
https://www.proquest.com/docview/3086149301
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RVkgsfBQQhVJ5YANLcewk7lhVLRUIplYqU2Q7F8RAqJQu_HtsJ1EKgoE5kRO9s-_OuvfuAG4EVyiFimkcqzEVyDOqfQfaHAWPhdZB7rTDT8_xYiUe1tG61XF7sntTkfSOekfrFjNJbUihrg2adR4d6NnkQTge1yqc7PA6eCUNloJGkgW1Uub3Nb5HozbF_FEV9cFmfgyHdZZIJpVZT2APiz4cNRMYSH0g-7DvCZymPIX50vNfS-KIs6RsZVFEFRnxygrPBvwkVZXAfpa8FeTdcymR1MMjXs9gNZ8tpwtaz0ighjOxpVmguAm1a7MujQmsQUKmhTH5mGmbGSSB61cXhZlUMkNUCRNofWOY60Tm9iYR8XPoFh8FXgBhHMcCMQmN5AKl0ZmRCec8E4ppTOQAbhus0k3VCiNtmx47ZFOLbOqRTfkAhg2caX0sypTb37FXMutUBnDXQNw-_nu1y_-9fgUHobeyo9UOoWtRxmubPGz1CHqT-5fH2Qg603g68lvnC5cpvPQ
link.rule.ids 315,783,787,27938,27939,41095,41134,41537,42164,42203,42606,51590,52125,52248
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BEYKFjwKiUMADG1iKP5K4I6qoCrSdWqmbZTsOYiBFShf-PbaTKFDBwJzIid7546x77x3ALWfKCq4SnCRqgLllGdbBgTa3nCVc6yj32uHpLBkv-PMyXtY2OV4Ls1G_9xK3hAjsThLs3c_cnrENO5zSKBRmk-E3OgerFMGC41iQqBbI_D7Gz0OozSw3iqHhjBkdwUGdHKKHKprHsGWLLhw2jRdQvQ67sBt4m6Y8gdE80F5L5PmyqGzVUEgVGQqCikAC_ERVccB9Fr0V6D1QKC2qe0a8nsJi9DgfjnHdGgEbRvgaZ5Fihmrvri6MiVwcKNHcmHxAtEsI0sjb1MU0E0pk1qqUcOu2RJrrVOTuAhGzM-gUq8KeAyLMDri1KTWCcSuMzoxIGWMZV0TbVPTgrsFKflQOGLL1OvbISoesDMhK1oN-A6esV0MpmfsddxNze0kP7huI28d_j3bxv9dvYG88n07k5Gn2cgn7NETcM2v70HGI2yuXP6z1dZg4X7nKubQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT8IwFH5RiMaLKGpEUXvwpoV17bZyJCqiKPEACZ6WtuuMMU4S8KC_3q7bMiR6MJ63NN17b6-ved_3PYBTRoXmTPjY90UHM00jLK0CbawZ9ZmUTpxyh--Hfn_MbifeZIHFb9HuRUsy4zSkKk3JvD2N4vYC8c0nHJvzBaeaaCaTrEKVEVMuVKDavX4cXC3APGjGFOYMe5w4OXHm51W-H05lxbnUJLVnT68Goth1Bjl5ab3PZUt9Lgk6_ueztmAzL0xRN4ukbVjRSR1qxdAHlOeAOqxZzKia7UBvZCG3M5RiddGsZGIhkUTIkjksAPEDZY0Jsyv0nKBXC9_UKJ9X8bQL497V6KKP87EMWFHC5jhyBFWuTJXduVKOiQGXSKZU3CHSFCOBk0rkeW7EBY-0FgFh2qRjN5YBj83lxaN7UEneEr0PiFDdYVoHruKUaa5kpHhAKY2YIFIHvAFnhT_Caaa-EZY6y6mxQmOs0BorpA1oFi4L8z9xFlKzHXMLNHmsAeeFB8rHv6928LfXT2D94bIX3t0MB4ew4VofpqDeJlSMwfWRKV3m8jiPzi8YwuOm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+more+sustainable+and+trustworthy+reporting+in+machine+learning&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Fischer%2C+Raphael&rft.au=Liebig%2C+Thomas&rft.au=Morik%2C+Katharina&rft.date=2024-07-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=38&rft.issue=4&rft.spage=1909&rft.epage=1928&rft_id=info:doi/10.1007%2Fs10618-024-01020-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_024_01020_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon